
Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3077

INCREMENTAL PARALLEL CLASSIFIER FOR BIG DATA
WITH CASE STUDY: NAÏVE BAYES USING MAPREDUCE

PATTERNS

1VERONICA S. MOERTINI, 2MOHAMAD F. SEPTRIANTO, 3LIPTIA VENICA

Informatics Department, Parahyangan Catholic University, Bandung, Indonesia

1moertini@unpar.ac.id, 2fahrizalseptrianto@gmail.com, 3liptiavenica@gmail.com

ABSTRACT

Classification methods can be used to derive values from big data in the form of models, which then can be
utilized to predict new cases. Several parallel classification methods for big data have been developed based
on Hadoop MapReduce as well as for Spark system. As big data keeps on coming, the models must be
updated from time to time to represent the old as well as the new data. The computations must be efficient
and scalable for handling big data.

This research aims to enhance the existing parallel classifiers such that they will perform as incremental
classifier handling batches of big data. The research results are presented as follows. First, the architecture
and main concept of the enhancement is presented. Secondly, the proposed incremental parallel Naïve Bayes
classifier (NBC) based on MapReduce that handles dataset with discrete attributes is discussed in detailed.
Two series of experiment were performed on Hadoop clusters with 5 and 10 nodes. The results show that the
incremental parallel NBC has acceptable accuracy, is efficient and scalable.

Keywords: Big Data Classification Method, Incremental Parallel Classifier, Mapreduce Patterns

1. INTRODUCTION

Big data is high-volume, high-velocity, and/or high-
variety information assets that demand cost-
effective, innovative forms of information
processing that enable enhanced insight and decision
making [1]. It comes in structured, semi-structured
and unstructured format. Processing big data
requires new, innovative, and scalable technology to
collect, host and analytically process the vast amount
of data gathered in order to derive values. These
values may relate to profit, medical or social
benefits, or customer, employee, or personal
satisfaction.

Classification methods can be used to derive
values from big data in the form of models, which
can be utilized to predict new cases. The required big
data sometimes must be gathered from several
sources and comes with different formats. This leads
to complexity in preparing the needed data such that
it can be fed into classification algorithms. The
activities may involve advanced technologies,
processes and algorithms. As big data along with
other non-big data keeps on coming, the models
must be “updated” from time to time to “represent”

the current data. To renew the model, batches of
preprocessed big data can be produced periodically
then fed into the selected classification algorithms.
In this regard, incremental classifiers that work
based on batches of preprocessed big data are
needed.

Hadoop, which comes with MapReduce
computational framework and works in distributed
systems, offers many advantages for big data
analysis. One of those is easy scaling of data
processing over multiple computing nodes [2, 3, 4].
A MapReduce program takes input data in the form
of key-value pairs. The Map and Reduce functions
then manipulate those key-value pairs, and produce
some other form of key-value pairs. MapReduce
patterns, which are templates for solving a common
and general data manipulation problem with
MapReduce, have been developed [5]. Among those
are summarization, filtering, data organization, join,
meta and input-output patterns. MapReduce
programmers can adopt these patterns to create
MapReduce programs that are well structured and
efficient. However, currently MapReduce
framework only supports efficient computations that
does not iteratively process big data as it accesses the
big data from disks on each iteration.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3078

Apache Spark with its RDD (Resilient
Distributed Datasets), which can run on top of
Hadoop’s YARN resource manager, has been
developed to address the MapReduce weakness
[6,7]. Machine Learning algorithms that require
iterative computations can be implemented on
Spark. As in standalone implementation, the
algorithms can then access the data from memory
(stored as RDD objects), which is a lot faster than
reading from disks. A Spark library of machine
learning algorithms (MLLib), which has clustering
(such as k-Means) and classification (Naïve Bayes,
SVM and RandomForest) functions, have been
developed and can be adopted.

Although incremental parallel classifiers that
work based on batches of big data are needed, based
on our literature study results (see Subsection 3.1
and 3.2), we have not found any technique based on
Hadoop MapReduce and Spark that specifically
address this problem. Therefore, this research
objective is to develop or enhance the existing
parallel classifiers that have been developed for
Hadoop or Spark environment such that they will
perform as incremental classifier handling batches of
big data. The classifier must have approximately the
same accuracy (compared to the existing classifier)
and must be efficient and scallable. Having this
objective, in this research:

(1) We reviewed groups of classification
methods and identify which groups are suitable to be
enhanced. (The group includes as Bayesian, decision
tree, lazy learning, rule based and neural network
[8].

(2) We studied research results related to those
classification methods that have been enhanced or
implemented for Hadoop and Spark, then analyzed
the potencies of enhancement.

(3) Based on the above results, we designed the
overall system architecture and the main concept of
enhancement.

(4) From (2), we found that Naïve Bayes
classifier (NBC) handling discrete attributes of
dataset can be enhanced to handle batches of big data
efficiently by adopting MapReduce summarization
and meta patterns. It involves only one pass
computation and read the training dataset once.
Thus, we designed the detailed enhancement (as a
case study) and conduct two series of experiments to
evaluate the performance.

This paper presents our research results and is
organized as follows: Literature review of basic
concept (bagging, NBC, Hadoop and MapReduce
patterns, Apache Spark, the evaluation of parallel
classifiers and the main concept of enhancement,
proposed parallel classifier architecture system,

detailed discussion of proposed incremental parallel
NBC, two series of experiment for evaluating the
NBC performance conducted on a Hadoop cluster,
conclusion and further works.

2. LITERATURE REVIEW

2.1. Bagging: Ensemble Classifier Methods

Classification is a two-step process. First, a model is
built from a training dataset. Secondly, the model is
evaluated using test data set. If the model’s accuracy
is acceptable, the model is later used to classify new
data. Depending on the “nature” of the dataset and
the selected classification algorithms, the model
accuracy is sometimes below the expectation.
Bagging is a method used in ensemble methods to
improve classification accuracy. An ensemble for
classification is a composite model, made up of a
combination of classifiers. The individual classifiers
vote, and a class label prediction is returned by the
ensemble based on the collection of votes.
Ensembles tend to be more accurate than their
component classifiers [8].

Bagging works as follows (see Figure 1): D is a
set of d tuples. For iteration i (i = 1, 2, . . . , k), a
training set, Di , of d tuples is sampled with
replacement from the original set of tuples, D.
(Because sampling with replacement is used, some
of the original tuples of D may not be included in Di
, whereas others may occur more than once.) A
classifier model, Mi , is learned for each training set,
Di. To classify an unknown tuple, X, each classifier,
Mi , returns its class prediction, which counts as one
vote. The bagged classifier, M*, counts the votes and
assigns the class with the most votes to X.

Internal
Sources

D1

D2

Dk

M1

M2

Mk

Combine
votes

New tupple

Class
predicted

.

.

Figure 1: Illustration of ensemble method with bagging

[8].

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3079

2.2. Naïve Bayes Classifier

Naïve Bayes classifier (NBC) is a classifier, where
the features of the vectors (representing tupples) are
assumed to be conditionally independent of each
other [8]. Given a vector X = (x1, x2, , xn), using
Bayes’ theorem, the conditional probability of X
having a class value of Ck can be written as:

𝑃(𝐶௞|𝐗) =
௉(஼ೖ)௉(𝐗|஼ೖ)

௉(𝐗)
 (1)

Because the features of X is assumed to be
conditionally independent of each other, Eq. 1 can
be rewritten as:

𝑃(𝐗|𝐶௞) = 𝑃(𝑥ଵ|𝐶௞)𝑃(𝑥ଶ|𝐶௞). . . 𝑃(𝑥௡|𝐶௞) (2)

In Eq. 2, if xi is discrete then P(xi|Ck) is simply the
number of tuples of class Ck having the value xi (for
attribute Ai) divided by the number of class Ck. If xi
is continuous-valued then P(xi|Ck) is computed using
Gaussian distribution, by first computing mean and
standard deviation of the attributes. The highest
value of P(X|Ck) is selected and Ck is the predicted
class.

NBC model can be materialized as specific structure
containing all of the pre-computed measures used in
Eq. 2, which is used to predict the class of the new
tupple. The measures include the Gaussian
distribution for numerical attribute and count of each
class values (for computing P(Ck)) and count of each
attribute values for each class value (for computing
P(Ck|X)).

