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ABSTRACT 
 

To increase security and accuracy in the systems which are based on biometrics, a multimodal system was 
suggested. The multimodal biometric systems, are more accurate and effective compared to the unimodal 
systems which are considered as a wide research field these days. Multimodal biometric system aims to 
improve the recognition accuracy by minimizing the limitation of the unimodal. This paper focuses on the 
Palmprint Multimodal system; palmprint biometrics is considered as one of the most popular biometric 
technologies to authenticate the identity of a human. The aim of this paper is to introduce a comprehensive 
investigation of a multimodal palmprint that focuses on feature level fusion. Based on the review of the 
multimodal palmprint system, some suggestions have been made that can be considered for future research 
to improve palmprint multimodal. 
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1. INTRODUCTION  
 

In the last decade, the biometric system has 
grown as a reliable method for human 
authentication and the system has attracted 
significant attention of a number of researchers. 
The unimodal biometric system uses a single trait 
but this modal suffers from many limitations, as 
sensitive to noise, lack of universality as well as 
being vulnerable to intra-class, illumination and 
spoof attack [1, 2]. To overcome these limitations, a 
multimodal biometric system has been introduced. 
By multimodal we mean combining two or more 
traits of human physiological or behavior including, 
face, hand, palmprint, handwriting, signature and 
other features [3-7]. The review of current literature 
reveals that numerous researchers have studied the 
use of biometrics, multimodal and levels of fusion 
[8-15]. 

In our previous work [16] we presented a 
comprehensive review on the unimodal palmprint, 
while, in this paper, we focus on investigating the 
multimodal based on the palmprint combined with 
different traits. We also discussed problems 
pertaining to this modal, that previous works 
haven't discussed these problems and introduced 
some solutions to take into accounts. To the extent 

of examining a deeper degree of feature level 
fusion, by illustrating its scheme and investigating 
the palmprint database, feature extraction methods 
based on the different categories of the palmprint 
images, and briefly presenting various feature 
selection and classification methods. Finally, this 
article will make some important suggestions that 
will help to improve the palmprint multimodal. This 
study doesn't include any mathematical concepts 
related to multimodal palmprint.   

Palmprint refers to the inner region between the 
wrist and fingers. It is highly rich in texture pattern 
(principle lines, wrinkles, and ridges) [17, 18]. A 
palmprint system is of high interest to both civil and 
forensic applications, it has some advantages over 
other biometric technologies, due to its large size 
which contains various features at different levels. 
These features make it difficult to forge the 
palmprints [19-22]. Figure 1 illustrates the 
palmprint features [23].  

A palmprint image can divided into; the 
contactless images as a friendly system [24], 
contact-based system for high accuracy [25, 26], 
and latent prints for forensic application [20, 27]. 
Each of these categories has different features that 
need different algorithms to extract it. This will be 
discussed in the sub-section on feature extraction. 
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 Figure 1: Features of the palmprint [23] 

 
The rest of paper is organized as follows. Section 

2 introduces a multimodal biometric system. 
Section 3 presents a literature review of the 
palmprint multimodal system, Section 4 discusses 
the limitations of the palmprint multimodal. Section 
5 introduces the feature level fusion scheme in 
detail, and the paper will be concluded in Section 6. 

 
2. MULTIMODAL BIOMETRIC SYSTEM  
 

 A multimodal-biometric system combines 
two or more traits. The problems with the unimodal 
biometric can be overcome by using the multimodal 
biometric system that merge indexes from multiple 
sources [28, 29]. A multimodal biometric system is 
based on various biometric data traits, such as the 
iris, fingerprints, hand geometry, face and other 
features. Non-universal problem processing, 
improved matching accuracy and reasonable 
protection against false attacks can be expected 
from this system [30]. These systems can also meet 
the stringent performance requirements of various 
applications. However, such a system takes more 
time to verify and this causes inconvenience to 
users. The main challenge in a multimodal system 
is to determine the information (biometric) sources 
and their combination strategies. A multimodal 
biometric can be applied at different levels of 
fusion [31, 32]: 

 Sensor level Fusion: The captured templates 
are combined with multiple biometric 
sensors, and then the learning phase is 
implemented in these new templates; 

 Feature Level Fusion: Many sequential 
vector features are employed to form simple 
and superior vectors; 

 Matching level fusion: The result from 
multiple matchings applied to the set of 

features will be fused to access the final 
decision; 

 Decision level fusion: The decision is made 
for each biometric identification system, 
and then the final decision is made by 
merging the previous valves. 

