
 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2942

QUERY OPTIMIZATION ON DISTRIBUTED HEALTH
DATABASE DBD FOR SUPPORTING DATA CENTER WITH

MATERIALIZED VIEW AND MINIMIZING ATTRIBUTE
INVOLVEMENT

SUDARYANTO#1, SLAMET SUDARYANTO N#2

,
 FIKRI B#3, MARYANI S*4

#Faculty of Computer Science, Dian Nuswantoro University
Central Java, Indonesia

1msdr8047@dsn.dinus.ac.id, 2slametalica301@dsn.dinus.ac.id, 3fikri.budiman@dsn.dinus.ac.id
*Faculty of Health, Dian Nuswantoro University

 Central Java, Indonesia
4watiek_ms@yahoo.com

ABSTRACT

The integration of data from various sources is an important step to establish a data warehouse in order to
form a decision support application. The problem is how to find and integrate optimally the various data
from distributed heterogeneous database sources. The heterogeneity of data sources has a number of
factors, including storing databases in various formats, using different software and hardware for database
storage systems, designing in different data semantic models. There are currently two approaches to data
integration: Global as View (GAV) and Local as View (LAV), but both have performance limitations and
need to find ways to optimize them. Some of the key factors to be considered in making data integration
optimal are query response time and understanding of structure of the data source (source schema). Query
response time plays an important role as timely access to information and it is the basic requirement of
successful business application. A data warehouse uses multiple materialized views (MV) to efficiently
process a given set of queries. Query process requires important attention especially in source schema,
because the results of cost-based query processes (access costs and stored costs) are influenced by the
involvement of the number of attributes and sites visited. This paper gives the results of proposed minimize
attribute involvement based MV selection algorithm for query processing. First, select MV by clustering
the workload of the query. A query is decomposed into a sub-query that requires operations on a separate
database and can determine the exact order of site access. From the query process query sequence, the
operating costs for the query process will be minimal. When a query process in a distributed database
occurs, query operations will look for data from various attributes in a scattered database table, whereas
query processes often do not require all the attributes of the tables. Therefore, to optimize the query
requires minimum operating cost requests (access costs and stored costs) by separating the use of
unnecessary attributes. Second, a join index that is specifically adapted to the multidimensional architecture
of warehouses. It eliminates join operations while preserving the information contained in the original
warehouse. This approach can also to minimize the cost of the request in addition to separating attributes
that are not required by the request, thereby reducing the amount of time store and access. In the separation
of attributes, attributes are shared indiscriminately, because otherwise they will result in greater access fees
and ultimately reduce the performance of the query process. To perform such attribute separation can be
done by Vertical Fragmentation method. To validate this study, we measured response times from a set of
decision support Queries through DBD data warehouse, with and without using our optimization
techniques. Our experimental results show their efficiency, even when queries are complex and the data is
relatively large.

.Keywords: Global as View, Local as View, Materialized View, Access Costs , Stored Costs, Data

Warehouse

1. INTRODUCTION

The information produced by an

application comes from a lot of data that is local,
not uniform and autonomous as a reference in

providing an integrated global scheme [1]. The
structure of local data sources is heterogeneous
(text, web pages, XML documents, relational
databases). Data is presented with a variety of
different methods such as web forms and local

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2943

databases. It takes extra effort to make the function
of integrating or integrating various heterogeneous
sources of data. The first step that must be done in
data integration is to retrieve data from various
different sources, then understand the relationship
of each data source (source schema) with the
global scheme. Accommodate differences in
structure and values and the potential for
inconsistencies from local schemes to global
schemes. The process of data integration and
exchange between data requires the transformation
of local data structures into schemes, namely the
transformation of source schemes into target
schemes that have different data structures. The
process of transforming a local scheme into a
target scheme is usually called schema mapping.
Mediators are needed as a concept of integration
architecture between different schema sources [7].
The wrapping function is used to wrap the
information container and model it into the schema
source. The mediator function is used to maintain
the global scheme and mapping between local and
schematic global schemes. When the user queries
all objects related to the global scheme, the
mediator will use the reformulation-query
procedure to translate the query into executable
sub-queries from all the schema sources involved
in the query process and then reassemble the
answers from each source of the scheme to be
combined further to answer the query. At present
various approaches and categories can be used to
integrate federations or multi-database systems
[11]. Currently in integrating data in the global
scheme there are three categories of languages in
expressing correspondence, namely: Global as
View (GAV), Local as View (LAV), Global Local
as View (GLAV), Both as View (BAV) along with
theory and related system [8], [9]. From the
literature the Query processing algorithm for LAV
describes a data integration system that describes
and adopts the GAV query integration system and
the query process. In the GAV approach,
reforming queries can reduce the application of
rules to be simple (display of standard execution
on a regular database). However, the mapping
process in the global GAV scheme requires a
synchronization process between the global
scheme and the local scheme as the source of the
scheme. Especially if there is a change or addition
from the source scheme as a source of information
from GAV. In large-scale applications LAV is
easier to manage than GAV because the DBA
makes a global scheme regardless of the source
scheme. When there is a need for a new scheme as
a data source, the DBA only adjusts the

description of the source scheme which describes
the relationship of the data source as a form of the
global scheme. So that the automation of
reformulation queries in LAV has complex
exponential times. This problem is directly related
to the query process and the definition of source
schemes. If LAV is used as a Data Center support,
LAV has a low query process performance when
users often request complex queries. In order for
the data center to have a better performance, the
number of engagement attributes from LAV must
be evaluated.