2.3. Hadoop, HaLoop and MapReduce Patterns

Hadoop, a platform for storing and analyzing big
data in distributed systems, comes with master-slave
architecture [2,3]. It has components of Hadoop
Distributed File System (HDFS) and MapReduce.
Its storage and computational capabilities scale with
the addition of slave nodes to a Hadoop cluster, and
can reach volume sizes in the petabytes on clusters
with thousands of hosts. A brief overview of HDFS
and MapReduce is as follows.

HDFS: It is a distributed file system designed for
large-scale distributed data processing under
frameworks such as MapReduce and is optimized for
high throughput. It automatically re-replicates data
blocks on nodes (the default is 3 replications).

MapReduce: It is a data processing model that
has the advantage of easy scaling of data processing
over multiple computing nodes. Map and Reduce
functions run in each slave node in parallel. A

MapReduce program processes data by
manipulating key-value pairs in the general form:

map: (k1,v1) ➞ list(k2,v2)

reduce: (k2, list(v2)) ➞ list(k3,v3).
Map reads (key, value) pairs, then based on the
algorithm designed by developers, it generates one
or more output pairs list (k2, v2). Through a complex
shuffle and sort phase, the output pairs are
partitioned and then transferred to Reducer: Pairs
with the same key are grouped together as (k2,
list(v2)) and then each partition with unique value of
k2 is sent to a Reducer. The Reduce function (with a
specific algorithm assigned) generates the final
output pairs list(k3, v3) for each group (see Figure
2).

A client submits a MapReduce job to the master,
which then assign and manage Map and Reduce job
parts to slave nodes. Map reads and processes blocks
of files stored locally in the slave node, sent list of
key-value to Reduce via shuffle and sort, then
Reduce may write its computation results to HDFS.

Map
Task 1

Map
Task 2

Map
Task 3Host 1

Host 7

Host 9

HDFS
Block 1

HDFS
Block 19

HDFS
Block 105

k1,v1 k1,v1 k1,v1

Reducer 1 Reducer 2
Host 3

Host 8

k2,v2 k2,v2k2,v2

suffle & sort

k2, list(v2)k2, list(v2)

list(k3, v3)list(k3, v3)

Figure 2: Map, shuffle and sort, and reduce phases.

If a job has iterative computation (calls its Map and
Reduce functions many times until a certain
condition is met), at each iteration, the process
shown in Figure 2 is executed and the blocks
containing the data being processed is read (again).
It is known that reading data from disk, especially
large sizes, cost I/O process that degrades the job
performance. Therefore, any MapReduce job that
has iterative computation (found in algorithms of
data mining, web ranking, graph processing, model
fitting, and so on), in which the whole data is read
and processed, is not efficient.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3080

To address that Hadoop disadvantage, HaLoop is
currently developed (see
https://code.google.com/archive/p/haloop/).
HaLoop not only extends MapReduce with
programming support for iterative applications, but
also improves their efficiency by making the task
scheduler loop-aware and by adding various caching
mechanisms. In short, HaLoop has the following
features: (1) Provide caching options for loop-
invariant data access, (2) let users reuse major
building blocks from applications' Hadoop
implementations, and (3) have similar intra-job
fault-tolerance mechanisms to Hadoop. HaLoop is
backward-compatible with Hadoop jobs. However,
currently, HaLoop is only a prototype system and
has not been released a production system.

MapReduce Design Pattern
MapReduce design pattern is a template for solving
a common and general data manipulation problem
with MapReduce. It is not specific to a domain such
as text processing or graph analysis, but it is a
general approach to solving a problem intended to
build better software [5]. As MapReduce is a
relatively new technology with a fast adoption rate
and there are new developers joining the community
every day, the design patterns also provide a
common language for teams working together on
MapReduce problems. There are several
MapReduce design patterns that have been designed,
such as summarization, filtering, data organization,
join, input and output and meta patterns. Below is
the excerpt of patterns that are adopted in our
proposed technique, which are summarization and
meta patterns.

Summarization Pattern
Data can be large and “vast”, with more data coming
into the system every day. This pattern aims to
produce a top-level, summarized view of the data
such that ones can glean insights not available from
looking at a localized set of records alone.
Summarization analytics are all about grouping
similar data together and then performing an
operation such as calculating a statistic, building an
index, or just simply counting. The summarization
patterns include numerical summarizations, inverted
index, and counting with counters. They are more
straightforward applications of MapReduce than
some of the other patterns because grouping data
together by a key is the core function of the
MapReduce paradigm: All of the keys are grouped
together and collected in the reducers. If the value
fields emitted by the mapper is the ones intended to

be grouped by the key, the grouping is all handled by
the MapReduce framework for “free”.

Numerical Summarizations: The numerical
summarizations pattern is a general pattern for
calculating aggregate statistical values over the data.
The intention of this pattern is to group records
together by a key field and calculate a numerical
aggregate per group to get a top-level view of the
larger data set. The summarization function, θ, is
executed over some list of values (v1, v2, v3, …, vn) to
find a value λ, i.e. λ = θ(v1, v2, v3, …, vn). Examples
of θ are counting, minimum, maximum, average,
median, and standard deviation. Numerical
summarizations should be used when both of the
following are true: The data is numerical or
countable and can be grouped by specific fields. This
pattern is generally used in word count, record count,
finding min/max/count and
average/median/standard deviation.

The numerical summarization generally has
three components as follows:
(a) The mapper outputs keys that consist of each
field to group by, and values consisting of any
pertinent numerical items.
(b) The combiner can greatly reduce the number of
intermediate key/value pairs to be sent across the
network to the reducers for some numerical
summarization functions. If the function θ is an
associative and commutative operation, it can be
used for this purpose.
(c) The reducer receives a set of numerical values
(v1, v2, v3, …, vn) associated with a group-by key
records to perform the function λ = θ(v1, v2, v3, …,
vn). The value of λ is output with the given input key.

Meta Pattern
Many big data computing problems can not be
solved using a single Map‐Reduce job. Some jobs in
a chain will run in parallel, some will have their
output fed into other jobs, and so on. Job chaining
pattern pieces together several patterns to solve
complex and multistage problems. Job merging is an
optimization for performing several analytics in the
same MapReduce job.

Job chaining is one of the most complicated
processes to handle because it’s not a feature out of
the box in most MapReduce frameworks [5].
Systems like Hadoop are designed for handling one
MapReduce job very well, but handling a multistage
job needs proper designs. Job chaining is suitable for
a problem with a lot of job flows with complex
chaining, where the first (previous) job generate lots
of output data fed to the second (later) job. Job
chaining can be implemented with the driver,
JobControl, shell scripting, and so on. Job chaining

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3081

with the driver is the simplest method, where a
master driver simply fires off multiple job-specific
drivers. Here, the driver for each MapReduce job is
run in the sequence as defined. The output path of
the first job is the input path of the second. The first
job must be checked for success before executing the
second job.

2.4. Apache Spark

Spark is a general-purpose data processing engine,
an API-powered toolkit which data scientists and
application developers incorporate into their
applications to rapidly query, analyze and transform
data at scale [6, 7]. It is often used alongside
Hadoop’s data storage module, HDFS, but can also
integrate equally well with other popular data
storage subsystems such as HBase, Cassandra,
MapR-DB, MongoDB and Amazon’s S3. Spark’s
flexibility makes it well-suited to tackling a range of
use cases, and it is capable of handling several
petabytes of data at a time, distributed across a
cluster of thousands of cooperating physical or
virtual servers. Typical use cases include stream
processing, data integration, interactive analytics
and analyzing data using machine learning
techniques. Spark’s ability to store data in memory
and rapidly run repeated queries makes it well-suited
to training machine learning algorithms. It
significantly reduces the time required to iterate
through a set of possible solutions in order to find the
most efficient algorithms.

Spark will normally run on an existing big data
cluster. These clusters are often also used for
Hadoop jobs, and Hadoop’s YARN resource
manager will generally be used to manage that
Hadoop cluster (including Spark). When Spark runs
on top of Hadoop, it benefits from Hadoop’s cluster
manager (YARN) and underlying storage (HDFS,
HBase, etc.).

Spark
Driver

Cluster Master
Mesos, YARN
or Standalone

Cluster Worker

Executor

Cluster Worker

Executor

Cluster Worker

Executor

Figure 3: Spark architecture [7].

Spark employs master slave architecture with one
centralized coordinator, which is driver and with

many workers (Figure 3). At a high level, every
Spark application consists of a driver program that
launches various parallel operations on a cluster. The
driver program contains the application’s main
function and defines distributed datasets on the
cluster, then applies operations to them. (The driver
program can be the Spark shell, which takes
operations from users.) Driver programs access
Spark through a SparkContext object, which
represents a connection to a computing cluster.
Once a SparkContext object is created, it can be used
to build Resilient Distributed Datasets (RDDs).
Users can then run various operations accessing the
RDDs. To run the operations, driver program
typically manage a number of nodes called
executors. For example, if the count() operation is
run on a cluster aiming for counting file lines,
different machines might count lines in different
ranges of the file.

