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ABSTRACT 
 
Classification methods can be used to derive values from big data in the form of models, which then can be 
utilized to predict new cases. Several parallel classification methods for big data have been developed based 
on Hadoop MapReduce as well as for Spark system. As big data keeps on coming, the models must be 
updated from time to time to represent the old as well as the new data. The computations must be efficient 
and scalable for handling big data.  

This research aims to enhance the existing parallel classifiers such that they will perform as incremental 
classifier handling batches of big data. The research results are presented as follows. First, the architecture 
and main concept of the enhancement is presented. Secondly, the proposed incremental parallel Naïve Bayes 
classifier (NBC) based on MapReduce that handles dataset with discrete attributes is discussed in detailed. 
Two series of experiment were performed on Hadoop clusters with 5 and 10 nodes. The results show that the 
incremental parallel NBC has acceptable accuracy, is efficient and scalable.  

Keywords: Big Data Classification Method, Incremental Parallel Classifier, Mapreduce Patterns  
 
 
1. INTRODUCTION 
 
Big data is high-volume, high-velocity, and/or high-
variety information assets that demand cost-
effective, innovative forms of information 
processing that enable enhanced insight and decision 
making [1]. It comes in structured, semi-structured 
and unstructured format. Processing big data 
requires new, innovative, and scalable technology to 
collect, host and analytically process the vast amount 
of data gathered in order to derive values. These 
values may relate to profit, medical or social 
benefits, or customer, employee, or personal 
satisfaction.  

Classification methods can be used to derive 
values from big data in the form of models, which 
can be utilized to predict new cases. The required big 
data sometimes must be gathered from several 
sources and comes with different formats. This leads 
to complexity in preparing the needed data such that 
it can be fed into classification algorithms. The 
activities may involve advanced technologies, 
processes and algorithms. As big data along with 
other non-big data keeps on coming, the models 
must be “updated” from time to time to “represent” 

the current data.  To renew the model, batches of 
preprocessed big data can be produced periodically 
then fed into the selected classification algorithms. 
In this regard, incremental classifiers that work 
based on batches of preprocessed big data are 
needed.  

Hadoop, which comes with MapReduce 
computational framework and works in distributed 
systems, offers many advantages for big data 
analysis. One of those is easy scaling of data 
processing over multiple computing nodes [2, 3, 4]. 
A MapReduce program  takes input data in the form 
of key-value pairs. The Map and Reduce functions 
then manipulate those key-value pairs, and produce 
some other form of key-value pairs. MapReduce 
patterns, which are templates for solving a common 
and general data manipulation problem with 
MapReduce, have been developed [5]. Among those 
are summarization, filtering, data organization, join, 
meta and input-output patterns. MapReduce 
programmers can adopt these patterns to create 
MapReduce programs that are well structured and 
efficient. However, currently MapReduce 
framework only supports efficient computations that 
does not iteratively process big data as it accesses the 
big data from disks on each iteration. 
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Apache Spark with its RDD (Resilient 
Distributed Datasets), which can run on top of 
Hadoop’s YARN resource manager, has been 
developed to address the MapReduce weakness 
[6,7]. Machine Learning algorithms that require 
iterative computations can be implemented on 
Spark. As in standalone implementation, the 
algorithms can then access the data from memory 
(stored as RDD objects), which is a lot faster than 
reading from disks.   A Spark library of machine 
learning algorithms (MLLib), which has clustering 
(such as k-Means) and classification (Naïve Bayes, 
SVM and RandomForest) functions, have been 
developed and can be adopted.  

Although incremental parallel classifiers that 
work based on batches of big data are needed,  based 
on our literature study results (see Subsection 3.1 
and 3.2), we have not found any technique based on 
Hadoop MapReduce and Spark that specifically 
address this problem. Therefore, this research 
objective is to develop or enhance the existing 
parallel classifiers that have been developed for 
Hadoop or Spark environment such that they will 
perform as incremental classifier handling batches of 
big data. The classifier must have approximately the 
same accuracy (compared to the existing classifier) 
and must be efficient and scallable. Having this 
objective,  in this research: 

(1) We reviewed groups of classification 
methods and identify which groups are suitable to be 
enhanced. (The group includes as Bayesian, decision 
tree, lazy learning, rule based and neural network 
[8].     

(2) We studied research results related to those 
classification methods that have been enhanced or 
implemented for Hadoop and Spark, then analyzed 
the potencies of enhancement. 

(3) Based on the above results, we designed the 
overall system architecture and the main concept of 
enhancement. 

(4) From (2), we found that Naïve Bayes 
classifier (NBC) handling discrete attributes of 
dataset can be enhanced to handle batches of big data 
efficiently by adopting MapReduce summarization 
and meta patterns. It involves only one pass 
computation and read the training dataset once. 
Thus, we designed the detailed enhancement (as a 
case study) and conduct two series of experiments to 
evaluate the performance.  

This paper presents our research results and is 
organized as follows: Literature review of basic 
concept (bagging, NBC, Hadoop and MapReduce 
patterns, Apache Spark, the evaluation of parallel 
classifiers and the main concept of enhancement, 
proposed parallel classifier architecture system, 

detailed discussion of proposed incremental parallel 
NBC, two series of experiment for evaluating the 
NBC performance conducted on a Hadoop cluster, 
conclusion and further works.   
 
2. LITERATURE REVIEW 
 
2.1. Bagging: Ensemble Classifier Methods  
 
Classification is a two-step process. First, a model is 
built from a training dataset.  Secondly, the model is 
evaluated using test data set. If the model’s accuracy 
is acceptable, the model is later used to classify new 
data. Depending on the “nature” of the dataset and 
the selected classification algorithms, the model 
accuracy is sometimes below the expectation.  
Bagging is a method used in ensemble methods to 
improve classification accuracy.  An ensemble for 
classification is a composite model, made up of a 
combination of classifiers. The individual classifiers 
vote, and a class label prediction is returned by the 
ensemble based on the collection of votes. 
Ensembles tend to be more accurate than their 
component classifiers [8]. 

Bagging works as follows (see Figure 1):  D is a 
set of d tuples. For iteration i (i = 1, 2, . . .  , k), a 
training set, Di ,  of d tuples is sampled with 
replacement from the original set of tuples, D. 
(Because sampling with replacement is used, some 
of the original tuples of D may not be included in Di 
, whereas others may occur more than once.)  A 
classifier model, Mi , is learned for each training set, 
Di. To classify an unknown tuple, X, each classifier, 
Mi , returns its class prediction, which counts as one 
vote. The bagged classifier, M*, counts the votes and 
assigns the class with the most votes to X. 
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Figure 1: Illustration of ensemble method with bagging 
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2.2. Naïve Bayes Classifier 
 
Naïve Bayes classifier (NBC) is a classifier, where 
the features of the vectors (representing tupples) are 
assumed to be conditionally independent of each 
other [8]. Given a vector X = (x1, x2, . . . . , xn), using 
Bayes’ theorem, the conditional probability of X 
having a class value of Ck can be written as: 

𝑃(𝐶௞|𝐗) =
௉(஼ೖ)௉(𝐗|஼ೖ)

௉(𝐗)
  (1) 

Because the features of X is assumed to be 
conditionally independent of each other, Eq. 1 can 
be rewritten as: 

𝑃(𝐗|𝐶௞) = 𝑃(𝑥ଵ|𝐶௞)𝑃(𝑥ଶ|𝐶௞).  .  . 𝑃(𝑥௡|𝐶௞) (2) 
 
In Eq. 2, if xi is discrete then P(xi|Ck) is simply the 
number of tuples of class Ck having the value xi (for 
attribute Ai ) divided by the number of class Ck.  If xi 
is continuous-valued then P(xi|Ck) is computed using 
Gaussian distribution, by first computing mean and 
standard deviation of the attributes. The highest 
value of P(X|Ck) is selected and Ck is the predicted 
class.  
 
NBC model can be materialized as specific structure 
containing all of the pre-computed measures used in 
Eq. 2, which is used to predict the class of the new 
tupple. The measures include the Gaussian 
distribution for numerical attribute and count of each 
class values (for computing P(Ck)) and count of each 
attribute values for each class value (for computing 
P(Ck|X)).  
 