  
3. MULTIMODAL PALMPRINT: 

LITERATURE REVIEW  
 

The outline of the palmprint literature 
review has covered biometric system, unimodal 
palmprint, multimodal palmprint, and structure of 
the palmprint system. Figure 2 illustrates the 
literature review mapping. The highlighted items in 
figure 2 represent the scope of this study. This 
section discusses the literature review pertaining to 
the state-of-the-art methods developed by 
researchers for palmprint as a multimodal which is 
combined with different traits at different levels of 
fusion. Jazzar and Muhammad [33] proposed the 
fusion of the finger and palmprint. The features 
extraction was accomplished using the Zernike 
moments (ZM) invariant algorithm that works 
under the low-resolution scanning device for 
fingerprint and palmprint acquisition. In order to 
calculate the similarities, the Euclidean distance 
between the test image features and the stored 
features is used. Apart from that, Bellaaj et al. [34] 
proposed integrating the fingerprint and palm of the 
hand based on a possible modeling approach. A set 
of relevant biometric features extracted from image 
samples is statistically analyzed and represented by 
a potential distribution. The biometric templates of 
the palm of the hand and the fingerprint are used 
for decision-making by applying a score-level data 
fusion process. 

 
On the other hand, a number of researchers 

such as Saini and Sinha [13] have been combining 
palmprint with the face, which used Gabor–Wigner 
transforms (GWT) to extract the feature vector 
from the face and the palmprint images for 
matching purposes and proposed PSO for the 
reduction phase, Lee and Bong [35] introduced the 
face and palmprint combination with the bit plane 
decomposition approach. Pixel level fusion is 
applying by using simple averaging method before 
bit-plane feature extraction. To reduce the feature 
vector dimension PCA algorithm used on the 
hybrid face-palm bit planes, Farmanbar and Toygar 
[4] introduced the face and palmprint biometric 
systems fusion with different level fusion, for 
feature extraction, Local binary patterns (LBP) are 
performed and these features are then fused at the 
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feature level fusion. Then for the reduction phase, a 
backtracking search algorithm (BSA) was used to 
select an optimal subset of the face and palmprint 
extracted features. After that, a match score-level 
fusion is performed to show the effectiveness and 
accuracy of the proposed method.  

 
Several studies have reported the 

combination of the palmprint with iris as conducted 
by Naderi et al. [36] who performed the Log Gabor, 
Discrete Cosine Transform (DCT). Walsh and Haar 
used to extract features from the images then 
performed the feature level fusion by concatenating 
the feature vectors from two modalities and used a 
combination of the iris and palmprint to achieve the 
multimodal system. They used the Intuitionistic 
Fuzzy c-mean (IFCM) technique to extract the 
features for the palmprint and Ridge energy 
detection (RED) algorithm for the iris feature 
extraction. Then they performed the matching level 
using a hamming distance. 

 
Hezil and Boukrouche [37] investigated 

the combined ear and palmprint at the feature-level. 
Local texture descriptors, local binary patterns 
(LBP), Weber local descriptor (WLD), and binaries 
statistical image features (BSIF) are used for 
feature extraction and for the K-nearest neighbor 
(K-NN) are used as a classifier. 

