
Journal of Theoretical and Applied Information Technology 
31st May 2019. Vol.97. No 10 

 © 2005 – ongoing  JATIT & LLS   

 
ISSN: 1992-8645                                  www.jatit.org                          E-ISSN: 1817-3195 

 

 
2725 

 

IRBYTSA: A NOVEL LINK-SCHEDULING ALGORITHM FOR 
IEEE 802.15.4E TSCH NETWORK 

 

1,3IMAN HEDI SANTOSO, 2KALAMULLAH RAMLI 
1,2Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia 

E-mail:  1iman.hedi@ui.ac.id, 2k.ramli@eng.ui.ac.id, 3mnhedi@gmail.com 
 
 

ABSTRACT 
 

This paper proposes a novel algorithm named IRByTSA, as a scheduling algorithm that is both simpler and 
faster than TASA, in terms of its speed in generating link-schedule decision. The simplification makes 
IRByTSA a low-complexity algorithm. The IRByTSA algorithm owes its relatively low complexity to the 
following procedures: maximum matching to generate link-schedule; maximization of nodes performing 
simultaneous transmissions by prioritizing from higher-ranking nodes to leaf node; transmission of all 
queued data packets in bursts (bursty); and provides each node with a transmission opportunity based solely 
on turn. The research confirms that the resulting complexity is , which indicates that IRByTSA 
is a low-complexity algorithm. The advantage of using such a fast and low-complexity algorithm is 
increased network scalability, as the reduction in complexity and increase in speed enable the existing PCE 
to serve additional networks. .  
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1. INTRODUCTION  

The Internet of Things (IoT) has attracted 
significant research interest globally as a potential 
solution to pressing social issues related to health, 
demography, welfare, food security and agriculture, 
energy, transportation, and efficient use of 
resources. For that reason, IoT will be an important 
element in the future Internet, connecting billions of 
interconnected heterogeneous objects [1,2]. 
Projections indicate that, by 2020, up to 24 billion 
devices will be connected to the Internet [3], 
supported by the emergence of IoT. However, as 
the current Internet infrastructure cannot 
accommodate this rapid development, a new 
network architecture is needed to manage the 
dramatic increase of IoT flow, allowing multiple 
services with different QoS requirements to co-exist 
[4]. 

Current thinking advocates a centralized 
network control system for IoT network 
management, with the development of a complex 
routing topology and simplified operation for users 
in non-IT environments. The need to implement a 
centralized control system characterizes the 
intersection between the Internet of Things (IoT) 
and Software-Defined Network (SDN) [5]. In an 
attempt to realize a centralized control system, the 
IETF 6TiSCH workgroup was established in 
November 2013. The goal of 6TiSCH WG is to 

connect IEEE802.15.4e TSCH MAC layer to IPv6 
on the top layer. The 6TiSCH WG protocol stack is 
based on existing standards for the Internet of 
Things, including RPL, 6LoWPAN, and CoAP. The 
workgroup has been developing an architecture that 
will allow low-power wireless devices (sometimes 
called “motes”) to form a multi-hop low-power 
lossy network (LLN) [6]. Figure 1 below describes 
the 6TiSCH protocol stack for TSCH-based LLN 
[7]. 

 

Figure 1: 6TiSCH Protocol Stack. 

As shown in Figure 1, a sub-layer is 
responsible for handling the matters related to 
scheduling, namely Scheduling Functions. The 
TSCH technology adopted by LLN requires such a 
scheduling function because each of its nodes can 
only transmit or receive at particular time slots. 
This scheduling function generates a scheduling 
scheme that informs LLN nodes when to transmit, 
receive, or enter an idle state. How a scheduling 
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scheme is developed determines the volume of 
traffic generated by LLN, length of packet delay, 
and energy consumption at each node. In the 
present research, the communication scheduling 
scheme is controlled in centralized mode by a 
dedicated server running an algorithm to generate a 
communication schedule, which is in turn the 
schedule will be informed to all LLN nodes. 

This research builds on a previous study [8] 
that produced a centralized scheduling algorithm for 
IEEE802.15.4e TSCH as an improved version of 
TASA [9, 10, 11]. The scheduling algorithm 
proposed in that research [8] was named Iman-
Ramli TASA (IR-TASA). In research [8], it was 
proven that IRTASA’s link scheduling algorithm 
was better than TASA in terms of the speed in 
generating a link scheduling decision. IRTASA 
obtained the number of active timeslots, which was 
the same or near the minimum, more rapidly than 
did TASA. However, IRTASA is too complicated 
and thus needs to be simplified. 

Research paper [8] also referred to several 
other studies [12–14] describing modifications that 
enhanced TASA performance. Other papers on 
centralized scheduling for IEEE802.15.4e TSCH 
include Choi et al. [15], which proposed centralized 
link scheduling (CLS) utilizing Routing Protocol 
for LLN (RPL) to generate scheduling decisions. 
Choi et al. compared CLS to DETAS in terms of 
the number of control messages needed to create a 
schedule. Their goal [15] was to develop a 
scheduling algorithm that required fewer control 
messages. In another study, Livolant et al. [16] 
explored a signaling mechanism for a centralized 
scheduling algorithm called MODESA, with 
reference to the number of messages needed to 
install and upgrade a scheduling scheme on a 
network. For the purposes of performance 
comparison, they used three standards: CoAP, 
CoMI, and OCARI, finally recommending OCARI 
because it requires fewer messages than the other 
two. 

