
Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3038

STUDYING OPEN BANKING PLATFORMS WITH OPEN
SOURCE CODE

ANDREY KOLYCHEV, KONSTANTIN ZAYTSEV

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Avenue
31, Moscow, 115409, Russia

ABSTRACT

Intensive growth of public web interfaces started early in 2010; and if initially API was a procedure of
interaction of various software tools, then at present web interfaces are genuine digital products on the basis
of which companies, especially major companies, can derive profits while providing their internal services
to third parties via open API. Banks are not an exception. They also can derive profits by providing access
to their internal services for third-party developers. The advantage of banking enterprises is that they
possess unique data and services, which can hardly be competed. As a consequence, there appeared the
software market for the development of open source API and provision of access to them with monetization
capabilities. API management platform is comprised generally of three components: developer site, API
development tools, and API gateway. API gateway is the most important component since it is responsible
for interface operation; hence, this work is aimed at the determination of the most efficient API gateways.
Three software variants have been considered: Gravitee API Platform, APIMan, and WSO2 API Manager,
which meet two preset criteria: Java product implementation, open source code of the product. The study
has been performed in comparison environment with three coordinates: intensity of performed functions for
API development, labor intensity of API implementation, the performance of API gateway. During the
experiments, Gravitee.io API Platform was the best software with regard to each coordinate.
Keywords: API Management, API Management System, API Platform, API Manager, API Gateway, Open
API, Software Functionality, Performance.

1. INTRODUCTION

At early stages of software development, it was
necessary to solve the problem of interaction
among applications in order to provide possibility
of data exchange overriding physical and logical
boundaries. Integration of various software
products is peculiar for numerous business
scenarios. The number of integrating interactions
continuously increases, this is stipulated by
sophisticated ecosystems and business processes
which are supported by complex interactions with
several endpoints in user software, internal software
of various companies and various public services.
One of the variants of software interaction,
especially in the case of various logics and
architecture, is API.

According to data by ProgrammableWeb service,
the number of open web interfaces from the early
2010 increased by about 20 times [1] (Fig. 1).

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3039

Figure 1: Quantitative variations of open interfaces

It should be mentioned that in addition to hi-tech
industries, open interfaces are also applied in such
fields as telecommunications, mass media,
travelling, tourism, and real estate. Major financial
market players analyze open banking platforms in
order to compete with IT giants, which already
provide their financial services such as PayPal,
Billtrust, Amazon. In addition, if initially API was a
method of interaction of various softwares, then at
present web interfaces are genuine digital products,
on the basis of which companies, especially major
companies, can derive profits [2]. Banking
enterprises are not exceptions. In European banking
sector, development of open API is a requirement
stipulated in PSD2 directive. Therefore, banks are
stimulated to develop open API by two forces:
market and law. Hence, each modern bank aiming
at competitive business should develop open API.
The concept of open interfaces is not new,
therefore, numerous software solutions are
available in the market for development of open
interface infrastructure [3], which leads to selection
of efficient system of API management. This work
is devoted mainly to API gateways with open
source code.

This problem is considered by several researchers.
They apply various approaches to comparison of
software products. Some works are based on
customer opinions [4-6], such criteria are
highlighted as functional capabilities of various
components of API platform, estimations of support
services, usability, software cost. Other studies
combine estimations by users and experts [3, 7],
various criteria are also highlighted. Nearly all
researches [3, 6, 7] include such criterion as
presence of software platform in the market
(amount of clients and geographical distribution of

software). All studies consider mainly paid
solutions; this work analyzes platform with open
source code and compares the main component of
API platform: API gateway.

2. MATERIALS AND METHODS

2.1. Selection Of Software Products For

Comparison
API management systems are comprised
conventionally of three components: API gateway,
API manager, developer site.

API gateway is a network gateway (or web server,
if it is not required to combine network segments,
for instance, Internet and intrabank network) where
source code of developed API is physically located.
Requests to API are addressed exactly to API
gateway, where authentication and authorization
are carried out, validity of the request in accordance
with tariff plan is verified, the request is handled
according to policies described in API,
transformations are carried out, then the request is
directed to bank internal systems, where the
handling is performed according to these systems,
and API gateway receives response from bank
internal systems, this response can also be handled
and transformed, then the response is returned to
the application which requested API. API gateway
is the most important component of API
management system since it provides availability of
API.