Fig 1. View Based Data (VBD) Integration System

2. RELATED WORK

The cost model on query optimization contains an
accurate cost formula for calculating operator cost
execution that appears in the plan [15]. Generally,
costs in formations such as source statistics are
required for this cost model, since these statistics
are used to obtain coefficient values in the cost
formula. Often DBMS implements mentors who
are able to provide an accurate cost formula with
an indispensable source of statistics. When an
autonomous data source, the cost formula and
source statistics are not available. To get the cost

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2944

model we need some special methods that are
different from the data source level autonomy. For
example, a method by Calibration [15] estimates
the coefficients of the generic cost model for each
type of relational data source. This calibration
needs to know the access method used by the
source. This method is extended to object-oriented
databases by [16]. If this procedure of the abrasion
can’t be processed because of the data source
constraints, the sampling method proposed in [17]
can be derived cost model for each type of query.
The query classification in [17] is based on a set of
common rules adopted by many people DBMSs.
When no implementation algorithm and formation
fees are available, we can use the method
described in [2], where the estimated cost of the
new request is based on the history of questions
evaluated thus far. Specifically, for semi-
structured data sources, [1] proposed two
techniques to estimate simple XML selectivity of a
path expression over complex, large-scale XML
data as done by an XML-scale XML application.
[18] describes cost-based query optimizers in
DBMS for XML- based on data that support
expressive query language. [19] proposed an
approach to using a new statistical learning
technique called "regression transformation" rather
than a detailed analytical model to predict the
overall cost for XML-based data sources.
[20] proposed a mediation system called DISCO,
based on a global-as-view (GV) approach. DISCO
mediator is distributed
operations executed at the data source level
(wrapper) and operations are conducted at the
mediator level. The DISCO data model is based on
the ODMG standard. Disco uses a cost-based
optimization approach that combines the general
cost model with the specific cost information
exported by the wrapper. The data source interface
is defined using a subset of expanded CORBA
IDL with the cardinalities section for the data
source statistics and the cost formula section for a
custom formula. This section defines the cost-
communication languages that are appropriate for
an object-oriented environment but not generic.
Other mediation systems with cost-based demand
optimization include Garlic [21], Hermes [22],
Ariadne [3], etc. However, none of the above
mentioned solutions have overcome the overall
cost estimation problem in a semi-structured
environment integrating heterogeneous data
sources.
In [4] the authors overcame the notion that server
data stores can’t communicate with each other and
propose models that divide data over different

fragments. The main difference between the work
of previous researchers and the work proposed in
this paper is that we consider evaluating the cost of
the query during the fragmentation process and
overcoming the fragmentation computing problem
it minimizes the cost of such a request. An
important aspect that needs to be emphasized in
cost-based query optimizer is how to explore the
set of alternative execution plans as search space.
In order to generate a new plan from the original
then the mediator usually uses the rules of
transformation and data mapping. The large
number of rules and the involvement of many
attributes will cause the exponential explosion of
the query plan candidate. So it will directly require
a search space containing the candidate's execution
plan. This will result in inefficient use of search
space resulting in high costs in the query process.
For that needed a search strategy that can reduce
the size of the search space that contains the
candidate execution plan. In [18] the authors
describe 3 important rules that are commonly used
by most DBMS in generation planning: (1)
Transformation by join order; (2) Avoid cross
product join; (3) Avoid taking intermediate results
as the inside operand of each join. Furthermore,
commercial systems will use dynamic
programming algorithms in generating candidate
plans. [23] This algorithm performs a dynamic
scan, a complete search that can build all
alternative merging trees (choose 3 rules). By
repeating on the number of relationships merged
so far and removing the un-optimized trees.

3. METHODOLOGY

Integration is the process of combining data from
different sources, integration can be modeled triple
(T, {Si}, {Mi}), where T is the schema target, {Si}
is the number of source schemes n and {Mi} is
mapping the number n source to target scheme.
Thus each Si source scheme is Mi from Si to T, 1≤
i ≤ n. The process of combining existing data at
different sources {Si} with the associated local
schema to form a single virtual database (non
materialized) with a global scheme as a target for
the T scheme [1,2]. It is used to provide a uniform
query interface to access heterogeneous databases
and is discrete. The advantage of the data
integration process is that users do not have to
search for data sources that are relevant to the
query. The description in Figure 2. below, where
the user queries and is sent to the data integration
system, this is first formulated in the framework of
the global scheme that will be run. Then the

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2945

system will transform the request into a sub-query
stated in the local scheme of several independent
data sources.

Fig 2. Mapping Data Integration System

Two main components that must be considered in
conducting data integration, namely Integration
Scheme and Query Processing. The integration of
schemes can be directly related to how various
local schemes can be combined into one global
scheme directly. While query processing related to
how queries can be answered by translating to one
or several queries in the source database. There are
four main approaches to data integration: Local as
View (LAV), Global as View (GV), Global Local
as View (GLAV) and Both as View (BAV). All of
these approaches are not realized (virtual) where it
uses a view definition to determine the mapping
between local schemes and global schemes. The
view definition is the result of a query for basic
relations whose results are not stored in a data base
(non materialized). Mapping is used to translate
queries expressed in the global schema framework
for sub-queries expressed in local schemes.

3.1 Conjunctive Queries and Datalog Notation.
In modeling and expressing view definitions and
queries, datalog notation is needed [11,12]. Data
integration is a triple relationship (G, {Si}, {Mi}),
where G is the target of the global scheme or
scheme, {Si} is the number n source schema and

{Mi} is mapping the number n sources for the
target scheme. So for each source scheme Si is Mi
from Si to T, 1≤ i ≤ n. The data integration system
is a process of combining data that is in a different
source {Si}. Mapping between local data sources
or schemes and the global scheme as a data center
is a set of statements:
1.
S => qG ,
2.
G => qS,
Intuitively, the first statement states that the
concept is represented by view (query) qS as an S
source scheme (LAV) in accordance with the
concept defined by qG as a global scheme (GAV),
and vice versa.