The prior studies above, which are related to 
TASA [12–14] and scheduling algorithms for 
TSCH [15–16], did not discuss the speed of the 
scheduling algorithms in generating scheduling 
decisions or quantitatively assess the complexity of 
the algorithms they proposed. The absence of 
studies that investigate the speed and complexity of 
TSCH link scheduling algorithms is the motivation 
behind research [8] and the current study. These 
two factors must be examined with regard to how 
much influence they have on server performance. 
The hypothesis of this study is that the lower the 

complexity of the algorithm and the faster the 
generation of the scheduling decision, the lighter 
the burden of the algorithm on the server. 
Therefore, the server can be used to do other tasks.  

Given the motivation to develop a low-
complexity algorithm, in the present research, the 
IRTASA scheduling algorithm is enhanced to create 
a new algorithm called IRByTSA. IRByTSA is 
significantly simpler than IR-TASA or TASA in 
terms of how a set of matching links is established. 
This simplification makes IRByTSA a low-
complexity algorithm. IRByTSA uses a graph 
maximal matching procedure and adopts the bursty 
principle during node transmission. For that reason, 
the algorithm is called the Iman-Ramli Bursty 
Transmission Scheduling Algorithm (IRByTSA) to 
emphasize this use of the bursty transmission 
principle, which distinguishes it from TASA. 
Another difference between IRByTSA and TASA is 
that, rather than using the principle of traffic-aware, 
IRByTSA provides each node with a transmission 
opportunity based solely on turn, which further 
contributes to the greater simplicity of IRByTSA. 
(The traffic awareness principle is explained in 
Section 2.2.) This paper details IRByTSA 
procedures, reviewing its lower complexity and the 
advantages of a simple scheduling algorithm for 
scalability, so bridging gaps in previous studies. 
And here is the assumptions and limitations used in 
this research: 

a) Master node knows the network conditions, such 
as: network topology and its changes, number of 
packets queued in every node. 

b) Each node can synchronize itself to the network 
and know the transmission or receive schedule 
based on the information provided by master 
node. 

c) Each node will transmit 1 packet regularly 
within each slotframe. 

The rest of the paper is structured as follows. 
Section II discusses underlying theories. Section III 
discuss the proposed algorithm, IRByTSA. Section 
IV describes the research findings in relation to 
complexity and the positive outcome of 
implementation in an IEEE802.15.4e network. And 
finally, in Section V the paper ends with 
conclusions. 

2. UNDERLYING THEORIES 

2.1 IEEE802.15.4e TSCH 
IEEE802.15.4 is a standard for low-rate 

Wireless Personal Area Networks (LRWPAN); 
IEEE802.15.4e is a redesign of the IEEE802.15.4 
MAC protocol that retains the physical layer of that 
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standard. Using a Time Synchronized Channel 
Hopping (TSCH) strategy to improve transmission 
reliability and energy efficiency, IEE802.15.4e 
TSCH is suitable for use as part of the Internet of 
Things protocol stack [17] 

To achieve this improved transmission 
reliability and energy efficiency, IEEE802.15.4e 
TSCH combines timeslot access method with 
multi-channel and channel-hopping capabilities. 
The timeslot access method eliminates collisions 
among competing nodes, providing deterministic 
latency to applications that use it. Because there are 
more active nodes in every timeslot, multi-channel 
or multi-frequency capability can improve network 
capacity. In each timeslot, active nodes can transmit 
data using different frequencies. The channel-
hopping approach improves communication 
reliability by reducing the impact of interference 
and multipath fading. In short, TSCH can improve 
network capacity, transmission reliability, and 
latency while maintaining duty cycle at a low level. 
TSCH can also be used in different network 
topologies [18]. 

As explained above, channel hopping can 
increase communication reliability because active 
nodes use different frequencies when transmitting 
data. In TSCH, the different frequencies are related 
to the channel offset parameters (ChOf); this is 
translated into a frequency by using the following  
function: 

f = F{(ASN + chOf) mod nch}        (1) 

where ASN is Absolute Slot Number (i.e., total 
timeslots used since network operation is initiated 
or since a particular point in time set by PAN 
coordinator), which increases with the passing of 
timeslots in the network; F is a function based on a 
look-up table of ready-to-use frequencies; chOF is 
channel offset; and nch is total available 
frequencies, where 0 ≦ chOf ≦ (nch-1). In an 
IEEE802.15.4e network, the value of nch is 16 [17]. 

2.1.1 Slotframe structure 
A slotframe is a group of timeslots that repeat 

over time; each timeslot allows sufficient time for a 
pair of devices to transmit data and ACK to each 
other. The example in Figure 2 shows a slotframe 
with 6 timeslots. In each timeslot, network nodes 
can transmit or receive the data or enter a sleep 
state. Figure 3 shows data and ACK transmission 
timing within a single timeslot. Based on the 
802.15.4e standard, the default timeslot duration is 
10 ms [17]. 

 

Figure 2: TSCH slotframe with 6 timeslots 

Figure 3 shows a node sends a data packet after 
precisely TsTxOffset μs of the timeslot. To 
overcome the slight desynchronization, the 
receiving node must detect the channel Guardtime 
μs before data are transmitted. If a package is not 
received within TxRx Wait μs after TsRxOffset, the 
receiving node will shut down its radio component 
to save energy[18,19].   

Slotframe size (i.e., total timeslots in a 
slotframe) will determine how frequently a timeslot 
repeats, which serves as a form of timing for nodes 
when communicating. The smaller the slotframe 
size, the more frequently nodes potentially send 
data; as a consequence, the duty cycle will increase. 
There is no standard slotframe size, as this depends 
on the application; a slotframe may range from 10 
ts to 1000 ts [20]. In network activity, each node 
follows a preset schedule that specifies when it 
should transmit or receive data or sleep. To save 
energy, nodes shut down their radio (the most 
energy-consuming element) on entering sleep mode 
[17]. 