 
Samai et al. [38] proposed using two bands 

(grayscale and near infrared) of palmprint images. 
This is in order to perform a multimodal palmprint 
verification system using progressive image 
compression through the famous Set Partitioning in 
Hierarchical Trees (SPIHT) coder. The images of 
the palmprint are compressed and decompressed at 
0.5 bit per pixel (bpp). The result are three images, 
an image at 0.25 bpp which represents the image 
approximation, the other at 0.25 bpp which 
represents the edges or details, and the third is the 
global image of the both proceedings. At the stage 
of the final match, a level fusion is performed after 
analyzing the features which have been extracted 
from the different bands. 

 
The combing of a palmprint with more 

than one trait to increase the accuracy has been 
studied by many researchers. Deshpande et al. [39], 
for an example, proposed a method which 
combined fingerprint, palmprint, and face 
recognition which are collected and stored in the 
database at the time of the enrollment. In the 
recognition phase, the query trait images will be 
compared to the stored templates then passed 

through a matching level fusion. Adjacent 
Orientation Vector (AOV) based minutiae 
algorithm was used for features extraction for the 
fingerprint, PCA analysis was used for both face 
and palmprint. For the matching phase, they used 
the Euclidean distance. Srikantaswamy [40] 
proposed three traits fusion, fingerprint, palmprint 
and hand geometry. For the purpose of feature 
extraction, they used the Histogram of Oriented 
Gradients (HOG) for fingerprint, for palmprint they 
used PCA and linear discriminant analysis (LDA) 
algorithms, for the hands geometry the Harris 
corner detection algorithm (HCDA) was utilized, 
and a support vector machine (SVM) was used for 
the matching phase. Gurunathan et al. [41] 
proposed fusing the palmprint and palm vein 
images. First, the captured traits images were 
enhanced with the Adaptive Histogram 
Equalization (AHE) for feature extraction using 
Speeded Up Robust Feature algorithm (SURF) for 
both palmprint and palm vein. The extracted 
features are stored in the dataset as a feature vector. 
To perform feature level fusion, the two features 
vectors were fused together using a sum rule. To 
calculate the similarities between the test and 
database, the sum of Absolute Difference (SAD) 
distance measure was used. Sujatha and 
Chilambuchelvan [42] designed a multimodal 
biometric system integrating four traits including 
the iris, palmprint, face and signature based on the 
coded discrete wavelet transform (DWT) for image 
analysis and authentication. The multi-level 
wavelet-based fusion approach was applied, 
integrated and encoded in the single composite 
image for the matching decision. Table 1 presents a 
summary of the previous work based on the 
palmprint combined with different traits. 

 
4. LIMITATIONS OF MULTIMODAL 
PALMPRINT  
 

Although these studies have obtained good 
results, they suffer from some problems such as 
there is no database that contains two different 
traits belonging to the same person, long time 
execution and different features form [31]. To 
overcome these limitations a few studies based on 
the combination of the left and right palmprint, Xu 
et al. [43] introduced a multimodal by integrating 
the matching level fusion which involves three 
kinds of matching: the first matching involves the 
left query palmprint with the left training palmprint, 
in the second matching, the right query palmprint is 
matched with the right training palmprint, and in 
the third matching the left query palmprint is 
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matched with the reverse right training palmprint. 
The multimodal system is evaluated using different 
recognition approaches such that the Robust Line 
Orientation Code (RLOC) method, the Competitive 
Code method, the Binary Orientation Co- 
Occurrence Vector (BCOV) method, and the sparse 
multiscale competitive code (SMCC) method for 
the touch-based dataset from poly U using 3740 
 
 

Figure 2: Literature review mapping  
 
images from 187 individual with 10 samples for the 
left palm and 10 samples for the right palm, and 
method such as SIFT methods and the orthogonal 
line ordinal feature OLOF + SIFT method for the 
contact-less method from IITD using 3290 from 
235 with 7 images from each individual. They 
asserted that using the score level corresponding to 
the sum-weight needs more time, approximately 1.5 
times compared to the conventional method. They 
were the first researchers who identified the 
similarities between the left palm and right palm. 
  

