
Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3477

TASK SCHEDULING ALGORITHM FOR HETEROGENEOUS
MULTI PROCESSING COMPUTING SYSTEMS

1A. YOUNES, 2A. BEN SALAH, 3T. FARAG, 4F. A. ALGHAMDI, 5 U. A. BADAWI
12345Dept. of Management Information Systems, College of applied studies and community Service, Imam

Abdulrahman Bin Faisal University, Dammam 34212 – Saudi Arabia

E-mail: 1ayhamed@iau.edu.sa, 2asalah@ iau.edu.sa, 3thhanafy@iau.edu.sa, 4faghamdi@ iau.edu.sa,
5ubadawi@iau.edu.sa

ABSTRACT

The main purpose of task scheduling is to assign tasks onto available processors with the aim of producing
minimum schedule length and without violating the precedence constraints. In heterogeneous multi-
processing systems, task assignments and scheduling have a great impact on the system operation. In a
heuristic based task scheduling algorithm, different process will result different task execution time
(makespan) on a heterogeneous computing system. Thus, a good scheduling algorithm should be capable to
efficiently assign precedence to each subtask depending on the resources required to reduce makespan. In
this report, we propose a genetic algorithm (PGA) to resolve a task assignment and scheduling for
homogeneous and heterogeneous multi-processing problem. The basic idea of this process is to exploit the
advantages of heuristic-based algorithms to decrease space search and the time needed to get the best solution.
The achieved results show that the suggested approach significantly outperforms the other approaches in
terms of task execution time.

Keywords: Heterogeneous Processors, Genetic algorithm, Heuristi algorithms, Task scheduling,
Multiprocessing

1. INTRODUCTION

 One of the key preperformance measurements
of any computing system is the execution time, and
to reduce the execution time faster processors have
been developed but it has a physical limitation,
accordingly multi-processing system had been
utilized. In multiprocessing system, a program is to
be divided into tasks, such that each task executed on
one of the processors. That task assignment and
processors association is called task scheduling in
multi-processing system.

 To reach an optimal task scheduling and
processor utilization in heterogeneous multi-
processing system is computationally difficult goal.
The term optimal may refer to many objectives
combined. Usually the main objective is minimizing
the makespan. Finding an optimal task scheduling is
NP hard problem [1]. According to that, the heuristic
algorithms are a good candidate to tackle that
problem. Genetic algorithm has been implemented to
solve task scheduling in many articles.

 In this paper, a multi-processing system has
been studied. Homogeneous and heterogeneous
multi-processing have different capabilities of

processing. Task processing time can be only
determined when the task is assigned to a certain
processor, i.e. task processing time is processor
dependent. A genetic algorithm has been proposed
(PGA) to find an optimal task scheduling assigned to
heterogeneous multi-processing system.

 The rest of this paper is presented as follows.
Section 2 represents some related work for task
scheduling problem for different structures of
multiprocessing systems. The problem description is
presented in section 3. In Section 4, the operations of
the proposed algorithm (PGA) are illustrated. Our
PGA approach to find the optimal task scheduling for
homogeneous and heterogeneous multiprocessor
system is described in section 5. The results obtained
by applying the PGA and compared with other
results of SGA, [13] present in section 6. Section 7
concludes the paper and future work.

2. RELATED WORK

The objective of task scheduling in
multiprocessor system is to assign a dependent task
on the processors and the processing time will be
reduced. To minimize the processing time, the

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3478

genetic algorithm has applied to the processors to
obtain various solutions faster processing time. Task
scheduling considers two aspects namely earliest
start time (EST) and some task dependencies (NTD).
This comparison made by using Java simulation and
the result obtained that proposed algorithm solve
minimum EST attains fasters processing time than
maximum EST [1].

The study addressed the multiprocessor
scheduling problems indicated directed acyclic task
graph (DAG) with the communication costs. The
authors proposed Priority-based Genetic
Algorithm/Shortest Processor First schedule provide
better solutions than the existing algorithms with
respect to the completion time of resulting schedules
and reduce the task execution time effectively [2].

The task scheduling algorithms using
Efficient State Space Search Genetic Algorithm
(ESSSGA) which use the benefits of heuristic-based
algorithms to minimize space search and time to
obtain effective solutions [3]. The task to processor
mapping has made by using a heuristic-based earliest
finish time approach which reduces the time
regarding task execution time.