2.1.2 Link-scheduling 
The main element of TSCH is link-

scheduling—that is, allocation of certain links to 
each node for sending or receiving data. According 
to the IEEE802.15.4e standard, a link is “The 
pairwise assignment of a directed communication 
between devices in a given timeslot on a given 
channelOffset.” In TSCH networks, a scheduling 
scheme is crucial for communication success and 
must be created carefully; for example, when node 
E has a transmit slot to node B, then B is ready to 
receive the data from node E in the same timeslot. 
[17]. 
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a. Tree Topology TSCH Network 
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b.Possible Link-Schedule for Data Aggregation 

Figure 4: A Tree Topology Network with Its 
Possible Link-Schedule 

Figure 4 illustrates a simple network in which a 
node activity schedule is already specified for each 
timeslot through the master node. The directed 
graph in the tree topology network point to a link 
connecting a node to its parent. The slotframe 
consist of 12 timeslots, and 6 offset channels are 
used. Each node in the network performs its 
transmit, receive, and sleep activity on the basis of 
the assigned schedule. The example assumes that 
each node will transmit 1 packet regularly within 
each slotframe; within this slotframe duration, any 
queued data in each node must be transmitted to the 
master node A. Based on the schedule in Figure 
4(b), node D will be ON to send data to node A at 
timeslot 0, channel offset 0; timeslot 3, channel 
offset 1; and timeslot 5, channel offset 3. Next, D 
will enter ON mode to receive data from node G at: 
timeslot 1, channel offset 4; node H at timeslot 2, 
channel offset 1; node G at timeslot 4, channel 
offset 5. This means that, in other timeslots, node D 
will enter sleep mode to save energy. To reach 
master node A, the data in node K will have to 
queue until timeslot 0, timeslot 1, and timeslot 3 
before being transmitted gradually through nodes G 
and D. At timeslot 0, channel offset 2, node K will 
send its data to node G, and node G will then send 
data received from node K to node D at timeslot 1, 
channel offset 4. Finally, node K data will arrive at 
master node A using timeslot 3, channel offset 1. 
This is how the MAC layer executes the link 
schedule provided by the master node. 

While the IEEE802.15.4e standard already 
specifies how the MAC layer executes a schedule, 
it does not specify how a schedule is to be 
established. This can be done using either a 
centralized or a distributed approach. In a 
scheduling system that uses a centralized approach, 
there is a special node that are responsible for 
building and maintaining a "network schedule", this 
special node is called master node. Each network’s 
node regularly reports the current conditions to that 
master node. The reported conditions may relate to 
node connectivity or the amount of data generated 

by each node. In a scheduling system that uses a 
distributed approach, each node can decide for itself 
which link is used to communicate with 
neighboring nodes. Because the present research 
aims to improve the link-scheduling mechanism in 
TASA, this paper will deepen the centralized 
approach in generating link-scheduling and how its 
implementation in the 6TiSCH network [17]. 
 
2.2 Traffic Aware Scheduling Algorithm (TASA) 

The RFC 7554 document mentions TASA as 
an alternative scheduling algorithm applicable to 
IEEE802.15.4.e-based IoT networks. Palattella et 
al. [11] suggested adding TASA to the 
IEEE802.15.4e standard, which has not yet 
specified how scheduling is to be established. The 
following paragraphs summarize TASA as 
suggested in [9–11].  

In TASA, tree topology networks are modelled 
by a directed graph G = (V, E). V is a group of N 
devices, where N = |V|, and V = {n0, n1, …, nN-1}. E 
is a group of links connecting each node (ni) with 
its parent (pi). The role of network coordinator or 
master node is performed by n0, and ni (1 ≤ i ≤ N – 
1) is the i-th generic node in the network. Figure 5 
illustrates the graph G. 

n0

pi
nj

ni

nk

G = (V, E)

ST(nj)
ch(ni)

ST(ni)

 

Figure 5: Graph G = (V, E): Modelling a Tree Topology 
Network 

As shown, each ni (where Ɐni ∈ V and i ≠ 0) 
can have i) a parent node pi; ii) a sub-tree ST(ni), 
which is structured from ni itself and all nodes 
connected to ni, directly or by means of multihop; 
and iii) a group of child nodes ch(ni). Each ni node 
is connected to its parent pi by a dedicated link (ni, 
pi) ∈ E.  

In TASA, each ni node in graph G other than 
the PAN coordinator (n0) is assumed to constantly 
generate packets. Each node ni will relay its data to 
parent node pi until all data have reached the master 
node, within the duration of 1 slotframe. The total 
number of packets transmitted to the PAN 
coordinator in a slotframe is, 
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

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
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iq~Q      (2) 

In terms of sub-trees, global queue level Qi(k) 
is defined as the total packets queuing in nodes in 
ST(ni) at a certain slot k, where  





)ST(nn|j
ji

ij

(k)q(k)Q      (3) 

In TASA, the links to be used for transmitting 
and receiving data must be free from two types of 
conflict: Duplex Conflict and Interference Conflict. 
Duplex Conflict (DC) occurs because each node in 
a network does not transmit and receive at the same 
time and cannot receive data simultaneously from 
its child nodes ch(ni). DCi is a group of edges or 
links between node ni and its child that cannot be 
used to transmit or receive during a certain timeslot 
because the nodes connected by these links are 
active. Only DC-free links (DCFL) can be 
scheduled in the same timeslot. A DCFL group in 
timeslot k is represented by DCFL(k). Interference 
conflict (IC) refers to links that interfere with one 
another when placed in the same channel offset. 
ICFLc(k) refers to a group of IC-free links (ICFL) 
that can use the same channel offset c at timeslot k. 
As this research focuses only on link scheduling, 
DCFL is the type that will be deepened.  