Leng et al. [44], on the other hand, 
introduced a multimodal biometric system based on 
a multi-instance palmprint combination. Two-
dimensional discrete cosine transform (2DDCT) for 
feature extraction from left and right palmprint, 
dual discriminant power analysis (DDPA) for 
normalization and the nearest neighbor for 
recognition phase in this multimodal system. The 

experiments were performed in the contactless 
palmprint database of Multimedia University 
Malaysia, 202 images were selected from 101 users 
with 10 samples from each person. 5 samples were 
used for testing and the rest were used for training. 
The split training and testing dataset were randomly 
selected and they were run for 20 times. Both Leng 
et al. and Xu et al. mentioned the following 
advantages of the combination of the left and right 
palmprints.  

 The palmprint images of the right and left 
hand of each user are relatively similar; 

 These similarities were employed to 
improve the palmprint identification 
performance;  

 High accuracy. 

 On the other hand, the feature level offers 
a better identification at other levels. It includes the 
use of a set of the feature through various vector 
sequence features to the large 1D vector form 
which, have more information for feature traits [31, 
32, 45]. Therefore, we propose to develop the 
multimodal palmprint scheme by combining the left 
and right palmprint at feature level fusion. In the 
following section, we will illustrate the feature 
level fusion scheme.  

5. FEATURE LEVEL FUSION SCHEME  

 
The feature level fusion scheme is 

illustrated in Figure 3. This scheme consists of five 
basic steps namely the image capture, feature 
extraction, feature fusion, recognition and decision. 
At the feature fusion phase, the features which are 
extracted from the previous step from the two traits 
images are fused. This will lead to the high 
dimension of the feature vector [46]. In this 
scenario, it is essential to perform feature selection 
(FS) in order to accomplish the classification task. 
After proceeding to the recognition phase, and by 
applying a threshold, the final decision will be 
accomplished. 

 
5.1 Palmprint image capture 

This is the first step in any biometric 
system. The palmprint images can be classified into 
four categories [47] which are contact based, 
contactless, high resolutions and 3D-palmprint. The 
following databases belong to these categories that 
are available to the public are summarized in Table 
2. For a multimodal palmprint, a low-resolution 
databases, contact based and contactless are widely 
used. 
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Table 1: Summary of the multimodal palmprint previous work 

 
(ACC=accuracy, FAR=false acceptance rate, FRR, false rejection rate, EER= equal error rate) 

 

Ref. Recognition 
Approach  

Fusion traits Level fusion  Parame
ter  

database 

[33] ZM and Euclidean 
distance & F-ratio 

Finger and 
palmprint 

Feature level   ACC= 
100%  

 Unpublic database of 50 
people databases of 50 
people  

[39] PCA, AOV  Finger, 
palmprint, 
and face 

Matching 
level  

 ACC= 

98%. 

 

Unknown database 

[13] GWT+ PSO 

 

Face, 
palmprint,  

Feature level 
and Matching 
score level 

ACC= 

98.34% 

ORL, Yale-B, and Essex 
face database. IIT Delhi 
palmprint  

[35] PCA and BPNN Face and 
palmprint 

Feature level  ACC> 

89% 

Yale and ORL face 
database and PolyU 
palmprint database 

[4] LBP and BSA Face and 
palmprint 

feature-level 
and match 
score-level 
fusion 

ACC= 

99.17% 

FERET face and PolyU 
palmprint databases 

[40] HOG 
+LDA+PCA+SVM 

Finger 
,palmprint 
and hand 
geometry  

 feature level  ACC= 

93% 

Unknown  

[41]  SURF  

SAD  

palm vein and 

palmprint 

feature level  FAR = 
0 %   
FRR= 
1.91% 

put.poznan.pl/vein-dataset. 
PolyU palmprint 

[38] SPIHT Two band 
palmprint 
(grey and 
infrared) 

Score level 
fusion  

EER 
=0.0027 

PolyU 

[34] possibilistic modelling 
approach 

fingerprint 
and palmprint 

Score level 
fusion 

AUC = 
0,9997 

FVC fingerprint and 
CASIA palmprint 

[42] DWT Iris palmprint, 
face, and 
signature  

Image fusion  FAR=1 

FRR=2 

CASIA 

[37] LBP, WLD and BSIF 
and K-nearest neighbor 
(K-NN) 