A genetic algorithm (GA) for the task
scheduling in the multiprocessor systems has
indicated that task execution priority depends upon
the height of task graphs to perform scheduling. This
method is simulated and used to compare with the
basic genetic algorithm [4]. GA efficiency could be
attained by the optimization of different parameters
like mutation, crossover, and selection function and
crossover probability. These GA parameters on the
reduction of bi-criteria fitness functions and
parameter setting will be accomplished by central
composite design approach with design experiments.
The experiments use these parameters and analysis
of variance which reduce the total completion time
and makespan [5].

MCP algorithms used for solving the
problems in scheduling task graph. The algorithm is
entirely dependent on the new approach to reduce the
communication cost of processors and length of
critical time. In order to solve the scheduling of task
graph, effective GA has applied. GA proposed for
this scheduling the task graph which can be acquired
an effective scheduling with low time. The results
obtained from the study stated that algorithm related
to graph without communication cost can act quickly
when compared to other [6].

The GA chromosomes like task list (TL),
processor list (PL) and integration of both (TLPLC).
The experiments on real-world application graph
like Gaussian elimination, Gauss Jordan and Laplace
equation and LU decompositions. TLPLCGA is
related to GA and heuristic algorithms regarding
time and efficiency of the processor have conducted.
The result experienced hybrid approach performs
better than the other algorithms [7].

NP-complete problem is solved by using
the integration of heuristics and search techniques.
GAs offer a robust and stochastic solution for many
optimization problems. The design and
implementation of the schedule length of task graph
performed on the processors. To solve the
scheduling problem, the GA has been applied [8].
The fitness evaluation approach is the time-
consuming operation of a genetic algorithm that
influences the GA performance.

A synchronous master-slave algorithm
performs better than the sequential algorithm
concerning a difficult and large number of
generation problems. This research uses GA in
SCHEDULE program to resolve the problem of
multiprocessor scheduling. SCHEDULE is the
simple tool for scheduling task and modeling on the
multiprocessor system. It can easily modify the
complex task graph into specified multiprocessor
architectures. The result obtained from the study
indicated that user change number of processors on
the system and small changes to program would
manage the inter processor communication delays
and overhead costs [9].

The effectiveness of Node Duplication
Genetic Algorithm (NGA) based approach against
the existing deterministic scheduling techniques for
reducing the inter processor traffic communication.
The results get from the simulations indicates that
GA can use schedule task to meet deadlines and
acquire high processor utilization. Performance
analysis of NGA is compared with GA, FCFS and
List Scheduler [10].

The effective method on the GA is created
to solve the problem of multiprocessor scheduling.
This paper used GA for scheduling precedence task
graph with inters task communication onto
multiprocessors without considering the
communication channel. Experimental results show
that hard problems have taken from internet
illustrates that GA with optimization of parameters

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3479

[11]. To produce effective results, the large
probability of global optimum should be considered.

Table 1: Notations

Notations
G A task graph
DAG A Directed Acyclic Graph
ti Task i
pi Processor i
M Number of tasks
N Number of processors
ni Node i
c(ni) Cost of node i
ST(ni,p) Start time of node i on a processor p
FT(ni,p) Finish time of node i on a processor p
RT(pi) Ready time of the processor i

LT
A list of tasks according to the topological
order of DAG.

DAT(ti,pj)
The Data Arrival Time of task i at
processor j

CP A critical Path of G
Pc Crossover ratio
Pm Mutation ratio
Pop_size Population size
GN Number of Generations
Maxgn Maximum generation

3. PROBLEM DESCRIPTION

Figures The model of task scheduling in
this work, can be described as distributed M tasks to
be executed on N processors, the processors can be
with different computing capabilities in general. A
task graph can be mapped to descript the problem
structure.

A task graph G is a Directed Acyclic Graph
(DAG) composed of M nodes n1, n2, n3, …, n M.
Each node of the graph is termed a task. A task is
assumed to be a set of instructions that must be
executed sequentially in an assigned processor. A
task (node) may have pre-demanded data (inputs)
before being executed. When all inputs are received,
the node can be triggered to execute. These inputs
expected to be delivered after some other task end
their execution, as these tasks evaluate them. We
named such relying as task dependency. If a task (t)
is depended on other tasks data then we consider that
tasks as the parents of the task (t), and task (t) is their
child. A node with no parent is called an entry node
and a node with no child is called an exit node, [13].
As shown in Fig.1.