3.2 Mapping Schema Construction.
Centralized schema mapping using two databases,
namely: 1) the source scheme uses a local database
schema group. 2) target scheme using a global
scheme. The database source as Ds containing the
local schema (Source Scheme -Ss) consists of
several relations (n relations R1 ... Rn). Whereas
the target database (Target-Dt Database) as the
target theme (Schema Target-St) consists of one R
relation target. Thus the scheme mapping (M) is a
join project that maps Ss to St. For each Ri, I ∈ [n]
4, we show the scheme with S (Ri) and for
example I (Ri). S (Ri) is the set with all the
attributes in Ri. While R (Target Relation) has the
S (R) = {A1, ..., Am} scheme, where m is the
target size and Aj (j ∈ [m]) represents the
attributes in R. t [A] of tuple projections in
attribute A. The type used in the input spreadsheet
is under the target scheme. Each sample E is a
string attribute. We show the first example with tE
= (E1, ..., Em) and call it the tuple sample. Our
goal for sampling is to include all scheme mapping
that changes the source database from the target
object "containing" the tuple sample.

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2946

Fig 3. Mapping Local Schema to a Global Schema

If the input is not exactly the same as the source,
here it is used to generate schema mapping, we
give an inaccurate sample by leaving it "noisily
contain" by some database examples. Formally it
can define a relationship ("noisily contain") by a
binary operator ≽, which returns the boolean value
based on the desired error model. Using this
operator we can say notifying a sample containing
"noisily contain" as E iff t [A] ≽ E. Similarly we
say that t contains E iff ƎA s.t. t [A] ≽ E. Then
given tE = (E1, .. Em), we call T containing tE, iff
˅ i ∈ [m], t [Ai] ≽ Ei. Finally we can determine
the target database Dt containing t E iff Ǝt ∈ Dt s.t
contains tE. This underlying concept in defining
sample searches is as follows: if the source
database Ds is given and the sample tuples tE =
(E1,, Em), in the search to find all M scheme
mapping in such a way that the mapping results
come from the source database M (schema
mapping) from the database source (Ds) contains
all database tuples from the tE source, then each
result of the schema mapping is called a valid
schema mapping model.

3.3 Process Query Translation.
The query process is directly related to several
queries (Q), such as if there are two pairs of source
databases (Ss) from different structures such as
(Ds) containing local schemes with multiple
relations (n relations R1 ... Rn). If there are

questions that involve all local schemes from
different Ds source database pairs, then it will
prepare several processes from the query
translation, such as semantic translation queries,
advanced query translations (tree pattern
backgrounds, joined translation tree patterns), and
backward query translations. For each candidate
set V (view) of the selected cover, the general
commands used to select are:

Select attributes in (View)
From source relations in the join path for (View)
Where filter and join conditions from the join path

Fig 4. Mapping Algorithm

Fig 5. Mapping and Translation Correspondences In
Tree Model

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2947

The documents that need to be considered as
global data statements from source data are like
"one fact in one place." The filter that is applied to
global data is to minimize the data attribute of the
source and complete global data needs. With this
filter, we try to uphold these principles for the
values chosen by the filter because our goal is
schema mapping rather than schema design. The
application of this filter allows users to change the
arrangement of source attributes in order to fulfill
the desired global information. For example, in
publishing information for a "What-If" scenario,
users can combine attributes cross or break
attributes until they can evaluate all possibilities.
To obtain information (target schemes) from
various source schemes, we use these principles to
encourage initial mapping to the maximum extent
possible. Users can block target data from
mapping and decide whether to modify the
mapping so that the tree mapping process becomes
a reference for querying with certain attributes and
filters. If applied to the tree mapping of the image
above then the additional correspondence
command is:

F_1 : patien(id_pasien) rs_rujuka(id_pasien)
F_2 : patien(dok_keluarga) r-
rujuka(dok_keluarga)
F_3 : patien(dok_rujukan) rs_rujuka(do_rujukan)
F_4 : patien(rs_rujukan) rs_rujuka(rs_rujukan)
F_5 : pasien(id_pasien) rs_rujuka(id_pasien)
F_6 : pasien(d_rujukan) rs_rujuka(dok_rujukan)
F_7 : pasien(dok_rujukan) rs_rujuka(dok_rujuka)
F_8 : pasien(r_rujukan) rs_rujuka(nama_rs)

select pt.id_pasien, pt.dok_keluarga,
pt.dok_rujukan, ps.id_pasien, ps.nama_rs
from patient pt, pasien ps
where pt.id_pasien=ps.id_pasien
union all
select null as dok_keluarga, ps.id_pasien ,
ps.dok_rujukan*pt.d_rujukan, null as
pasien_reguler
from patient pt, pasien ps
where pt.id_pasien=ps.id_pasien

create view t_rujukan (id_pasien, dok_keluarga,
nama_kasus, nama_rs) as
select f1(s1, id_pasien, dok_keluarga), f2
(s2,dok_rujukan, fast_rujukan, rs_rujukan)
from s1,s2
where s1.id_pasien=s2.id_pasien
union
select f2(s2, id_pasien, null, rs_rujukan)

3.4 Query Workload Analysis.
The workload of the query process we consider is
a set of selection, join and aggregation queries.
This first step consists in extracting from the
workload representative attributes for each query.
We mean by representative attributes those are
present in Where (selection predicate attributes)
and Group by clauses. We store the relationships
between workload queries and the extracted
attributes in a so-called “query-attribute” matrix.
Matrix lines are queries and columns are extracted
attributes. A query qi is then seen as a line in the
matrix that is composed of cells corresponding to
representative attributes. The general term qij of
this matrix is set to one if extracted attribute ai is
present in query qi , and to zero otherwise. This
matrix represents our clustering context.