Resilient Distributed Datasets (RDDs)
The RDD is a concept at the heart of Spark. It is
designed to support in-memory data storage,
distributed across a cluster (as partitions stored in
nodes) in a manner that is demonstrably both fault-
tolerant and efficient. Fault-tolerance is achieved, in
part, by tracking the lineage of transformations
applied to coarse-grained sets of data. Efficiency is
achieved through parallelization of processing
across multiple nodes in the cluster, and
minimization of data replication between those
nodes. Having RDD, Spark supports efficient
iterative computations, where each cycle needs to
read large data, as the data is stored in parallel
memory. Many machine learning or data mining
algorithms, such as clustering, classification,
association analysis involve iterative computations,
thus are suitable to be enhanced for Spark
environment.

A Spark library, namely Scalable Machine
Learning on Spark (MLLib), has been available. It
implements algorithms of classification, clustering,
and so on. The classification algorithms are logistic
regression, linear support vector machine (SVM),
and multinomial and Bernoulli Naive Bayes, which
are typically used for document classification.

3. PARALLEL CLASSIFIERS AND CONCEPT
OF ENHANCEMENT

Based on its learning method, classifier can be
grouped into eager and lazy learner or instance-
based methods [8]. The former uses training
records/tupples to construct a generalization model
which can then be used classify new tuples/cases.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3082

The later stores all of the training tuples in pattern
space and wait until presented with a test tuple
before performing generalization (usually, lazy
learners require efficient indexing techniques).
Decision tree classifiers, Bayesian classifiers,
classification by back propagation, support vector
machines, and classification based on frequent
patterns are all examples of eager learners. Nearest-
neighbor classifiers and case-based reasoning
classifiers are lazy learners.

If lazy learning is used to predict a class of a new
case from big data, which can be petabytes in size,
the computation will evaluate millions or even
billions of records. This will be inefficient.
Therefore, we conclude that lazy learners are not
good candidates for classifying big data. Hence, we
intend to find the classifier(s) that can be enhanced
for classifying big data stream from the eager learner
group based on Hadoop MapReduce as well as
Spark.

3.1. Classification Methods Based on MapReduce

We found that few eager learner classifiers have
been enhanced based on Hadoop MapReduce to
handle big data. Aiming to enhance them into
incremental classifier, below is our review of
parallel decision tree classifiers, Bayesian
classifiers, classification by back propagation,
support vector machines, and classification based on
frequent patterns:

(1) Decision tree: Decision tree induction is a
top-down recursive tree induction algorithm, which
uses an attribute selection measure to select the
attribute tested for each non-leaf node in the tree.
ID3, C4.5, and CART are examples of such
algorithms using different attribute selection
measures. In inducing a tree from the dataset, it
adopts divide and conquer strategy in that the whole
dataset is partitioned recursively. Early decision tree
algorithms typically assume that the dataset are
memory resident.

[9] proposes a parallel decision tree based on
MapReduce via Sampling Splitting points with
Estimation.

(2) Naïve Bayes: [10] and [11] have developed
techniques to parallelize the NBC based on Hadoop
MapReduce. From the results of experiment
conducted in a Hadoop cluster with 4 machines (1
master and 3 slaves), [11] concludes that the
executing time increases approximately linear with

the size of dataset and the size of data that can be
processed is much larger than the standalone
algorithms can handled.

(3) Backpropagation: Backpropagation is a
neural network algorithm for classification that
employs a method of gradient descent. It searches for
a set of weights that can model the data so as to
minimize the mean-squared distance between the
network’s class prediction and the actual class label
of data tuples. Rules may be extracted from trained
neural networks to help improve the interpretability
of the learned network. In computing the weights of
the network model, the whole dataset must be fed as
many as the epoch (iteration).

[12] have developed parallel backpropagation
neural network (BPNN) based on MapReduce. The
training data are bootstrapped (partitioned
randomly) into samples, each is then fed into BPNN
running in every client machine. In the training
phase, the ensemble techniques including
bootstrapping and majority voting have been
employed.

(4) Support Vector Machine (SVM): A support
vector machine is an algorithm for the classification
of both linear and nonlinear data. It transforms the
original data into a higher dimension, from where it
can find a hyper plane for data separation (into two
classes) using essential training tuples called support
vectors. This binary classification can be adapted to
handle multiclass classification by constructing an
ensemble of binary classifiers. Error-correcting
codes can be used to increase the accuracy of the
ensemble. [13] proposes parallel SVM based on
MapReduce, which involve iterative computation.

(5) Associative classification and discriminant
frequent pattern–based classification: Frequent
patterns reflect strong associations between
attribute–value pairs (or items) in data and are used
in classification based on frequent patterns.
Approaches to this methodology include associative
classification and discriminant frequent pattern–
based classification. In associative classification, a
classifier is built from association rules generated
from frequent patterns. In discriminative frequent
pattern–based classification, frequent patterns serve
as combined features, which are considered in
addition to single features when building a
classification model. [14] proposes MapReduce-
Based Parallel Frequent Pattern Growth (MR-PFP)
algorithm, which mainly consists of six steps.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3083

The objective of this research is to develop
efficient incremental classification method, suitable
for batches of big data. Table 1 (located at the end of
this article) presents the summary of the mapper and
reducer tasks and the job.

3.2. Classification Methods for Spark
Unlike the ones designed based on MapReduce, the
related research results of classifications methods for
Spark that we found are basically the application of
MLLib functions (Naïve Bayes, Logistic
Regression, SVM and Random Forest). The
excerpts are as follows:

(1) Parallel Naïve Bayes (NB) and Logistic
Regression (LR) algorithms are used to classify large
scale of Arabic Text [15]. Large-scale Arabic text
corpuses are collected, followed by performing the
proper text preprocessing tasks (sequential text
preprocessing and term weighting with TF-IDF in
parallel). Parallelized NB and LR algorithms are
used to classify the texts in the Apache Spark
environment. The experiment results indicate that
both NB and LR gives high accuracy (89% and
93%), but NB was faster.

(2) Experiment using Ensemble Support Vector
Machine (SVM) was performed using big data with
the size of 3T, namely, Splice-Site [16]. The
experiment results prove that Spark provides a high
feature throughput on cached data, and that models
trained in Spark reaches as good accuracy as
algorithms trained in any other framework.

(3) [17] proposes Incremental Parallel Random
Forest (IPRF) algorithm for data streams in Spark
environment. IPRF basically optimizes the data
allocation by designing RDDs that are distributed on
the worker (slave) nodes and task scheduling for
dynamic parallel optimization (but, the method is not
clearly discussed). The decision trees are built using
IPRF on the dynamic independent feature variables
stored as RDDs in the worker nodes. The
experiments were conducted using Solar Power
System which consists 1,88,835 instances.
Unfortunately, the experiments results are not
clearly discussed. One result that can be concluded
is that the the larger the streaming data size, the
larger the error rate.

Thus, from the Spark classifier literature study it
is found that: Large as well as stream dataset are
handled well by parallel Naïve Bayes, SVM and
Random Forest. The algorithms also reach good
accuracy.

3.3. The Main Concept of Enhancement
The parallel classification techniques based on
MapReduce and for Spark discussed in Subsection
2.3.1 and 2.3.2 can be enhanced into incremental
classifier to handle batches of big data. The
following is the general idea:

3.3.1 Using Ensemble Methods
Basically, all of the parallel classification methods
[11, 12, 13, 14, 15, 16, 17] can be enhanced towards
incremental ones using ensemble methods with
bagging (see Figure 1). A batch of dataset:

(a) Can be split into one training data partition
and test data. One additional model is constructed
from the training data and added to the bag of
models.

(b) Can be split into several training data
partitions (similar to bootstrapping in [12]) and test
data. Many models are constructed from these
partitions and added to the bag of models.

On both approaches, the test data along with the
old ones is then used to test the final bag of model.
(It is also possible that the new test data only that is
used to test the model. However, experiments are
required to make sure that the model quality can be
tested using that data only.)

Depending on the algorithms, the model can be a
collection of statistic measures (for parallel Naïve
Bayes), decision tree (for decision tree and
RandomForest), NN model, SVM model or frequent
pattern tree.