The execution time of a task we call it the
computation cost. Whenever, the computation cost
of a node ni is denoted by (ni) weight. The graph also
has E directed edges representing a partial order

among the tasks. The partial order introduces a
precedence-constrained DAG and implies that if (ni
-> nj), then nj is a child, which cannot start until its
parent ni finishes.

The weight on an edge represents the
communication cost between the tasks and is
denoted by c(ni; nj) , the communication costs
matrix of Fig. 1 graph is shown in Fig. 2. The
communication cost is considered only if ni and nj
are assigned into different processors, otherwise it
is calculated to be zero, in that case ni and nj are
assigned to the same processor.

If a node ni is assigned into processor p, the
start time and finish time of the node are denoted by
ST(ni; p) and FT(ni; p) respectively. After a
scheduling is assumed, the schedule length is
defined as max {FT(ni; p)} across all processors.

Figure 1. DAC (Homogeneous processors)

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3480

Figure 2. Communications Matrix

The task scheduling problem is to find a
schedule of the tasks into the processors such that the
schedule length is minimized over possible
schedules, where the tasks dependency constrains
are preserved. Task dependency constrains is stated
that, any task cannot start until all parents have
finished.

Let pj be the processor on which the kth
parent task tk of task ti is scheduled. The Data
Arrival Time (DAT) of ti at processor pj is time in
which the per-demanded data for the task execution
become available, at is defined as in [13] by the
following :

DAT= max
୩ୀଵ.ଶ……._ୟ୰ୣ୬୲

{FT(t_k. p_j) + c(t_i. t_k)}; (1)

where, N_Parent is the number of ti's parents.

c(t୧. t୩) = 0 ; (2)

if task i and k are scheduled on the same processor

4. THE PROPOSED GENETIC
ALGORITHM (PGA)

The proposed genetic algorithm (PGA)
starts with the first population of feasible solutions.
Then, by applying some operators, the best solution
can be found after some generations. The selection
of the best solution is determined according to the
value of the objective function. In the suggested
algorithm (PGA), we notice that the four
components are: (1) an encoding method that is a
generic representation (genotype) of solutions to the
software. (2) A way to make a primary population of
chromosomes, (3) the objective function (4) the

genetic operators (crossover and mutation) that
affect the genetic makeup of offspring during
reproduction.

4.1 Encoding Method
In PGA, the chromosome is divided into

two sections; distributing and scheduling sections.
The distributing section contains the processors
indices where tasks are to be run on it. The schedule
part determines the sequence for the processing of
tasks. Fig. 3, show an example of a representation of
chromosome. Where, tasks t1, t3, t5 will be
scheduled on processor p1, tasks t2, t6 will be
scheduled on processor p2 , and tasks t4, tm will be
scheduled on processor pn. The chromosome length
is linearly proportional to the quantity of tasks.

t
1

t
2

t
3

t
4

t
5

t
6

…
t
m

p
1

p
2

p
1

p
n

p
1

p
2

…
p
n

t
1

t
4

t
3

t
5

t
2

…
.

t
m

Figure 3. Representation of chromosome

4.2 Initial Population
Subs The initial population is randomly

generated according to the following steps:
1. A chromosome X in the initial population is

possible to generated as shown in Fig. 3.
2. The first part of X (i.e. distributing) is selected

randomly from 1 to N in the system.
3. The second part (i.e. the scheduling) is

randomly generated so that the topological
order of the graph is conserved.

4. Repeat steps 1 to 3 to generate the number of
pop_size of the chromosomes.

4.3 The Objective Function(OF|)
The main objective of scheduling problem

is to reduce schedule length. That is:

OF=a/(S_Length) (3)

where a is a constant and S_Length is the schedule
length which is determined by the following
equation:

S_Length= max
୧ୀଵ.ଶ.⋯⋯.

(FT[t_i]) (4)

The pseudo code for the task schedule using
SGA,[13] is as follows:

For all processor pj RT[pj]=0; j=1,………N.

 For i = 1 to M

 {

 Remove the first task ti form list LT.

 For j = 1 to N

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3481

 {

 If ti is scheduled to processor Pj

 ST[ti]=max{RT[Pj]; DAT(ti; Pj)}

 FT[ti]= ST[ti]+ weight[ti]

 RT[pj] = FT[ti]

 End If

 }

 }

 S_Length=max{FT}

4.4 The Genetic Operations
4.4.1 The crossover operation

The crossover process is used to breed the
child from two parents via one cut point. The
crossover process will perform if the crossover ratio
(Pc<=0.95) is verified. The cut point is randomly
chosen. The crossover process is performed as
follows:
 Randomly select two chromosomes from

current population.
 Select randomly the cut point.
 Fill the chromosome components:

a. Via taking the components from first
chromosome (from first gene up to cut
point) and filling the child.

b. Too, taking the components from second
chromosome (from cut point+1 up to last
gene) and filling the child.