Ear and 
palmprint 

Feature level 
fusion  

 ACC= 

100% 

IIT Delhi-2 ear and IIT 
Delhi palmprint 

[36] log Gabor and 
Laplacian Eigen maps 
based on random forest 
classifier  

palmprint and 
iris 

Feature level 
fusion 

ACC= 

99.80% 

CASIA for both palmprint 
and iris 

[48] COEP &RED and sum 
rule 

palmprint and 
iris 

Matching 
level 

-------- IIT Delhi for both 
palmprint and iris  
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In addition, the captured images need to 
process. Image processing is a set of process used 
to enhance the image that is needed for biometric 
data after collection it to remove noise and extract 
the only region of interest (ROI) that has significant 
information. These ROIs are used in the sequential 
steps of the recognition system .A number of 
researchers were included the image processing 
within their works. The table 3 introduced a 
summary of previous work based on palmprint 
image processing.  
 
5.2 Palmprint feature extraction 

Feature extraction can be defined as the 
process to extract the higher level information of an 
image and to transform it into a feature vector 
(called descriptor), which will be used instead of 
the original image[49]. The feature extraction is 
considered as a crucial step in any biometric 
system, the accuracy of the system depends on how 
much the features are accurate. Generally, the 
feature extraction approaches are divided into three 
approaches: holistic (global), structure (local) and 
hybrid. Holistic approaches are divided into 
subspace and representation. A subspace transforms 
the original data image from the high space onto the 
lower space. These algorithms are used when there 
is a need to reduce the dimension which is useful 
when feature fusion needs to be achieved. 

 
 

TABLE 2: PALMPRINT DATABASES. 

 
 
 

 
 
 
Figure 3: Feature fusion scheme 
 
 
 
 

TABLE 3: PALMPRINT IMAGE PROCESSING PREVIOUS WORKS  
 

 

 

 

Reference  Database  Image categories  

[50] Poly U  Contact-based  
[51] IITD Contactless 

[52] GPDS Contact less 
[53] CASIA Contactless 
[54] THU High resolution  

[55] Poly U-3D 3D-palmprint 

Ref  Method description  Data base description  ROI pixel Parameter  

[56]  Median filter to remove 
noise; 

 Moore neighbor to tracing 
boundary; 

 Using Otsu's to adopted 
threshold to binaries the 
image. 

Poly U touch based;  
7752 image; 
Size: 640*480 pixel. 

166 *166  Method Acc rate = 98% 

[57]  Active appearance model 
AAM to segmented palm; 

 Using least square support 
vector regression to 
extract ROI. 

KTU contact less;  
1752 Image;  

Size: 768*576. 
 
IITD contact less; 
1393- left hand 
1376- right hand ; 
Size: 800*600 pixel. 

128*128  
 
 
 
128*128  

RR= 99.48%; 
EER=0.277% 
 
 
RR=99.421;  
EER= 0.03 
RR=99.409; ERR=0.149 
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[58]  Using conventional neural 
network CNN 

CASIA contact less; 
5239 images; 
Size: 640*480 pixel. 

196*147  RR=99.3493% 

[59]  Using conventional neural 
network CNN 

HKPU contact-based; 
7752 images; 
 Size: 384*284 pixel; 
 
2DHKPU; 
contact- less;  
3540 images; 
 
IITD contact-less; 
2601 images; 
Size: 800*600 pixel.  

224*224 
 
 
224*224 
 
 
224*224 

EER= 0.0125 
 
 
ACC=0.983 
 
 
 EER= 0.0276 
 

[60]  Blob analysis;  
 Morphological and 

geometrical  

Sfax- Mircal contact 
less; 
1080 image; 
1024*768 pixel. 
IITD contact less; 
2601 image; 
800*600 pixel; 
Poly U 3D/2D; 
 1770 images; 
640*480 pixel. 