3.5 View and Materialized View (MV).
View is a virtual table that does not have to exist
in the database, but can be generated based on
requests from certain users when desired [2]. View
is a dynamic process of one or more operations
performed on the base table to generate another
table. View is dynamic, meaning that if the base
table changes, then the view directly shows the
change. The purpose of view creation is:
1. Provide a flexible and good security
mechanism by hiding part of the database of users.
2. Allows users to access data in a
customized manner, so that the same data can be
viewed by different users in different ways at the
same time.
3. Simplify complex operations on the base
table.
View provides several benefits, such as enhancing
security by limiting access to data and reducing
query complexity. But the view also has
weaknesses, one of which is performance
degradation if the definition uses complex queries
and involves many tables. View can improve
performance if used as Materialized View.
Materialized View (MV) is a view whose contents
are computed and stored [8]. MV like cache, ie
copy of data that can be accessed quickly [6].
Some DBMSs support the VM as index view. This
view is dematerialized by forming a unique
clustered index on the view. After the clustered
index is created, the non clustered index can also
be created as an additional index. Index is a
separate physical data structure that allows queries
to access many databases quickly [3]. Index can
provide benefits in improving query performance
significantly. The clustered index specifies the

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2948

physical sequence of data in the table [7].
Clustered index stores rows of data in tables based
on key values. While non-clustered index store
pointer to table data as part of key index.
 Using indexes to improve query performance
is not a new concept, but indexed view provides
additional performance benefits not found in the
standard index. Indexed view can improve query
performance in the following ways:
1. Aggregation can be pre-computed and
stored in the index to minimize the high
computation of query execution.
2. tables can be pre-joined and the resulting
data stored.
3. combinations of join and aggregation can
be stored
Aggregation and join are often the right candidates
for indexed view. A query can be a candidate of
the indexed view if it takes significant time and
large amount of data to get the query results
quickly. Indexed view will work very well when
the data is relatively static or rarely updated. While
the transactional environment is not suitable for
indexed view. Some application systems that can
implement indexed views are: decision support
workloads, data marts, data warehouses, online
analytical processing (OLAP) databases, data
mining.

3.6 Proposed Algorithm.
In a distributed database environment the data
source is derived from various nodes. It might
happen that the same copy of the database exists
on multiple nodes. Therefore query execution on
each and every node will be inconvenient and time
consuming in a distributed environment. This
becomes even more complicated when
materialized views are made for distributed
databases. To minimize the storage of query
results and increase the query response time of the
materialized views (MV), the selection of attribute
involvement according to the query access
requirement is very significant for query
execution. Two proposed algorithms are presented
to address the issue of query access fees and the
cost of clustered index storage of MV underlying
the proposed query optimization query. The first
algorithm is for generating and selecting attribute
attributes required by MV. Tree-based approaches
are used to create and maintain MV. Initially all
records are arranged in ascending order of their
key values. Then the middle note is selected as the
root of the tree element. The record is then divided
up until the threshold does not reach so that the
tree leaf should contain the number of records that

will be available in the materialized view. Then the
materialized view is created for each leaf node,
indirectly each leaf representing a materialized
view that must be created and maintained. The
materialized view is selected on request. It's a note
whose request meant the view materialized and
only that record would be selected for processing.
This minimizes total execution time for query
processing. That selective approach can also be
used to create a materialized view that minimizes
storage costs. The second algorithm is for the
selection of nodes. This algorithm decides the
nodes in the distribution of the environment to
which the realized view must be created, updated
or maintained. The random walk algorithm is used
as the basis for designing node selection algorithm
and protocol gossip is used to find the best node
set. In the following algorithm, recordings are
initially compiled in ascending order of their key
values using set (R). Then the middle note is
selected as the root node. For each note on the
available node, if the threshold is less than the
number of records in the leaf node then split again
the records in the same set; if not, make the
tangible look for the next note available in the leaf
node & add the materialized view in the view set.

3.7 Cost Analysis
The total cost for materializing views can
computed using the following strategy. The
proposed algorithm considers query processing
cost (for selection, aggregation and joining), view
maintenance cost, storage cost, net benefit and
storage effectiveness for computing the total cost.
The cost is calculated in terms of block size B. The
query processing cost in terms of block access is
equal to size of materialized view Vi. [14,19].

CB (Vi) = S(Vi)

The query cost involving the joining of n
dimensional tables with view Vi is given by

Cj(Vd1, Vd2,…, Vdn , Vi) = (S(Vd1) + S(Vd1) *S(Vi))
+ (S(Vd2) + S(Vd2) *S(Vi)) +…..+ (S(Vdn) +
S(Vdn)* S(Vi))
To process user’s query qi, which requires not
only selection and aggregation of the view, but
also the joining of view with other dimension
tables, the query cost Cq(qi) is given by

Cq(Vi) = CB (Vi) + Cj(Vd1, Vd2,…, Vdn , Vi) =
S(Vi) + (S(Vd1) + S(Vd1) *S(Vi)) + (S(Vd2) +
S(Vd2) *S(Vi)) + ….+ (S(Vdn) + S(Vdn) *S(Vi)).