API gateways are subdivided into test and
production ones (it can be one and the same
physical gateway), test gateway contains the same
API but without request to bank internal system, the
requests are responded by stubs simulating

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

2004 2006 2008 2010 2012 2014 2016 2018 2020

N
um

be
r o

f
AP

I

Year

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3040

operation of bank internal systems, this is required
in order to facilitate API user to adjust application
using test data prior to paying for actual data.

API manager provide possibility to determine API
using any notation, for instance, OpenAPI or
RAML, as well as policies applied during request
or response to API and arbitrary handlers. As a rule,
API gateway can be configured using the same tool.

Tools of API publication are required for
development of tariff plans and API binding, this
tool also controls access to API.

Developer site is an Internet portal where third
party developer can evaluate API and relevant
specifications, to register application, to subscribe
for API according to certain tariff plan, in addition
it would be possible to make test request directly
from the portal page [8].

Software products were selected for analysis on the
basis of the following criteria important for
subsequent use:
- the product should be implemented in
Java;
- the product should have open source
code.

Initial selection of software products in this field
was based on analysis of publications about API
management systems. Numerous API management
systems were detected during the study, such as:
CA API Management, Apigee, IBM API Connect,
Mulesoft Anypoint API Manager, Microsoft Azure
API Management, Akana API Management, 3scale
API Management, OpenLegacy, Apiary. Then,
using the aforementioned criteria, the software
products were selected which satisfied these
criteria. These are three variants with open source
code for API management: Gravitee.io API
Platform [9]; APIMan [10], and WSO2 API
Manager [11].

2.2. Selection Of Coordinates Of Comparison

Environment
The most important properties of each software
product are intensity of performed functions and
performance, that is, the ratio of performed work to
the time of its execution. Since the given software
products are used also for API development, then it
is required to define the list of possibilities
provided for such development. In addition, it is
required to understand how readily and rapid such
interfaces can be developed.

Here and below the software functions are interface
policies. Policy is a unit work executed during
request to API. When during execution an API call
is carried out, a chain of policies is created and
applied to incoming request (or outgoing response)
prior to transfer of this request to implementation
by internal API.

Considering this, the following coordinates of
comparison environment were selected:
1) intensity of functions of API management
systems for development of interface;
2) performance of software product;
3) labor intensity of API development.

The software products were compared with regard
to the following properties:
- possibility of request transformation (modification
of its body, access to request parameters);
- possibility of transformation of request body
format;
- possibility to execute additional network call
within API;
- possibility to develop proper arbitrary handlers;
- modification of HTTP method (API call is made
using one method and system call behind API using
another method);
- possibility of error handling.

These criteria were selected on the following basis.
Possibility to transform request body or its format
often occurs when bank internal systems intend to
work using request formats differing from those
proposed by API. Possibility to make additional
call within API is necessary for implementation of
complex scenarios of interface operation where one
interface includes interaction with several bank
internal systems. Possibility to develop proper
arbitrary handlers is important because despite
numerous possibilities of initial function library
there comes a point of time when it is required to
determine proper policy with unique behavior.
Replacement of HTTP method is necessary when
bank internal system by any reasons should receive
requests using a method differing from that
proposed by API. Possibility to handle errors is
important because interfaces contain software code
where exception cases are inevitable and should be
handled in a particular manner.

Cumulative estimation of each product was
calculated as follows:

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3041

1

1 00
n

i i
i

S V Z

 (1)

where S was the estimation of tool; n was the
number of comparison criteria; Zi was the value
criterion execution; Vi was the criterion weight
(from 0 to 1).

The following scale was proposed to estimate
criterion values: 0 - if a criterion was not fulfilled
or fulfilled by the third party software; 1 - if a
criterion was fulfilled completely or with minor
restrictions; 0.5 - of a criterion was fulfilled with
significant restrictions.

