
Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2725

IRBYTSA: A NOVEL LINK-SCHEDULING ALGORITHM FOR
IEEE 802.15.4E TSCH NETWORK

1,3IMAN HEDI SANTOSO, 2KALAMULLAH RAMLI
1,2Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia

E-mail: 1iman.hedi@ui.ac.id, 2k.ramli@eng.ui.ac.id, 3mnhedi@gmail.com

ABSTRACT

This paper proposes a novel algorithm named IRByTSA, as a scheduling algorithm that is both simpler and
faster than TASA, in terms of its speed in generating link-schedule decision. The simplification makes
IRByTSA a low-complexity algorithm. The IRByTSA algorithm owes its relatively low complexity to the
following procedures: maximum matching to generate link-schedule; maximization of nodes performing
simultaneous transmissions by prioritizing from higher-ranking nodes to leaf node; transmission of all
queued data packets in bursts (bursty); and provides each node with a transmission opportunity based solely
on turn. The research confirms that the resulting complexity is , which indicates that IRByTSA
is a low-complexity algorithm. The advantage of using such a fast and low-complexity algorithm is
increased network scalability, as the reduction in complexity and increase in speed enable the existing PCE
to serve additional networks. .

Keywords: IoT, IEEE802.15.4e, Scheduling, Algorithm, Matching.

1. INTRODUCTION

The Internet of Things (IoT) has attracted
significant research interest globally as a potential
solution to pressing social issues related to health,
demography, welfare, food security and agriculture,
energy, transportation, and efficient use of
resources. For that reason, IoT will be an important
element in the future Internet, connecting billions of
interconnected heterogeneous objects [1,2].
Projections indicate that, by 2020, up to 24 billion
devices will be connected to the Internet [3],
supported by the emergence of IoT. However, as
the current Internet infrastructure cannot
accommodate this rapid development, a new
network architecture is needed to manage the
dramatic increase of IoT flow, allowing multiple
services with different QoS requirements to co-exist
[4].

Current thinking advocates a centralized
network control system for IoT network
management, with the development of a complex
routing topology and simplified operation for users
in non-IT environments. The need to implement a
centralized control system characterizes the
intersection between the Internet of Things (IoT)
and Software-Defined Network (SDN) [5]. In an
attempt to realize a centralized control system, the
IETF 6TiSCH workgroup was established in
November 2013. The goal of 6TiSCH WG is to

connect IEEE802.15.4e TSCH MAC layer to IPv6
on the top layer. The 6TiSCH WG protocol stack is
based on existing standards for the Internet of
Things, including RPL, 6LoWPAN, and CoAP. The
workgroup has been developing an architecture that
will allow low-power wireless devices (sometimes
called “motes”) to form a multi-hop low-power
lossy network (LLN) [6]. Figure 1 below describes
the 6TiSCH protocol stack for TSCH-based LLN
[7].

Figure 1: 6TiSCH Protocol Stack.

As shown in Figure 1, a sub-layer is
responsible for handling the matters related to
scheduling, namely Scheduling Functions. The
TSCH technology adopted by LLN requires such a
scheduling function because each of its nodes can
only transmit or receive at particular time slots.
This scheduling function generates a scheduling
scheme that informs LLN nodes when to transmit,
receive, or enter an idle state. How a scheduling

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2726

scheme is developed determines the volume of
traffic generated by LLN, length of packet delay,
and energy consumption at each node. In the
present research, the communication scheduling
scheme is controlled in centralized mode by a
dedicated server running an algorithm to generate a
communication schedule, which is in turn the
schedule will be informed to all LLN nodes.

This research builds on a previous study [8]
that produced a centralized scheduling algorithm for
IEEE802.15.4e TSCH as an improved version of
TASA [9, 10, 11]. The scheduling algorithm
proposed in that research [8] was named Iman-
Ramli TASA (IR-TASA). In research [8], it was
proven that IRTASA’s link scheduling algorithm
was better than TASA in terms of the speed in
generating a link scheduling decision. IRTASA
obtained the number of active timeslots, which was
the same or near the minimum, more rapidly than
did TASA. However, IRTASA is too complicated
and thus needs to be simplified.

Research paper [8] also referred to several
other studies [12–14] describing modifications that
enhanced TASA performance. Other papers on
centralized scheduling for IEEE802.15.4e TSCH
include Choi et al. [15], which proposed centralized
link scheduling (CLS) utilizing Routing Protocol
for LLN (RPL) to generate scheduling decisions.
Choi et al. compared CLS to DETAS in terms of
the number of control messages needed to create a
schedule. Their goal [15] was to develop a
scheduling algorithm that required fewer control
messages. In another study, Livolant et al. [16]
explored a signaling mechanism for a centralized
scheduling algorithm called MODESA, with
reference to the number of messages needed to
install and upgrade a scheduling scheme on a
network. For the purposes of performance
comparison, they used three standards: CoAP,
CoMI, and OCARI, finally recommending OCARI
because it requires fewer messages than the other
two.

The prior studies above, which are related to
TASA [12–14] and scheduling algorithms for
TSCH [15–16], did not discuss the speed of the
scheduling algorithms in generating scheduling
decisions or quantitatively assess the complexity of
the algorithms they proposed. The absence of
studies that investigate the speed and complexity of
TSCH link scheduling algorithms is the motivation
behind research [8] and the current study. These
two factors must be examined with regard to how
much influence they have on server performance.
The hypothesis of this study is that the lower the

complexity of the algorithm and the faster the
generation of the scheduling decision, the lighter
the burden of the algorithm on the server.
Therefore, the server can be used to do other tasks.