Thus the total Query cost Total (Cqr) for
processing r user queries is given by

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2949

Total =(Cqr)= ෌ (fqt ∗ Cq(qt))

௥

௜ୀଵ

The re-computation of each view requires
selection and aggregation from its ancestor view
Vai , and their joining with n dimension tables.
Therefore the maintenance cost is given by

Cm(Vi) = CB (Vai) + Cj(Vd1, Vd2,…, Vdn , Vai)
 = S(Vi) + (S(Vd1) + S(Vd1) *S(Vai)) +
 (S(Vd2) + S(Vd2) *S(Vai)) + ….
 + (S(Vdn) + S(Vdn) *S(Vai))

The cost for storing materialized views depends on
the availability of hard disk space. The storage
factor U represents the estimated ratio of the
storage capacity required by the data warehouse to
the availability of hard disk space it is given by

U = (Total (Cstore) + (1+Q) * Y *Sa) / Total
available storage capacity

Where ‘(1+Q) * Y * Sa’ estimates the total
increase in storage capacity for accommodation of
new data during processing or creation of
materialized views. Here Q is the estimated
increase rate in data volume per year within data
warehouse, Y is the estimated processing cycle of
the data warehouse, and Sa is the storage space
required to store added new data and their
materialized data. The storage cost of view in
terms of data block B is given by

Cstore (Vi) = U * S (Vi)

In most of the today’s systems storage space
doesn’t matter because large amount of hard disk
space is available with less prize so in proposed
algorithm implementation the value of
U=1. Therefore the total storage cost is calculated
as

Cstore (Vi) = S(Vi)

4 DISCUSSION AND EXPERIMENT

RESULT

4.1 Global As View (GAV) to Materialized
View.

Experimental results were performed on different
health DBD databases. Between DBD databases
stored in different locations will be the data source
of the data center (data warehouse). Two storage
location locations are used to experiment with data
integration using the proposed method, ie from
GAV as an all-virtual views method to all

modified materialized views. The step starts first
by creating a unique cluster index that is
appropriate to save the view results from GAV.
When creating GAV attributes of local schema in
selection or in filter first. The goal is to minimize
attribute involvement when forming GAV, thus
minimizing the capacity of storage space when
creating a materialized view (index view from
GAV). Then use tree-based approaches used to
create and maintain MV. To measure the
performance of the proposed method, the authors
only measure from the performance elements
Query Processing Cost and Storage Cost. In the
experiment used 20 queries. Each refers to the
view of the local schema and index view in the
global schema. Each query is grouped into query
join, aggregation query, and mixed query (query
join & aggregation query). After measuring the
query processing cost and storage cost the next
step is to compare and measure the increase in
query processing time as the average query
response time in milliseconds (ms).
The GAV mechanism is an integration framework,
that the global scheme is defined as the estuary
view of all local schemes that are directly related.
In order to produce the right information, any
global construction or element is determined by
the top view from the relevant local source. So all
data attributes from all source schemes greatly
contribute to the development of the GAV global
schema view. The figure below describes the
mapping between two data sources with one global
GAV scheme. GAV is obtained by defining the
involvement of each data source as Global as
GAV. GAV mapping is a series of assertions, one
for each element g of G, if g => qs means,
mapping will specify g as a request from qs as a
data source. This shows that in mapping the
schema gives us to know how the elements
involved are calculated. The next step modifies
the virtual view GAV (VV) to materialize by
creating a unique clustered index that is
materialized view (MV). To minimize the query
response is done queuing into several sub-queries
(tree pattern join). The clustered index feeds the
rows of data in the table based on the key value,
while the virtual view or non-clustered index
stores the pointer to the table data as part of the
key index :

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2950

Local Schema 1(Source1) Local Schema 2 (Source2)
Pasien(Id_Pasien, Nama_Pasien,
Tgl_Lhr, Dok_Keleluarga,
Dok_Rujukan, RS_Rujukan)
Tindakan(NoRM, Kode_Dok, Tgl,
Nama_Tind, Qty, Kode_RS,
ICD,Total_Bea)

Patient(Id_Pasien, Nama_Pasien, T_Lahir, D_Rujukan, R_Rujukan, Tgl_Tind, Nama_Tind, Total, ICDX)

Global Schema(All Virtual View)

Create View Global-Pasien_Rujukan As
Select Id_Pasien As P_Rm, Kode_Dok As Dok_Id, Tindakan.Tgl As Tgl_Tindakan, Nama_Tind, Qty As Jum_tindakan,, Kode_RS,
Year(currdate())-Pasien.Year(Tgl_Lhr) AS Umur, ICD, Total_Bea
From source1.Pasien, source1.Tindakan
Where Id_Pasien = No_Rm
Union
Select Id_Pasien As P_Rm, null AS DokId, Tgl_Tind AS Tgl_Tindakan, Nama_Tind, Kode_RS, Year(currdate())-Year(tgl) As Umur, ICDX As ICD
, Total As Total_Bea
From source2.Patient

Global Schema(All Materialized View)

Create View Global-Pasien_Rujukan With Schemabinding As
Create View Global-Pasien_Rujukan As
Select Id_Pasien As No_Rm, Kode_Dok As Dok_Id, Tindakan.Tgl As Tgl_Tindakan, Nama_Tind, Qty As Jum_tindakan,, Kode_RS,
Year(currdate())-Pasien.Year(Tgl_Lhr) AS Umur, ICD, Total_Bea
From source1.Pasien as Lav1
 Join source1.Tindakan as Lav2
 using(No_Rm)
 Join ((Select Id_Pasien As No_Rm, null AS DokId, Tgl_Tind AS
 Tgl_Tindakan, Nama_Tind, Kode_RS, Year(currdate())-Year(tgl) As
 Umur, ICDX As ICD , Total As Total_Bea)
 From source2.Patient
 Using(No_Rm)

Query Over The Global Schema Query Over The Local Schema

Select P_Rm, Kode_Dok, ICD,
Total
From Global-Pasien_Rujukan
Where Kode_RS= “Swasta1” and
Nama_Tind =”Fraktur F”