2.3. Comparison Of Performances
Software products were verified according to the
following scenario. API was developed which
during incoming request performed several
outgoing HTTP calls, thus emulating complex
scenario of API operation where API not only
redirected external call into internal system but also
performed additional request to internal system as
well as enhanced data or performed any other
verification or calculations. In addition, long
operation of this internal call was simulated: five
second delay was programmed. Simple service
written in Java was developed as internal system,
which responded with five second delay. Prior to
performance testing, this service was tested with
respect of its operability under selected load. In
order to perform comparison, the considered

systems were deployed, similar API in terms of
functionality were developed, then requests were
sent in several threads and the response time was
measured. All systems were deployed using Docker
virtualization program on the basis of official
images. APIMan software was considered in
gateway implementation using Vert.x platform
since it was used for implementation of Gravitee
management system.

The performance of Gravitee API gateway was
tested using “Groovy” policy where HTTP call was
implemented by Groovy HTTP client embedded
into programming language which was not
absolutely correct but nevertheless did not result in
performance loss by this gateway.

In order to test performance of of APIMan gateway
written in Java, the policy was developed and added
to the gateway where Java HTTP client was used,
since the HTTP client embedded into APIMan
supported only asynchronous operation, i.e. upon
HTTP call, execution of subsequent policies was
not blocked, which was not supported by the test
scenario.

In WSO2 management system, the API handlers are
implemented by other WSO2 software: ESB
(service bus) with specific xml notation. The code
used in WSO2 management system is exemplified
below:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Declaring handler sequence -->
<sequence xmlns="http://ws.apache.org/ns/synapse" name="performance_test" trace="disable">
 <!-- Module of http call, duplicated for 5 times -->
 <call blocking="true">
 <!-- Determining http method and url -->
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3042

 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <call blocking="true">
 <endpoint>
 <http method="get" uri-
template="http://192.168.99.100:8888/stubFORAPIMan/ServletWithTimeout" />
 </endpoint>
 </call>
 <!-- Handler of response from previous module -->
 <payloadFactory media-type="json">
 <!-- Presetting pattern for message, in this case it is JSON -->
 <format>
 {
 "Data":{
 "PaymentSubmissionId":"$1",
 "PaymentId":"$1",
 "Status":"$1",
 "CreationDateTime":"$1"
 }
 }
 </format>
<!-- Variables are determined for input into the above pattern;
the $body variable contains only response body from service requested in
the block <call>...</call>, since the response format of xml service, then
the required poll is requested by XPath query language
 -->
 <args>
 <arg evaluator="xml" expression="$body//some" />
 </args>
 </payloadFactory>
 <!-- Forming header Content-Type -->
 <property name="messageType" value="application/json" scope="axis2" type="STRING" />
</sequence>

As can be observed, overall code is an xml
configuration, which is not very convenient.

2.4. Comparison of labor intensity of API
development

In order to compare with respect to this coordinate,
it was decided to implement test interface using
each software product which would contain the
following blocks: request transformation with
possibility to modify request body and headers;
error handling with possibility to generate message
with preset error text in the case of error within
interface, and in the case of error in bank internal
system, to catch error with possibility to correct
error message; additional HTTP call within API
with possibility of its handling.

Implementation of each block was estimated using
the following scale:
- 0, if implementation was impossible;
- 0.5, if implementation was labor intensive or
had restrictions;
- 1, implementation was completely possible.

Cumulative estimation was calculated by Eq. (1),
where S was the cumulative estimation of API
management system; n was the number of blocks;
Zi was the estimation of labor intensity of block
implementation; Vi was the weight of criterion
(from 0 to 1).

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3043

The logics and order of handler execution in test
API in more details was as follows: new header was
added, some initial header was removed, request
parameters were transferred to message body,
HTTP call was performed by GET method and its
result was added to current message body, possible
code errors were handled, then the request was
performed to assumed bank internal system, and
then the error handler was executed comprised of
replacement of message body if internal system
returned HTTP codes 400 and 500.

test interface of gravitee system
Policy management in Gravitee system assumes
addition of policies, which are applied upon
interface call in the order of their addition, to API
definition.