Given the motivation to develop a low-
complexity algorithm, in the present research, the
IRTASA scheduling algorithm is enhanced to create
a new algorithm called IRByTSA. IRByTSA is
significantly simpler than IR-TASA or TASA in
terms of how a set of matching links is established.
This simplification makes IRByTSA a low-
complexity algorithm. IRByTSA uses a graph
maximal matching procedure and adopts the bursty
principle during node transmission. For that reason,
the algorithm is called the Iman-Ramli Bursty
Transmission Scheduling Algorithm (IRByTSA) to
emphasize this use of the bursty transmission
principle, which distinguishes it from TASA.
Another difference between IRByTSA and TASA is
that, rather than using the principle of traffic-aware,
IRByTSA provides each node with a transmission
opportunity based solely on turn, which further
contributes to the greater simplicity of IRByTSA.
(The traffic awareness principle is explained in
Section 2.2.) This paper details IRByTSA
procedures, reviewing its lower complexity and the
advantages of a simple scheduling algorithm for
scalability, so bridging gaps in previous studies.
And here is the assumptions and limitations used in
this research:

a) Master node knows the network conditions, such
as: network topology and its changes, number of
packets queued in every node.

b) Each node can synchronize itself to the network
and know the transmission or receive schedule
based on the information provided by master
node.

c) Each node will transmit 1 packet regularly
within each slotframe.

The rest of the paper is structured as follows.
Section II discusses underlying theories. Section III
discuss the proposed algorithm, IRByTSA. Section
IV describes the research findings in relation to
complexity and the positive outcome of
implementation in an IEEE802.15.4e network. And
finally, in Section V the paper ends with
conclusions.

2. UNDERLYING THEORIES

2.1 IEEE802.15.4e TSCH
IEEE802.15.4 is a standard for low-rate

Wireless Personal Area Networks (LRWPAN);
IEEE802.15.4e is a redesign of the IEEE802.15.4
MAC protocol that retains the physical layer of that

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2727

standard. Using a Time Synchronized Channel
Hopping (TSCH) strategy to improve transmission
reliability and energy efficiency, IEE802.15.4e
TSCH is suitable for use as part of the Internet of
Things protocol stack [17]

To achieve this improved transmission
reliability and energy efficiency, IEEE802.15.4e
TSCH combines timeslot access method with
multi-channel and channel-hopping capabilities.
The timeslot access method eliminates collisions
among competing nodes, providing deterministic
latency to applications that use it. Because there are
more active nodes in every timeslot, multi-channel
or multi-frequency capability can improve network
capacity. In each timeslot, active nodes can transmit
data using different frequencies. The channel-
hopping approach improves communication
reliability by reducing the impact of interference
and multipath fading. In short, TSCH can improve
network capacity, transmission reliability, and
latency while maintaining duty cycle at a low level.
TSCH can also be used in different network
topologies [18].

As explained above, channel hopping can
increase communication reliability because active
nodes use different frequencies when transmitting
data. In TSCH, the different frequencies are related
to the channel offset parameters (ChOf); this is
translated into a frequency by using the following
function:

f = F{(ASN + chOf) mod nch} (1)

where ASN is Absolute Slot Number (i.e., total
timeslots used since network operation is initiated
or since a particular point in time set by PAN
coordinator), which increases with the passing of
timeslots in the network; F is a function based on a
look-up table of ready-to-use frequencies; chOF is
channel offset; and nch is total available
frequencies, where 0 ≦ chOf ≦ (nch-1). In an
IEEE802.15.4e network, the value of nch is 16 [17].

2.1.1 Slotframe structure
A slotframe is a group of timeslots that repeat

over time; each timeslot allows sufficient time for a
pair of devices to transmit data and ACK to each
other. The example in Figure 2 shows a slotframe
with 6 timeslots. In each timeslot, network nodes
can transmit or receive the data or enter a sleep
state. Figure 3 shows data and ACK transmission
timing within a single timeslot. Based on the
802.15.4e standard, the default timeslot duration is
10 ms [17].

Figure 2: TSCH slotframe with 6 timeslots

Figure 3 shows a node sends a data packet after
precisely TsTxOffset μs of the timeslot. To
overcome the slight desynchronization, the
receiving node must detect the channel Guardtime
μs before data are transmitted. If a package is not
received within TxRx Wait μs after TsRxOffset, the
receiving node will shut down its radio component
to save energy[18,19].

Slotframe size (i.e., total timeslots in a
slotframe) will determine how frequently a timeslot
repeats, which serves as a form of timing for nodes
when communicating. The smaller the slotframe
size, the more frequently nodes potentially send
data; as a consequence, the duty cycle will increase.
There is no standard slotframe size, as this depends
on the application; a slotframe may range from 10
ts to 1000 ts [20]. In network activity, each node
follows a preset schedule that specifies when it
should transmit or receive data or sleep. To save
energy, nodes shut down their radio (the most
energy-consuming element) on entering sleep mode
[17].

2.1.2 Link-scheduling
The main element of TSCH is link-

scheduling—that is, allocation of certain links to
each node for sending or receiving data. According
to the IEEE802.15.4e standard, a link is “The
pairwise assignment of a directed communication
between devices in a given timeslot on a given
channelOffset.” In TSCH networks, a scheduling
scheme is crucial for communication success and
must be created carefully; for example, when node
E has a transmit slot to node B, then B is ready to
receive the data from node E in the same timeslot.
[17].

A

D
C

B

E F G H

MLKI J

a. Tree Topology TSCH Network

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2728

b.Possible Link-Schedule for Data Aggregation

Figure 4: A Tree Topology Network with Its
Possible Link-Schedule

Figure 4 illustrates a simple network in which a
node activity schedule is already specified for each
timeslot through the master node. The directed
graph in the tree topology network point to a link
connecting a node to its parent. The slotframe
consist of 12 timeslots, and 6 offset channels are
used. Each node in the network performs its
transmit, receive, and sleep activity on the basis of
the assigned schedule. The example assumes that
each node will transmit 1 packet regularly within
each slotframe; within this slotframe duration, any
queued data in each node must be transmitted to the
master node A. Based on the schedule in Figure
4(b), node D will be ON to send data to node A at
timeslot 0, channel offset 0; timeslot 3, channel
offset 1; and timeslot 5, channel offset 3. Next, D
will enter ON mode to receive data from node G at:
timeslot 1, channel offset 4; node H at timeslot 2,
channel offset 1; node G at timeslot 4, channel
offset 5. This means that, in other timeslots, node D
will enter sleep mode to save energy. To reach
master node A, the data in node K will have to
queue until timeslot 0, timeslot 1, and timeslot 3
before being transmitted gradually through nodes G
and D. At timeslot 0, channel offset 2, node K will
send its data to node G, and node G will then send
data received from node K to node D at timeslot 1,
channel offset 4. Finally, node K data will arrive at
master node A using timeslot 3, channel offset 1.
This is how the MAC layer executes the link
schedule provided by the master node.