2.3. Hadoop, HaLoop and MapReduce Patterns  
 
Hadoop, a platform for storing and analyzing big 
data in distributed systems, comes with master-slave 
architecture [2,3]. It has components of Hadoop 
Distributed File System (HDFS) and MapReduce.  
Its storage and computational capabilities scale with 
the addition of slave nodes to a Hadoop cluster, and 
can reach volume sizes in the petabytes on clusters 
with thousands of hosts. A brief overview of HDFS 
and MapReduce is as follows. 

HDFS: It is a distributed file system designed for 
large-scale distributed data processing under 
frameworks such as MapReduce and is optimized for 
high throughput. It automatically re-replicates data 
blocks on nodes (the default is 3 replications).   

MapReduce: It is a data processing model that 
has the advantage of easy scaling of data processing 
over multiple computing nodes. Map and Reduce 
functions run in each slave node in parallel. A 

MapReduce program processes data by 
manipulating key-value pairs in the general form:  

map: (k1,v1) ➞ list(k2,v2) 

reduce: (k2, list(v2)) ➞ list(k3,v3). 
Map reads (key, value) pairs, then based on the 
algorithm designed by developers, it generates one 
or more output pairs list (k2, v2). Through a complex 
shuffle and sort phase, the output pairs are 
partitioned and then transferred to Reducer: Pairs 
with the same key are grouped together as (k2, 
list(v2)) and then each partition with unique value of 
k2 is sent to a Reducer. The Reduce function (with a 
specific algorithm assigned) generates the final 
output pairs list(k3, v3) for each group (see Figure 
2).  

A client submits a MapReduce job to the master, 
which then assign and manage Map and Reduce job 
parts to slave nodes. Map reads and processes blocks 
of files stored locally in the slave node, sent list of 
key-value to Reduce via shuffle and sort, then 
Reduce may write its computation results to HDFS.  
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Figure 2: Map, shuffle and sort, and reduce phases. 
 
If a job has iterative computation (calls its Map and 
Reduce functions many times until a certain 
condition is met), at each iteration, the process 
shown in Figure 2 is executed and the blocks 
containing the data being processed is read (again). 
It is known that reading data from disk, especially 
large sizes, cost I/O process that degrades the job 
performance. Therefore, any MapReduce job that 
has iterative computation (found in algorithms of 
data mining, web ranking, graph processing, model 
fitting, and so on), in which the whole data is read 
and processed, is not efficient.  
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To address that Hadoop disadvantage, HaLoop is 
currently developed (see 
https://code.google.com/archive/p/haloop/). 
HaLoop not only extends MapReduce with 
programming support for iterative applications, but 
also improves their efficiency by making the task 
scheduler loop-aware and by adding various caching 
mechanisms. In short, HaLoop has the following 
features: (1) Provide caching options for loop-
invariant data access, (2) let users reuse major 
building blocks from applications' Hadoop 
implementations, and (3) have similar intra-job 
fault-tolerance mechanisms to Hadoop. HaLoop is 
backward-compatible with Hadoop jobs. However, 
currently, HaLoop is only a prototype system and 
has not been released a production system.  
 
MapReduce Design Pattern 
MapReduce design pattern is a template for solving 
a common and general data manipulation problem 
with MapReduce. It is not specific to a domain such 
as text processing or graph analysis, but it is a 
general approach to solving a problem intended to 
build better software [5]. As MapReduce is a 
relatively new technology with a fast adoption rate 
and there are new developers joining the community 
every day, the design patterns also provide a 
common language for teams working together on 
MapReduce problems. There are several 
MapReduce design patterns that have been designed, 
such as summarization, filtering, data organization, 
join, input and output and meta patterns. Below is 
the excerpt of patterns that are adopted in our 
proposed technique, which are summarization and 
meta patterns.  
 
Summarization Pattern  
Data can be large and “vast”, with more data coming 
into the system every day. This pattern aims to 
produce a top-level, summarized view of the data 
such that ones can glean insights not available from 
looking at a localized set of records alone. 
Summarization analytics are all about grouping 
similar data together and then performing an 
operation such as calculating a statistic, building an 
index, or just simply counting. The summarization 
patterns include numerical summarizations, inverted 
index, and counting with counters. They are more 
straightforward applications of MapReduce than 
some of the other patterns because grouping data 
together by a key is the core function of the 
MapReduce paradigm: All of the keys are grouped 
together and collected in the reducers. If the value 
fields emitted by the mapper is the ones intended to 

be grouped by the key, the grouping is all handled by 
the MapReduce framework for “free”. 

Numerical Summarizations: The numerical 
summarizations pattern is a general pattern for 
calculating aggregate statistical values over the data. 
The intention of this pattern is to group records 
together by a key field and calculate a numerical 
aggregate per group to get a top-level view of the 
larger data set. The summarization function, θ, is 
executed over some list of values (v1, v2, v3, …, vn) to 
find a value λ, i.e. λ = θ(v1, v2, v3, …, vn). Examples 
of θ are counting, minimum, maximum, average, 
median, and standard deviation. Numerical 
summarizations should be used when both of the 
following are true: The data is numerical or 
countable and can be grouped by specific fields. This 
pattern is generally used in word count, record count, 
finding min/max/count and 
average/median/standard deviation.  

The numerical summarization generally has 
three components as follows: 
(a) The mapper outputs keys that consist of each 
field to group by, and values consisting of any 
pertinent numerical items. 
(b) The combiner can greatly reduce the number of 
intermediate key/value pairs to be sent across the 
network to the reducers for some numerical 
summarization functions. If the function θ is an 
associative and commutative operation, it can be 
used for this purpose. 
(c) The reducer receives a set of numerical values 
(v1, v2, v3, …, vn) associated with a group-by key 
records to perform the function λ = θ(v1, v2, v3, …, 
vn). The value of λ is output with the given input key. 
 
Meta Pattern 
Many big data computing problems can not be 
solved using a single Map‐Reduce job. Some jobs in 
a chain will run in parallel, some will have their 
output fed into other jobs, and so on. Job chaining 
pattern pieces together several patterns to solve 
complex and multistage problems. Job merging is an 
optimization for performing several analytics in the 
same MapReduce job. 

Job chaining is one of the most complicated 
processes to handle because it’s not a feature out of 
the box in most MapReduce frameworks [5]. 
Systems like Hadoop are designed for handling one 
MapReduce job very well, but handling a multistage 
job needs proper designs. Job chaining is suitable for 
a problem with a lot of job flows with complex 
chaining, where the first (previous) job generate lots 
of output data fed to the second (later) job. Job 
chaining can be implemented with the driver, 
JobControl, shell scripting, and so on. Job chaining 
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with the driver  is the simplest method, where a 
master driver simply fires off multiple job-specific 
drivers. Here, the driver for each MapReduce job is 
run in the sequence as defined. The output path of 
the first job is the input path of the second. The first 
job must be checked for success before executing the 
second job.    
 
2.4. Apache Spark 
 
Spark is a general-purpose data processing engine, 
an API-powered toolkit which data scientists and 
application developers incorporate into their 
applications to rapidly query, analyze and transform 
data at scale [6, 7]. It is often used alongside 
Hadoop’s data storage module, HDFS, but can also 
integrate equally well with other popular data 
storage subsystems such as HBase, Cassandra, 
MapR-DB, MongoDB and Amazon’s S3. Spark’s 
flexibility makes it well-suited to tackling a range of 
use cases, and it is capable of handling several 
petabytes of data at a time, distributed across a 
cluster of thousands of cooperating physical or 
virtual servers. Typical use cases include stream 
processing, data integration, interactive analytics 
and analyzing data using machine learning 
techniques. Spark’s ability to store data in memory 
and rapidly run repeated queries makes it well-suited 
to training machine learning algorithms. It 
significantly reduces the time required to iterate 
through a set of possible solutions in order to find the 
most efficient algorithms. 

Spark will normally run on an existing big data 
cluster. These clusters are often also used for 
Hadoop jobs, and Hadoop’s YARN resource 
manager will generally be used to manage that 
Hadoop cluster (including Spark). When Spark runs 
on top of Hadoop, it benefits from Hadoop’s cluster 
manager (YARN) and underlying storage (HDFS, 
HBase, etc.). 

Spark 
Driver

Cluster Master
Mesos, YARN 
or Standalone

Cluster Worker

Executor

Cluster Worker

Executor

Cluster Worker

Executor
 

 
Figure 3: Spark architecture [7]. 