Addition and removal of headers can be carried out
using the embedded policy “Transforms Headers”,
where the phase of policy application should be
mentioned: request or response, header names
should be mentioned which should be removed,
name and value of headers to be added should be
mentioned. In addition, access to headers can be
obtained in “Groovy” policy, where Groovy
programming language can be used to write
arbitrary script, access to headers and message
body is provided by means of context variables
“request” and “response”. Request parameters can
be transferred to message body using “Groovy”
policy and the following script:

//request parameters are obtained from context
def params = request.parameters();
//generating new body
def newBody = '<person>' + request.content +
 '<age>' + params.getFirst('age') + '</age>' +
 '<name>' + params.getFirst('name') + '</name></person>';
//returning result
return newBody;

Network call can be made by means of special
policy “Callout HTTP”, its response can be placed
into context variable with subsequent access to it.
(At the stage of performance test this policy was
not developed, and HTTP requests were performed
by “Groovy" policy.)

No special handlers or policies were stipulated in
Gravitee for handling of errors occurring upon API
operation, thus, in the case of error, the interface
would return response with HTTP code 500. Error
handling in policies implemented by Groovy can be
performed by “try-catch” structure wrapping
overall code with it, such as:

try {
//some code
}
 catch(Exception ex){
 //setting error state for policy
 result.state = State.FAILURE;
 //setting HTTP code
 result.code = 500
 //setting error text
 result.error = 'Interval Server Error'
 //returning empty string
 return ''
 }
 }

A peculiar feature is that the “Groovy” policy has
four possible applications with respect to interface:
request and response phase, each of them has two
more variants: with and without access to request
data; if the variant with access is selected, then the

script should return any string result by means of
key word “return”, hence, in the above example it is
required to return at least empty string.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3044

Handler of errors of internal system was implemented by “Groovy” policy as follows:

//Gravitee library for operation with interface state
import io.gravitee.policy.groovy.PolicyResult.State

String errorMessage = '';
int statusCode = 0;

if (response.status == 500) {
 statusCode = 500
 errorMessage = 'Interval Server Error'
}

if (response.status == 400) {
 statusCode = 400
 errorMessage = "Bad Request";
}
if (statusCode != 0) {
 //array with errors and their description
 def handlers = [400 : "Bad Request", 500 : "Internal server error"]
 result.state = State.FAILURE;
 result.code = statusCode
 result.error = '{"httpCode":' + '\"' + statusCode + '\"' +
 ', "httpMessage":' + '\"' + handlers[statusCode] + '\"' +
 ', "moreInformation":' + '\"' + errorMessage + '\"' + '}'
 result.contentType = 'application/json'
}

test interface in apiman system
APIMan software, similar to Gravitee, has
embedded policy for addition or removal of
headers. In order to implement other modules of
test interface, the policy was developed written in
Java and added to API gateway. The policy is a
Java applet, which should contain the class
implementing IPolicy interface which contains two

apply methods: request data are transferred to one
of them, and response data – to another, the
methods are executed at the stages of request and
response, respectively. The class object method
ApiRequest getQueryParams() was applied for
access to request parameters which returned key
value structure.

String name = request.getQueryParams().get("name");
String age = request.getQueryParams().get("age");

In order to add request parameters to request body,
it is necessary that the policy could implement
IDataPolicy interface; this is required for operation
with request or response body.

Error handling can be implemented similar to the
test interface for Gravitee system, that is, to use try-

catch structure; execution of policies can be
interrupted with returning error message to client
by doFailure method to which the object should be
transferred capable to describe all attributes of
response message: HTTP code, message body,
headers, for instance:

doFailure(new PolicyFailure(PolicyFailureType.Other,400,"BAD REQUEST"));

test interface in wso2 system
Handlers in WSO2 management system can be
applied in incoming flow, prior to message sending,
after receiving response; in addition, the flow is

stipulated to which control is transferred in the case
of errors during execution of API code.