TASA assumes that the master node/PAN 
coordinator recognizes the G graph, physical 
connectivity graph P, and the traffic load generated 
by each node Ɐni∈V, for i ≠ 0. Based on this 
information, the master node n0 will execute the 
TASA procedure to generate a schedule to be 
followed by all child nodes in the network. 

TASA involves two main procedures: i) 
matching and ii) coloring. Both procedures are used 
iteratively on graph G in and for each timeslot (k). 
A matching procedure is used to obtain DCFL(k) 
that can be scheduled in timeslot k. In generating 
DCFL(k), the parent node pi selects node ni from 
among the child nodes, based on the following 
equation: 

 0)()(|)(max)(  kqpchnkQkQ jijji
   (4) 

In the equation 4, timeslot k is provided for link (ni, 
pi) only when node ni has a packet to transmit to its 
parent pi. For the coloring procedure, TASA applies 
this to the interference graph I(k). Nodes that are 
adjacent in I(k) are interfering and therefore require 
different channel offsets. The matching procedure 
will be further discussed in the next section because 
the aim of this research was to propose a new link-
scheduling algorithm.  

Figure 6 illustrate the application of matching 
and coloring procedures in a network. 

  
(a) DCFL(k) (b) ICFL(k) 

 
Figure 6: Matching and Coloring in TASA [8] 

To save power and meet delay requirements, 
TASA works to give minimum active timeslot for 
each node. Where active timeslot is represented by 
the symbol λ, TASA will send a traffic load of Ǭ to 
the PAN coordinator in a λ timeslot duration of a 
slotframe with S timeslots. Within the remaining 
duration for (S - λ), all nodes will enter idle/off 
mode. As Palattella explains, the number of active 
slots (λ) in a slotframe is minimally Ǭ. Figure 7 
illustrates λ in a slotframe: 

 
Figure 7: Active Slot (λ) in a Slotframe (S) 

2.3 Maximal Matching Algorithm 
As explained Section 2.2, in developing the 

Traffic Aware Scheduling Algorithm (TASA), 
Pattella et al. [11] has defined Duplex Conflict 
(DC). To solve the DC problem, Pattella et al. [11] 
propose to use the graph matching in its 
methodology, although no particular type of 
matching is mentioned. Of the existing types of 
graph matching (maximum, perfect, near perfect, 
and maximal [21,22]), maximal matching was used 
in the present research to  build the scheduling 
algorithm. Despite its simplicity, maximal matching 
has proved effective in meeting the research 
objective of a low-complexity scheduling algorithm 
with active timeslot (λ) outputs that are similar to or 
better than TASA. 
The maximal matching algorithm that is used in 
this research is as follows: 
Maximal Matching (G; V; E) 
1. M = Ø 
2. While(no more edges can be added) 

2.1. Starting from the lowest rank of edge, 
select an edge, e, which has no vertex in 
common with edge in M 

2.2. eMM   
3. Return M 

G is a directed graph with tree topology as shown 
in Figure 4(a) above. V and E are the set of vertices 
and edges in graph G. M is a matching of graph G, 
which is a subset of the edges E, such that no vertex 
in V is incident on more than one edge in M. 
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Combined with procedures in Section 3, this 
maximal matching algorithm produces the 
IRByTSA scheduling algorithm.  
 
2.4 Centralized Scheduling in 6TiSCH Networks 

In a centralized scheduling system of 6TiSCH 
network, the Path Computation Element (PCE) 
takes charge of computing a schedule (see Figure 
8(a)). As a management entity (ME), PCE is 
responsible for generating and maintaining a TSCH 
schedule based on information from the network 
nodes concerning network conditions and traffic 
load. By controlling and optimizing the network as 
a whole, PCE can develop a schedule and ensure 
accurate fulfilment of QoS requirements for all 
traffic flows in the network [4, 6]. To the best of 
our knowledge, standardization on signaling for 
IEEE802.15.4e TSCH network has not been 
established, therefore further research is warranted. 

To determine the mechanism and format of 
control messages to be sent to the network nodes, 
6TiSCH WG first defines the requirements for the 
protocol to be used by PCE to communicate with 
the 6TiSCH network, acknowledging existing 
protocols that may (partly) meet those 
requirements. Path Computation Element 
Communication Protocol (PCEP) defines the 
method of establishing communication between the 
Path Computation Client (PCC) and PCE. PCC can 
prompt PCE for path computation by means of a 
PCReq message specifying the relevant protocol 
requirements. In response to the PCReq message, 
PCE sends a PCRep that determines whether the 
path request and its requirements can be met. 
Hence, PCEP is capable of carrying signaling 
messages from node (PCC) to PCE, which contains 
network nodes’ scheduling requirements [4]. To 
maintain scalability and throughput, a 6TiSCH 
network may have a number of cluster networks 
linked to a high-speed backbone [6]. Based on 
working draft [7] and earlier research [4], Figure 8 
illustrates this as follows. 

INTERNET

TSCH NETWORK

PCE

NME

 

INTERNET

TSCH NETWORK

PCE

NME

 
(a)  A 6TiSCH network (b)  Signaling in a 

6TiSCH network 

Figure 8: Centralized Scheduling in 6TiSCH Network 

3. PROPOSED ALGORITHM 

IRByTSA uses the following procedures: 
1) Each node in the network (other than leaf nodes 

and master node) may act as parent and child. 
Each parent node supervises one or several child 
nodes, and each node always has one parent 
node. All nodes send their data to the master 
node (node 0 or n0) through their parents. Each 
node is connected to its parent by a link that 
marks the transmit and receive relationship 
between a child node and its parent. The link 
between node i (ni) and its parent node j (nj) is 
represented by lij.  