Select A.Id_Pasien, B.Kode_Dok, B.Nama_Tind,B.Qty
From Source1. Pasien A, Source1.Tindakan B
Where A.Id_Pasien=B.NoRM And B.Kode_Rs=Swasta1” And B.Nama_Tind= “Fraktur F”
Union
Select Id_Pasien, D_Rujukan, Nama_Tind, Total
From Source2.Patient
Where R_Rujukan=”Swasta1” and Nama_Tind =”Fraktur F”

Fig 6 Integration Local Schema to Global Schema (GS) Based View

4.2 Answering Query (Using Materialized
View).

There are several things that pertain to the query
process that must be considered and have an effect
on the effectiveness of query answering in the data
integration schema. Some things to watch out for
are: constraint / integrity constraints in the global
schema, permitted classes in the mapping and
query classes in the mapping. The treatment
algorithm will be different between GAV with
constraint and GAV without constraint. For GAV
without constraint is the simplest case in
answering query. This model is also considered to
be the first order query in the mapping. Its view is
exact so it can be proved that there is one global
database as a target that is mapped from legal data
sources. In GAV without a global database
constraint derived from the source schema where
the display's existence is calculated by using the
display definition to map it. The answer to the
query, the query user is calculated by evaluating

the query through the global database. Likewise to
modify the query, the user can easily be able to
obtain an equivalent query that can be executed
based on the source. This can be done easily after
the ongoing strategy where each atom is above
View (V) where V is the symbol of the relation in
the global schema replaced by a query
corresponding to the GAV mapping.
When Q queries and defines the view to be V1, ...,
Vm, then we need to rewrite Q by using the Q
view query view. This is done with the aim of
seeing the relation V1, ..., Vm or predicate
comparison. When we rewrite it can have two
conceptual goals, namely equal rewriting and
maximum rewriting. Writing in this paper there are
restrictions on the attributes of local or source
schemes, is the most appropriate attribute choice to
apply, because it has the purpose of query
optimization and maintenance of physical data
independence. The Q1 query is contained in a Q2
query if for each database, then answering the
query to Q1 is always a subset of Q2. An

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2951

equivalent question if the source attribute is
directly related to the needs of the target scheme.
Suppose that is a database scheme and V is a set
view of T. Query P can be expanded by using the
inner view V, denoted Pexp, obtained from P by
replacing all views in P with the corresponding
base relation. Queries on P on T are called Q query
rewriting and are directly related to V if P uses
only views in V, and Pexp is in Q as a query. Thus
P is called a rewrite query and the equivalent Q
that uses V if Pexp and Q are equivalent to queries.

Pasien(Id_Pasien, Nama_Pasien, Tgl_Lhr,
Dok_Keleluarga, Dok_Rujukan, RS_Rujukan)
Tindakan(NoRM, Kode_Dok, Tgl, Nama_Tind,
Qty, Kode_RS, ICD,Total_Bea)
Dokter(Kode_Dok, Nama, Spesialisasi)

Query Q1,
Select D.Nama, Total_Bea
From Pasien P, Tindakan T, Dokter D
Where P.Id_Pasien=T.RoRM AND
T.Kode_Dok=D.kode_Dok And Dok_Keluarga =”
dr. jennar”

Queries wants to display the attribute data of the
doctor's name to find out the total cost of the
patients treated by the family doctor dr. jennar.
Queries and views are often written with
conjunctions, so the query can be rewritten as :

Q1(T,G) : -Pasien(P, N, joko), Tindakan(P, D, G),
Dokter(D, T, Q)

In constant arguments like the lowercase letters in
the "joko" sentence are the arguments for
constants, while large lettered arguments (like "P")
for variables. The symbol ": -" as the body of the
query command body, which has a sub-goal with
an extended body part as a whole body
relationship. The small letter "joko" as a constant
in the first sub-destination represents the selection
condition. Variable S is owned by the first two
sub-regions. This region represents the
combination of patient relationships and actions in
the patient-id_pasien attribute. The T and G
variables as query heads (on the left side of the ": -
" notation, represent the final projected attribute.)
The results of the views that have been defined
from the base table are:

Views :
V1(I, N, Dk, K, Nt,Q):- Pasien(I, N, Dk),
Tindakan(No, K, Nt, Q)
V2(No, K,Nt,M,Q):- Tindakan(No, K, Nt, Q),
Dokter(K, M,S)

So the SQL command to define view 1 is as
follows

CREATE View V1 As
Select P.Id_Pasien, P.Nama_pasien,
P.Dok_keluarga, T.Kode_Dok,T.Nama_Tind,
T.Qty
From Pasien P, Tindakan T
Where P.Id_Paseien=T.NoRM

This view is a combination of the patient's
relationship with medical action. This is also the
case in View V2 is a combination of medical
measures (treatment size and doctor), except the
value and value attributes are dropped on the final
result. Here are the results of the q1 writing query
using 2 View.

Answer(N,Nt):-V1(I, N,joko, K, Nt), V2(No, K, N)

This view is a combination (natural) of the
relationship between patients and medical action.
Also at view V2 is a combination (natural) of the
relationship of medical action and family doctor,
except that the value attribute is dropped on the
final result. The query can be rewritten q1 using
two views.