The offspring generated the crossover operation as
shown in Fig. 4.

 Cut point

P
ar
e
nt

p
1

p
2

p
1

p
n

p
1

p
2

…
p
n

t
1

t
4

t
3

t
5

t
2

…
.

t
m

c
h
il
d

p
1

p
2

p
1

p
n

p
1

p
2

…
p
n

t
1

t
2

t
4

t
6

t
8

…
.

t
m

P
ar
e
nt

p
3

p
1

p
2

p
n

p
3

p
1

…
p
n

t
1

t
2

t
4

t
6

t
8

…
.

t
m

Figure 4. The crossover operation
4.4.2 The mutation operation

The mutation process is conducted on a
per-bit basis. The proposed approach in this paper,
the mutation process will implement if the mutation
ratio (Pm<=0.02) is verified and is randomly

estimated. A point is determined to be randomly
mutated. Fig. 5, shows the offspring resulting from
the operation of the mutation.

c
h
i
l
d

p
1

p
2

p
1

p
n

p
1

p
2

…
p
n

t
1

t
2

t
4

t
6

t
8

…
.

t
m

c
h
i
l
d

p
1

p
2

p
1

p
n

p
3

p
2

…
p
n

t
1

t
2

t
4

t
6

t
8

…
.

t
m

Figure 5. The mutation operation

5. THE PGA ALGORITHM

The following algorithm clarifies how
we can solve the task scheduling problem. That is to
find an assignment and the start times of the tasks to
processors such that the schedule length is
minimized, and in the same time, the precedence
constrains are preserved.
Algorithm 1: Genetic algorithm to solve scheduling
problem

1. Input: : Set the parameters: Pop_size, Maxgn, Pm, Pc
, GN, N, P.
2. Steps:
3. Initial population generation as in section 4.2.
4. gen←1.
5. While (gen <= maxgen) Do
6. P ← 1
7. While (p <= pop_size) Do
8. Genetic processes:
 Select the chromosome of two maternal populations
at random
 Apply the crossover according to Pc.
 Mutate of new child according to Pm.
9. For each task i in the schedule section
 Compute the start time ST[ti]
 Compute the Final time FT[ti]
 Compute the ready time of the processor p RT[p]
which task i is processed on it.
10. Save this child as nominee solution.
11. P ← p+1.
12. End Do
13. Set gen =gen + 1
14. End Do
15. Compare all solutions to get the best solution

6. THE PROPOSED GENETIC
ALGORITHM (PGA)

In this section, we show effectiveness of
the PGA by applying it on three examples. First
example of 9 tasks and three homogeneous
processors. Second example, also of 9 tasks and
three heterogeneous processors. The third one of 10

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3482

tasks and three heterogeneous processors. The
parameters setting in this algorithm are: pop_size =
20, Pm<= 0.02, Pc<=0.95.

Example 1: We consider an example of 9 tasks {t1,
t2, t3, t4, t5, t6, t7, t8, t9} to be executed on three
homogeneous processors {p1, p2, p3}, the cost of
execution each task on different processors is shown
in Fig. 1, and inter task communication cost between
the tasks in the form of matrices as shown in Fig. 2,
[13].

The best solution which obtained by the
PGA as shown in Fig. 6. The schedule length after
applying the PGA with Maxgn =100 is 16 as shown
in Fig. 7.

p
3

p
3

p
1

p
2

p
1

p
2

p
3

p
2

p
2

t
1

t
3

t
2

t
7

t
5

t
4

t
8

t
6

t
9

Figure 6. The best solution

The schedule length after applying the
PGA is 16 as shown in Fig. 7, but the schedule
length obtained by SAG, [13] is 17 as Fig. 8.b.

Figure 7. The Scheduling Length of The PGA
(HOMOGENEOUS PROCESSORS)

The comparison between the results
obtained by PGA and SAG is shown in Fig. 8.a.
and Fig. 8.b. It is clearly from the figures; we see
the results by PGA are better than SAG.