2) As described in [9–11], a node in a network 
cannot transmit and receive simultaneously or 
receive data from multiple nodes at once, and a 
gradual transmitting and receiving process is 
therefore required in order to send all packets 
from network nodes to the master node. All 
nodes in the network transmit/receive data 
simultaneously based on the transmit/receive 
schedule specified by the master node. The 
transmit/receive process occurs in several rounds 
until all data from the nodes reach the master 
(n0) and the condition of q0 = Ǭ is met, where q0 
is queue size of node 0 and Ǭ is total packets 
queued to be sent to n0 within a single slotframe; 
that is, Ǭ = Σqi. The symbol s represents the 
round or step, and SS denotes the total number 
of steps needed to reach the condition q0 = Ǭ. 
The transmit/receive schedule for each node is 
determined on the graph theory principle of 
maximal matching.  

3) The nodes having their turn in this scheduling 
algorithm are collected in a set which is called 
an Active set.  

4) Child nodes send data to their parent in turn. If, 
in a certain round, there are no data to send 
when the node has its turn, the turn passes to a 
sibling that has data to send. Transmission 
begins with high-level nodes (those closer to the 
master node) and proceeds to lower-level nodes 
(farther from the master node) as far as the 
lowest-level node (leaf node).  

5) During its turn, each node performs bursty 
transmission—that is, queued data are sent all at 
once. Because of this bursty characteristic, this 
type of algorithm is called bursty transmission 
scheduling algorithm in this research.  

6) The number of timeslots needed by each node 
equals the number of packets to be sent because 
IEEE 802.15.4e TSCH requires 1 timeslot to 
send 1 packet. Where tsi represents the total 
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timeslots needed by each ni to transmit the data, 
tsi(s) represents the total timeslots needed by ni 
to transmit data in step/round s. In the present 
research, the value of tsi(s) equals to qi(s), where 
qi(s) is the number of packets queued in ni in a 
given round s. This is expressed as: 

tsi(s) = qi(s)       (5) 

7) Total active timeslots (λ) needed for one frame 
is determined by the equation: 





SS

1s

TS(s)λ                      (6) 

where TS(s) is the number of timeslots needed in 
each round/step (s). TS(s) is obtained using the 
following equation: 

 TS(s) = max{tsi(s)|iϵActive}  (7) 

The above procedures are illustrated in Figure 
9, showing initial condition, gradual transmission 
of packets to the master node, and the 8 
rounds/steps required to transmit all queued data in 
each node to the master node, from first to eighth 
scheduling round. Packets are represented by the 
red numbers, each referring to the node number.  
Figure 9 also illustrates how the schedule is 
arranged by maximal matching. At each step, no 
single node gets both transmitting and receiving 
turns at the same time. At any given point in time, 
each node in the network can be in only one state: 
transmitting, receiving, or idle/sleep.  The 
maximal matching procedure also ensures that the 
maximal number of nodes transmit or receive data 
in each step/round. 

The initial condition is shown in more detail in 
Figure 10, where the master node or node 0 is the 
highest level. As shown in Figure 10 below, each 
node has one packet queuing for transmission to the 
master node. All the data queued in nodes 1 to 15 
are transmitted to node 0 through their respective 
parents.  

 
Figure 10: Network Topology with Packet Queue. 

IRByTSA procedure number 3 is designed to 
minimize the number of active timeslots (λ) needed 
in one frame. The smaller the λ value needed in a 

frame, the more time nodes remain in an idle state, 
during which their total energy consumption is 
smaller than in an active state. Because of the 
limitations of battery power [19], energy 
consumption is an important consideration for 
zigbee-based technology. 

As explained below, procedure 4 yields a λ 
value that approximates the minimum number of 
timeslots (Q) based on the following two factors: 

a) The procedure ensures that there is no queue 
build-up in any node because the Qi value of 
each child of the master node is regularly 
reduced by providing a window for data 
transmission to its parent. Queue build-up at any 
node makes it impossible to minimize TS(s) 
because TS(s) always targets the possible 
maximum value of each data queue. Where 
TS(s) cannot be minimized, it is impossible to 
obtain a λ value that approximates Ǭ, which is 
the lower limit of λ [11].  

b) As a result of this procedure, a packet is always 
sent to the master node, and the Qi value of each 
master node’s children will be reduced in each 
cycle of the schedule. A decrease in Qi signifies 
the transmission of data stored in the network 
node to the master node through the master 
node’s children. In this way, the Qi value of the 
entire network will become smaller as the round 
increases, in time resulting in the gradual 
decrease of TS(s). 

Queue build-up at any node can result in an 
increase in TS(s) because (based on procedures 6 
and 7) the IRByTSA algorithm’s TS(s) value takes 
the highest tsi(s) value among the active nodes in a 
certain s round. TS(s) must equal the highest tsi(s) 
if data to be transmitted in a session/round is to be 
sent to the parent; if TS(s) is smaller than the data 
queued at even one node, this will prevent 
transmission of some data as a result of inadequate 
timeslot allocation. Based on Figure 9, the number 
of active timeslots needed in a slotframe is 
elaborated below, using three equations: eq. 5, eq. 6 
and eq. 7. Based on eq. 6 and 7, a new equation can 
be derived: 

TS(s) = max{qi(s) | i ϵ Active}        (8) 

The steps to the active timeslot (λ) are as follows: 





8

1s

TS(5)TS(4)TS(3)TS(2)TS(1)TS(s)λ  

                       TS(8)TS(7)TS(6) 
 TS(1) = max{qi(1) | i ϵ Active}  

= max{q1(1), q4(1), q6(1), q9(1), q10(1)} 
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= max{1, 1, 1, 1, 1} = 1 timeslot 