While the IEEE802.15.4e standard already
specifies how the MAC layer executes a schedule,
it does not specify how a schedule is to be
established. This can be done using either a
centralized or a distributed approach. In a
scheduling system that uses a centralized approach,
there is a special node that are responsible for
building and maintaining a "network schedule", this
special node is called master node. Each network’s
node regularly reports the current conditions to that
master node. The reported conditions may relate to
node connectivity or the amount of data generated

by each node. In a scheduling system that uses a
distributed approach, each node can decide for itself
which link is used to communicate with
neighboring nodes. Because the present research
aims to improve the link-scheduling mechanism in
TASA, this paper will deepen the centralized
approach in generating link-scheduling and how its
implementation in the 6TiSCH network [17].

2.2 Traffic Aware Scheduling Algorithm (TASA)

The RFC 7554 document mentions TASA as
an alternative scheduling algorithm applicable to
IEEE802.15.4.e-based IoT networks. Palattella et
al. [11] suggested adding TASA to the
IEEE802.15.4e standard, which has not yet
specified how scheduling is to be established. The
following paragraphs summarize TASA as
suggested in [9–11].

In TASA, tree topology networks are modelled
by a directed graph G = (V, E). V is a group of N
devices, where N = |V|, and V = {n0, n1, …, nN-1}. E
is a group of links connecting each node (ni) with
its parent (pi). The role of network coordinator or
master node is performed by n0, and ni (1 ≤ i ≤ N –
1) is the i-th generic node in the network. Figure 5
illustrates the graph G.

n0

pi
nj

ni

nk

G = (V, E)

ST(nj)
ch(ni)

ST(ni)

Figure 5: Graph G = (V, E): Modelling a Tree Topology
Network

As shown, each ni (where Ɐni ∈ V and i ≠ 0)
can have i) a parent node pi; ii) a sub-tree ST(ni),
which is structured from ni itself and all nodes
connected to ni, directly or by means of multihop;
and iii) a group of child nodes ch(ni). Each ni node
is connected to its parent pi by a dedicated link (ni,
pi) ∈ E.

In TASA, each ni node in graph G other than
the PAN coordinator (n0) is assumed to constantly
generate packets. Each node ni will relay its data to
parent node pi until all data have reached the master
node, within the duration of 1 slotframe. The total
number of packets transmitted to the PAN
coordinator in a slotframe is,

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2729







1N

1i
iq~Q (2)

In terms of sub-trees, global queue level Qi(k)
is defined as the total packets queuing in nodes in
ST(ni) at a certain slot k, where





)ST(nn|j
ji

ij

(k)q(k)Q (3)

In TASA, the links to be used for transmitting
and receiving data must be free from two types of
conflict: Duplex Conflict and Interference Conflict.
Duplex Conflict (DC) occurs because each node in
a network does not transmit and receive at the same
time and cannot receive data simultaneously from
its child nodes ch(ni). DCi is a group of edges or
links between node ni and its child that cannot be
used to transmit or receive during a certain timeslot
because the nodes connected by these links are
active. Only DC-free links (DCFL) can be
scheduled in the same timeslot. A DCFL group in
timeslot k is represented by DCFL(k). Interference
conflict (IC) refers to links that interfere with one
another when placed in the same channel offset.
ICFLc(k) refers to a group of IC-free links (ICFL)
that can use the same channel offset c at timeslot k.
As this research focuses only on link scheduling,
DCFL is the type that will be deepened.

TASA assumes that the master node/PAN
coordinator recognizes the G graph, physical
connectivity graph P, and the traffic load generated
by each node Ɐni∈V, for i ≠ 0. Based on this
information, the master node n0 will execute the
TASA procedure to generate a schedule to be
followed by all child nodes in the network.

TASA involves two main procedures: i)
matching and ii) coloring. Both procedures are used
iteratively on graph G in and for each timeslot (k).
A matching procedure is used to obtain DCFL(k)
that can be scheduled in timeslot k. In generating
DCFL(k), the parent node pi selects node ni from
among the child nodes, based on the following
equation:

 0)()(|)(max)( kqpchnkQkQ jijji
 (4)

In the equation 4, timeslot k is provided for link (ni,
pi) only when node ni has a packet to transmit to its
parent pi. For the coloring procedure, TASA applies
this to the interference graph I(k). Nodes that are
adjacent in I(k) are interfering and therefore require
different channel offsets. The matching procedure
will be further discussed in the next section because
the aim of this research was to propose a new link-
scheduling algorithm.

Figure 6 illustrate the application of matching
and coloring procedures in a network.

(a) DCFL(k) (b) ICFL(k)

Figure 6: Matching and Coloring in TASA [8]

To save power and meet delay requirements,
TASA works to give minimum active timeslot for
each node. Where active timeslot is represented by
the symbol λ, TASA will send a traffic load of Ǭ to
the PAN coordinator in a λ timeslot duration of a
slotframe with S timeslots. Within the remaining
duration for (S - λ), all nodes will enter idle/off
mode. As Palattella explains, the number of active
slots (λ) in a slotframe is minimally Ǭ. Figure 7
illustrates λ in a slotframe:

Figure 7: Active Slot (λ) in a Slotframe (S)

2.3 Maximal Matching Algorithm
As explained Section 2.2, in developing the

Traffic Aware Scheduling Algorithm (TASA),
Pattella et al. [11] has defined Duplex Conflict
(DC). To solve the DC problem, Pattella et al. [11]
propose to use the graph matching in its
methodology, although no particular type of
matching is mentioned. Of the existing types of
graph matching (maximum, perfect, near perfect,
and maximal [21,22]), maximal matching was used
in the present research to build the scheduling
algorithm. Despite its simplicity, maximal matching
has proved effective in meeting the research
objective of a low-complexity scheduling algorithm
with active timeslot (λ) outputs that are similar to or
better than TASA.
The maximal matching algorithm that is used in
this research is as follows:
Maximal Matching (G; V; E)
1. M = Ø
2. While(no more edges can be added)

2.1. Starting from the lowest rank of edge,
select an edge, e, which has no vertex in
common with edge in M

2.2. eMM 
3. Return M

G is a directed graph with tree topology as shown
in Figure 4(a) above. V and E are the set of vertices
and edges in graph G. M is a matching of graph G,
which is a subset of the edges E, such that no vertex
in V is incident on more than one edge in M.