Spark employs master slave architecture with one 
centralized coordinator, which is driver and with 

many workers (Figure 3).  At a high level, every 
Spark application consists of a driver program that 
launches various parallel operations on a cluster. The 
driver program contains the application’s main 
function and defines distributed datasets on the 
cluster, then applies operations to them. (The driver 
program can be the Spark shell, which takes 
operations from users.) Driver programs access 
Spark through a SparkContext object, which 
represents a connection to a computing cluster.  
Once a SparkContext object is created, it can be used 
to build Resilient Distributed Datasets (RDDs). 
Users can then run various operations accessing the 
RDDs. To run the operations, driver program 
typically manage a number of nodes called 
executors. For example, if the count() operation is 
run on a cluster aiming for counting file lines, 
different machines might count lines in different 
ranges of the file. 
 
Resilient Distributed Datasets (RDDs) 
The RDD is a concept at the heart of Spark. It is 
designed to support in-memory data storage, 
distributed across a cluster (as partitions stored in 
nodes) in a manner that is demonstrably both fault-
tolerant and efficient. Fault-tolerance is achieved, in 
part, by tracking the lineage of transformations 
applied to coarse-grained sets of data. Efficiency is 
achieved through parallelization of processing 
across multiple nodes in the cluster, and 
minimization of data replication between those 
nodes. Having RDD, Spark supports efficient 
iterative computations, where each cycle needs to 
read large data, as the data is stored in parallel 
memory. Many machine learning or data mining 
algorithms, such as clustering, classification, 
association analysis involve iterative computations, 
thus are suitable to be enhanced for Spark 
environment.  

A Spark library, namely  Scalable Machine 
Learning on Spark (MLLib), has been available. It 
implements  algorithms of classification, clustering, 
and so on. The classification algorithms are logistic 
regression, linear support vector machine (SVM), 
and multinomial and Bernoulli Naive Bayes, which 
are typically used for document classification.  
 
3. PARALLEL CLASSIFIERS AND CONCEPT 
OF ENHANCEMENT 
 
Based on its learning method, classifier can be 
grouped into eager and lazy learner or instance-
based methods [8].  The former uses training 
records/tupples to construct a generalization model 
which can then be used classify new tuples/cases. 
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The later  stores all of the training tuples in pattern 
space and wait until presented with a test tuple 
before performing generalization (usually, lazy 
learners require efficient indexing techniques). 
Decision tree classifiers, Bayesian classifiers, 
classification by back propagation, support vector 
machines, and classification based on frequent 
patterns are all examples of eager learners. Nearest-
neighbor classifiers and case-based reasoning 
classifiers are lazy learners. 

If lazy learning is used to predict a class of a new 
case from big data, which can be petabytes in size, 
the computation will evaluate millions or even 
billions of records. This will be inefficient. 
Therefore, we conclude that lazy learners are not 
good candidates for classifying big data. Hence, we 
intend to find the classifier(s) that can be enhanced 
for classifying big data stream from the eager learner 
group based on Hadoop MapReduce as well as 
Spark.  

 
3.1. Classification Methods Based on MapReduce 
 
We found that few eager learner classifiers have 
been enhanced based on Hadoop MapReduce to 
handle big data. Aiming to enhance them into 
incremental classifier, below is our review of 
parallel decision tree classifiers, Bayesian 
classifiers, classification by back propagation, 
support vector machines, and classification based on 
frequent patterns: 

(1) Decision tree: Decision tree induction is a 
top-down recursive tree induction algorithm, which 
uses an attribute selection measure to select the 
attribute tested for each non-leaf node in the tree. 
ID3, C4.5, and CART are examples of such 
algorithms using different attribute selection 
measures. In inducing a tree from the dataset, it 
adopts divide and conquer strategy in that the whole 
dataset is partitioned recursively. Early decision tree 
algorithms typically assume that the dataset are 
memory resident.  

[9] proposes a parallel decision tree based on 
MapReduce via Sampling Splitting points with 
Estimation.  

(2) Naïve Bayes: [10] and [11] have developed 
techniques to parallelize the NBC based on Hadoop 
MapReduce. From the results of experiment 
conducted in a Hadoop cluster with 4 machines (1 
master and 3 slaves), [11]  concludes that the 
executing time increases approximately linear with 

the size of dataset and the size of data that can be 
processed is much larger than the standalone 
algorithms can handled. 

(3) Backpropagation: Backpropagation is a 
neural network algorithm for classification that 
employs a method of gradient descent. It searches for 
a set of weights that can model the data so as to 
minimize the mean-squared distance between the 
network’s class prediction and the actual class label 
of data tuples. Rules may be extracted from trained 
neural networks to help improve the interpretability 
of the learned network. In computing the weights of 
the network model, the whole dataset must be fed as 
many as the epoch (iteration).   

[12] have developed parallel backpropagation 
neural network (BPNN) based on MapReduce. The 
training data are bootstrapped (partitioned 
randomly) into samples, each is then fed into BPNN 
running in every client machine. In the training 
phase, the ensemble techniques including 
bootstrapping and majority voting have been 
employed.  

(4) Support Vector Machine (SVM): A support 
vector machine is an algorithm for the classification 
of both linear and nonlinear data. It transforms the 
original data into a higher dimension, from where it 
can find a hyper plane for data separation (into two 
classes) using essential training tuples called support 
vectors. This binary classification can be adapted to 
handle multiclass classification by constructing an 
ensemble of binary classifiers. Error-correcting 
codes can be used to increase the accuracy of the 
ensemble. [13] proposes parallel SVM based on 
MapReduce, which involve iterative computation.    

(5) Associative classification and discriminant 
frequent pattern–based classification: Frequent 
patterns reflect strong associations between 
attribute–value pairs (or items) in data and are used 
in classification based on frequent patterns. 
Approaches to this methodology include associative 
classification and discriminant frequent pattern–
based classification. In associative classification, a 
classifier is built from association rules generated 
from frequent patterns. In discriminative frequent 
pattern–based classification, frequent patterns serve 
as combined features, which are considered in 
addition to single features when building a 
classification model. [14] proposes MapReduce-
Based Parallel Frequent Pattern Growth (MR-PFP) 
algorithm, which mainly consists of six steps.   
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The objective of this research is to develop 
efficient incremental classification method, suitable 
for batches of big data. Table 1 (located at the end of 
this article) presents the summary of the mapper and 
reducer tasks and the job.   

 
3.2. Classification Methods for Spark 
Unlike the ones designed based on MapReduce, the 
related research results of classifications methods for 
Spark that we found are basically the application of 
MLLib functions (Naïve Bayes, Logistic 
Regression, SVM and Random Forest).  The 
excerpts are as follows:  

(1) Parallel Naïve Bayes (NB) and Logistic 
Regression (LR) algorithms are used to classify large 
scale of Arabic Text [15]. Large-scale Arabic text 
corpuses are collected, followed by performing the 
proper text preprocessing tasks (sequential text 
preprocessing and term weighting with TF-IDF in 
parallel). Parallelized NB and LR algorithms are 
used to classify the texts in the Apache Spark 
environment. The experiment results indicate that 
both NB and LR gives high accuracy (89% and 
93%), but NB was faster.   

(2) Experiment using Ensemble Support Vector 
Machine (SVM) was performed using big data with 
the size of 3T, namely, Splice-Site [16].  The 
experiment results prove that Spark provides a high 
feature throughput on cached data, and that models 
trained in Spark reaches as good accuracy as 
algorithms trained in any other framework.  

(3) [17] proposes Incremental Parallel Random 
Forest (IPRF) algorithm for data streams in Spark 
environment. IPRF basically optimizes the data 
allocation by designing RDDs that are distributed on 
the worker (slave) nodes and task scheduling for 
dynamic parallel optimization (but, the method is not 
clearly discussed). The decision trees are built using 
IPRF on the dynamic independent feature variables 
stored as RDDs in the worker nodes. The 
experiments were conducted using Solar Power 
System which consists 1,88,835 instances. 
Unfortunately, the experiments results are not 
clearly discussed. One result that can be concluded 
is that the  the larger the streaming data size, the 
larger the error rate.    

Thus, from the Spark classifier literature study it 
is found that: Large as well as stream dataset are 
handled well by parallel Naïve Bayes, SVM and 
Random Forest. The algorithms also reach good 
accuracy.   
 

3.3. The Main Concept of Enhancement 
The parallel classification techniques based on 
MapReduce and for Spark discussed in Subsection 
2.3.1 and 2.3.2 can be enhanced into incremental 
classifier to handle batches of big data. The 
following is the general idea:  
 
3.3.1 Using Ensemble Methods 
Basically, all of the parallel classification methods 
[11, 12, 13, 14, 15, 16, 17] can be enhanced towards 
incremental ones using ensemble methods with 
bagging (see Figure 1). A batch of dataset: 

(a) Can be split into one training data partition 
and test data. One additional model is constructed 
from the training data and added to the bag of 
models.   