Issues and general idea of model constructions
with MapReduce:

(a) The existing version of MapReduce does not
support efficient iterative computation where each
cycle reads the whole or part of dataset. Thus, the
algorithms must be designed in such a way so that its
number of iterations is as little as possible.
Depending on the characteristic of the data input,
this could be hard to achieve.

(b) Each Reduce function produces its own
output (in this case, it can be “part of the model”).
So, the algorithm design should include combining
the Reduce outputs, if the job employed more that
one reducer.

(c) Meta pattern can be adopted accordingly if
the algorithm needs more that one pair of
MapReduce functions.

(d) By design, Map function takes multiple files
in an HDFS folder. The batches of data can simply
be added into that folder.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3084

Issues and general idea of model construction:
(a) Although RDD provides parallel in-memory

dataset that can be read by Spark application many
times, each task running in a worker will “see” and
access its local RDD (the RDD objects stored in the
node memory) only. Proper data structure and
parallel algorithms must be designed to address this
issue. If the task running on every worker is designed
to compute “some part of the model”, there should
be a mechanism to collect and combine all of the
worker computation results properly.

(b) To address the above issue, one node can be
designed to store one ore more local RDD that
represents ensemble methods’ data partition (which
must be randomized). Then, the task is designed to
create some part of the global model from those local
RDDs. With this regard, each worker produces one
(or more) local model (that later will be collected
into bag of models).

(c) Spark provides mechanism of collecting
RDDs from all workers into the master node. The
global model collected (or combined) must be fit
into a single machine memory.

(d) The Spark application may access HDFS, so
the application can be designed to read multiple
batches of data stored in an HDFS folder.

Materializing the general idea discussed above
will need lots and tedious research activities.

Initianlize global variables, initialize/read
bag_models & create randomized

input_RDD for workers

Paralel computation on each worker:
Read input_RDD & compute one or more part of
full_model, stored as local RDD, namely local_model

Standalone computation on master node:
Gather RDD of local_model from all workers then
construct the full_model

Compute iteration stop measure

Stop?

Add full_model to bag_models
Figure 4: Core algorithm of computing bags of model on

Spark.
3.3.2 Using Single Model
It is also possible to enhance parallel incremental
classifiers that create a single model with non-
degraded quality or accuracy. However, unlike with

ensemble methods, among of the methods discussed
in Subsection 2.3.1 and 2.3.2, only one method can
be enhanced. That is the parallel Naïve Bayes [11,
15] that handles dataset with discrete attributes only
(which means, if there are numerical attributes, they
must be transformed into discrete ones first). The
model can be designed as the summarization (count)
of the class and attribute values for each class value.
When there is batch of data coming in, the new count
is computed. The result is then used to update the
previous (old) model (see Figure 5). Using
MapReduce patterns, the method can be
implemented efficiently as it involve a single pass
computation only.

As the computation is simple, in this research this
is the method that is designed (in detailed),
implemented and evaluated through two series of
experiments.

1
parallel

train

batch_model

2
update
model

final_model

data batch

Figure 5: Steps of computing single model.

4. PARALLEL INCREMENTAL CLASSIFIER
SYSTEM ARCHITECTURE

Preparing big data for classification, which may
originated from many sources with various forms
(structured, semi-structured or unstructured),
involves complex processes. Those are data
extraction and collection, combining or merging,
selection, cleaning and transformation. To
accomplish those tasks, few tools and complex
computations may needed. Generating features from
this data (for classification) would also involve
complex computations.

Given these facts, we view that incremental
parallel classifiers should handle batch of
(preprocessed) data.

Our proposed general incremental classification
system architecture that handle batches of big data is
shown on Figure 6 and described as follows:

(1) Big data from external and internal sources
are collected regularly. By applying functions for
extraction, cleaning and possibly also merging and
transformation, as well as loading, generally the

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3085

data is then stored in a data warehouse (along with
other various data).

(2) Based on the classification objectives, batch
of big data of interest is prepared, which involve
selection, merging, and other kind of transformation
(for preparing the features). The batch can be split,
large part (70-90%) is for training and the rest is for
testing the model. The testing dataset is accumulated
in a certain location (directory) in the HDFS (some
of the old datasets can be erased after largely
accumulated, if necessary).

(3) The training data is used to compute the
temporary (batch) model, which is then “merged”
with the existing model. After it is merged, the
temporary model is erased (so is the training dataset,
if intended to save space).

(4) The final-merged-model can be tested using
the testing dataset and then the measures resulted
(confusion matrix, accuracy, precision, recall and f-
measure) are saved.

(5) If by evaluating the measures, the model
passes the defined minimum values, the model can
be exported and used in other systems for classifying
new cases.

On the architecture presented on Figure 6, the
algorithm adopted in Proses 3 (to create and/or
update the model) can be the one that produces a
single as well as bags of model. It is expected that
the size of the model is a lot smaller than the training
as well as testing dataset such that it can be exported
to non-big data systems and be used in operational
systems as needed.

Process 3 and 4 can be implemented in Hadoop
(with MapReduce) or Spark. As discussed in the
previous section, however, Hadoop currently does
not support efficient iterative computation. So, for
iterative algorithms, Spark with its RDD is a better
option. For non iterative algorithms, MapReduce
patterns can be adopted to support efficient
computation.

External
Sources

Internal
Sources

1
collect,

merge, extract,
clean, transform,

load

Datawarehouse

2
 select,

transform,
split

test
(HDFS)

training
(HDFS)

4
test

model

final_merged_
model (HDFS)

batch_model
(HDFS)

3
parallely
train &
update

classifier
model

5
export
model classifier

model

measures

Figure 6: The proposed architecture of incremental
classification system for batches of big data.

5. INCREMENTAL NBC BASED-ON
MAPREDUCE

In our previous works [18, 19], we found that the
most contributing factor that degrades the
MapReduce job performance is its repetitive HDFS
files reading (by the mapper). It costs lots of IO
processes. On the other hand, parallel NBC that
handles discrete attributes only has advantages
(Subsection 3.3.2): The job is run only once and the
computation for updating or merging the model is
simple. Numerical attributes can also be transformed
into discrete attributes using histogram analysis or
other techniques. Based on these reasons, we adopt
NBC as a case in materializing Process 3 and 4 of
Figure 6 that creates single model.

NBC Model Structure

To support simple access and computations by Map
and Reduce functions, the NBC model is designed to
include:
(1) The count of every class value with the structure:
{class, value| CLASS – count}.
(2) The count of every unique pair attributes value
for each class value with the structure: {atr1, val1,

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3086

atr2, val2, . . . atrn, valn| class, value | DISCR - count}.
‘DISCR’ is included to indicate that the attributes are
discrete (to distinguish with CONT for enhancement
in the future).
Example of part of a model:
 Play, No| CLASS – 7
 Play, Yes| CLASS – 5
 Outlook, sunny, Temperature, hot,

Humidity, high, Wind, weak| Play, no|
DISCR – 2

 Outlook, overcast, Temperature, med,
Humidity, med, Wind, weak| Play, yes|
DISCR - 4

By using the above structures:
(1) The Reduce functions (in the training and
updating model process) can be designed to directly
emit outputs with the structures.
(2) The Map function (in the updating model
process) can read each of the two structures as a
record.

Module of Training and Updating the Model
This module consists of two jobs, which are job for
producing a model from the batch of data and
updating the old model using the newly created
model. To “connect” these 2 jobs, Job Chaining
pattern [5] is adopted. Two MapReduce jobs are
designed (see Figure 7): The first performs model
construction from the batch of training data, which
outputs the temporary model. The second job merges
the existing (old) model with the temporary model.
The results of merging then replaces the old model.

As the designed NBC model contains counts of
class and predictor attribute values, the numerical
summarizations pattern discussed in Subsection 2.3.
is adopted. In the training, the function of θ performs
group counting over:
(1) an attribute value of (v1), where v1 is class
attribute and
(2) list of values (v1, v2, v3, …, vn), where vi is
predictor or class attribute.

During updating the model, the function of θ
sums up the count of old and batch model for the
same value of (v1) and (v1, v2, v3, …, vn).

The adoption of MapReduce pattern on the
incremental NBC training (Figure 7) is as follows:
 (1) Job Chaining pattern is implemented with
driver: Job1 includes MapTrain1, CombineTrain1
and ReduceTrain1, and Job2 has MapTrain2,
CombineTrain2 and ReduceTrain2.
(2) The summarization pattern with counting
function is materialized in Job1 (in MapTrain1,
CombineTrain1, and ReduceTrain1) and Job2 (in
MapTrain2, CombineTrain2, and ReduceTrain2).