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2730

Combined with procedures in Section 3, this
maximal matching algorithm produces the
IRByTSA scheduling algorithm.

2.4 Centralized Scheduling in 6TiSCH Networks

In a centralized scheduling system of 6TiSCH
network, the Path Computation Element (PCE)
takes charge of computing a schedule (see Figure
8(a)). As a management entity (ME), PCE is
responsible for generating and maintaining a TSCH
schedule based on information from the network
nodes concerning network conditions and traffic
load. By controlling and optimizing the network as
a whole, PCE can develop a schedule and ensure
accurate fulfilment of QoS requirements for all
traffic flows in the network [4, 6]. To the best of
our knowledge, standardization on signaling for
IEEE802.15.4e TSCH network has not been
established, therefore further research is warranted.

To determine the mechanism and format of
control messages to be sent to the network nodes,
6TiSCH WG first defines the requirements for the
protocol to be used by PCE to communicate with
the 6TiSCH network, acknowledging existing
protocols that may (partly) meet those
requirements. Path Computation Element
Communication Protocol (PCEP) defines the
method of establishing communication between the
Path Computation Client (PCC) and PCE. PCC can
prompt PCE for path computation by means of a
PCReq message specifying the relevant protocol
requirements. In response to the PCReq message,
PCE sends a PCRep that determines whether the
path request and its requirements can be met.
Hence, PCEP is capable of carrying signaling
messages from node (PCC) to PCE, which contains
network nodes’ scheduling requirements [4]. To
maintain scalability and throughput, a 6TiSCH
network may have a number of cluster networks
linked to a high-speed backbone [6]. Based on
working draft [7] and earlier research [4], Figure 8
illustrates this as follows.

INTERNET

TSCH NETWORK

PCE

NME

INTERNET

TSCH NETWORK

PCE

NME

(a) A 6TiSCH network (b) Signaling in a

6TiSCH network

Figure 8: Centralized Scheduling in 6TiSCH Network

3. PROPOSED ALGORITHM

IRByTSA uses the following procedures:
1) Each node in the network (other than leaf nodes

and master node) may act as parent and child.
Each parent node supervises one or several child
nodes, and each node always has one parent
node. All nodes send their data to the master
node (node 0 or n0) through their parents. Each
node is connected to its parent by a link that
marks the transmit and receive relationship
between a child node and its parent. The link
between node i (ni) and its parent node j (nj) is
represented by lij.

2) As described in [9–11], a node in a network
cannot transmit and receive simultaneously or
receive data from multiple nodes at once, and a
gradual transmitting and receiving process is
therefore required in order to send all packets
from network nodes to the master node. All
nodes in the network transmit/receive data
simultaneously based on the transmit/receive
schedule specified by the master node. The
transmit/receive process occurs in several rounds
until all data from the nodes reach the master
(n0) and the condition of q0 = Ǭ is met, where q0
is queue size of node 0 and Ǭ is total packets
queued to be sent to n0 within a single slotframe;
that is, Ǭ = Σqi. The symbol s represents the
round or step, and SS denotes the total number
of steps needed to reach the condition q0 = Ǭ.
The transmit/receive schedule for each node is
determined on the graph theory principle of
maximal matching.

3) The nodes having their turn in this scheduling
algorithm are collected in a set which is called
an Active set.

4) Child nodes send data to their parent in turn. If,
in a certain round, there are no data to send
when the node has its turn, the turn passes to a
sibling that has data to send. Transmission
begins with high-level nodes (those closer to the
master node) and proceeds to lower-level nodes
(farther from the master node) as far as the
lowest-level node (leaf node).

5) During its turn, each node performs bursty
transmission—that is, queued data are sent all at
once. Because of this bursty characteristic, this
type of algorithm is called bursty transmission
scheduling algorithm in this research.

6) The number of timeslots needed by each node
equals the number of packets to be sent because
IEEE 802.15.4e TSCH requires 1 timeslot to
send 1 packet. Where tsi represents the total

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2731

timeslots needed by each ni to transmit the data,
tsi(s) represents the total timeslots needed by ni
to transmit data in step/round s. In the present
research, the value of tsi(s) equals to qi(s), where
qi(s) is the number of packets queued in ni in a
given round s. This is expressed as:

tsi(s) = qi(s) (5)

7) Total active timeslots (λ) needed for one frame
is determined by the equation:





SS

1s

TS(s)λ (6)

where TS(s) is the number of timeslots needed in
each round/step (s). TS(s) is obtained using the
following equation:

 TS(s) = max{tsi(s)|iϵActive} (7)

The above procedures are illustrated in Figure
9, showing initial condition, gradual transmission
of packets to the master node, and the 8
rounds/steps required to transmit all queued data in
each node to the master node, from first to eighth
scheduling round. Packets are represented by the
red numbers, each referring to the node number.
Figure 9 also illustrates how the schedule is
arranged by maximal matching. At each step, no
single node gets both transmitting and receiving
turns at the same time. At any given point in time,
each node in the network can be in only one state:
transmitting, receiving, or idle/sleep. The
maximal matching procedure also ensures that the
maximal number of nodes transmit or receive data
in each step/round.

The initial condition is shown in more detail in
Figure 10, where the master node or node 0 is the
highest level. As shown in Figure 10 below, each
node has one packet queuing for transmission to the
master node. All the data queued in nodes 1 to 15
are transmitted to node 0 through their respective
parents.