HTTP call module code in WSO2 is similar to that
described in Section 2.3, the module of response

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3045

transformation is also implemented by the handler
<payloadFactory>...</payloadFactory>. The

modules of header transformation and transfer of
request parameters to message body are as follows:

 <!-- Adding header customHeader1 with the value -->
 <header name="customHeader1" scope="transport" value="value"/>
 <!-- Removing header customHeader2 -->
 <header name="customHeader2" scope="transport" action="remove"/>
 <!-- Request parameters are as follows: ?name=Jonn&age=40.
 Generating variable name, its value is the parameter name -->
 <property expression="$url:name" name="req.var.name"/>
 <!-- Generating variable age, its value is the parameter name -->
 <property expression="$url:age" name="req.var.age"/>
 <!-- Using this handler we modify the message body and
 add request parameters to the body -->
 <payloadFactory media-type="xml">
 <format>
 <person>
 $1
 <name>$2</name>
 <age>$3</age>
 </person>
 </format>
 <args>
 <arg expression="//contacts" evaluator="xml"/>
 <arg evaluator="xml" expression="get-roperty('req.var.name')"/>
 <arg evaluator="xml" expression="get- property('req.var.age')"/>
 </args>
 </payloadFactory>

Errors during API execution can be handled by
special Fault Flow. Two embedded handlers are
provided: json_fault and debug_ json_fault, the
latter one logs more detailed information about

error and will be useful at the stage of interface
development. The errors in response can be handled
by < filter>…</filter>, which is the if-else operator.
For instance, in this way:

 <filter source="get-property('axis2', 'HTTP_SC')" regex="400|500">
 <then>
 <payloadFactory>
 <format>
 <!— Required format of error message -->
 </format>
 </payloadFactory>
 </then>
 </filter>

2.5. Generalization of results
After each comparison, ranks were assigned to the
software products. The best product obtained rank
1, then followed rank 2, and etc.; if several tools
obtained one and the same rank, then the rank was
calculated using averaging equation (2)

1 '

0
()

n

i
r i

r
n

 (2)

where r was the total rank; n was the number of
tools which obtained one and the same rank; r’ was
the rank which corresponded to all tools.

The comparison results were generalized by
summation of ranks assigned to the tools in all
comparisons, and then by ranking of the obtained
summed ranks.

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3046

3. RESULTS

3.1. Comparison Of Software Products In Terms

Of Intensity Of Performed Functions
The comparison results of software products with
respect to this coordinate are summarized in Table
1. This information was obtained while studying
functionality of the considered software products

after their installation with consideration for their
official specifications [12-14]. It is assumed that the
functions summarized in the table already exist in
software product; it is not said about their possible
implementation and addition to the software. It is
obvious that each software product provides
possibility to develop proper handler and to
implement it.

Table 1: Comparison Of Software Products In Terms Of Intensity Of Performed Functions

Function Weight APIMan
Gravitee.io API
Platform

WSO2
APIManager

Request
transformation

Transformation of
headers

1/18 1 1 0

Transformation of
message body

1/18 0 1 0

Transformation of
request parameters

1/18 0 1 0

Transformation of
request formats

XML into JSON 1/12 1 1 1
JSON into XML 1/12 1 0 1

Possibility of additional request inside API 1/6 0 0.5 0.5
Development of proper arbitrary handlers 1/6 0.5 1 0.5
Error handling 1/6 0 0 1
Replacement of HTTP method 1/6 0 1 0
Sum of estimations, % 31 67 50

The sum of errors is calculated by Eq. (1).

Therefore, rank 1 can be assigned to Gravitee
management system, rank 2 – to WSO2 API

Manager, and rank 3 – to APIMan. The results are
illustrated in Figs. 2 and 3.

Figure 2: Intensity Of Functions Performed By Software Products.

31

67

50

APIMan

Gravitee.io API Platform

WSO2 APIManager

0 20 40 60 80

Coverage percentage

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3047

Figure 3: Ranks Of Software Products According To Comparison Of Intensity Of Performed Functions (The Less – The

Better)

3.2. Comparison of tools in terms of
performance

The main concept of comparison in terms of
performance was determination of possibility to
process operation scenario by the system where

internal calls were executed within API. Initial
testing was performed with default adjustment of
API network gateway. The test results of Gravitee
software are summarized in Table 2.

Table 2: Test Results Of Gravitee API Gateways

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal requests

25,140 25,040 25,050 25,027 37,517 0

10 flows of 50
requests,
5 internal requests

31,126 26,152 48,390 25,031 49,852 0

The obtained test results were expectable, since in
average the requests were executed in slight excess
of 25 seconds, and within API, five internal calls
were executed, each in five seconds.