------------ Extraction error= 
0%;0.27%;0.26% 

[61]  Image thresholding; 
 Boundary tracing ; 
 Combination of fingers and 

valleys from square 
region; 

 ROI determined by 
multiplying the largest 
and width of segmentation 

 

Data baes acquiring 
smart phone used 
image = 5 image 

196%  --------------------- 

[62]  Otsu's threshold; 
 Boundary extraction ; 
 Smoothing to remove noise ; 
 Euclidean distance to extract 

key point  

CASIA contact less; 
5502 images; 
Size: 640*480. 
 

150*150 ACC rate of automatic 
position = 98% 

[63]  Median filter to remove noise 
; 

 Apply Otsu's threshold ; 
 Euclidean distance to track 

boundary;  
 

Poly U contact based;  
2000 image; 
640*480 pixel  

------------- Acc rate of automatic 
position 97.8%  

[64]  Apply Otsu's threshold;  
 Canny edge detection;  
 Morphological operation  

CASIA V.1.0; 
multispectral; 
7200 images; 
200*200 pixel. 

181*181 
 
 

---------- 

[65]  Determine three key point in 
a local area; 

 Align palmprint image 
depends on these points;  

 Extract square sub image of 
palmprint.  

Unknown data base 
touch base; 
 1600 images; 
292*413 pixels.  

154*154 -------------------- 
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The representation approach is based on 

classification. The local approaches are considered 
more accurate than the global approaches which in 
turn are divided into line, coding and texture. The 
line based and coding approaches are appropriate 
for contact-based images, the texture-based 
approach is appropriate of contact less and high 
resolution.  

  
Hybrid approaches are combine both local 

and global approaches [66, 67].  
 
A considerable number of the feature 

extraction methods extracted various palmprint 
features according to palmprint image category. 
Contact-based feature extraction methods can be 
divided into line based and orientation based such 
as in the principle lines[68], competitive code [69], 
palm code [70], fusion code [71], ordinal code [72], 
double orientation code (DOC) [73], binary 
orientation code vector (BOCV) [74], E-BOCV 
[75], robust line orientation code (RLOC) [76] and 
orthogonal line ordinal feature (OLOF) [72]. On the  
other hand, the most significant features for 
contactless feature extraction method are scale 
invariant feature transform (SIFT) [77], local binary 
pattern (LBP) [78], local line directional pattern 
(LLDP) [79] and OLOF [72]. For the high-
resolution feature, the minutiae points are 
considered as a significant feature [80], local ridge 
direction (LRD) [81] and modified finite radon 
transform (MFRAT) is often used to detect 
principal lines [82]. On the other hand, the Mean 
curvature image (MCI), Gaussian curvature image 
(GCI) [83] and surface type (ST) vector [84] are 
needed for 3-D palmprint image. 

Depending on the category of palmprint, 
the relevant feature vector will be extracted. This 
vector (descriptor) will be fused with other vectors 
at the feature level fusion. 

 
5.3 Feature fusion  

In this step, two or more trait features will 
be fused together as one feature vector. The  

concatenate rule is to consider the simple 
rule which is used to combine different feature 
vectors [46]. F fused feature will be calculated as 
the following [46]: 
If: First feature set = f1k×m, Second feature set= 
f2k×n 

Then: 
  F fused = fK× (m+n) 
Where m, n are size variable, K= 1. 
 