(b) Can be split into several training data 
partitions (similar to bootstrapping in [12]) and test 
data. Many models are constructed from these 
partitions and added to the bag of models.  

On both approaches, the test data along with the 
old ones is then used to test the final bag of model. 
(It is also possible that the new test data only that is 
used to test the model. However, experiments are 
required to make sure that the model quality can be 
tested using that data only.)  

Depending on the algorithms, the model can be a 
collection of statistic measures (for parallel Naïve 
Bayes), decision tree (for decision tree and 
RandomForest), NN model, SVM model or frequent 
pattern tree.  

Issues and general idea of model constructions 
with MapReduce:  

(a) The existing version of MapReduce does not 
support efficient iterative computation where each 
cycle reads the whole or part of dataset. Thus, the 
algorithms must be designed in such a way so that its 
number of iterations is as little as possible. 
Depending on the characteristic of the data input, 
this could be hard to achieve. 

(b) Each Reduce function produces its own 
output (in this case, it can be “part of the model”). 
So, the algorithm design should include combining 
the Reduce outputs, if the job employed more that 
one reducer.  

(c) Meta pattern can be adopted accordingly if 
the algorithm needs more that one pair of 
MapReduce functions.  

(d) By design, Map function takes multiple files 
in an HDFS folder. The batches of data can simply 
be added into that folder. 
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Issues and general idea of model construction: 
(a) Although RDD provides parallel in-memory 

dataset that can be read by Spark application many 
times, each task running in a worker will “see” and 
access its local RDD (the RDD objects stored in the 
node memory) only. Proper data structure and 
parallel algorithms must be designed to address this 
issue. If the task running on every worker is designed 
to compute “some part of the model”, there should 
be a mechanism to collect and combine all of the 
worker computation results properly. 

(b) To address the above issue, one node can be 
designed to store one ore more local RDD that 
represents ensemble methods’ data partition (which 
must be randomized). Then, the task is designed to 
create some part of the global model from those local 
RDDs. With this regard, each worker produces one 
(or more) local model (that later will be collected 
into bag of models). 

(c) Spark provides mechanism of collecting 
RDDs from all workers into the master node. The 
global model collected (or combined) must be fit 
into a single machine memory.  

(d) The Spark application may access HDFS, so 
the application can be designed to read multiple 
batches of data stored in an HDFS folder.   

Materializing the general idea discussed above 
will need lots and tedious research activities. 
 

Initianlize global variables, initialize/read 
bag_models & create randomized 

input_RDD for workers

Paralel computation on each worker:
Read input_RDD & compute one or more part of 
full_model, stored as local RDD, namely local_model 

Standalone computation on master node:
Gather RDD of local_model from all workers then 
construct the full_model   

Compute iteration stop measure

Stop?

Add full_model to bag_models  
Figure 4: Core algorithm of computing bags of model on 

Spark. 
3.3.2 Using Single Model 
It is also possible to enhance parallel incremental 
classifiers that create a single model with non-
degraded quality or accuracy. However, unlike with 

ensemble methods, among of the methods discussed 
in Subsection 2.3.1 and 2.3.2, only one method can 
be enhanced. That is the parallel Naïve Bayes [11, 
15] that handles dataset with discrete attributes only 
(which means, if there are numerical attributes, they 
must be transformed into discrete ones first). The 
model can be designed as the summarization (count) 
of the class and attribute values for each class value. 
When there is batch of data coming in, the new count 
is computed. The result is then used to update the 
previous (old) model (see Figure 5). Using 
MapReduce patterns, the method can be 
implemented efficiently as it involve a single pass 
computation only.  

As the computation is simple, in this research this 
is the method that is designed (in detailed), 
implemented and evaluated through two series of 
experiments.  

 

1
parallel 

train 

batch_model 

2
update 
model

final_model 

data batch

 
 

Figure 5: Steps of computing single model. 
 

 
4. PARALLEL INCREMENTAL CLASSIFIER 
SYSTEM ARCHITECTURE 
 
Preparing big data for classification, which may 
originated from many sources with various forms 
(structured, semi-structured or unstructured), 
involves complex processes. Those are data 
extraction and collection, combining or merging, 
selection, cleaning and transformation. To 
accomplish those tasks, few tools and complex 
computations may needed. Generating features from 
this data (for classification) would also involve 
complex computations.  

Given these facts, we view that incremental 
parallel classifiers should handle batch of 
(preprocessed) data.       

Our proposed general incremental classification 
system architecture that handle batches of big data is 
shown on Figure 6 and described as follows: 

(1) Big data from external and internal sources 
are collected regularly. By applying functions for 
extraction, cleaning and possibly also merging and 
transformation, as well as loading,  generally the 
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data is then stored in a data warehouse (along with 
other various data). 

(2) Based on the classification objectives, batch 
of big data of interest is prepared, which involve 
selection, merging, and other kind of transformation 
(for preparing the features). The batch can be split, 
large part (70-90%) is for training and the rest is for 
testing the model. The testing dataset is accumulated 
in a certain location (directory) in the HDFS (some 
of the old datasets can be erased after largely 
accumulated, if necessary). 

(3) The training data is used to compute the 
temporary (batch) model, which is then “merged” 
with the existing model. After it is merged, the 
temporary model is erased (so is the training dataset, 
if intended to save space).  

(4) The final-merged-model can be tested using 
the testing dataset and then the measures resulted 
(confusion matrix, accuracy, precision, recall and f-
measure) are saved. 

(5) If by evaluating the measures, the model 
passes the defined minimum values, the model can 
be exported and used in other systems for classifying 
new cases. 

On the architecture presented on Figure 6, the 
algorithm adopted in Proses 3 (to create and/or 
update the model) can be the one that produces a 
single as well as bags of model. It is expected that 
the size of the model is a lot smaller than the training 
as well as testing dataset such that it can be exported 
to non-big data systems and be used in operational 
systems as needed.   

Process 3 and 4 can be implemented in Hadoop 
(with MapReduce) or Spark. As discussed in the 
previous section, however, Hadoop currently does 
not support efficient iterative computation. So, for 
iterative algorithms, Spark with its RDD is a better 
option. For non iterative algorithms, MapReduce 
patterns can be adopted to support efficient 
computation. 

 

External 
Sources

Internal 
Sources

1
collect,

merge, extract, 
clean, transform, 

load

Datawarehouse 

2
 select, 

transform, 
split

test 
(HDFS)

training 
(HDFS)

4 
test 

model

final_merged_
model (HDFS)

batch_model 
(HDFS)

3
parallely 
train &  
update 

classifier 
model

5
export 
model classifier 

model

measures

 
 

Figure 6: The proposed architecture of incremental 
classification system for batches of big data. 

 
5. INCREMENTAL NBC BASED-ON 
MAPREDUCE 

In our previous works [18, 19], we found that the 
most contributing factor that degrades the 
MapReduce job performance is its repetitive HDFS 
files reading (by the mapper). It costs lots of IO 
processes. On the other hand, parallel NBC that 
handles discrete attributes only has advantages 
(Subsection 3.3.2): The job is run only once and the 
computation for updating or merging the model is 
simple. Numerical attributes can also be transformed 
into discrete attributes using histogram analysis or 
other techniques. Based on these reasons, we adopt 
NBC as a case in materializing Process 3 and 4 of 
Figure 6 that creates single model.  
 
NBC Model Structure 
 
To support simple access and computations by Map 
and Reduce functions, the NBC model is designed to 
include: 
(1) The count of every class value with the structure: 
{class, value| CLASS – count}. 
(2) The count of every unique pair attributes value 
for each class value with the structure: {atr1, val1, 
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atr2, val2, . . . atrn, valn| class, value | DISCR - count}. 
‘DISCR’ is included to indicate that the attributes are 
discrete (to distinguish with CONT for enhancement 
in the future).  
Example of part of a model: 
  Play, No| CLASS – 7 
  Play, Yes| CLASS – 5 
  Outlook, sunny, Temperature, hot, 

Humidity, high, Wind, weak| Play, no| 
DISCR – 2 

  Outlook, overcast, Temperature, med, 
Humidity, med, Wind, weak| Play, yes| 
DISCR - 4 

 
By using the above structures: 
(1) The Reduce functions (in the training and 
updating model process) can be designed to directly 
emit outputs with the structures.  
(2) The Map function (in the updating model 
process) can read each of the two structures as a 
record.  
 