Figure 8.A

Figure 8.B

Example 2:We consider an example of 9 tasks {t1,
t2, t3, t4, t5, t6, t7, t8, t9} to be executed on three
heterogeneous processors {p1, p2, p3}, the
execution cost of each task on different processors is
generated randomly from 1 to 5 and is shown in Fig.
9. And inter task communication cost between the
tasks in the form of matrices as shown in Fig. 3.

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3483

The best solution obtained by the PGA
with maxgen =100 as shown in Fig.10.

p
1

p
1

p
3

p
2

p
3

p
2

p
1

p
3

p
3

t
1

t
2

t
6

t
3

t
4

t
5

t
7

t
8

t
9

Figure 10. The Best Solution

The schedule length after applying the
PGA is 14 as shown Fig. 11.

Figure 11. THE SCHEDULING LENGTH OF
THE PGA HETEROGENEOUS PROCESSORS)

Figure 9. DAC (HETEROGENEOUS PROCESSORS)

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3484

The Comparison between the results
obtained by PGA (Homogenous and Heterogonous
processors) is shown below in Fig. 12.a, and Fig.
12.b. respectively.

Figure 12. A

Figure 12. B

Example 3: In this example, the number of tasks {t1,
t2, t3, t4, t5, t6, t7, t8, t9, t10} to be executed on three
heterogeneous processors {p1, p2, p3}, the cost of
execution each task on different processors and inter
task communication cost between the tasks in the
form of matrices as shown in Fig. 13, [14].

Figure 13. SAMPLE DAG AND COMPUTATION COST
MATRIX, [14]

The best solution obtained by the PGA as
shown in the following figure:

Figure 14. THE BEST SOLUTION

The schedule length after applying the
PGA with generation =97 is 117 as shown in Fig.
15, but the schedule length obtained by [14] is 125.

p
1

p
1

p
2

p
3

p
2

p
1

p
2

p
3

p
2

t
1

t
2

t
4

t
5

t
9

t
3

t
7

t
6

t
8

t1

0

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3485

The Comparison between the results
obtained by PGA and [14] is shown below in Fig.
16.a and Fig. 16.b, respectively.

Figure 16. A

Figure 16. B

7. COMPARISON OF PROPOSED WORK
WITH SELECTED ALGORITHMS

In this paper, we tackle the problem of
scheduling problem in a general case, where we have
multiple processors and heterogenous processors.
Now a days, many computations are done in multi-
processing systems like multi-core system of
personal computers. This paper proposed a fast
effect algorithm to solve the secluding problem in
multi-processing system. In addition, we considered
the multi-processing system in a general form, as in
the cloud computing or cluster computing the use

Figure 15. THE SCHEDULING LENGTH OF THE
PGA

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3486

multi-nodes with different kind of processors, which
can be described as heterogeneous multi processors
system. Task scheduling for multi heterogenous
processors is a hard problem, all researches are
proposed a heuristic algorithm to solve it. In this
paper under certain constrains we aim to get a fast-
genetic algorithm to solve that problem. The
conclusion section will summarize the propose
algorithm performance against the other selected
algorithm with the same constrains.

Here we will sum up the comparison
results, in example 1, we can see that the with the
same parameters as in [13] the proposed structure of
the genetic algorithm gives more better results. In
example 2, we illustrate the need no of iterations for
the certain situation. Which shows that the no. of
iteration is very efficient, and that is reflect the speed
of the proposed Algorithm. In example 3, we
consider a system with same parameters as in
example shown in [14], and we can see the efficiency
of the proposed algorithm.

8. CONCLUSION

In this paper, we presented a genetic
algorithm PGA to solve the task scheduling problem
in distributed systems. The system was as the two
processes. The first process consists of a limited
number of fully connected homogeneous processors
and the second process consists of a limited number
of fully connected heterogeneous processors. We
compared the results of PGA and SAG, [13], we
founded that the schedule length of PGA was less
than the SAG's schedule length. We compared
between the results of PGA in the case of
homogenous and heterogeneous processors, we
founded that the schedule length of PGA
heterogeneous processors was less than the PGA
homogeneous processors. Also, we compared
between the results of PGA and [14] in the case of
heterogeneous processors, we founded that the
schedule length of PGA heterogeneous processors
was less than the PGA heterogeneous processors.

9. FUTURE WORK

The scheduling problem have many
versions for different structures and systems.
Especially, with the current importance of
computations capabilities. In the meantime, the time
efficiency of any system is highly demanded, and
that is achieved through new algorithms rather than
faster hardware. Even for new 5G communication is
depend on the software computation efficiency.