5.4 Feature Selection  
After the fusion of the features have been 

conducted at the feature level, the feature vector 
dimension becomes long, which make the feature 
selection urgent need for feature reduction. Many 
researchers study the feature reduction methods 
because of its importance in many fields [85-87] 
[88] [89] [71-74]. In general, the feature reduction 
dimension can be divided into feature extraction 
and feature selection as illustrated in Figure 4. The 
feature extraction methods include the subspace 
algorithms such as the principal component 
analysis (PCA), independent component analysis 
(ICA) [89]which transforms the dimension into low 
dimension. For the palmprint recognition, a number 
of researchers are using a well-known approach of 
PCA for the feature reduction phase in these works 
[35, 40, 90, 91]. PCA suffers from the a number of 
limitations; the search for the samples have bigger 
variant features when compared with each other 
and it does not work well with a classifier [92]. To 
overcome the PCA limitations, it is imperative to 
shift to the feature selection methods. The goal of 
the features selection is to reduce the size of the 
data by looking for a small set of important features 
that can provide a good classification [93]. The 
feature selection methods will eliminate the 
smallest feature discriminator, leaving a part of the                 
original characteristics that retain enough 
information to distinguish between the categories. 

The function selection algorithms can be 
categorized into three groups: filtering methods, 
wrapping methods and embedded methods. The 
filtering methods focus on the general 
characteristics of the data to evaluate and select the 
subsets of the features without including the 
selected learning algorithm or classifier [93]. While 
the wrapping methods depends on the predictive 
performance of the selected features by considering 
the learning algorithms [86]. The embedded 
methods on the other hand, is considered as a 
bridge between the wrapper methods and filter 
methods [88]. Table 4 illustrates the comparison 
between these three methods. 

For palmprint recognition G.A and PSO 
are suggested [86]. Several systems have been 
reported in which the particle swarm optimization 
(PSO) algorithm is extensively used as a feature 
selection for multimodal biometric systems fusion 
schemes based on the palmprint and face fusion at 
the feature level [13, 94-96]. PSO does not use 
previously-generation populations [4]. Genetic 
algorithm (GAs) belongs to a family of biologically 
inspired techniques that use several mechanisms to 
imitate natural evolution. GAs has been  
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Figure 4: Dimension Reduction methods 

       TABLE 4: FEATURE SELECTION COMPARISON  

 
successfully used in feature subset optimization 
problems [86]. The applications of the GA-based 
wrappers for feature selection include speech 
recognition [97], face recognition [98], image 
processing [99] and multimodal biometric fusion 
[100]. On the other hand, the Backtracking Search 
Optimization is applied to many numerical 
optimization benchmark problems [101]. GA, PSO 
and BSA belong to an evolutionary algorithm. 
After the set of features has been selected, it is put  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
through the recognition step in order to evaluate the 
performance quality of these features. 

 
5.5 Classification  

The success of any biometric system is 
measured in this step. In object recognition 
(classification), Machine learning considers 
promising performance methods. ML can learn by 
themselves; when they have the input data, they 
learn how to solve problems. ML is divided into 
supervised and unsupervised [102] methods. The 

 Wrapper methods Filter methods Embedded methods 

Description  
 
 
 
 
 
 

Depends of classifier learning;  
Use predictive accuracy of a 
classifier to evaluate feature set;  
Optimization algorithms. 
 

Independent from 
classifier learning; 
 Use Masseur 
distance 
information, 
correlation to 
evaluate the feature 
set; 
Statistical 
algorithms. 
 

Bridge between wrapper and 
filter; 
Depends of the classifier; 
Achieve both wrapper 
accuracy and filter efficiency. 
 

Pros Good generation; 
More accurate. 
 

Robust against over 
fitting;  
Fast. 
 

Less computational than 
wrapper. 
  

Cons  More computational; 
Expensive run time. 
 

Sometimes fail to 
Select best feature. 
 

Much slower than filter.  

Example  GA,PSO, ASO,BSA Relief,  
Fisher score , 
Information 
Gain 

Lasso Regularization, Elastic 
Net, and Ridge regression.  
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supervised methods predict the value of the output 
variables by comparing the N sample of the inputs 
and the corresponding output value [103]. The most 
popular supervised methods used in a palmprint 
recognition are Artificial Neural Network (ANN), 
Decision Tree, Support Vector Machine (SVM) and 
recently deep learning [104-107]. 
 