Figure 10: Network Topology with Packet Queue.

IRByTSA procedure number 3 is designed to
minimize the number of active timeslots (λ) needed
in one frame. The smaller the λ value needed in a

frame, the more time nodes remain in an idle state,
during which their total energy consumption is
smaller than in an active state. Because of the
limitations of battery power [19], energy
consumption is an important consideration for
zigbee-based technology.

As explained below, procedure 4 yields a λ
value that approximates the minimum number of
timeslots (Q) based on the following two factors:

a) The procedure ensures that there is no queue
build-up in any node because the Qi value of
each child of the master node is regularly
reduced by providing a window for data
transmission to its parent. Queue build-up at any
node makes it impossible to minimize TS(s)
because TS(s) always targets the possible
maximum value of each data queue. Where
TS(s) cannot be minimized, it is impossible to
obtain a λ value that approximates Ǭ, which is
the lower limit of λ [11].

b) As a result of this procedure, a packet is always
sent to the master node, and the Qi value of each
master node’s children will be reduced in each
cycle of the schedule. A decrease in Qi signifies
the transmission of data stored in the network
node to the master node through the master
node’s children. In this way, the Qi value of the
entire network will become smaller as the round
increases, in time resulting in the gradual
decrease of TS(s).

Queue build-up at any node can result in an
increase in TS(s) because (based on procedures 6
and 7) the IRByTSA algorithm’s TS(s) value takes
the highest tsi(s) value among the active nodes in a
certain s round. TS(s) must equal the highest tsi(s)
if data to be transmitted in a session/round is to be
sent to the parent; if TS(s) is smaller than the data
queued at even one node, this will prevent
transmission of some data as a result of inadequate
timeslot allocation. Based on Figure 9, the number
of active timeslots needed in a slotframe is
elaborated below, using three equations: eq. 5, eq. 6
and eq. 7. Based on eq. 6 and 7, a new equation can
be derived:

TS(s) = max{qi(s) | i ϵ Active} (8)

The steps to the active timeslot (λ) are as follows:





8

1s

TS(5)TS(4)TS(3)TS(2)TS(1)TS(s)λ

 TS(8)TS(7)TS(6) 
 TS(1) = max{qi(1) | i ϵ Active}

= max{q1(1), q4(1), q6(1), q9(1), q10(1)}

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2732

= max{1, 1, 1, 1, 1} = 1 timeslot

TS(2) = max{qi(2) | i ϵ Active}

= max{q2(2), q5(2), q7(2), q12(2), q14(2)}

= max{2, 1, 2, 1, 1} = 2 timeslot

TS(3) = max{qi(3) | i ϵ Active}

= max{q3(3), q8(3), q11(3), q13(3)}

= max{3, 2, 1, 1} = 3 timeslot

TS(4) = max{qi(4) | i ϵ Active}

= max{q1(4), q4(4), q9(4)}

= max{4, 2, 2} = 4 timeslot

TS(5) = max{qi(5) | i ϵ Active}

= max{q3(5), q7(5)}

= max{2, 1} = 2 timeslot

TS(6) = max{qi(6) | i ϵ Active} = max{q1(6)}

= max{1} = 1 timeslot

TS(7) = max{qi(7) | i ϵ Active}

= max{q8(7)} = max{2} = 2 timeslot

TS(8) = max{qi(8) | i ϵ Active}

= max{q1(8)} = max{2} = 2 timeslot

λ = ΣTS(s) = 1 + 2 + 3 + 4 + 2 + 1 + 2 + 2

 = 17 timeslot

Procedure number 5 explain that each node
performs bursty transmission, to better understand
the busty principle, Figure 11 focuses in more detail
on the initial condition, round 1, and round 2 as
shown in Figure 9.

Initial Condition:

1st round: 2nd round:

Figure 11: Bursty transmission in IRByTSA

At the initial condition, all nodes each have
only 1 packet to transmit to the master node (in this

case, node 0). As shown in Figure 11, in every
scheduled round, several nodes are waiting their
turn to transmit data. When transmitting, nodes
send all queued data. When all data have been
transmitted, there is nothing more in the queue.
This procedure is referred to here as bursty
transmission.

Table 1: Symbols used in IRByTSA

Variables Description
ND Total number of network nodes

NCD[i]
Total number of child nodes of
node [i]

TS(s)
Number of timeslot needed in each
round

Ǭ
Total number of packets queued to
be sent to master node within a
single slotframe

i Number of Node
y Turn (variable)
s Round
qz Queue size of node z

turn_now[i]
Transmission turn for one child of
node i in a specific round

child_of_node[i][j] Specific child of node[i]

mod_node[i]
Transmission turn between child
nodes of node [i]

All of the above procedures are implemented in
IRByTSA algorithm, as shown in Figure 12. The
algorithm uses several key variables, which are
described in Table 1.

4. RESULT AND DISCUSSION

4.1 Complexity Analysis of IRByTSA
Looking at Figure 12, we can see that there are

two main loops, which we will call L1 and L2.
During each iteration, there is a chain of commands
ready to execute; L1 is an external loop while L2 is
an internal loop. To determine the complexity of
asymptotic time in IRByTSA, consider the
command lines for L1 and L2. Based on the
references [24–27], the algorithm’s complexity,
T(n), can be derived using the following formulas.