Module of Training and Updating the Model  
This module consists of two jobs, which are job for 
producing a model from the batch of data and 
updating the old model using the newly created 
model. To “connect” these 2 jobs, Job Chaining 
pattern [5] is adopted. Two MapReduce jobs are 
designed (see Figure 7): The first performs model 
construction from the batch of training data, which 
outputs the temporary model. The second job merges 
the existing (old) model with the temporary model. 
The results of merging then replaces the old model.   

As the designed NBC model contains counts of 
class and predictor attribute values, the numerical 
summarizations pattern discussed in Subsection 2.3. 
is adopted. In the training, the function of θ performs 
group counting over: 
(1) an attribute value of (v1), where v1 is class 
attribute and 
(2) list of values (v1, v2, v3, …, vn),  where vi is 
predictor or class attribute. 

During updating the model, the function of θ 
sums up the count of old and batch model for the 
same value of (v1) and (v1, v2, v3, …, vn).    

The adoption of MapReduce pattern on the 
incremental NBC training (Figure 7) is as follows: 
 (1) Job Chaining pattern is implemented with 
driver: Job1 includes MapTrain1, CombineTrain1 
and ReduceTrain1, and Job2 has MapTrain2, 
CombineTrain2 and ReduceTrain2.  
(2) The summarization pattern with counting 
function is materialized in Job1 (in MapTrain1, 
CombineTrain1, and ReduceTrain1) and Job2 (in 
MapTrain2, CombineTrain2, and ReduceTrain2).  

The overall NBC incremental training involves 
three stages of process, which are: 
(1) Job1: Read the incoming batch of training data 
and using the defined meta data, then compute the 
temporary NBC model. The model created 
(temp_batch_model) is then moved to the HDFS 
folder (/final_model) that store the existing model 
(namely, NBC_model).  
(2) Job2: Read newly created temporary and the old 
(existing) NBC model from /final_model folder and 
“merge” them into a new model. This job can only 
be executed after Job1 is completed.  
(3) Replace the old model with the new one.  
 
Those above processes will be executed whenever a 
batch of training data is fed into the algorithm. The 
detailed discussion of each job is as follows. 
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meta_data

training 
(batch)

MapTrain1: extract
class value (as k1'), v1'= ‘1’ or

each value of discrete attribute with 
its class value (as k1'), v1'=  ‘1’,

emit (k1',v1')

temp_batch_model

k1, 
v1

Job1

ReduceTrain1: 
sum v1' from the list for every k1' , 

create and emit (k1", v1")

k1'', v1’’

CombineTrain1: sum v1' 
of each k1', 

emit (k1', new v1')

k1', v1’

k1', v1'

k1',  list( v1’)

shuffle - sort

MapTrain2: construct
k2' = string of class value or 

a discrete attribute value with 
its class value, v2’ = count, emit 

(k2', v2')

NBC_model

k2, v2

Job2

new_NBC
_model

replace

CombineTrain2: 
sum up v2 of every 
k2’, emit (k2', new 

v2')

k2', v2’

ReduceTrain2: 
sum up the  v2 from 
the list of every k2’, 

create and  emit 
(k2", v2"  )

k2', v2'

k2', list(v2')

 
 

Figure 7: Incremental NBC training using two 
MapReduce jobs. 

 
The tasks of Map, Combine and Reduce function of 
Job1 and Job2 are presented in Figure 7. As 
MapReduce functions work on the basis of pair key-
value input-output, designing the proper structure 
(content) of key-value is important. The Map and 
Reduce tasks and the structures of key (k) and value 
(v) are described below.  
 
Job1: Computing the batch model 
MapTrain1 function: See Figure 7 for its tasks.  
Input:  

   meta_data: Describes the training data attributes 
and classes with the following structure:  
   meta_data = class attribute + column number of 
class attribute + {attribute_name, type, index of 
column number of attribute} + count of attributes 
Example: 
  @class :Play,4 
  @attribute :Outlook,0,DISCR; 

Temperature,1,DISCR; Humidity,2,DISCR; 
Wind,2,DISCR 

  @Count :5 
(The attribute type is includes, because Map is 
designed to reject any tupple/record that has non-
discrete attribute.) 
   training: The incoming batch training dataset with 
the following structure: 
   training = {attribute value} + class value 
   Example: 
  rain, cool, normal, strong, no 
  overcast, cool, normal, strong, yes 
  overcast, cool, normal, weak, yes 
  rain, mild, high, strong, no 
  sunny, hot, high, weak, no 

Pair of k1-v1: 
k1 = offset of the record (line) being read 
v1 = record of training. Example: sunny, 
hot, high, weak, no 

Output: 
k1’ = class|{attribute,  value} + class 
v1’ = count of k1’ 
Example of pair of k1’-v1’:  

    |_class|Play, no  - 5 
    |Outlook,sunny, Temperature, hot, 
      Humidity, high, Wind, weak| Play,  
      no - 1 

CombineTrain1 function: See Figure 7 for its tasks. 
Input: the same with the output of MapTrain1. 
Output: k1’= k1, v1’ = count of k1’ 

Example pair of k1’-v1’: sunny, hot, high, 
weak, no - 2 

 
ReduceTrain1 function: See Figure 7 for its tasks. 
Input:  

k1’ = class value|{attribute,  value} + class value 
list(v1’) = {count}  
Example pair of k1’-list(v1’): 
 |_class|Play,no - [2,2,1] 
 |Outlook,sunny, Temperature, hot,  

Humidity, high, Wind, weak| Play, no 
- [1, 1, 3] 

Output: 
The output is written to a HDFS file. Here, only 
k2” is defined (v2” is set with null).  
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k2” = class, class value, count | CLASS or 
|{attribute,  value} + class + class value + count | 
DISCRETE 
Example of pair k2”-v2”: 
 Play,No,5.0|CLASS - null 
 Outlook,sunny, Temperature, hot, 
Humidity, high, Wind, weak| Play, no, 
3| DISCR - null 

 
Before Job2 is started, the file temp_batch_model is 
moved to the HDFS directory where NBC_model is 
stored.  
 
Job2: Merging the batch and old models. 
 
MapTrain2 function:  
Input:  

NBC_model and temp_batch_model have the 
same structure content, which is the same with 
k2” of ReduceTrain1. As both files are located in 
one “logical” HDFS folder, the blocks created 
from the files spread across the cluster data nodes 
are treated as the “same” input by Map function. 
This function reads all of the local blocks 
sequentially. 
Pair of k1-v1: 
k1 = offset of the record (line) being read 
v1 = line of NBC_model or temp_batch_model 
Example of v1: 
Play,No,5.0|CLASS 
Outlook,sunny, Temperature, hot, 
Humidity, high, Wind, weak| Play, no, 
3| DISCR 

Output: 
k1’ = class + class value + “CLASS” or 
{attribute,  value} + class + class value + 
“DISCR”  
v1’ = count of k1’ 
Example: pair of k1’-v1’ 
Play,No| CLASS - 5 
Outlook,sunny, Temperature, hot, 
Humidity, high, Wind, weak| Play, no| 
DISCR - 3  

Steps of the function: 
Read a string of line from the input split and 
store it in v1 
Parse v1 
If v1 contains strings of the class attribute and 
its value only:   

           k1’ = class + class value + “CLASS” and  
               v1’ = count of k1’ 
       else // v1 contains predictor, class attributes  
               //and their count 
           k1’ = {attribute,  value} + class + class value 

               + “DISCR”  and v1’ = count of k1’ 
Emit(k1’, v1’) 

 
CombineTrain2 function: 
Input: the same with the output of MapTrain2. 
Output:  

k1’ = k1, v1’ = count of k1’ 
Example pair of k1’-v1’: 
Play,No| CLASS - 7 
Outlook,sunny, Temperature, hot, 
Humidity, high, Wind, weak| Play, no| 
DISCR - 4 

Steps of the function: 
For every k1’ 

         Sum v1’ from all pairs of k1’-v1’ having  
            the same value of k1’ and store it as new_v1’  
         Emit(k1’, new_v1’) 
 