The overall NBC incremental training involves
three stages of process, which are:
(1) Job1: Read the incoming batch of training data
and using the defined meta data, then compute the
temporary NBC model. The model created
(temp_batch_model) is then moved to the HDFS
folder (/final_model) that store the existing model
(namely, NBC_model).
(2) Job2: Read newly created temporary and the old
(existing) NBC model from /final_model folder and
“merge” them into a new model. This job can only
be executed after Job1 is completed.
(3) Replace the old model with the new one.

Those above processes will be executed whenever a
batch of training data is fed into the algorithm. The
detailed discussion of each job is as follows.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3087

meta_data

training
(batch)

MapTrain1: extract
class value (as k1'), v1'= ‘1’ or

each value of discrete attribute with
its class value (as k1'), v1'= ‘1’,

emit (k1',v1')

temp_batch_model

k1,
v1

Job1

ReduceTrain1:
sum v1' from the list for every k1' ,

create and emit (k1", v1")

k1'', v1’’

CombineTrain1: sum v1'
of each k1',

emit (k1', new v1')

k1', v1’

k1', v1'

k1', list(v1’)

shuffle - sort

MapTrain2: construct
k2' = string of class value or

a discrete attribute value with
its class value, v2’ = count, emit

(k2', v2')

NBC_model

k2, v2

Job2

new_NBC
_model

replace

CombineTrain2:
sum up v2 of every
k2’, emit (k2', new

v2')

k2', v2’

ReduceTrain2:
sum up the v2 from
the list of every k2’,

create and emit
(k2", v2")

k2', v2'

k2', list(v2')

Figure 7: Incremental NBC training using two
MapReduce jobs.

The tasks of Map, Combine and Reduce function of
Job1 and Job2 are presented in Figure 7. As
MapReduce functions work on the basis of pair key-
value input-output, designing the proper structure
(content) of key-value is important. The Map and
Reduce tasks and the structures of key (k) and value
(v) are described below.

Job1: Computing the batch model
MapTrain1 function: See Figure 7 for its tasks.
Input:

 meta_data: Describes the training data attributes
and classes with the following structure:
 meta_data = class attribute + column number of
class attribute + {attribute_name, type, index of
column number of attribute} + count of attributes
Example:
 @class :Play,4
 @attribute :Outlook,0,DISCR;

Temperature,1,DISCR; Humidity,2,DISCR;
Wind,2,DISCR

 @Count :5
(The attribute type is includes, because Map is
designed to reject any tupple/record that has non-
discrete attribute.)
 training: The incoming batch training dataset with
the following structure:
 training = {attribute value} + class value
 Example:
 rain, cool, normal, strong, no
 overcast, cool, normal, strong, yes
 overcast, cool, normal, weak, yes
 rain, mild, high, strong, no
 sunny, hot, high, weak, no

Pair of k1-v1:
k1 = offset of the record (line) being read
v1 = record of training. Example: sunny,
hot, high, weak, no

Output:
k1’ = class|{attribute, value} + class
v1’ = count of k1’
Example of pair of k1’-v1’:

 |_class|Play, no - 5
 |Outlook,sunny, Temperature, hot,
 Humidity, high, Wind, weak| Play,
 no - 1

CombineTrain1 function: See Figure 7 for its tasks.
Input: the same with the output of MapTrain1.
Output: k1’= k1, v1’ = count of k1’

Example pair of k1’-v1’: sunny, hot, high,
weak, no - 2

ReduceTrain1 function: See Figure 7 for its tasks.
Input:

k1’ = class value|{attribute, value} + class value
list(v1’) = {count}
Example pair of k1’-list(v1’):
 |_class|Play,no - [2,2,1]
 |Outlook,sunny, Temperature, hot,

Humidity, high, Wind, weak| Play, no
- [1, 1, 3]

Output:
The output is written to a HDFS file. Here, only
k2” is defined (v2” is set with null).

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3088

k2” = class, class value, count | CLASS or
|{attribute, value} + class + class value + count |
DISCRETE
Example of pair k2”-v2”:
 Play,No,5.0|CLASS - null
 Outlook,sunny, Temperature, hot,
Humidity, high, Wind, weak| Play, no,
3| DISCR - null

Before Job2 is started, the file temp_batch_model is
moved to the HDFS directory where NBC_model is
stored.

Job2: Merging the batch and old models.

MapTrain2 function:
Input:

NBC_model and temp_batch_model have the
same structure content, which is the same with
k2” of ReduceTrain1. As both files are located in
one “logical” HDFS folder, the blocks created
from the files spread across the cluster data nodes
are treated as the “same” input by Map function.
This function reads all of the local blocks
sequentially.
Pair of k1-v1:
k1 = offset of the record (line) being read
v1 = line of NBC_model or temp_batch_model
Example of v1:
Play,No,5.0|CLASS
Outlook,sunny, Temperature, hot,
Humidity, high, Wind, weak| Play, no,
3| DISCR

Output:
k1’ = class + class value + “CLASS” or
{attribute, value} + class + class value +
“DISCR”
v1’ = count of k1’
Example: pair of k1’-v1’
Play,No| CLASS - 5
Outlook,sunny, Temperature, hot,
Humidity, high, Wind, weak| Play, no|
DISCR - 3

Steps of the function:
Read a string of line from the input split and
store it in v1
Parse v1
If v1 contains strings of the class attribute and
its value only:

 k1’ = class + class value + “CLASS” and
 v1’ = count of k1’
 else // v1 contains predictor, class attributes
 //and their count
 k1’ = {attribute, value} + class + class value

 + “DISCR” and v1’ = count of k1’
Emit(k1’, v1’)

CombineTrain2 function:
Input: the same with the output of MapTrain2.
Output:

k1’ = k1, v1’ = count of k1’
Example pair of k1’-v1’:
Play,No| CLASS - 7
Outlook,sunny, Temperature, hot,
Humidity, high, Wind, weak| Play, no|
DISCR - 4

Steps of the function:
For every k1’

 Sum v1’ from all pairs of k1’-v1’ having
 the same value of k1’ and store it as new_v1’
 Emit(k1’, new_v1’)

ReduceTrain2 function:
Input: Pair of k1’- list(v1’), where:

k1’ = class + class value + “CLASS” or
{attribute, value} + class + class value +
“DISCR”
list(v1’) = {count of k1’}
Example pair of k1’-list(v1’):
Play,No| CLASS – [7, 2, 4]
Outlook,sunny, Temperature, hot,
Humidity, high, Wind, weak| Play, no|
DISCR – [4, 6, 8]

Output: The output format is the same with the
output format of ReduceTrain1 as they both write
the same model to HDFS files. The output itself is
written to a HDFS file. Here, only k2” is defined
(v2” is set with null):

k2” = class, class value, count | CLASS or
{attribute, value} + class + class value + count |
DISCR
Example of pair k2”-v2”:

 Play,No,12|CLASS - null
 Outlook,sunny, Temperature, hot,
 Humidity, high, Wind, weak| Play,
 no, 17| DISCR - null

Steps of the function:

For every k1’
 Sum v1’ from all pairs of k1’-v1’ having
 the same value of k1’ and store it
 as count_v1’
 If k1’ contains strings of the class attribute
 and its value only:
 Create k2” = class, class value,
 count_v1 | CLASS
 else
 Create k2” = {attribute, value} + class +

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3089

 class value + count_v1 | DISCR
 Emit(k2”, null)

Module of Testing
The testing module consist only one MapReduce job
(see Figure 8). The Map read the meta data, NBC
model and testing dataset to compute confusion
matrix, accuracy, precision, recall and F-measure.
The Hadoop Map capable of reading multiple files
from a certain HDFS directory. Hence, the testing
dataset or files can be accumulated into an HDFS
folder by the process that collects, preprocesses and
splits the dataset.

The functions of MapTest and ReduceTest are
described as follows.

meta_data

NBC model

MapTest:
predit class value of

every new case in test
dataset, k' = class, v’ =

information of prediction
results, emit (k’,v’)

test

ReduceTest:
compute confusion matrix,

accuracy, f-measure, precision,
recall for each class value, create
k” = class and confusion matrix,
v” =other measures, emit(k”, v”)

measures

k’', v’’

k', v’

k', list(v’)

Figure 8: Testing with one MapReduce job.

MapTest function:
The main task of this function is to predict the class
value of a new case (read from test dataset). The
files of meta_data and NBC_model are read by setup
method to create objects of:
ClassContainer object that stores class values and

ClassSplitConf that stores its location/index,
name and type (must be discrete).