If, Tx(n) = O(f(n)) and Ty(n)= O(g(n)), then:

a) T(n) = Tx(n)+Ty(n) = O(max(f(n),g(n))), or
T(n) = Tx(n)+Ty(n) = O(f(n)+g(n))

b) T(n) = Tx(n).Ty(n) = O(f(n)).O(g(n))
= O(f(n)g(n))

c) If g(n) ≦ f(n) for all n≧n0 (for a specific n0
value), therefore O(f)+O(g) = O(f)

d) T(n) = O(cf(n)) = O(f(n)) where c is a constant

e) f(n) = O(f(n))

O symbol is called Big-O notation, this notation is
used extensively to express the upper limit for the

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2733

IRByTSA

TASA

SS

SS
R 

operation of an algorithm as its input grows [20].
Based on the above, L2’s algorithmic complexity is:

T2(n) = n . {O(1) + O(1) + max[O(1)+O(1)+O(1)
 + O(1),O(1)+O(1)] + O(1) + O(1)}

 = n . {O(max(1,1))+max[O(max(1,1))
 +
O(max(1,1)),O(max(1,1))]+O(max(1,1))}
 = n . {O(1)+max[O(1)+O(1),O(1)]+O(1)}
 = n . {O(1)+max[O(max(1,1)),O(1)]+O(1)}
 = n . {O(1)+max[O(1),O(1)]+O(1)}
 = n . {O(1)+O(1)+O(1)}
 = n .{O(max(1,1))+O(1)}
 = n . {O(1)+O(1)} = n . {O(max(1,1))}
 = n . {O(1)} = O(n . 1)
 = O(n) (9)

For loop L1, the number of iterations/rounds in
the loop is determined by whether q0 < Ǭ; iteration
stops where q0 ≧ Ǭ. In IRByTSA, the total
iterations/rounds needed in L1 to ensure that q0
equals Ǭ is smaller than in TASA because in
IRByTSA, scheduling is not done in and for every
time slot period but should be done during the
transmission turn for each child node, beginning
with children of the master node (n0). It follows that
the number of iterations needed to generate a
schedule is not directly correlated to the number of
nodes in each network. As for TASA, according to
[11], the minimum number of active timeslots
needed (λ) is equal to Ǭ. And according to the
limitation in this research, the number of iterations
in TASA will always be the same as the number of
network nodes. As for IRByTSA, the number of
iterations needed to generate a schedule is always
smaller than the total number of nodes.

Table 2 compares TASA and IRByTSA in
terms of the number of rounds/steps (SS) needed to
send all of the network’s data to the master node
(n0) and the size of active timeslot (λ). The
scheduling algorithm shows good performance if a
minimum λ can be achieved with a minimum
number of rounds/steps (SS).

Table 2. Comparison of TASA and IRByTSA

Number
of Nodes

(n)

TASA IRByTSA

SSTASA λ
SSIRByTS

A λ

10 10 10 4 9 2.50
20 20 20 7 19 2.86
30 30 30 9 29 3.33
40 40 40 11 40 3.64
50 50 50 11 51 4.55
60 60 60 13 60 4.62
70 70 70 12 70 5.83
80 80 80 13 80 6.15
90 90 90 14 90 6.43

100 100 100 14 100 7.14

In TASA, the number of iterations increases
linearly with network nodes. In IRByTSA, with a λ
value very close to TASA, the increase in number
of iterations is relatively small for 10 to 100 nodes.
The SS value also shows the speed of each
scheduling algorithm in creating scheduling
decisions. The smaller the SS value, the more
rapidly the scheduling decision is generated, and
vice versa. As seen in Table 2, SSIRByTSA < SSTASA
for all network sizes ranging from n = 10 to n =
100; this finding indicates that IRByTSA is always
faster than TASA in generating scheduling
decisions. The R value indicates the difference in
speed of the two algorithms; that is, it compares
SSTASA and SSIRByTSA. As shown in Table 2, for n =
10 to n = 100, the value of R is always greater than
one; thus, IRByTSA is always faster than TASA.

As explained above, the SS column in Table 2
also indicates the number of iterations needed by
IRByTSA and TASA to generate a transmit/receive
schedule for each node in order to obtain a q0 = Ǭ
condition. Table 3 shows the relation between
NIIRByTSA and number of network nodes (n), where
the relation is symbolized with X. With the X
symbol, relationship between NIIRByTSA and n can
be stated as follows: NIIRByTSA = nX .

Table 3: Number of iterations (NI) by number of
network nodes (n)

Number
of Nodes

(n)

Number of
Iterations for L1

of IRByTSA
(NIIRByTSA)

Relation between
NIIRByTSA and n







 n

nNI
X IRByTSA

log
)(log

10 4 0.60206
20 7 0.64956
30 9 0.64602
40 11 0.65003
50 11 0.61296
60 13 0.62646
70 12 0.58489
80 13 0.58533
90 14 0.58648
100 14 0.57306

Table 4: Values for Several Relations

Number of
Nodes (n)

NILinier(n) NIIRByTSA (n) NIRoundUp(n)

10 10 4 5
20 20 7 8
30 30 9 10
40 40 11 11
50 50 11 13
60 60 13 15
70 70 12 16
80 80 13 18
90 90 14 19

100 100 14 20

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2734

Furthermore, Table 4 shows the values for
several relations: NILinier(n) = n, NIIRByTSA(n), and
NIRoundUp(n)= . The NIRoundUp(n)
function is chosen to present the upper limit for the
L1 iteration which will not be passed by the actual
L1 iteration (NIIRByTSA). It is important to use
NIRoundUp function in the present context because
this research aims to determine the complexity of
IRByTSA mathematically which is closest to the
real conditions.

As shown in Table 4, the number of
iterations/rounds in L1 before achieving q0 = Ǭ for

IRByTSA (NIIRByTSA) is never greater than .
Figure 13 illustrates this more clearly.

Figure 13: Values for Several Relations

Figure 13 shows a NILinier(n) graph (colored
green), representing cases where the number of
iterations in L1 is equal to the number of network
nodes. The NIIRByTSA(n) graph (blue) shows the
number of L1 iterations on IRByTSA (NIIRByTSA),
which is clearly much smaller than NILinier(n). The
red graph represents the NIRoundUp (n) function

where NIRoundUp(n) = and shows that the value

of is very close to NIIRByTSA(n).

Because iteration L2 falls within L1, where
there are no more lines of commands to execute
other than those in L2, the combined complexity of
L1 and L2 is:

 = (10)

Equation (10) above shows that the complexity for

IRByTSA is .
Referring to [24], the complexity of IRByTSA

can also be expressed as O(n.n) or O (n2), as the
NIIRByTSA(n) graph never exceeds NILinier(n). An
algorithm in the range O(1) to O(n3) can be
categorized as a good polynomial algorithm

because it is tractable (easy in computational terms)
[24]. Because the complexity of IRByTSA is

, therefore IRByTSA can be categorized
as a good algorithm.