ReduceTrain2 function: 
Input: Pair of k1’- list(v1’), where: 

k1’ = class + class value + “CLASS”  or  
{attribute,  value} + class + class value + 
“DISCR” 
list(v1’) = {count of k1’}  
Example pair of k1’-list(v1’): 
Play,No| CLASS – [7, 2, 4] 
Outlook,sunny, Temperature, hot, 
Humidity, high, Wind, weak| Play, no| 
DISCR – [4, 6, 8] 

Output: The output format is the same with the 
output format of ReduceTrain1 as they both write 
the same model to HDFS files. The output itself is 
written to a HDFS file. Here, only k2” is defined 
(v2” is set with null):  

k2” = class, class value, count | CLASS or 
{attribute,  value} + class + class value + count | 
DISCR 
Example of pair k2”-v2”: 

   Play,No,12|CLASS - null 
   Outlook,sunny, Temperature, hot, 
     Humidity, high, Wind, weak| Play,  
     no, 17| DISCR - null 
 
Steps of the function: 

For every k1’ 
          Sum v1’ from all pairs of k1’-v1’ having  
            the same value of k1’ and store it  
            as count_v1’  
         If k1’ contains strings of the class attribute  
            and its value only:   
            Create k2” = class, class value,  
               count_v1 | CLASS 
          else  
             Create k2” = {attribute,  value} + class + 



Journal of Theoretical and Applied Information Technology 
15th June 2019. Vol.97. No 11 

 © 2005 – ongoing  JATIT & LLS   

 
ISSN: 1992-8645                                                                   www.jatit.org                                                      E-ISSN: 1817-3195 

 
3089 

 

      class value + count_v1 | DISCR 
    Emit(k2”, null) 
 
Module of  Testing  
The testing module consist only one MapReduce job 
(see Figure 8). The Map read the meta data, NBC 
model and testing dataset to compute confusion 
matrix, accuracy, precision, recall and F-measure. 
The Hadoop Map capable of reading multiple files 
from a certain HDFS directory. Hence, the testing 
dataset or files can be accumulated  into an HDFS 
folder by the process that collects, preprocesses and 
splits the dataset.  

The functions of MapTest and ReduceTest are 
described as follows. 

 

meta_data

NBC model

MapTest: 
predit class value of 

every new case in test 
dataset, k' = class, v’ = 

information of prediction 
results, emit (k’,v’)

test

ReduceTest: 
compute confusion matrix, 

accuracy, f-measure,  precision, 
recall for each class value, create 
k” = class and confusion matrix, 
v” =other measures, emit(k”, v”)

measures

k’', v’’

k', v’

k', list( v’)

 
Figure 8: Testing with one MapReduce job. 

 
MapTest function: 
The main task of this function is to predict the class 
value of a new case (read from test dataset). The 
files of meta_data and NBC_model are read by setup 
method to create objects of: 
ClassContainer object that stores class values and 

ClassSplitConf that stores its location/index, 
name and type (must be discrete).  

PredictorContainer object that stores all of predictor 
attributes and count, and AttrSplitConf that stores 
its location/index, name and type. 

 

The test file is read line by line by map() method as 
k-v pair, the attribute values are used to predict the 
class value, while the actual class is also kept. The 
following is the description of k-v and k’-v’. 
Input:  

k = offset of the record (line) being read 
v = record of test dataset. Example: sunny, 

hot, high, weak, no 

Output: 
k’ = class attribute 
v’ = predicted class value + probability  + actual 
class value 
Example of pair of k’-v’:  
Play- predicted=Yes| prob=0.67.5|  
actual=Yes 

Play - predicted=Yes| prob=0.51.1| 
actual=No 

Play - predicted=No| prob=0.96.32| 
actual=No 

 
By receiving (k,v), the map function reads 
NBC_model and computes the every probability of v 
being in every class value (using Equation 2 as 
presented in Subsection 2.2). The map then selects 
the class value that has the highest probability and 
emit the predicted class, probability and the actual 
class as pair of k’-v’ as shown above. 
 
ReduceTest function: 
The main task of this reducer is to compute 
measures, which are confusion matrix, accuracy, 
precision and recall, that are used to evaluate the 
performance of the NBC model (see Appendix A for 
discussion of these measures). Since all of the 
measures must be computed from all of the test 
instances (cases), to simplify the algorithm, a single 
reducer processes all of the k’-v’ dispatched by all 
mappers (in other words, in the job configuration, 
number of Reducer is set to 1). This reducer 
implements the formulas depicted in Appendix A.  
The input and output are described below. 
 
Input:  

k’ = class attribute 
list(v’) = {v’} 
Example of pair of k’ - list(v’):  
Play { 
predicted=Yes|pct=67.5%|actual=Yes, 
predicted=Yes|pct=51.1%|actual=No, 
predicted=No|pct=96.32%|actual=No, 
} 

Output: 
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The k” and v” are simply designed for grouping 
the output and easy writing to the output file. The 
k” and v” are described as follows: 
k" = class attribute + confusion matrix 
v” = accuracy + {class value, precision, recall} + 
F-measure 
Example of  k”: 
@Play 
     |No |Yes| 
| No | 3 | 1 | 
|Yes | 1 | 2 | 

Example of v”: 
Accuracy = 0.71 
Play = No, Precision = 0.67, Recall = 
0.75, F-Measure = 0.7 

Play = Yes, Precision = 0.75, Recall = 
0.67, F-Measure = 0.7 

 

Note: With this scheme, the job has the disadvantage 
in that all of v’ must fit into a machine memory that 
run the Reduce task. Hence, the selected node must 
have sufficient memory. 
 
 
6. EXPERIMENTS 
 
Two series of experiments were performed with the 
following purposes: 
Experiments-1: Proving that the proposed 
incremental parallel NBC compute and generate 
models correctly and have accuracy with the non-
incremental NBC.  Batches of dataset were created 
from three small to medium real datasets then fed to 
the classifier. The model that created incrementally 
using batches will be compared with the model built 
once using the whole dataset using the test output 
measures. 
Experiments-2: Proving that the proposed 
incremental parallel NBC is scalable and executed 
efficiently in processing big data in the Hadoop 
cluster. 
 
Experiments-1: 
The experiments were performed on a single node, 
with CPU of Intel i7-3770 operating at 3.4 GHz, 16 
Gb of memory, and running Hadoop 2.7.1.  There 
are three datasets used, which are edible and non-
edible fungi, nurses recruitment, and US homicide 
crime record by FBI, discussed as follows:  
 
 
(a) Using fungi dataset: 

This small dataset contains records of many kinds of 
fungi and its classification (edible or poisonous). It 
is obtained from https://archive.ics.uci.edu/ 
ml/datasets/Mushroom. It contains descriptions of 
hypothetical samples corresponding to 23 species of 
gilled mushrooms in the Agaricus and Lepiota 
Family. Each species is identified as definitely 
edible, definitely poisonous, or of unknown edibility 
and not recommended. This latter class was 
combined with the poisonous one. The dataset size 
is 373.7 kb and contains 8,124 records.  There are 23 
discrete attributes, where 22 as predictors and 1 as 
class. The class values are edible (51.8%) and 
poisonous (48.2%). The predictor attributes are 
fungi’s properties, such as cap (its shape, surface, 
color), bruises, odor, gill, stalk, veil, ring, spore, 
population and habitat.  

Methods of experiments: First, the whole data is 
split 80% (as training) and 20% (as testing). After 
the model is created with the training, it is then tested 
using the test dataset.  For experimenting with 
batches, we divide the whole dataset into 2 parts (as 
batches). Each part is further split into training 
dataset (80%) and testing (20%). Hence, we have 2 
pairs of dataset to build and test the NBC model. 
Each pair is then fed into the NBC classifier to build 
and test the incremental model. When testing the 
model, the previous test dataset is also included, 
hence the test dataset is accumulated. The results is 
depicted on Table 2 (see at the end of the article).  

From the results presented in Table 2, it is shown 
that: 
(1) The model constructed using the full dataset is 
equal or the same with the model resulting from 
merging of Batch-1 and Batch -2 models in terms of 
its size and quality (accuracy, precision, recall, F-
measure). 
(2) The MapReduce job for merging the existing and 
newly created model takes longer time to execute 
compared to the training job.   
 