PredictorContainer object that stores all of predictor
attributes and count, and AttrSplitConf that stores
its location/index, name and type.

The test file is read line by line by map() method as
k-v pair, the attribute values are used to predict the
class value, while the actual class is also kept. The
following is the description of k-v and k’-v’.
Input:

k = offset of the record (line) being read
v = record of test dataset. Example: sunny,

hot, high, weak, no

Output:
k’ = class attribute
v’ = predicted class value + probability + actual
class value
Example of pair of k’-v’:
Play- predicted=Yes| prob=0.67.5|
actual=Yes

Play - predicted=Yes| prob=0.51.1|
actual=No

Play - predicted=No| prob=0.96.32|
actual=No

By receiving (k,v), the map function reads
NBC_model and computes the every probability of v
being in every class value (using Equation 2 as
presented in Subsection 2.2). The map then selects
the class value that has the highest probability and
emit the predicted class, probability and the actual
class as pair of k’-v’ as shown above.

ReduceTest function:
The main task of this reducer is to compute
measures, which are confusion matrix, accuracy,
precision and recall, that are used to evaluate the
performance of the NBC model (see Appendix A for
discussion of these measures). Since all of the
measures must be computed from all of the test
instances (cases), to simplify the algorithm, a single
reducer processes all of the k’-v’ dispatched by all
mappers (in other words, in the job configuration,
number of Reducer is set to 1). This reducer
implements the formulas depicted in Appendix A.
The input and output are described below.

Input:

k’ = class attribute
list(v’) = {v’}
Example of pair of k’ - list(v’):
Play {
predicted=Yes|pct=67.5%|actual=Yes,
predicted=Yes|pct=51.1%|actual=No,
predicted=No|pct=96.32%|actual=No,
}

Output:

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3090

The k” and v” are simply designed for grouping
the output and easy writing to the output file. The
k” and v” are described as follows:
k" = class attribute + confusion matrix
v” = accuracy + {class value, precision, recall} +
F-measure
Example of k”:
@Play
 |No |Yes| |
| No | 3 | 1 |
|Yes | 1 | 2 |

Example of v”:
Accuracy = 0.71
Play = No, Precision = 0.67, Recall =
0.75, F-Measure = 0.7

Play = Yes, Precision = 0.75, Recall =
0.67, F-Measure = 0.7

Note: With this scheme, the job has the disadvantage
in that all of v’ must fit into a machine memory that
run the Reduce task. Hence, the selected node must
have sufficient memory.

6. EXPERIMENTS

Two series of experiments were performed with the
following purposes:
Experiments-1: Proving that the proposed
incremental parallel NBC compute and generate
models correctly and have accuracy with the non-
incremental NBC. Batches of dataset were created
from three small to medium real datasets then fed to
the classifier. The model that created incrementally
using batches will be compared with the model built
once using the whole dataset using the test output
measures.
Experiments-2: Proving that the proposed
incremental parallel NBC is scalable and executed
efficiently in processing big data in the Hadoop
cluster.

Experiments-1:
The experiments were performed on a single node,
with CPU of Intel i7-3770 operating at 3.4 GHz, 16
Gb of memory, and running Hadoop 2.7.1. There
are three datasets used, which are edible and non-
edible fungi, nurses recruitment, and US homicide
crime record by FBI, discussed as follows:

(a) Using fungi dataset:

This small dataset contains records of many kinds of
fungi and its classification (edible or poisonous). It
is obtained from https://archive.ics.uci.edu/
ml/datasets/Mushroom. It contains descriptions of
hypothetical samples corresponding to 23 species of
gilled mushrooms in the Agaricus and Lepiota
Family. Each species is identified as definitely
edible, definitely poisonous, or of unknown edibility
and not recommended. This latter class was
combined with the poisonous one. The dataset size
is 373.7 kb and contains 8,124 records. There are 23
discrete attributes, where 22 as predictors and 1 as
class. The class values are edible (51.8%) and
poisonous (48.2%). The predictor attributes are
fungi’s properties, such as cap (its shape, surface,
color), bruises, odor, gill, stalk, veil, ring, spore,
population and habitat.

Methods of experiments: First, the whole data is
split 80% (as training) and 20% (as testing). After
the model is created with the training, it is then tested
using the test dataset. For experimenting with
batches, we divide the whole dataset into 2 parts (as
batches). Each part is further split into training
dataset (80%) and testing (20%). Hence, we have 2
pairs of dataset to build and test the NBC model.
Each pair is then fed into the NBC classifier to build
and test the incremental model. When testing the
model, the previous test dataset is also included,
hence the test dataset is accumulated. The results is
depicted on Table 2 (see at the end of the article).

From the results presented in Table 2, it is shown
that:
(1) The model constructed using the full dataset is
equal or the same with the model resulting from
merging of Batch-1 and Batch -2 models in terms of
its size and quality (accuracy, precision, recall, F-
measure).
(2) The MapReduce job for merging the existing and
newly created model takes longer time to execute
compared to the training job.

(b) Using nurses recruitment dataset:

The data contains records of nurse candidate
profiles and their rank of acceptance (very
recommended, recommended, priority, specific
priority and not recommended). It is obtained from
https://archive.ics.uci.edu/ml/datasets/Nursery.
Nursery dataset was derived from a hierarchical
decision model originally developed to rank
applications for nursery schools. It was used during
several years in 1980's when there was excessive

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3091

enrollment to these schools in Ljubljana, Slovenia,
and the rejected applications frequently needed an
objective explanation. The final decision depended
on three sub problems: occupation of parents and
child's nursery, family structure and financial
standing, and social and health picture of the family.
The dataset size is 1.1 Mb with 12,962 records. It has
9 discrete attributes, where 8 attributes are the
predictors and 1 attribute is the class. Predictor
attributes are parents, has_nurs, form, children,
housing, finance, social, health. The class attribut:
accepted, where the values are very_recom,
recommend, priority, spec_prior, not_recom.

Methods of experiments: It is analogous to the
previous experiment with fungi dataset. However, in
these experiments, the whole dataset into 4 parts (as
batches). The results are depicted on Table 3 (see at
the end of the article).

From the results presented in Table 3, it is shown
that:
(1) The model constructed using the full dataset is
equal or the same with the model resulting from
merging of Batch -1, -2, -3 and -4 models in terms of
its size and accuracy.
(2) The MapReduce job for merging the existing and
newly created model takes longer time to execute
compared to the training job.

(c) Using homicide dataset:
The data contains records of homicide collected by
FBI from 1980 to 2014, obtain from
https://www.kaggle.com/murderaccountability/hom
icide-reports (downloaded on 29 April 2017). The
size is 118.8 Mb with 638,654 records. Every record
contains information of time, crime location,
perpetrator and victim profile (such as gender, age,
race, ethnicity), weapon, relationship between the
perpetrator and victim, and count of perpetrator and
victim. It has 24 attributes of numerical and discrete
type. In this experiment, only the 10 discrete
attributes which are relevant for predicting new
cases are selected, which are:
Predictor attributes: crime_type, victim_sex,
victim_race, victim_ethnic, perpetrator_sex,
perpetrator_race, perpetrator_ethnic, relation, and
weapon.
Class attribute: crime_solved, which has value of
(solved or unsolved).
By selecting those 10 attributes, the size of the
dataset becomes 56 Mb.

Methods of experiments: It is analogous to the
previous experiment with fungi dataset. However, in
these experiments, the whole dataset into 5 parts (as
batches). The results are depicted on Table 4 (see at
the end of the article).

From the results presented in Table 4, it is shown
that:
(1) The model number of records and their size may
be increased from a batch to the next batch, but the
final model is the same with the one constructed with
the full dataset.
(2) The model constructed from the full dataset is
equal or the same with the model resulting from
merging of Batch-1, -2, -3, -4 and -5 models in terms
of its size and quality measure (accuracy, precision,
recall and F-measure).
(3) In processing small size of batches, the
MapReduce job for merging the existing and newly
created model takes longer time compared to the
training job.

Experiments-2:
The aims of the experiments are to measure the
execution time of training (Job1) and merging
models (Job2) using batches of data with different
number of discrete attributes on a Hadoop cluster.
Four sets of synthetic data batch having 5, 10, 15 and
20 attributes were generated. Each set consists of 10
batches and each batch contains 50.000.000 records
with size of 550 Mb (for 5 attributes), 1.1 Gb (10
attributes), 1.6 Gb (15 attributes) and 2 Gb (20
attributes). The values of the predictor and class
attributes were randomly generated, each attribute
has between 2 to 6 unique values. To measure the
scalability, the Hadoop cluster was configured with
with a master node (name node) and single slave
node, 5 slave nodes and 10 slave nodes, each node
has CPU Intel i5-8500 with 6 cores running at 3 GHz
and 8 Gb of memory. The master and slave nodes
run Linux Ubuntu 18.04.1. and Hadoop version
2.7.1.