The test results of APIMan software are
summarized in Tables 3 and 4.

Table 3: Tests Results Of Apiman API Gateways

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal
requests

125,309 125,317 125,386 124,723 125,727 19

It can be seen in the table that significant portion of
requests was terminated unsuccessfully (API
gateway released connection), and successful
requests were executed for longer time than
expected (it was assumed that a request should be
executed in slight excess of 25 sec because within
API five internal calls were executed, each in five

seconds). Then, in API gateway configuration file,
the number of handlers was increased (by default, it
was in “auto” state; and judging by log, only one
handler was activated). The test results after
increase of handler number are summarized in
Table 4.

3

1

2

0

0.5

1

1.5

2

2.5

3

3.5

APIMan Gravitee.io API
Platform

WSO2 APIManager

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3048

Table 4: Tests Results Of Apiman API Gateways After Increase Of Handlers

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal
requests

60,591 50,259 74,909 25,035 99,556 0

It can be seen in Table 4 that there are no error
requests, however, the time of request execution
exceeds the expected one due to unknown reasons.
Variations in the number of handlers did not result
in any qualitative changes. No other configuration
tools were identified, thus, the analysis of this
problem was terminated. In addition, it should be
mentioned that this software product supports
handlers with HTTP calls using components

described by developers, however, such call can be
only asynchronous, thus, JAVA HTTP client was
used because synchronous call was required. At the
same time, in Gravitee, HTTP call was executed by
Groovy script embedded in Groovy HTTP client,
which did not lead to problems with performance.

The test results of WSO2 APIManager software are
summarized in Table 5.

Table 5: Test Results Of WSO2 Apimanager API Gateways

Test scenario
Average time of response to
request, ms

Median,
ms

Percentille
90,
ms

Min,
ms

Max,
ms

Errors,
%

5 flows of 50
requests,
5 internal requests

25,098 25,089 25,164 25,035 25,305 0

10 flows of 50
requests,
5 internal requests

25,095 25,078 25,151 25,027 25,577 0

The obtained results are similar to those of Gravitee
software testing: no unexplained delays, the results
are expectable.

Based on the obtained results, it possible to
conclude that Gravitee and WSO2 APIManager

software products are the best in this comparison,
rank 1.5 could be assigned to them, and rank 3
could be assigned to APIMan management system.
The results are illustrated in Fig. 4.

Figure 4: Ranks Of Software Products According To Comparison Of Performance (The Less – The Better)

3

1.5 1.5

0

0.5

1

1.5

2

2.5

3

3.5

APIMan Gravitee.io API
Platform

WSO2 APIManager

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3049

3.3. Comparison in terms of labor intensity of
API implementation

The respective comparison results are summarized
in Table 6.

Table 6: Comparison Of Systems In Terms Of API Implementation

Block Weight
Gravitee.io
API Platform

APIMan
WSO2
APIManager

Block of request
transformation

Transformation of
headers

1/9 1 1 1

Handling of request
parameters

1/9 1 1 1

Transformation of body 1/9 1 1 1
Block of error
handling

Handling of API errors 1/6 0.5 0.5 1
Handling of customer
(4**) and server (5**)
errors

1/6 1 1 1

Block of HTTP
request

Direct HTTP request 1/6 1 0.5 0.5
Handling of response 1/6 1 1 1

Sum of estimations, % 92 83 92

Based on the obtained results, it is possible to
conclude that the best software products in this
comparison are Gravitee and WSO2 APIManager,

thus, according to Eq. (2), rank 1.5 is assigned to
them, and rank 3 is assigned to APIMan. The
results are illustrated in Fig. 5.

Figure 5: Ranks Of Software Products According To Comparison Of Labor Consumption Pf API Implementation (The

Less – The Better)

Gravite management system received only 0.5 due
to complicated handling of API errors. It can be
implemented only in “Groovy” policy, and it
cannot be performed in other policies upon errors
during their execution.

APIMan management system also lost one half due
to implementation of API error handling similar to
that described for Gravitee. Another one half was
deducted for implementation of HTTP request, it
was required to use Java client, and embedded code
supported only asynchronous operation.