Answer (M,Nt) :- pasien (I, N, joko, K, Nt),
Tindakan(No,K,Nt), Tindakan (N,K,Nt’), Dokter
(K, M, S’)

Nt 'and S' are new variables introduced during
substitution. This extension is equivalent to a
query, so rewriting is equivalent (relevant) to the
previous query. If it involves a V2 view and found
the conditions for selecting a new attribute then the
definition j is as follows:

V2’(I,K,M):-Tindakan (S, K, Nt), Dokter (K, M,
internis)

If when defining V2 there is a selection condition
again in the quarter attribute, then the view will be
defined as:

Answer(M,Nt):-V1(I,N,joko,K, Nt), V2’(I,K,M)

Attribute description:

(Id_Pasien =I, Nama_Pasien=N, Tgl_Lhr=T,
Dok_Keleluarga=Dk, Dok_Rujukan=Dr,
RS_Rujukan=R, NoRM=No, Kode_Dok=K,
Tgl=L, Nama_Tind=Nt, Qty=Q, Kode_RS=Kr,
ICD=I,Total_Bea=B, Nama=M, Spesialisasi=S)

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2952

Global View Mapping is very suitable for
relatively stable data sources, global view mapping
will be difficult if there are new data sources that
change frequently and are uncertain. So it requires
an algorithm that can dynamically pair the
schemes that will be mapped. GAV Fitting The
algorithm of the source schema attribute to the
global schema attribute occurs in three stages.

Fig 7. Desain Central Data Warehouse Architecture

Fig 8. Data Staging Process

4.3 Experiment Result.
Based on the results of experiments that have been
done on 20 queries that each refer to the view and
index view that has been in the filter. There is a
difference of response time (answering query) to
each query group. Here is a graph table showing
the response time difference.

Table 1. Query Response Time

Quer
y

 Query Processing Cost (ms)
Virtual
Views

Materialize
d Views

Proposed
Materialize

d Views
Q1 16230 1026 986
Q2 2356 1121 887
Q3 2248 307 121
Q4 9698 1849 1009
Q5 161147 11642 8987
Q6 1480 740 598
Q7 1495 899 587
Q8 28728 4788 4001
Q9 8608 1201 1007

Q10 11018 3009 2889
Q11 6808 765 598
Q12 4155 878 307
Q13 4498 1397 668
Q14 21454 2922 2296
Q15 4552 667 568
Q16 14898 1778 1287
Q17 6890 1998 789
Q18 12998 1368 1199
Q19 10998 8175 7786
Q20 5496 1745 669

Fig 9. Graph Comparison Of Query Processing Cost

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Q
1

Q
3

Q
5

Q
7

Q
9

Q
11

Q
13

Q
15

Q
17

Q
19

R
es

po
ns

e
T

im
e

(m
s)

Query

Virtual
Views

Materialized
Views

Proposed
Materialized
Views

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2953

Based on the result of the average response test of
the experiment between the materialized view with
the proposed method, it can be known the cost of
the magnitude of the approach of the query
response time generated between the two
approaches. Performance measurement is done by
comparison ratio of query response time between
both methods. So as to obtain acceleration or
increased query response time as the cost of the
query process.

Table 2. Performance Increased Execution Time By The

Proposed Approach

Quer

y
Numbe

r Of
Record

s

Size
(Bytes

)

Query
Workload
Analysis

Increase
d Time

Q1 987 389

Query
Join

104 %
Q2 4660 339 126%
Q3 3000 156 253%
Q4 5564 450 54%
Q5 19781 391 128%
Q6 68991 433 123%
Q7 9770 234 130%
Q8 108085 143 119%
Q9 793 233

Query

Aggregatio
n

119%
Q10 18009 335 104%
Q11 4506 347 127%
Q12 33984 231 123%
Q13 45997 334 123%
Q14 17009 761 78%
Q15 121084 651 117%
Q16 609 118

Query
Aggregatio

n
&

Join

138%
Q17 2093 443 126%
Q18 8058 234 114%
Q19 45607 189 104%
Q20 159078 231 111%

From the results of experiment done can be
obtained the result that the query with indexed
view or materialized view has a faster execution
time compared with virtual view. This happens on
all types of queries. Table 2 shows that the use of
indexed views can improve query performance in
accessing data up to 253% faster than virtual
views. Increased acceleration time occurs in the
join query group.

Table 3. Query Response Time

Query

Storage Cost
Virtual
Views

Materialized
Views

Proposed
Material
Views

Q1 0 1238 380
Q2 0 2416 654
Q3 0 1356 455
Q4 0 1177 319
Q5 0 1844 867
Q6 0 2730 790
Q7 0 1579 449
Q8 0 588 197
Q9 0 2445 865

Q10 0 2956 814
Q11 0 3099 998
Q12 0 1589 566
Q13 0 2803 851
Q14 0 997 486
Q15 0 1975 719
Q16 0 909 355
Q17 0 840 283
Q18 0 1123 616
Q19 0 658 339
Q20 0 769 509

Table 4: The Query Processing and Storage cost for

three Materialization Strategies
Strategy

Approach
Query

Processing
Cost

Storage
Cost

Total
Cost

Virtual Views 335755 0 335755
Materialized
Views

48275 33091 81366

Proposed
Materialized
Views

37239 11512 48751

The calculation of the total cost in table 4.
illustrates the cost calculations based on each
strategy. The table calculates the total cost
including the storage cost and the cost of the query
process. This is because in the materialized view
group is a technique to define all virtual view, so it
requires storage. The query processing costs of
each strategy are sourced from the calculations in
Table 1. The storage costs are derived from table
3.