TS(2) = max{qi(2) | i ϵ Active}  

= max{q2(2), q5(2), q7(2), q12(2), q14(2)}  

= max{2, 1, 2, 1, 1} = 2 timeslot 

TS(3) = max{qi(3) | i ϵ Active}  

= max{q3(3), q8(3), q11(3), q13(3)}  

= max{3, 2, 1, 1} = 3 timeslot 

TS(4) = max{qi(4) | i ϵ Active}  

= max{q1(4), q4(4), q9(4)}  

= max{4, 2, 2} = 4 timeslot 

TS(5) = max{qi(5) | i ϵ Active}  

= max{q3(5), q7(5)}  

= max{2, 1} = 2 timeslot 

TS(6) = max{qi(6) | i ϵ Active} = max{q1(6)}  

= max{1} = 1 timeslot 

TS(7) = max{qi(7) | i ϵ Active}  

= max{q8(7)} = max{2} = 2 timeslot 

TS(8) = max{qi(8) | i ϵ Active}  

= max{q1(8)} = max{2} = 2 timeslot 

λ = ΣTS(s) = 1 + 2 + 3 + 4 + 2 + 1 + 2 + 2 

 = 17 timeslot 

Procedure number 5 explain that each node 
performs bursty transmission, to better understand 
the busty principle, Figure 11 focuses in more detail 
on the initial condition, round 1, and round 2 as 
shown in Figure 9. 

Initial Condition: 

 
1st round: 2nd round: 

  

Figure 11: Bursty transmission in IRByTSA 

At the initial condition, all nodes each have 
only 1 packet to transmit to the master node (in this 

case, node 0). As shown in Figure 11, in every 
scheduled round, several nodes are waiting their 
turn to transmit data. When transmitting, nodes 
send all queued data. When all data have been 
transmitted, there is nothing more in the queue. 
This procedure is referred to here as bursty 
transmission.  

Table 1: Symbols used in IRByTSA 

Variables Description 
ND Total number of network nodes 

NCD[i] 
Total number of child nodes of 
node [i] 

TS(s) 
Number of timeslot needed in each 
round 

Ǭ 
Total number of packets queued to 
be sent to master node within a 
single slotframe 

i Number of Node 
y Turn (variable) 
s Round 
qz Queue size of node z 

turn_now[i] 
Transmission turn for one child of 
node i in a specific round  

child_of_node[i][j] Specific child of node[i] 

mod_node[i] 
Transmission turn between child 
nodes of node [i] 

All of the above procedures are implemented in 
IRByTSA algorithm, as shown in Figure 12. The 
algorithm uses several key variables, which are 
described in Table 1. 

4. RESULT AND DISCUSSION 

4.1 Complexity Analysis of IRByTSA 
Looking at Figure 12, we can see that there are 

two main loops, which we will call L1 and L2. 
During each iteration, there is a chain of commands 
ready to execute; L1 is an external loop while L2 is 
an internal loop. To determine the complexity of 
asymptotic time in IRByTSA, consider the 
command lines for L1 and L2. Based on the 
references [24–27], the algorithm’s complexity, 
T(n), can be derived using the following formulas. 

If, Tx(n) = O(f(n)) and Ty(n)= O(g(n)), then: 

a) T(n) = Tx(n)+Ty(n) = O(max(f(n),g(n))), or 
T(n) = Tx(n)+Ty(n) = O(f(n)+g(n)) 

b) T(n) = Tx(n).Ty(n) = O(f(n)).O(g(n))  
= O(f(n)g(n)) 

c) If g(n) ≦ f(n) for all n≧n0 (for a specific n0 
value), therefore O(f)+O(g) = O(f) 

d) T(n) = O(cf(n)) = O(f(n)) where c is a constant 

e) f(n) = O(f(n)) 

O symbol is called Big-O notation, this notation is 
used extensively to express the upper limit for the 
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IRByTSA

TASA

SS

SS
R 

operation of an algorithm as its input grows [20]. 
Based on the above, L2’s algorithmic complexity is: 

T2(n) = n . {O(1) + O(1) + max[O(1)+O(1)+O(1) 
  + O(1),O(1)+O(1)] + O(1) + O(1)} 

 = n . {O(max(1,1))+max[O(max(1,1)) 
    + 
O(max(1,1)),O(max(1,1))]+O(max(1,1))} 
 = n . {O(1)+max[O(1)+O(1),O(1)]+O(1)}  
 = n . {O(1)+max[O(max(1,1)),O(1)]+O(1)} 
 = n . {O(1)+max[O(1),O(1)]+O(1)}  
 = n . {O(1)+O(1)+O(1)}   
 = n .{O(max(1,1))+O(1)} 
 = n . {O(1)+O(1)} = n . {O(max(1,1))}  
 = n . {O(1)} = O(n . 1) 
 = O(n)                             (9)                                                       

For loop L1, the number of iterations/rounds in 
the loop is determined by whether q0 < Ǭ; iteration 
stops where q0 ≧ Ǭ. In IRByTSA, the total 
iterations/rounds needed in L1 to ensure that q0 
equals Ǭ is smaller than in TASA because in 
IRByTSA, scheduling is not done in and for every 
time slot period but should be done during the 
transmission turn for each child node, beginning 
with children of the master node (n0). It follows that 
the number of iterations needed to generate a 
schedule is not directly correlated to the number of 
nodes in each network. As for TASA, according to 
[11], the minimum number of active timeslots 
needed (λ) is equal to Ǭ. And according to the 
limitation in this research, the number of iterations 
in TASA will always be the same as the number of  
network nodes. As for IRByTSA, the number of 
iterations needed to generate a schedule is always 
smaller than the total number of nodes. 