In unsupervised methods, in this case, only 
a set of input vector x is known. The most 
unsupervised common methods is clustering, which 
is a process of groping data which share a level of 
high similarity. A similarity can be achieved by a 
distance function [103]. K- mean is the well-known 
clustering method which is widely used in 
palmprint recognition [108]. The most significant 
problems faced by any classification model are 
overfitting and underfitting. The overfitting occurs 
when the dataset is not too large, and the model is 
complex. While the underfitting occurs when the 
model is not complex which is incapable of 
handling a large data [109].  

 

To measure the performance of the 
classification model, a dataset is typically set into a 
training set (70%) and testing test (30%). Another 
method that can be used is by dividing the data set 
to a K subset, using each of these subset as a testing 
and (K-1) as a training set [103]. If the errors on the  
training set are small and the errors in the testing 
set are high, this will be overfitting and if both the 
errors on the training set and testing set are high, 
this will be the underfitting[109] case. 
 

To avoid the overfitting& underfitting 
cases, Srivastava et al. [110] introduced a solution 
using the regularization methods. The 
regularization means training a range of models, 
compare the performance on an independent dataset 
then select the best performance[110]. 

 
The machine learning is an important 

methods for the recognition step and performs 
better than the other approaches [111]. Table 5 
introduced previous works based on palmprint 
recognition. 

 

TABLE 5: PALMPRINT CLASSIFICATION PREVIOUS WORKS 

 

Ref  Feature 
extraction  

Recognition  Parameter  Data base  

[112] PCA,LDA,ICA 
 

PNN ACC = (95.8324%, 96.6718%, 96.5826%) IITD 

[113] 
 

LBP PNN ACC= 91.91% Private data/ 110  

[114] 
 

CNN feature Hausdorff  EER=0.0443%,0.0803%,01113% PolyU, CASIA, IITD 

[115] 
 

CNN feature CNN EER= 9.25% Poly U 

[116] 
 

PCA BP ACC =93.33 Private  

[35] 
 

Bit-plane BP ACC= 89% Poly U +(ORL +Yala ) 
face database. 

[117] Deep Scattering 
Network 

SVM ACC= 99.9 Poly U 

[118] 

 

CNN feature CNN ACC= 99.979 Poly U 

[119]  LBP PNN EER = 0.74 Private with 20 image 
sample 

[120] CNN-F CNN-F EER= 0.25 PolyU  

[104] Discrete cosine 
transform DCT 

Radial basis 
probabilistic 
(RBPNN)  

ACC= 99.75% CASIA  
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6. DISCUSSION  

This study is a comprehensive review based on 
palmprint multimodal. Multimodal can be achieved 
in four levels of fusion, sensor, feature, matching, 
and decision. We focused on feature level fusion, 
we explained in details the steps of this level. Based 
on this review, the palmprint multimodal system 
can be improved by combining left and right 
palmprint in different levels of fusion, especially 
that the palmprint databases were collected left and 
right palmprints that belong to the same person. 
That will increase the level of security. For the 
limited space, the limitations of this work are 
focusing on one level fusion, and lacking analysis 
of the different recognition system. The researchers 
can introduce different reviews based on different 
levels of fusion, they also can introduce reviews 
based on recognition algorithms. 

7. CONCLUSION  

We introduced in this paper, a multimodal 
system concept, palmprint multimodal literature 
review, and an in-depth investigation of the feature 
level fusion scheme. It is noted that Palmprint 
recognition still remains as a challenging problem 
and it is not completely solved. A multimodal is 
considered a good solution to increase the accuracy, 
but it still suffers from some problems, as there is 
yet to be a database that contains two different traits 
belong to the same person, long-time execution and 
different form features. Therefore, for the similarity 
between the left and right palms, future research on 
palmprint recognition should focus on the field of 
multimodal which combines pairs of palmprint that 
belongs to the same person. Feature extraction is 
considered an important step for any biometric 
system, for choosing an approach to be used 
depends on the database images which work with 
different features. Finally, the literature review 
indicates that there are no standards or specific 
feature selection method thus, every researcher 
selects a method based on their own experience. 
Generally, Machine learning is a promising 
development in the classification phase. 
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