Methods of experiments: Every batch of data is
fed to the parallel NBC running on a Hadoop cluster
with single slave node, 5 nodes and 10 nodes. The
execution time of Job1 (training) and Job2 (merging
the models) were recorded separately. The results of
every run are summarized and presented on Figure
9, Table 5, and Figure 10.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3092

Figure 9: Execution time of model training and merging

for 10 batches on 1, 5 and 10 nodes.

It can be observed on Figure 9 that:

(a) The execution times of model merging for 4
number of attributes are a lot smaller compared to
the times of model training (see Table 5 for the
percentages), and are relatively constant even though
the size of batches varies. This is due to the fact the
the models (being merged) are a lot smaller (10 to 15
Kb) than the batch size (0.5 to 2 Gb).

(b) Adding slave nodes to the Hadoop cluster
improves the execution time. The larger the size of
the batch (in the order of 550 Mb for 5 attributes, 1.1
Gb for 10 attributes, 1.6 Gb for 15 attributes and 2
Gb for 20 attributes), the wider the gap between time
execution on a single node to on 5 and 10 nodes.

(c) The execution times of model training for
processing batches are relatively constant. On the 5
and 10 slave nodes, by increasing the number of
attribute and size of batch, the execution times are
only slightly increased. But, there is fluctuation.

Table 5: Model merging/model training execution times.

attri-
butes

1-node 5-nodes 10-nodes

5 18% 20% 18%
10 9% 14% 9%
15 7% 9% 12%
20 5% 10% 10%

Figure 10: Average of execution times for batches with 5,

10, 15 and 20 attributes on 1, 5 and 10 nodes

On Figure 10, it is shown that:

(a) The average of Job1 (model training)
execution time on a single node increase sharply
while the ones on 5 and 10 nodes only increase
slightly over adding the attribute number.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3093

(b) The average of Job2 (models merging)
execution time is relatively constant (with
fluctuation) on the Hadoop cluster.
Thus, from these experiments, it can be concluded
that:

(a) The MapReduce computation of Job1 for
producing NBC models from batches is efficient and
scalable. Adding nodes in the Hadoop cluster
reduces the execution time. The fluctuation of the
execution times are caused by the shuffling and
sorting process over the network.

(b) The MapReduce computation of Job2 for
merging the NBC models is also efficient and
scalable. It runs a lot faster than Job1 as the model
sizes being merged are a lot smaller than the batch
size.

(c) The proposed parallel incremental NBC
(consisting of Job1 and Job2) is efficient and
scalable.

7. CONCLUSION AND FUTURE WORKS

The parallel classifiers for Hadoop and Spark that
are grouped into eager learner can be further enhance
to become incremental classifiers handling batches
of preprocessed big data. All of the methods are
potentially enhanced by adopting ensemble
methods, which will be more efficient if
implemented on Spark with its RDDs. Parallel Naïve
Bayes classifier based on MapReduce that handles
discrete attributes can be enhanced into an
incremental classifier without implementing
ensemble methods. Having the model be designed in
the form of key-value pairs, it can be efficiently
computed using MapReduce functions, by adopting
MapReduce summarization and meta patterns, from
batches of data. The old models can be merged with
the newly created model (from the new batch) using
MapReduce functions as well.

From the first experiment results, it is proven that
the NBC single model can be computed
incrementally based on the incoming batches of big
data with accuracy that is approximately equal to the
model built using the whole data at once. In testing
the model, while the new case prediction can benefit
from the mapper parallel efficient computation, the
computation of measures are only handled by a
single reducer. Computing confusion matrix,
accuracy, precision, recall and f-measure needs to
use the whole prediction results. In this research, all
of these results are “collected” and processed by a
single reducer only. Further research is needed to
parallelize this computation.

From the second experiment results, it is shown
that the proposed incremental NBC running on a
Hadoop cluster is scalable and efficient. The time
needed to merge the old model and the newly created
model with a batch is a lot less then the model
creation.

Further works: The incremental parallel
classifier with ensemble methods need to be
materialized such that preprocessed big data having
continues as well as discrete attributes are handled
efficiently. Big data may be in the format of texts,
pictures, videos, graphs, encrypted, and so on.
Developing parallel techniques to preprocess these
kind of formats such that the results are ready to be
classified is also required efficiently. Currently, we
are researching methods for analyzing big graphs
[20, 21, 22]. In the future we will develop the
classifier for big graphs as well as encrypted big
data.

ACKNOWLEDGMENT

This research is funded by Direktorat Riset dan
Pengabdian Masyarakat, Direktorat Jenderal
Penguatan Riset dan Pengembangan (through
Penelitian Dasar Unggulan Pergurutan Tinggi
scheme in 2019) and Parahyangan Catholic
University (through Penelitian Dana Internal
scheme in 2018). We would like to thank to them for
their supports.

References

[1]. David Loshin, Big Data Analytics, Morgan

Kaufmann Publ., USA, 2013.
[2]. A. Holmes, Hadoop in Practice, USA: Manning

Publications Co., 2012.
[3]. C. Lam, Hadoop in Action, USA: Manning

Publ., 2010
[4]. E. Sammer, Hadoop Operations, USA: O’Reilly

Media, Inc., 2012.
[5]. D. Miner and A. Shook, MapReduce Design

Patterns, O’Reilly Media, Inc., Sebastopol,
CA, 2013.

[6]. J. A. Scott, Getting Started with Apache Spark:
Inception to Production, MapR Technologies,
Inc., USA, 2015.

[7]. H. Karau, A. Konwinski, P. Wendell & M.
Zaharia, Learning Spark - Lightning-Fast Data
Analysis, O’Reilly Media, Inc., Sebastopol,
CA-USA, 2015.

[8]. J. Han, M. Kamber and J. Pei, 2012. Data
Mining Concepts and Techniques 3rd Ed.,
Morgan Kaufmann Pub., USA.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3094

[9]. Y. Cui, Y. Yang and S. Liao, PDTSSE: A
Scalable Parallel Decision Tree Algorithm
Based on MapReduce, School of Computer
Science and Technology, Tianjin University,
Tianjin, China, 2015.

[10]. P. Lucivnák, Parallel Implementation of
Dynamic Naive Bayesian Classifier,
Bachelor’s Thesis, Department of Theoretical
Computer Science, CTU, Prague, May 9,
2018.

[11]. Q. He, F. Zhuang, J. Li, and Z. Shi, Parallel
Implementation of Classification Algorithms
Based on MapReduce, RSKT 2010, LNAI
6401, pp. 655–662, Springer-Verlag Berlin
Heidelberg, 2010.

[12]. Y. Liu, W. Jing and L. Xu, Parallelizing
Backpropagation Neural Network Using
MapReduce and Cascading Model,
Computational Intelligence and Neuroscience,
Vol. 2016, Hindawi Publishing Corp., 2016.

[13]. Z. Sun and G. Fox, Study on Parallel SVM
Based on MapReduce, Key Laboratory for
Computer Network of Shandong Province,
Shandong Computer Science Center, Jinan,
Shandong, China.

[14]. D. Xia, X. Lu, H. Li, W. Wang, Y. Li and Z.
Zhang, A MapReduce-Based Parallel Frequent
Pattern Growth Algorithm for Spatiotemporal
Association Analysis of Mobile Trajectory Big
Data, Complexity, Vol. 2018, Hindawi, 2018.

[15]. B. Omar Alqarout, Parallel Text Classification
Applied to Large Scale Arabic Text, Faculty of
Information Technology, The Islamic
University of Gaza, State of Palestine, October
2017.

[16]. S. Lind, Distributed Ensemble Learning With
Apache Spark, Thesis, Molecular
Biotechnology Engineering, School of
Engineering, Uppsala University,
Sweden,2016.

[17]. A. A. Babu, J. Preethi, Incremental-Parallel
Data Stream Classification in Apache Spark
Environment, Proc. of 1st International
Conference on Applied Soft Computing
Techniques, April 2017.

[18]. V. S. Moertini, G. W. Suarjana, L. Venica and
G. Karya, Big Data Reduction Technique using
Parallel Hierarchical Agglomerative
Clustering, IAENG International Journal of
Computer Science, Vol. 45. No. 1, 2018.