WSO2 management system lost one half for
implementation of HTTP request, because if a
request was made at the stage of response in
interface, then it was impossible to access to
message body received after the request.
Information about this event was unavailable in
specifications.

From subjective point of view, Gravitee
management system is characterized by lower labor
intensity of implementation of the considered
interfaces, all difficulties are related mainly with
poor specifications. APIMan requires for self-
development of policies with subsequent setting in

3

1.5 1.5

0

0.5

1

1.5

2

2.5

3

3.5

APIMan Gravitee.io API
Platform

WSO2 APIManager

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3050

API gateway, which is time consuming and also
requires for developer competences in Java
development. WSO2 software for implementation
of policies uses specific and unobvious xml
notation, which requires for knowledge of WSO2
ESB.

3.4. Generalization of comparison results
The comparison results of API management
systems in terms of all coordinates are summarized
in Table 7.

Table 7: Comparison Of API Management Systems

Comparison coordinate Gravitee.io API Platform APIMan WSO2 API Management
Intensity of performed functions 1 3 2
Possibility of interface implementation 1.5 3 1.5
Performance 1,5 3 1,5
Cumulative rank 4 9 5
Final rank 1 3 2

The results are also illustrated in Fig. 6.

Figure 6: Final Ranks Of Software Products According To Comparison (The Less – The Better)

Therefore, the Gravitee software is the most
efficient product in the environment of preset
criteria.

4. DISCUSSION

In this work, we analyzed API management
systems with open source code implemented in
Java. Some studies [3-7] consider mainly paid
solutions, which are not suitable for everybody.
Part of studies is based on user reviews [4-6], the
following criteria are highlighted in these reviews:
functional possibilities of various components of
API platform, estimation of supporting services,
usability, software cost, etc. Other studies combine
estimations by users and experts [3, 7] also
highlighting various criteria. Nearly all studies [3,
6, 7] include such criteria as presence of software
platform in the market (amount of clients and
geographical distribution of software). In total, the
mentioned studies are of general character, which
makes it possible to form comprehensive idea of
each software product, though, not very detailed in
order to understand whether it is efficient for

application in certain field or upon solution of a
given problem. This work attempted to perform
more detailed analysis of platform solutions,
however only for API gateway.

In addition, it should be mentioned that in all
mentioned publications, the considered API
management systems are oriented at conventional
approach to development of interfaces. However,
recently new procedure of API representation has
been introduced: GraphQL, which modifies
estimations of previously analyzed platforms, since
it is both the data manipulation logic with open
source code for API, and the environment of
requests to stored data [15]. Contrary to
conventional interfaces with data fixed in
predefined format, while using GraphQL it is
possible to obtain only required data and not all
data as in SQL for databases. Using this
technology, a client is able not to request data from
several API but to operate with data flowchart
without consideration for certain flowchart
fragments with regard to certain API.

1

3

2

0

0.5

1

1.5

2

2.5

3

3.5

Gravitee.io API
Platform

APIMan WSO2 API
Management

SO
FT

W
AR

E
RA

N
K

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3051

Another important issue upon development of open
API is computer security. Since API is a certain
access point to company software system, then this
entry should be secured [16]. Not only access to
API should be secure, that is, authentication and
authorization systems, but the whole mechanism of
API functioning, that is, API gateway [17].

This work considered web interfaces operating
according to HTTP protocol, however, a new
protocol appeared recently, WebSocket, which is,
contrary to HTTP, is asynchronous and
symmetrical, which facilitates communication in
real time, decreasing latency of network interaction
and traffic amount [18]. Taking into account these
advantages, it is obvious that the WebSocket
protocol will be used in open interfaces, hence,
while selecting API management system, it would
be required to consider for support of this protocol.
Though, some software products already support
this protocol, for instance, considered here WSO2
API Management [19] or Tyk API Gateway [20].

5. CONCLUSION

The most efficient API gateways were studied in
this work. Three software products were
considered: Gravitee, APIMan, and WSO2 API
Management, which met two preset criteria: Java
product implementation, open source code of the
product.