(b) Using nurses recruitment dataset:  

The data contains records of nurse candidate 
profiles and their rank of acceptance (very 
recommended, recommended, priority, specific 
priority and not recommended). It is obtained from 
https://archive.ics.uci.edu/ml/datasets/Nursery. 
Nursery dataset was derived from a hierarchical 
decision model originally developed to rank 
applications for nursery schools. It was used during 
several years in 1980's when there was excessive 
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enrollment to these schools in Ljubljana, Slovenia, 
and the rejected applications frequently needed an 
objective explanation. The final decision depended 
on three sub problems: occupation of parents and 
child's nursery, family structure and financial 
standing, and social and health picture of the family. 
The dataset size is 1.1 Mb with 12,962 records. It has 
9 discrete attributes, where 8 attributes are the 
predictors and 1 attribute is the class. Predictor 
attributes are parents, has_nurs, form, children, 
housing, finance, social, health. The class attribut: 
accepted, where the values are very_recom, 
recommend, priority, spec_prior, not_recom.  

Methods of experiments: It is analogous to the 
previous experiment with fungi dataset. However, in 
these experiments, the whole dataset into 4 parts (as 
batches). The results are depicted on Table 3 (see at 
the end of the article).  

From the results presented in Table 3, it is shown 
that: 
(1) The model constructed using the full dataset is 
equal or the same with the model resulting from 
merging of Batch -1, -2, -3 and -4 models in terms of 
its size and accuracy. 
(2) The MapReduce job for merging the existing and 
newly created model takes longer time to execute 
compared to the training job.    
 
(c) Using homicide dataset:  
The data contains records of homicide collected by 
FBI from 1980  to 2014, obtain from 
https://www.kaggle.com/murderaccountability/hom
icide-reports (downloaded on 29 April 2017). The 
size is 118.8 Mb with 638,654 records. Every record 
contains information of time, crime location,  
perpetrator and victim profile (such as gender, age, 
race, ethnicity), weapon, relationship between the 
perpetrator and victim, and count of  perpetrator and 
victim. It has 24 attributes of numerical and discrete 
type. In this experiment, only the 10 discrete 
attributes which are relevant for predicting new 
cases are selected, which are: 
Predictor attributes: crime_type, victim_sex, 
victim_race, victim_ethnic, perpetrator_sex, 
perpetrator_race, perpetrator_ethnic, relation, and 
weapon.  
Class attribute: crime_solved, which has value of 
(solved or unsolved). 
By selecting those 10 attributes, the size of the 
dataset becomes 56 Mb. 

Methods of experiments: It is analogous to the 
previous experiment with fungi dataset. However, in 
these experiments, the whole dataset into 5 parts (as 
batches). The results are depicted on Table 4 (see at 
the end of the article).  

From the results presented in Table 4, it is shown 
that: 
(1) The model number of records and their size may 
be increased from a batch to the next batch, but the 
final model is the same with the one constructed with 
the full dataset.   
(2) The model constructed from the full dataset is 
equal or the same with the model resulting from 
merging of Batch-1, -2, -3, -4 and -5 models in terms 
of its size and quality measure (accuracy, precision, 
recall and F-measure). 
(3) In processing small size of batches, the 
MapReduce job for merging the existing and newly 
created model takes longer time compared to the 
training job. 
 
Experiments-2:  
The aims of the experiments are to measure the 
execution time of training (Job1) and merging 
models (Job2) using batches of data with different 
number of discrete attributes on a Hadoop cluster. 
Four sets of synthetic data batch having 5, 10, 15 and 
20 attributes were generated. Each set consists of 10 
batches and each batch contains 50.000.000 records 
with size of 550 Mb (for 5 attributes), 1.1 Gb (10 
attributes), 1.6 Gb (15 attributes) and 2 Gb (20 
attributes). The values of the predictor and class 
attributes were randomly generated, each attribute 
has between 2 to 6 unique values. To measure the 
scalability, the Hadoop cluster was configured with 
with a master node (name node) and single slave 
node, 5 slave nodes and 10 slave nodes, each node 
has CPU Intel i5-8500 with 6 cores running at 3 GHz 
and 8 Gb of memory. The master and slave nodes 
run Linux Ubuntu 18.04.1. and Hadoop version 
2.7.1.   

Methods of experiments: Every batch of data is 
fed to the parallel NBC running on a Hadoop cluster 
with single slave node, 5 nodes and 10 nodes. The 
execution time of Job1 (training) and Job2 (merging 
the models) were recorded separately. The results of 
every run are summarized and presented on Figure 
9, Table 5, and Figure 10. 
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Figure 9: Execution time of model training and merging 

for 10 batches on 1, 5 and 10 nodes. 
 
It can be observed on Figure 9 that: 

(a) The execution times of model merging for 4 
number of attributes are a lot smaller compared to 
the times of model training (see Table 5 for the 
percentages), and are relatively constant even though 
the size of batches varies. This is due to the fact the 
the models (being merged) are a lot smaller (10 to 15 
Kb) than the batch size (0.5 to 2 Gb).  

(b) Adding slave nodes to the Hadoop cluster 
improves the execution time. The larger the size of 
the batch (in the order of 550 Mb for 5 attributes, 1.1 
Gb for 10 attributes, 1.6 Gb for 15 attributes and 2 
Gb for 20 attributes), the wider the gap between time 
execution on a single node to on 5 and 10 nodes.  

(c) The execution times of model training for 
processing batches are relatively constant. On the 5 
and 10 slave nodes, by increasing the number of 
attribute and size of batch, the execution times are 
only slightly increased. But, there is fluctuation.  
 
Table 5: Model merging/model training execution times. 

# attri- 
butes 

1-node 5-nodes 10-nodes 

5 18% 20% 18% 
10 9% 14% 9% 
15 7% 9% 12% 
20 5% 10% 10% 

 
 

 
Figure 10: Average of execution times for batches with 5, 

10, 15 and 20 attributes on 1, 5 and 10 nodes 
 
On Figure 10, it is shown that: 

(a) The average of Job1 (model training) 
execution time on a single node increase sharply 
while the ones on 5 and 10 nodes only increase 
slightly over adding the attribute number.   
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(b) The average of Job2 (models merging) 
execution time is relatively constant (with 
fluctuation) on the Hadoop cluster.  
Thus, from these experiments, it can be concluded 
that:  

(a) The MapReduce computation of Job1 for 
producing NBC models from batches is efficient and 
scalable. Adding nodes in the Hadoop cluster 
reduces the execution time. The fluctuation of the 
execution times are caused by the shuffling and 
sorting process over the network.  

(b) The MapReduce computation of Job2 for 
merging the NBC models is also efficient and 
scalable. It runs a lot faster than Job1 as the model 
sizes being merged are a lot smaller than the batch 
size.  

(c) The proposed parallel incremental NBC 
(consisting of Job1 and Job2) is efficient and 
scalable. 
 
 
7. CONCLUSION AND FUTURE WORKS 
 
The parallel classifiers for Hadoop and Spark that 
are grouped into eager learner can be further enhance 
to become incremental classifiers handling batches 
of preprocessed big data. All of the methods are 
potentially enhanced by adopting ensemble 
methods, which will be more efficient if 
implemented on Spark with its RDDs. Parallel Naïve 
Bayes classifier based on MapReduce that handles 
discrete attributes can be enhanced into an 
incremental classifier without implementing 
ensemble methods. Having the model be designed in 
the form of key-value pairs, it can be efficiently 
computed using MapReduce functions, by adopting 
MapReduce summarization and meta patterns, from 
batches of data. The old models can be merged with 
the newly created model (from the new batch) using 
MapReduce functions as well.  

From the first experiment results, it is proven that 
the NBC single model can be computed 
incrementally based on the incoming batches of big 
data with accuracy that is approximately equal to the 
model built using the whole data at once. In testing 
the model, while the new case prediction can benefit 
from the mapper parallel efficient computation, the 
computation of measures are only handled by a 
single reducer. Computing confusion matrix, 
accuracy, precision, recall and f-measure needs to 
use the whole prediction results. In this research, all 
of these results are “collected” and processed by a 
single reducer only. Further research is needed to 
parallelize this computation.  

From the second experiment results, it is shown 
that the proposed incremental NBC running on a 
Hadoop cluster is scalable and efficient. The time 
needed to merge the old model and the newly created 
model with a batch is a lot less then the model 
creation.  

Further works: The incremental parallel 
classifier with ensemble methods need to be 
materialized such that preprocessed big data having 
continues as well as discrete attributes are handled 
efficiently. Big data may be in the format of texts, 
pictures, videos, graphs, encrypted, and so on. 
Developing parallel techniques to preprocess these 
kind of formats such that the results are ready to be 
classified is also required efficiently. Currently, we 
are researching methods for analyzing big graphs 
[20, 21, 22]. In the future we will develop the 
classifier for big graphs as well as encrypted big 
data.  
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APPENDIX A 
 
Metrics for Evaluating Classification Model 
Performance 
 
This appendix presents the definition and measure 
formulas for assessing the classifier model, which 
are implemented in ReduceTest function (Figure 8) 
excerpted from [8] (Han, Kamber & Pei, 2012). 
 