4.2 The Relationship Between Scheduling
Algorithm Performance and Network
Scalability

As stated in the Introduction, the two aspects of

scheduling algorithms studied in this research are
algorithm complexity and speed in generating
scheduling decisions. A scheduling algorithm that
rapidly generates scheduling decisions can be
ascertained to impose a lighter burden on the server
compared with slower algorithms (The server
referred to in this 6TiSCH network is PCE.). Thus,
IRByTSA, which is faster than TASA, will
positively impact PCE performance.

Regarding the complexity of scheduling
algorithms, research [28] showed experimentally
that low-complexity scheduling algorithm will use
less PCE resource. That research concludes that
three PCE modules are used to process path
computation: Network, Session Management, and
Processing. These three modules involve five
processes: network read, session processing,
computer request queuing, computation processing,
and response sending. Of the three modules,
processing is most affected by algorithm
complexity. As shown in [28], processing time in
the computation module increases for the three
algorithms according to increased network size.
The computational complexity of the three
algorithms is O(V. ln(E)), O(2V.ln(E)), and O(V2),
respectively. The increase in processing time is
more significant for the algorithm with O(V2)
complexity as compared to the other two. The
algorithm with O(V.ln(E)) complexity has the same
complexity as IRByTSA—that is, O(K.n), where K
is a constant.

A low-complexity computational algorithm
such as IRByTSA algorithm allows the existing
PCE (usually used for algorithms of high
complexity) to serve more network clusters. The
simpler the computational algorithm used in a PCE
server, the more network clusters can be served by
the existing PCE. The number of network clusters
that can be served by a PCE server depends on the
capacity of the PCE server. Based on Figure 8,
Figure 14 illustrates the scalability of the 6TiSCH
network when PCE is enabled to serve multiple
network clusters.

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2735

INTERNET

………

TSCH NETWORK N TSCH NETWORK 2 TSCH NETWORK 1

PCE

NME

Figure 14: One PCE Server Serves Many Network

Clusters

“According to the data presented in paper [28],
finishing 1,500 path computation requests using an
algorithm with O(K.n) complexity needs an average
time of 0.4 s. In TSCH-based IoT, document RFC
7554 [20] mentions that the number of timeslots per
slotframe is between 10 and 1,000, and the duration
per timeslot is 10 ms. In a TSCH network, the
number of timeslots correlates with the number of
nodes. If the total timeslots per slotframe is
between 10 and 1,000, then the maximum number
of nodes in the network is between 10 and 1,000.
Accordingly, the time needed to handle a path
computation request in a network smaller than
1,500 will need less than 0.4 s. For example,
assume that a network administrator has a network
with 500 nodes with a slotframe of 1,000 timeslots
(S = 1000) and a duty cycle of 50% (λ = 500
timeslots). Given these parameters, each slotframe
will have a remaining duration time of 500
timeslots (S - λ = 500 timeslots) or 5 s for nodes to
enter an idle state. This 5 s duration is considerably
longer than the 0.4 s needed to complete a path
computation request from 1,500 network nodes.
Thus, for a network with a duty cycle ≤ 50% and
low scheduling algorithm complexity, this research
suggests the research prospect of examining the
feasibility of completing the signaling process
between nodes and PCE within the duration of (S -
λ). If it is feasible, then the signaling process will
not need to be allocated a special duration.
Signaling must be simplified to reduce signaling
cost, as discussed in research [16].”

5. CONCLUSION

This research succeeded in building a centralized
scheduling algorithm called IRByTSA, which is
much lower in complexity than IR-TASA and faster

than TASA in terms of generating link-scheduling
decisions. The algorithm’s low computational
complexity can be attributed to its use of procedures
such as maximal matching process to generate link-
schedule; maximizing the number of nodes that
transmit simultaneously by proceeding from the
highest-ranked node and continuing downward to
the leaf node; and on a transmit turn, each node
sends all of its queued data in bursty mode. Using
these procedures, IRByTSA generates link
scheduling decisions more quickly than TASA and
has low complexity. The former algorithm creates
such decisions 2.5 to 7.14 times more rapidly than
the latter for network sizes ranging from n = 10 to n
= 100. The calculations show that IRByTSA has a
complexity level of , which indicates
low complexity. The advantage of using such a fast
and low-complexity algorithm is increased network
scalability, as the reduction in complexity and
increase in speed enable the existing PCE to serve
additional networks. Meanwhile, as explained in
Section 2.4, standardization on signaling for
IEEE802.15.4e TSCH networks has not been
established. Thus, this research will focus on the
signaling aspects of IEEE802.15.4e TSCH
networks in the future.

REFERENCES:
[1] Atzori, L., Iera, A., Morabito, G.

“Understanding the Internet of Things:
Definition, potentials, and societal role of a fast
evolving paradigm”, Ad Hoc Networks, 2017,
56: 122–140.

[2] Li, S., Da Xu, L., Zhao, S. “The internet of
things: A survey”, Information Systems
Frontiers, 2015, 17.2: 243–259.

[3] Gubbi, J., et al. “Internet of Things (IoT): A
vision, architectural elements, and future
directions”, Future generation computer
systems, 2013, 29.7: 1645–1660.

[4] Palattella, M. R., et al. “6tisch wireless
industrial networks: Determinism meets ipv6”,
Internet of Things (pp. 111–141). Springer,
Cham, 2014.

[5] Thubert, P., Palattella, M. R., Engel, T.
“6TiSCH centralized scheduling: When SDN
meet IoT”, 2015 IEEE Conference on
Standards for Communications and
Networking (CSCN), IEEE, 2015, pp. 42–47.

[6] Dujovne, D., et al. “6TiSCH: Deterministic IP-
enabled industrial internet (of things)”, IEEE
Communications Magazine, 2014, 52.12: 36–
41.