Table 2 compares TASA and IRByTSA in 
terms of the number of rounds/steps (SS) needed to 
send all of the network’s data to the master node 
(n0) and the size of active timeslot (λ). The 
scheduling algorithm shows good performance if a 
minimum λ can be achieved with a minimum 
number of rounds/steps (SS). 

Table 2. Comparison of TASA and IRByTSA 

Number 
of Nodes 

(n) 

TASA IRByTSA  

SSTASA λ 
SSIRByTS

A λ 

10 10 10 4 9 2.50 
20 20 20 7 19 2.86 
30 30 30 9 29 3.33 
40 40 40 11 40 3.64 
50 50 50 11 51 4.55 
60 60 60 13 60 4.62 
70 70 70 12 70 5.83 
80 80 80 13 80 6.15 
90 90 90 14 90 6.43 

100 100 100 14 100 7.14 

In TASA, the number of iterations increases 
linearly with network nodes. In IRByTSA, with a λ 
value very close to TASA, the increase in number 
of iterations is relatively small for 10 to 100 nodes. 
The SS value also shows the speed of each 
scheduling algorithm in creating scheduling 
decisions. The smaller the SS value, the more 
rapidly the scheduling decision is generated, and 
vice versa. As seen in Table 2, SSIRByTSA < SSTASA 
for all network sizes ranging from n = 10 to n = 
100; this finding indicates that IRByTSA is always 
faster than TASA in generating scheduling 
decisions. The R value indicates the difference in 
speed of the two algorithms; that is, it compares 
SSTASA and SSIRByTSA. As shown in Table 2, for n = 
10 to n = 100, the value of R is always greater than 
one; thus, IRByTSA is always faster than TASA.  

As explained above, the SS column in Table 2 
also indicates the number of iterations needed by 
IRByTSA and TASA to generate a transmit/receive 
schedule for each node in order to obtain a q0 = Ǭ 
condition. Table 3 shows the relation between 
NIIRByTSA and number of network nodes (n), where 
the relation is symbolized with X. With the X 
symbol, relationship between NIIRByTSA and n can 
be stated as follows:  NIIRByTSA = nX . 

Table 3: Number of iterations (NI) by number of 
network nodes (n) 

Number 
of Nodes 

(n) 

Number of 
Iterations for L1 

of IRByTSA 
(NIIRByTSA) 

Relation between 
NIIRByTSA and n 







 n

nNI
X IRByTSA

log
)(log

 
10 4 0.60206 
20 7 0.64956 
30 9 0.64602 
40 11 0.65003 
50 11 0.61296 
60 13 0.62646 
70 12 0.58489 
80 13 0.58533 
90 14 0.58648 
100 14 0.57306 

 
Table 4: Values for Several Relations 

Number of 
Nodes (n) 

NILinier(n) NIIRByTSA (n) NIRoundUp(n) 

10 10 4 5 
20 20 7 8 
30 30 9 10 
40 40 11 11 
50 50 11 13 
60 60 13 15 
70 70 12 16 
80 80 13 18 
90 90 14 19 

100 100 14 20 



Journal of Theoretical and Applied Information Technology 
31st May 2019. Vol.97. No 10 

 © 2005 – ongoing  JATIT & LLS   

 
ISSN: 1992-8645                                  www.jatit.org                          E-ISSN: 1817-3195 

 

 
2734 

 

Furthermore, Table 4 shows the values for 
several relations: NILinier(n) = n, NIIRByTSA(n), and 
NIRoundUp(n)= . The NIRoundUp(n) 
function is chosen to present the upper limit for the 
L1 iteration which will not be passed by the actual 
L1 iteration (NIIRByTSA). It is important to use 
NIRoundUp function in the present context because 
this research aims to determine the complexity of 
IRByTSA mathematically which is closest to the 
real conditions. 

As shown in Table 4, the number of 
iterations/rounds in L1 before achieving q0 = Ǭ for 

IRByTSA (NIIRByTSA) is never greater than . 
Figure 13 illustrates this more clearly.  

 

Figure 13: Values for Several Relations 

Figure 13 shows a NILinier(n) graph (colored 
green), representing cases where the number of 
iterations in L1 is equal to the number of network 
nodes. The NIIRByTSA(n) graph (blue) shows the 
number of L1 iterations on IRByTSA (NIIRByTSA), 
which is clearly much smaller than NILinier(n). The 
red graph represents the NIRoundUp (n) function 

where NIRoundUp(n) =  and shows that the value 

of  is very close to NIIRByTSA(n).  

Because iteration L2 falls within L1, where 
there are no more lines of commands to execute 
other than those in L2, the combined complexity of 
L1 and L2 is: 

 

   =                        (10)                                                                                          

Equation (10) above shows that the complexity for 

IRByTSA is . 
Referring to [24], the complexity of IRByTSA 

can also be expressed as O(n.n) or O (n2), as the 
NIIRByTSA(n) graph never exceeds NILinier(n). An 
algorithm in the range O(1) to O(n3) can be 
categorized as a good polynomial algorithm 

because it is tractable (easy in computational terms) 
[24]. Because the complexity of IRByTSA is 

, therefore IRByTSA can be categorized 
as a good algorithm. 

4.2 The Relationship Between Scheduling 
Algorithm Performance and Network 
Scalability  

 
As stated in the Introduction, the two aspects of 

scheduling algorithms studied in this research are 
algorithm complexity and speed in generating 
scheduling decisions. A scheduling algorithm that 
rapidly generates scheduling decisions can be 
ascertained to impose a lighter burden on the server 
compared with slower algorithms (The server 
referred to in this 6TiSCH network is PCE.). Thus, 
IRByTSA, which is faster than TASA, will 
positively impact PCE performance.  