In [15], they introduced an new heuristic
algorithm based on ant-colony method for important

problem structure. In [16] also, the proposed a new
algorithm based on OpenCL framework and
compare it with the conventional scheduling scheme.
Even in [17] they consider the same system under
the study but with energy- awareness. Our future
work will consider these systems using the proposed
genetic algorithm (PGA).

REFRENCES:
 [1] Kaiser, T., Jegede, O., Ferens, K. and Buchanan,

D. (2015). A Genetic Algorithm for
Multiprocessor Task Scheduling. PhD. Dept.
of Electrical and Computer Engineering,
University of Manitoba,

[2] Hwang, R., Gen, M. and Katayamaa, H. (2006).
A Performance Evaluation of Multiprocessor
Scheduling with Genetic Algorithm. Asia
Pacific Management Review, 11(2), pp.67-72.

[3] Akbari, M. and Rashidi, H. (2015). an efficient
algorithm for compile-time task scheduling
problem on heterogeneous computing systems.
international journal of academic research,
7(1), pp.192-200.

[4] Sharma, A. and Kaur, M. (2015). An Efficient
Task Scheduling of Multiprocessor using
Genetic Algorithm based on Task Height.
International Journal of Hybrid Information
Technology, 8(8), pp.83-90.

[5] Dhingra, S., Gupta, S. and Biswas, R. (2014).
Genetic Algorithm Parameters Optimization
for Bi-Criteria Multiprocessor Task
Scheduling Using Design of Experiments.
International Journal of Computer, Electrical,
Automation, Control and Information
Engineering, 8(1), pp.661-665.

[6] Mahi, M. and Kodaz, H. (2014). Genetic
Algorithm with Descendants Idea for
Scheduling Tasks Graph in the Multi-
Processor Architecture. Journal of Advances in
Computer Networks, 2(1), pp.10-13.

[7] Mohamed Rashid,, M. And AWADALLA, M.
(2011). Hybrid Algorithm for Multiprocessor
Task Scheduling. International Journal of
Computer Science Issues, 8(3(2), pp.79-88.

[8] Al-Angari, N. and ALAbdullatif, A..
Multiprocessor Scheduling Using Parallel
Genetic Algorithm. College of Computer &
Information Sciences, King Saud University.

[9] Bohler, M., Moore, F. and Pan, Y. (1999).
Improved Multiprocessor Task Scheduling
Using Genetic Algorithms. In: American
Association for Artificial Intelligence.
Proceedings of the Twelfth International
FLAIRS Conference.

Journal of Theoretical and Applied Information Technology
30th June 2019. Vol.97. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3487

[10] Heidari, H. and Chalechale, A. (2012).

Scheduling in Multiprocessor system using a
genetic algorithm. International Journal of
Advanced science and technology, 43, pp.81-
92

[11] Golub, M. And Kasapovic, S. (n.d.). scheduling
multiprocessor tasks with genetic algorithms.
University of Zagreb.

[12] E. S. Hou, N. Ansari and H. Ren, "A Genetic
Algorithm for Multiprocessor Scheduling," in
IEEE Transactions on Parallel and Distributed
Systems, 1994

[13] Fatma A. Omaraa, and Mona M. Arafa,
"Genetic algorithms for task scheduling
problem", J. Parallel Distrib. Comput. 70
(2010) 13_22.

[14] Aida A. Nasr,Nirmeen A. El-Bahnasawy,and
Ayman El-Sayed, "Task Scheduling Algorithm
for High Performance Heterogeneous
Distributed Computing Systems",
International Journal of Computer
Applications (0975 – 8887) Volume 110 – No.
16, January 2015.

[15] Edward, N., & Elcock, J. (2018). Task
Scheduling in Heterogeneous Multiprocessor
Environments–An Efficient ACO-Based
Approach. Indonesian Journal of Electrical
Engineering and Computer Science, 10(1),
320-329.

[16] Fang, J., Yu, T., & Wei, Z. (2019, April).
Heterogeneous Multiprocessor Matching
Degree Scheduling Algorithm Based on
OpenCL Framework. In IOP Conference
Series: Materials Science and Engineering (Vol.
490, No. 4, p. 042045). IOP Publishing.

[17] Qin, Y., Zeng, G., Kurachi, R., Matsubara, Y., &
Takada, H. (2019). Energy-Aware Task
Allocation for Heterogeneous Multiprocessor
Systems by Using Integer Linear Programming.
Journal of Information Processing, 27, 136-148.