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2954

Fig 10. Graph Comparison of Query Processing Cost
and Storage Cost

Fig 11. Graph Total Cost

5 CONCLUSION

The materialized view is most beneficial for
improving query performance as it stores pre-
computed data. But all of the views or queries are
not candidates for materialization due to the view
cost. The selection of views to materialize is the
important issues in data warehouse. In this article
we have outlined a methodology whether the
views created for the execution of queries is
beneficial or not by considering the various
parameters: cost of query, storage space. We have
presented proposed methodology for selecting
views to materialize so as to achieve the best
combination good query performance. These
algorithms are found efficient as compared to
other materialized view selection and maintenance
strategies.
Based on the experiments conducted indexed view
proven to improve query performance in accessing
data significantly on distributed databases. After
modifying the materialized view method by
selecting the attribute involvement from the source
schema, the indexed view as a materialized view
may increase in performance compared to before it
is modified. In this query process query efficiency
test the author uses two cost parameters, namely
Query Processing Cost and Storage Cost. At first
the experiment was performed to record the
response time query, in this experiment the
proposed method had a faster response time. then
performed piercing for storage cost, the result of
the proposed method has a smaller storage cost.
The proposed materialized view method proved to
be faster than the old materialized view

0

50000

100000

150000

200000

250000

300000

350000

400000

Virtual Views Materialized
Views

Proposed
Materialized

Views

Query
Processing
Cost

Storage Cost

0

50000

100000

150000

200000

250000

300000

350000

400000

Virtual Views Materialized
Views

Proposed
Materialized

Views

Storage Cost

Query
Processing
Cost

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2955

(unmodified). Even the response time query results
on the type of query join has a percentage increase
in query processing can reach 253% faster than
previous methods. To improve this research, the
future can add cost maintenance parameter as an
indicator of the efficiency of the query process
with this materialized view modification method.

ACKNOWLEDGEMENTS

This research received full support and funding
sponsorship from the Ministry of Research and
Technology-Higher Education of the Republic of
Indonesia. Planning, operational coordination and
supervision are carried out by LLDIKTI Region
VI of Central Java. The authors express their
gratitude for their attention and guidance.

REFERENCES
[1] McBrien, Peter, and Alexandra Poulovassilis.

"Data integration by bi-directional schema
transformation rules." Data Engineering,
2003. Proceedings. 19th International
Conference on. IEEE, 2003.

[2] Lenzerini, Maurizio. "Data integration: A
theoretical perspective." Proceedings of the
twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of
database systems. ACM, 2002.

[3] Katsis, Yannis, and Yannis Papakonstantinou.
"View-based data integration." Encyclopedia
of Database Systems. Springer US, 2009.
3332-3339.

[4] Kolaitis, P. G. (2009). Relational Databases,
Logic, and Complexity [Powerpoint slides].
Retrievedfrom
https://users.soe.ucsc.edu/~kolaitis/talks/gii0
9-final.pdf

[5] Hellerstein, Joseph M., Michael Stonebraker,
and James Hamilton. "Architecture of a
database system." Foundations and Trends®
in Databases 1.2 (2007): 141-259.

[6] Miller, Renée J., Laura M. Haas, and Mauricio
A. Hernández. "Schema mapping as query
discovery." VLDB. Vol. 2000. 2000.

[7] Ullman, Jeffrey D. "Information integration
using logical views." International
Conference on Database Theory. Springer,
Berlin, Heidelberg, 1997.

[8] Levy, Alon, Anand Rajaraman, and Joann
Ordille. Querying heterogeneous information
sources using source descriptions. Stanford
InfoLab, 1996.

[9] Genesereth, Michael R., Arthur M. Keller, and
Oliver M. Duschka. "Infomaster: An
information integration system." ACM
SIGMOD Record. Vol. 26. No. 2. ACM,
1997.

[10] Calvanese, Diego, Domenico Lembo, and
Maurizio Lenzerini. "Survey on methods for
query rewriting and query answering using
views." Integrazione, Warehousing e Mining
di sorgenti eterogenee 25 (2001).

[11] Landers, Terry, and Ronni L. Rosenberg. "An
overview of Multibase." Distributed systems,
Vol. II: distributed data base systems. Artech
House, Inc., 1986.

[12] Ullman, Jeffrey D. "Database and
Knowledge-Base Systems, Volumes I and
II." (1989).

[13] Abiteboul, Serge. "Foundations of
Databases/Serge Abiteboul, Richard B. Hull,
and Victor Vianu." (1995).

[14] Nurhendratno, Slamet Sudaryanto, and Fikri
Budiman. "Design Model Integration And
Syncronization Between Surveillance Units
To Support Data Warehouse Epidemiology."
Journal of Theoretical and Applied
Information Technology 95.3 (2017): 498.

[15] Nurhendratno, Slamet Sudaryanto, et al.
"Query Optimization on Distributed
Database Dengue Fever by Minimizing
Attribute Involvement." JCS 14.4 (2018):
466-476.

[16] W. Du, R. Krishnamurthy, and M. Shan.
Query Optimization in a Heterogeneous
DBMS. In VLDB 1992.

 [17] G. Gardarin, F. Sha, and Z. Tang.
Calibrating the Query Optimizer Cost Model
of IRO-DB. In VLDB, 1996.

[18] Q. Zhu and P. Larson. Solving Local Cost
Estimation Problem for Global Query
Optimization in Multidatabase Systems.
Distributed and Parallel Databases, 1998.

[19] J. McHugh and J. Widom. Query
Optimization for Semistructured Data.
Technical report, Stanford University
Database Group, 1999.

[20] N. Zhang, P. J. Haas, V. Josifovski, and C. Z.
G. M. Lohman. Statistical Learning
Techniques for Costing XML Queries. In
VLDB, 2005.

[21] H. Naacke, G. Gardarin, and A. Tomasic.
Leveraging Mediator Cost Models with
Heterogeneous Data Sources. In ICDE, 1998.

[22] L. M. Haas, D. Kossmann, E. L. Wimmers,
and J. Yang. Optimization Queries Across
Diverse Data Sources. In VLDB, 1997.

 Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2956

[23] S. Adali, K. Candan, and Y.
Papakonstantinou. Query Caching and
Optimization in Distributed Mediator
Systems. In ACM SIGMOD, 1996.

[24] P. Selinger, M. Astrahan, D. Chamberlin, R.
Lorie, and T. Price. Access Path Selection in
a Relational Database Management System.
In ACM–SIGMOD, 1979.