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2736

[7] Thubert, P. “An architecture for IPv6 over the
TSCH mode of IEEE 802.15. 4. Working
Draft”, IETF Secretariat, Internet-Draft draft-
ietf-6tisch-architecture-14. 2018 (April).

[8] Santoso, I.H., Ramli, K. :Speed improvement
of centralized scheduling for IEEE 802.15.4e
TSCH network”, Journal of Communications,
2017, 12.12: 661–667, DOI:
10.12720/jcm.12.12.661-667.

[9] Palattella, M. R., et al. “Traffic aware
scheduling algorithm for reliable low-power
multi-hop IEEE 802.15. 4e networks”, 2012
IEEE 23rd International Symposium on
Personal Indoor and Mobile Radio
Communications (PIMRC), IEEE, 2012, pp.
327–332.

[10] Palattella, M. R., et al. “Traffic-aware time-
critical scheduling in heavily duty-cycled ieee
802.15. 4e for an industrial iot”, Proceedings
of IEEE Sensors 2012, 2012, pp. 1–4.

[11] Palattella, M. R., et al. “On optimal scheduling
in duty-cycled industrial IoT applications using
IEEE802. 15.4 e TSCH”, IEEE Sensors
Journal, 2013, 13.10: 3655–3666.

[12] Farias, A. A., Dujovne, D. “A queue-based
scheduling algorithm for PCE-enabled
Industrial Internet of Things networks”, In:
2015 Sixth Argentine Conference on Embedded
Systems (CASE), IEEE, 2015. pp. 31–36.

[13] Min, M., et al. “Traffic aware multiple
slotframes scheduling algorithm in industrial
IoT applications using IEEE802. 15.4 e
TSCH”, In: 2015 IEEE 16th International
Conference on Communication Technology
(ICCT), IEEE, 2015, pp. 608–614.

[14] Gaillard, G., et al. “Enabling flow-level
reliability on FTDMA schedules with efficient
hop-by-hop over-provisioning”, PhD Thesis,
INRIA Grenoble-Rhône-Alpes, 2016.

[15] Choi, K. H.; Chung, S. H. “A new centralized
link scheduling for 6TiSCH wireless industrial
networks”, Internet of Things, Smart Spaces,
and Next Generation Networks and Systems.
Springer, Cham, 2016, pp. 360–371.

[16] Livolant, E., Minet, P., Watteyne, T. “The cost
of installing a 6tisch schedule”, International
Conference on Ad-Hoc Networks and Wireless.
Springer, Cham, 2016, pp. 17–31.

[17] Palattella, M. R., et al. “Standardized protocol
stack for the internet of (important) things”,
IEEE communications surveys & tutorials
15.3, 2013, pp. 1389-1406.

[18] De Guglielmo, D., Simone Brienza, and
Giuseppe Anastasi. “IEEE 802.15. 4e: A
survey”, Computer Communications, 88, 2016.
pp. 1-24.

[19] 802.15.4e-2012: IEEE Standard for Local and
Metropolitan Area Networks – Part 15.4: Low-
Rate Wireless Personal Area Networks
(LRWPANs) Amendment 1: MAC Sublayer,
Institute of Electrical and Electronics
Engineers Std., 16 April 2012.

[20] Watteyne, T., Palattella, M. R., Grieco, L.
“Using IEEE 802.15. 4e time-slotted channel
hopping (TSCH) in the internet of things (IoT):
Problem statement”. 2015.

[21] West, D. B. “Introduction to graph theory (Vol.
2)”, Prentice Hall, Upper Saddle River, 2001.

[22] Winter, 2005, “Maximum matching”, CS105.
[Online]
https://www.cs.dartmouth.edu/~ac/Teach/CS10
5-Winter05/Notes/kavathekar-scribe.pdf

[23] Sahoo, P., Pattanaik, S., Wu, S. L. “A reliable
data transmission model for IEEE 802.15. 4e
enabled wireless sensor network under wifi
interference”, Sensors, 2017, 17.6: 1320.

[24] Rosen, K. H. “Discrete mathematics and its
applications”, McGraw-Hill, New York, 2011.

[25] Azmoodeh, M. “Abstract Data Types and
Algorithm”, Macmillan, London, 1988.

[26] Brassard, G., Bratley, P. “Algorithmics:
Theory & practice”, Prentice-Hall, 1988.

[27] Zindros, D. “A gentle introduction to algorithm
complexity analysis”, 2012.

[28] Chamania, M., Drogon, M., Jukan, A. “An
open-source path computation element (PCE)
emulator: Design, implementation, and
performance”, Journal of Lightwave
Technology, 2012, 30.4: 414–426.

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2737

Figure 3: Data and Ack Transmission in a Timeslot

Initial Condition 1st round 2nd round

3rd round 4th round 5th round

6th round 7th round 8th round

Figure 9: Transmission and Reception Scheduling using IRByTSA

Journal of Theoretical and Applied Information Technology
31st May 2019. Vol.97. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2738

L1

Figure 12: Flowchart of IRByTSA algorithm

N

Y

Y

N

N

Y

N

N

Y

N

Y

N

Y

Y

N Y

Start

VARIABEL:
G; ND; NCD[i]; s; qz; i; y; z; TS(s);

node[i]; turn_now[i];
child_of_node[i][j]; mod_node[i];

matching_link[s]

matching_link[s] = matching_link[s] + [nz, ni]
mod_node[i] = mod_node[i] + 1

y = mod_node[i] % NCD[i]
turn_now[i] = child_of_node[i][y]

For: i = 0 to (ND-
1)

TS(s) = qz

End

s = s + 1

z = j
node[z] transmit

to node[i]

For: j = (i+1) to (NCD[i]-
1)

qj > 0

qz > 0

TS(s) < qz

q0 < Ǭ

For: j = 0 to (i - 1)

qj > 0A

A

z = turn_now[i]

Is node[i] an
active node?

NCD[i] >
1

qz > 0

z = child_of_node[i][0]
matching_link[s] =

matching_link[s] + [nz, ni]

matching_link[s] = []

L2