The API gateways were compared using three-
dimensional environment with the following
coordinates: intensity of performed functions for
API development, labor intensity of API
implementation, performance of API gateway.

The intensity of API management functions
performed by the systems was compared with
regard to preset criteria on the basis of analysis of
specifications of software tools and subsequent
verification of the mentioned functions during
operation with software. The comparison revealed
that Gravitee was the best software product.

The labor intensity of API implementation was
compared using each product for development of
test interface comprised of three blocks: block of
request transformation, block of error handling,
block of HTTP request. In terms of this
comparison, the best software products were
Gravitee and WSO2 API Management.

The performance of the software products was
compared using the developed test interface, which,
upon access to it, generated several HTTP requests,
the respective response was obtained with five
second delay, thus simulating complex scenario of
API operation. Then the interface was requested
several times. In terms of this comparison, the best
software products were Gravitee and WSO2 API
Management.

Therefore, in terms of all coordinates the best
software product was Gravitee.

ACKNOWLEDGMENTS

This work was supported by the Competitiveness
Program of National Research Nuclear University
MEPhI (Moscow Engineering Physics Institute),
contract with the Ministry of Education and Science
of the Russian Federation No. 02.А03.21.0005,
27.08.2013.

REFERENCES:

[1] ProgrammableWeb. Research Shows Interest

in Providing APIs Still High; 2018. Available
from:
https://www.programmableweb.com/news/rese
arch-shows-interest-providing-apis-still-
high/research/2018/02/23.

[2] Collins G, Sisk D. API economy. Delloite
Insights; 2015. Available from:
https://www2.deloitte.com/insights/us/en/focus
/tech-trends/2015/tech-trends-2015-what-is-
api-economy.html.

[3] Heffner R. The Forrester Wave™: API
Management Solutions, Q4 2018. Leveraging;
2018. Available from:
https://b.content.wso2.com/sites/all/forrester-
q4-2018/The-Forrester-Wave-API-
Management-Solutions-Q4-2018.pdf.

[4] IT Central Station. Best API Management
Tools: Comparison of API Gateway Solutions;
2019. Available from:
https://www.itcentralstation.com/categories/api
-management.

[5] Capterra. API Management Software.
Available from: https://www.capterra.com/api-
management-software/.

[6] G2 Crowd. Best API Management Software;
2019. Available from:
https://www.g2crowd.com/categories/api-
management.

[7] Predictive Analytics Today. Top 9 API
Management Platforms; 2018. Available from:

Journal of Theoretical and Applied Information Technology
15th June 2019. Vol.97. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3052

https://www.predictiveanalyticstoday.com/top-
api-management-platforms/.

[8] Wikipedia. API management; 2018. Available
from:
https://en.wikipedia.org/wiki/API_management
.

[9] Gravitee.io. 2018. Available from:
https://gravitee.io/.

[10] APIMan. Open Source API Management;
2017. Available from:
http://www.apiman.io/latest/index.html.

[11] WSO2. WSO2 API Management; 2018.
Available from: https://wso2.com/api-
management/.

[12] APIMan GitBooks. APIMAN USER GUIDE;
2018. Available from:
https://apiman.gitbooks.io/apiman-user-guide/.

[13] Gravitee.io. API Management; 2018. Available
from:
https://docs.gravitee.io/apim_publisherguide_
manage_apis.html.

[14] WSO2. WSO2 API Manager Documentation;
2018. Available from:
https://docs.wso2.com/display/AM260/.

[15] Wikipedia. GraphQL; 2018. Available from:
https://en.wikipedia.org/wiki/GraphQL.

[16] Macy J. API security: Whose job is it anyway?.
Network Security 2018; 9: 6-9.

[17] Macy J. How to build a secure API gateway.
Network Security 2018; 6: 12-14.

[18] IETF Tools. The WebSocket Protocol; 2011.
Available from:
https://tools.ietf.org/html/rfc6455.

[19] WSO2. Create a WebSocket API; 2019.
Available from:
https://docs.wso2.com/display/AM210/Create+
a+WebSocket+API.

[20] Tyk Open Source API Gateway. Websockets;
2018. Available from:
https://www.tyk.io/docs/other-
protocols/websockets/.