When a classification model is used to test a set of 
labeled tuples, it is defined that P is the number of 
positive tuples (tuples of the main class of interest) 
and N is the number of negative tuples (all other 
tuples). Other definition: 
a) True positives (TP): The positive tuples that 

were correctly labeled by the classifier.  
b) True negatives (TN): The negative tuples that 

were correctly labeled by the classifier.  
c) False positives (FP): The negative tuples that 

were incorrectly labeled as positive (e.g., tuples 
of class buys_computer_no for which the 
classifier predicted buys_computer_yes). 

d) False negatives (FN): The positive tuples that 
were mislabeled as negative. 

 
For a class having two values (yes and no), a 
confusion matrix is described as follows:. 

  Predicted class  
  yes no Total 

Actual class 
yes TP FN P 
no FP TN N 

 Total P’ N’ P + N 
 
For measuring the performance of classifier, four 
evaluation measures are defined as follows: 
a) accuracy (percentage of test set tuples that are 

correctly classified) = (TP + TN) / (P + N) 
b) precision (what percentage of tuples labeled as 

positive are actually such) = TP / (TP + FP) 
c) recall (what percentage of positive tuples are 

labeled as such) = TP / P 
d) F-measure (harmonic mean of precision and 

recall)= (2 x precision x recall) / (precision + 
recall) 
 

 
 

Table 1: MapReduce tasks and job on few parallel classification methods. 

Approach Excerpt of the MapReduce Tasks Job Running 
Decision tree: Parallel 
Decision 
Tree via Sampling 
Splitting points with 
Estimation (PDTSSE) 
[9] 
 

Numeric attributes is transformed into discrete attributes: 
sorted, discretize using equi-depth histograms. The discrete 
attributes are left as is. 
PDTSSE employs two MapReduce (MR) jobs: 
(1) MR ExpandNodes: Collect summary statistics (count of 
each class, count of each attribute value for each class) and 
store them in memory. The tree is constructed using these 
statistics.  The jobs are repeated until up to a certain tree 
level.  It then computes a set of data splits, each split should 
fit in the memory of every node. 
(2) MR InMemBuildNodes: Perform sub-tree induction in a 
node using the assigned data split (stored in memory) until 
the sub-tree is completely constructed. Then, the sub-tree is 
“added” to the global-tree.  

Jobs run repeatedly. At 
each run of MR 
ExpandNodes (each level 
of tree construction), the 
dataset are read.   
 

Parallel Naïve Bayes 
[11]  

The proposed method does not handle numeric attributes. In 
constructing the model: 
The map function: Parses the label and the attribute value of 
each attribute. The key is designed as the label or the 
combination of the label, attribute name and attribute value, 
and the value of the key is set to 1.  
The reduce function: Count the frequency of each key. 
 

The dataset is accessed 
once.  
The job run once. 

Parallel 
Backpropagation NN 
[12]  

Firstly, bootstrapping is employed to divide the dataset 
randomly such that each each partition fit in every node’s 
memory, the partition is distributed to nodes.  
Secondly, MapReduce job is run repeatedly (up to max 
epochs defined) to process each partition and compute the 
NN weights. Multiple NN models (as many as MapReduce 
jobs) will be created.  

The dataset is accessed 
once.  
Job runs multiple times in 
every node. 
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Approach Excerpt of the MapReduce Tasks Job Running 
In classifying a new case, majority voting is used. The 
ensemble classifier predicts a class for an instance using the 
majority of base classifiers. 

Parallel Support 
Vector Machine 
(SVM) [13]  

The training dataset is divided into m partition.    
The parallel SVM is based on the cascade (hierarchical) 
SVM model.  
Firstly, each data partition is used to compute an SVM at the 
first level.  
Secondly, the support vectors of the former subSVM are 
used as the input of later subSVMs. The subSVMs are then 
combined into one final SVM in hierarchical fashion.  
A MapReduce job is run repeatedly to compute the SVM. In 
each run, the map train the SVM, then each reducer 
combines the support vectors of each two subSVM into one 
sample set.   

Job runs multiple times in 
every node. 
 

Associative/  
discriminant frequent 
pattern–based [14]  

MapReduce-Based Parallel Frequent Pattern Growth (MR-
PFP) algorithm mainly consists of the following six steps: 
(1) Integrate small files into sequence files (SF). 
(2) Equally divide the 
transaction data into several sub-transactions, then assign 
them to different slave nodes.  
(3) The 1st MapReduce job iteratively calculate the support 
count of each item, sort the results into I-list.Group I-list 
into G-list. Integrate G-list from nodes. 
(4) The 2nd MapReduce job generate local frequent itemsets. 
(5) Aggregate those local itemsets obtained from each node 
into global frequent itemsets. 

Job runs multiple times in 
every node. 
 
 

 
 

Table 2: Experiment results with the fungi dataset. 

Full/ 
Stream 

Train 
Size 
(kb) 

Train 
Time 
(sec) 

Model 
Merging 

Time 
(sec) 

#Model  
Records 

Model 
Size 
(kb) 

Test 
Size 
(kb) 

Test 
Time 
(sec) 

Accu-
racy 
(%) 

Pre- 
cision 
Avg  
(%) 

Recall 
Avg 
(%) 

F-Mea-
sure 
Avg 
(%) 

Full 299 13 - 191 7.3 74.8 11 95.8 96.1 95.8 96.2 
Batch-1 149.5 11 - 191 7.3 37.4 11 93.3 94 93.3 93.9 
Batch -2 149.5 12 17 191 7.3 74.8 13 95.7 96 95.6 96 

Note: Precision, recall and F-measure are computed for each of the class values. This table presents the average. 

 
 

Table 3. Experiment results with nurses recruitment dataset. 

Full/ 
Stream 

Train 
Size 
(kb) 

Train 
Time 
(sec) 

Model 
Merging 

Time 
(sec) 

#Model  
Records 

Model 
Size  
(kb) 

Test 
Size  
(kb) 

Test 
Time 
(sec) 

Accu-
racy 
(%) 

Avg 
Pre- 

cision 
(%) 

Avg 
Recall 
(%) 

Avg 
F-Mea-

sure 
(%) 

Full 850 12 - 112 114.3 210 13 0.9 92.0 71 70 
Batch-1 212 12 - 111 30.2 53 12 0.89 92.1 71 70 
Batch-2 212 12 16 111 58.8 106 12 0.90 91.5 72 71 
Batch-3 212 10 17 112 87.3 159 13 0.90 91.7 72 71 
Batch-4 212 12 16 112 114.3 209 14 0.90 91.8 71 70 

Note: Precision, recall and F-measure are computed for each of the class values. This table presents the average. 
 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th June 2019. Vol.97. No 11 

 © 2005 – ongoing  JATIT & LLS   

 
ISSN: 1992-8645                                                                   www.jatit.org                                                      E-ISSN: 1817-3195 

 
3097 

 

Table 4: Experiment results of homicide dataset with 10 discrete attributes. 

Full/ 
Stream 

Train  
Size 
(Mb) 

Train 
Time 
(sec) 

Model 
Merge 
Time 
(sec) 

#Model  
Records 

Model 
Size (kb) 

Test  
Size  
(Mb) 

Test 
Time 
(sec) 

Accu-
racy 
(%) 

Avg 
Pre- 

cision 
(%) 

Avg 
Recall 
(%) 

Avg 
F-Mea-

sure 
(%) 

Full 45 22 - 135 7 11 16 99.9 99.9 99.9 99.9 
Batch-1 9 15 - 127 6.5 2.2 13 99.9 99.9 99.9 99.9 
Batch-2 9 13 16 132 6.8 4.4 14 99.9 99.9 99.9 99.9 
Batch-3 9 15 15 134 7 6.6 15 99.9 99.9 99.9 99.9 
Batch-4 9 14 15 134 7 8.8 16 99.9 99.9 99.9 99.9 
Batch-5 9 15 16 135 7 11 17 99.9 99.9 99.9 99.9 

Note: Precision, recall and F-measure are computed for each of the class values. This table presents the average. 

 
 