[19]. V. S. Moertini and L. Venica, Parallel k-Means
for Big Data: On Enhancing Its Cluster Metrics
and Patterns, Journal of Theoretical and
Applied Information Technology, Vol. 95, No.
8, 2017.

[20]. Atastina, I., Sitohang, B., Saptawati, G.A.P.,
Moertini, V.S., A Review of Big Graph Mining
Research, Proc. of 2017 IOP Conference
Series: Materials Science and Engineering,
Bandung, Indonesia, 2017.

[21]. Atastina, I., Sitohang, B., Putri Saptawati,
G.A., Moertini, V.S., An Implementation of
Graph Mining to Find the Group Evolution in
Communication Data Record, Proc. of 2018
ACM International Conference Proceeding
Series, Singapore, 2018.

[22]. Atastina, I., Sitohang, B., Putri Saptawati,
G.A., Moertini, V.S., An Efficient Technique
for Cluster Number Prediction in Graph
Clustering using Nullity of Laplacian Matrix,
Journal of Theoretical and Applied
Information Technology, Vol. 97. No 7, 2019.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3095

APPENDIX A

Metrics for Evaluating Classification Model
Performance

This appendix presents the definition and measure
formulas for assessing the classifier model, which
are implemented in ReduceTest function (Figure 8)
excerpted from [8] (Han, Kamber & Pei, 2012).

When a classification model is used to test a set of
labeled tuples, it is defined that P is the number of
positive tuples (tuples of the main class of interest)
and N is the number of negative tuples (all other
tuples). Other definition:
a) True positives (TP): The positive tuples that

were correctly labeled by the classifier.
b) True negatives (TN): The negative tuples that

were correctly labeled by the classifier.
c) False positives (FP): The negative tuples that

were incorrectly labeled as positive (e.g., tuples
of class buys_computer_no for which the
classifier predicted buys_computer_yes).

d) False negatives (FN): The positive tuples that
were mislabeled as negative.

For a class having two values (yes and no), a
confusion matrix is described as follows:.

 Predicted class
 yes no Total

Actual class
yes TP FN P
no FP TN N

 Total P’ N’ P + N

For measuring the performance of classifier, four
evaluation measures are defined as follows:
a) accuracy (percentage of test set tuples that are

correctly classified) = (TP + TN) / (P + N)
b) precision (what percentage of tuples labeled as

positive are actually such) = TP / (TP + FP)
c) recall (what percentage of positive tuples are

labeled as such) = TP / P
d) F-measure (harmonic mean of precision and

recall)= (2 x precision x recall) / (precision +
recall)

Table 1: MapReduce tasks and job on few parallel classification methods.

Approach Excerpt of the MapReduce Tasks Job Running
Decision tree: Parallel
Decision
Tree via Sampling
Splitting points with
Estimation (PDTSSE)
[9]

Numeric attributes is transformed into discrete attributes:
sorted, discretize using equi-depth histograms. The discrete
attributes are left as is.
PDTSSE employs two MapReduce (MR) jobs:
(1) MR ExpandNodes: Collect summary statistics (count of
each class, count of each attribute value for each class) and
store them in memory. The tree is constructed using these
statistics. The jobs are repeated until up to a certain tree
level. It then computes a set of data splits, each split should
fit in the memory of every node.
(2) MR InMemBuildNodes: Perform sub-tree induction in a
node using the assigned data split (stored in memory) until
the sub-tree is completely constructed. Then, the sub-tree is
“added” to the global-tree.

Jobs run repeatedly. At
each run of MR
ExpandNodes (each level
of tree construction), the
dataset are read.

Parallel Naïve Bayes
[11]

The proposed method does not handle numeric attributes. In
constructing the model:
The map function: Parses the label and the attribute value of
each attribute. The key is designed as the label or the
combination of the label, attribute name and attribute value,
and the value of the key is set to 1.
The reduce function: Count the frequency of each key.

The dataset is accessed
once.
The job run once.

Parallel
Backpropagation NN
[12]

Firstly, bootstrapping is employed to divide the dataset
randomly such that each each partition fit in every node’s
memory, the partition is distributed to nodes.
Secondly, MapReduce job is run repeatedly (up to max
epochs defined) to process each partition and compute the
NN weights. Multiple NN models (as many as MapReduce
jobs) will be created.

The dataset is accessed
once.
Job runs multiple times in
every node.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3096

Approach Excerpt of the MapReduce Tasks Job Running
In classifying a new case, majority voting is used. The
ensemble classifier predicts a class for an instance using the
majority of base classifiers.

Parallel Support
Vector Machine
(SVM) [13]

The training dataset is divided into m partition.
The parallel SVM is based on the cascade (hierarchical)
SVM model.
Firstly, each data partition is used to compute an SVM at the
first level.
Secondly, the support vectors of the former subSVM are
used as the input of later subSVMs. The subSVMs are then
combined into one final SVM in hierarchical fashion.
A MapReduce job is run repeatedly to compute the SVM. In
each run, the map train the SVM, then each reducer
combines the support vectors of each two subSVM into one
sample set.

Job runs multiple times in
every node.

Associative/
discriminant frequent
pattern–based [14]

MapReduce-Based Parallel Frequent Pattern Growth (MR-
PFP) algorithm mainly consists of the following six steps:
(1) Integrate small files into sequence files (SF).
(2) Equally divide the
transaction data into several sub-transactions, then assign
them to different slave nodes.
(3) The 1st MapReduce job iteratively calculate the support
count of each item, sort the results into I-list.Group I-list
into G-list. Integrate G-list from nodes.
(4) The 2nd MapReduce job generate local frequent itemsets.
(5) Aggregate those local itemsets obtained from each node
into global frequent itemsets.

Job runs multiple times in
every node.

Table 2: Experiment results with the fungi dataset.

Full/
Stream

Train
Size
(kb)

Train
Time
(sec)

Model
Merging

Time
(sec)

#Model
Records

Model
Size
(kb)

Test
Size
(kb)

Test
Time
(sec)

Accu-
racy
(%)

Pre-
cision
Avg
(%)

Recall
Avg
(%)

F-Mea-
sure
Avg
(%)

Full 299 13 - 191 7.3 74.8 11 95.8 96.1 95.8 96.2
Batch-1 149.5 11 - 191 7.3 37.4 11 93.3 94 93.3 93.9
Batch -2 149.5 12 17 191 7.3 74.8 13 95.7 96 95.6 96

Note: Precision, recall and F-measure are computed for each of the class values. This table presents the average.

Table 3. Experiment results with nurses recruitment dataset.

Full/
Stream

Train
Size
(kb)

Train
Time
(sec)

Model
Merging

Time
(sec)

#Model
Records

Model
Size
(kb)

Test
Size
(kb)

Test
Time
(sec)

Accu-
racy
(%)

Avg
Pre-

cision
(%)

Avg
Recall
(%)

Avg
F-Mea-

sure
(%)

Full 850 12 - 112 114.3 210 13 0.9 92.0 71 70
Batch-1 212 12 - 111 30.2 53 12 0.89 92.1 71 70
Batch-2 212 12 16 111 58.8 106 12 0.90 91.5 72 71
Batch-3 212 10 17 112 87.3 159 13 0.90 91.7 72 71
Batch-4 212 12 16 112 114.3 209 14 0.90 91.8 71 70

Note: Precision, recall and F-measure are computed for each of the class values. This table presents the average.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3097

Table 4: Experiment results of homicide dataset with 10 discrete attributes.

Full/
Stream

Train
Size
(Mb)

Train
Time
(sec)

Model
Merge
Time
(sec)

#Model
Records

Model
Size (kb)

Test
Size
(Mb)

Test
Time
(sec)

Accu-
racy
(%)

Avg
Pre-

cision
(%)

Avg
Recall
(%)

Avg
F-Mea-

sure
(%)

Full 45 22 - 135 7 11 16 99.9 99.9 99.9 99.9
Batch-1 9 15 - 127 6.5 2.2 13 99.9 99.9 99.9 99.9
Batch-2 9 13 16 132 6.8 4.4 14 99.9 99.9 99.9 99.9
Batch-3 9 15 15 134 7 6.6 15 99.9 99.9 99.9 99.9
Batch-4 9 14 15 134 7 8.8 16 99.9 99.9 99.9 99.9
Batch-5 9 15 16 135 7 11 17 99.9 99.9 99.9 99.9

Note: Precision, recall and F-measure are computed for each of the class values. This table presents the average.