Regarding the complexity of scheduling 
algorithms, research [28] showed experimentally 
that low-complexity scheduling algorithm will use 
less PCE resource. That research concludes that 
three PCE modules are used to process path 
computation: Network, Session Management, and 
Processing. These three modules involve five 
processes: network read, session processing, 
computer request queuing, computation processing, 
and response sending. Of the three modules, 
processing is most affected by algorithm 
complexity. As shown in [28], processing time in 
the computation module increases for the three 
algorithms according to increased network size. 
The computational complexity of the three 
algorithms is O(V. ln(E)), O(2V.ln(E)), and O(V2), 
respectively. The increase in processing time is 
more significant for the algorithm with O(V2) 
complexity as compared to the other two. The 
algorithm with O(V.ln(E)) complexity has the same 
complexity as IRByTSA—that is, O(K.n), where K 
is a constant. 

A low-complexity computational algorithm 
such as IRByTSA algorithm allows the existing 
PCE (usually used for algorithms of high 
complexity) to serve more network clusters. The 
simpler the computational algorithm used in a PCE 
server, the more network clusters can be served by 
the existing PCE. The number of network clusters 
that can be served by a PCE server depends on the 
capacity of the PCE server. Based on Figure 8, 
Figure 14 illustrates the scalability of the 6TiSCH 
network when PCE is enabled to serve multiple 
network clusters. 
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Figure 14: One PCE Server Serves Many Network 

Clusters 
                         

“According to the data presented in paper [28], 
finishing 1,500 path computation requests using an 
algorithm with O(K.n) complexity needs an average 
time of 0.4 s. In TSCH-based IoT, document RFC 
7554 [20] mentions that the number of timeslots per 
slotframe is between 10 and 1,000, and the duration 
per timeslot is 10 ms. In a TSCH network, the 
number of timeslots correlates with the number of 
nodes. If the total timeslots per slotframe is 
between 10 and 1,000, then the maximum number 
of nodes in the network is between 10 and 1,000. 
Accordingly, the time needed to handle a path 
computation request in a network smaller than 
1,500 will need less than 0.4 s. For example, 
assume that a network administrator has a network 
with 500 nodes with a slotframe of 1,000 timeslots 
(S = 1000) and a duty cycle of 50% (λ = 500 
timeslots). Given these parameters, each slotframe 
will have a remaining duration time of 500 
timeslots (S - λ = 500 timeslots) or 5 s for nodes to 
enter an idle state. This 5 s duration is considerably 
longer than the 0.4 s needed to complete a path 
computation request from 1,500 network nodes. 
Thus, for a network with a duty cycle ≤ 50% and 
low scheduling algorithm complexity, this research 
suggests the research prospect of examining the 
feasibility of completing the signaling process 
between nodes and PCE within the duration of (S - 
λ). If it is feasible, then the signaling process will 
not need to be allocated a special duration. 
Signaling must be simplified to reduce signaling 
cost, as discussed in research [16].” 

 
5. CONCLUSION 

This research succeeded in building a centralized 
scheduling algorithm called IRByTSA, which is 
much lower in complexity than IR-TASA and faster 

than TASA in terms of generating link-scheduling 
decisions. The algorithm’s low computational 
complexity can be attributed to its use of procedures 
such as maximal matching process to generate link-
schedule; maximizing the number of nodes that 
transmit simultaneously by proceeding from the 
highest-ranked node and continuing downward to 
the leaf node; and on a transmit turn, each node 
sends all of its queued data in bursty mode. Using 
these procedures, IRByTSA generates link 
scheduling decisions more quickly than TASA and 
has low complexity. The former algorithm creates 
such decisions 2.5 to 7.14 times more rapidly than 
the latter for network sizes ranging from n = 10 to n 
= 100. The calculations show that IRByTSA has a 
complexity level of  , which indicates 
low complexity. The advantage of using such a fast 
and low-complexity algorithm is increased network 
scalability, as the reduction in complexity and 
increase in speed enable the existing PCE to serve 
additional networks. Meanwhile, as explained in 
Section 2.4, standardization on signaling for 
IEEE802.15.4e TSCH networks has not been 
established. Thus, this research will focus on the 
signaling aspects of IEEE802.15.4e TSCH 
networks in the future.  
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Figure 3: Data and Ack Transmission in a Timeslot 
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Figure 9:  Transmission and Reception Scheduling using IRByTSA 
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L1 

Figure 12: Flowchart of IRByTSA algorithm 
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VARIABEL: 
G; ND; NCD[i]; s; qz; i; y; z; TS(s); 

node[i]; turn_now[i]; 
child_of_node[i][j]; mod_node[i]; 

matching_link[s] 

matching_link[s] = matching_link[s] + [nz, ni] 
mod_node[i] = mod_node[i] + 1 

y = mod_node[i] % NCD[i] 
turn_now[i] = child_of_node[i][y] 

For: i = 0 to (ND-
1) 

TS(s) = qz 

End 

s = s + 1 

z = j 
node[z] transmit 

to node[i] 

For: j = (i+1) to (NCD[i]-
1) 

qj > 0

qz > 0

TS(s) < qz

q0 < Ǭ

For: j = 0 to (i - 1) 

qj > 0A

A

z = turn_now[i] 

Is node[i] an 
active node? 

NCD[i] > 
1 

qz > 0

z = child_of_node[i][0] 
matching_link[s] = 

matching_link[s] + [nz, ni] 

matching_link[s] = [ ] 

L2 


