
Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

23

HYBRID ARTIFICIAL BEE COLONY ALGORITHM WITH
MULTI-USING OF SIMULATED ANNEALING ALGORITHM

AND ITS APPLICATION IN ATTACKING OF STREAM
CIPHER SYSTEMS

1MAYTHAM ALABBAS, 2ABDULKAREEM H. ABDULKAREEM
1,2University of Basrah, Department of Computer Science, Basrah, Iraq

E-mail: 1ma@uobasrah.edu.iq, 2aabdulkareemalsamer@yahoo.com,

ABSTRACT

A new hybrid evolution algorithm (ABC-SA), i.e. artificial bee colony algorithm (ABC) with multi
simulated annealing (SA) using, is presented. In ABS-SA procedure, the ABC provides a global search and
the SA algorithm provides local search. SA processes are used to improve the original ABC algorithm into
two different manners: (i) repair the initial food sources of ABC, which is generally carried out randomly,
in order to look for promising areas; and (ii) selecting a candidate food source because SA can escape from
local optimum point by accepting worse solutions at a particular probability in the neighbor searching
period.

The ABC-SA algorithm has been applied to break a number of linear and nonlinear stream cipher systems,
which is one of the hard electronic cipher systems because of high security and difficulty in breaking it.

The current findings are encouraging. Comparison of the results indicated that in most cases the ABC-SA
algorithm outperforms the original ABC algorithm.

Keywords: Artificial Bee Colony Algorithm, Simulated Annealing, Hybrid algorithm, Stream Cipher
System

1. INTRODUCTION

Optimization plays a key role in many
fields and applications. A number of algorithms
have been offered in this regard such as artificial
bee colony (ABC) [1], simulated annealing (SA)
[2], genetic algorithm (GA) [3], particle swarm
optimization (PSO) [4], differential evolution (DE)
[5], and others [6]. Each of these algorithms has
good and weak points that make them work good in
a set of problems and weak in some other problems.
Therefore, one popular way to cover the weakness
of each algorithm and have a better performance
than can be obtained by any of them in isolation is
by hybridizing them. Many authors in the literature
have proposed different hybridizing strategies in
this regard. Some of these strategies are briefly
explained in the following lines.

Juang [7] combined GA with PSO, named
HGAPSO. The author applied HGAPSO algorithm

to recurrent neural-fuzzy network design. Chen et
al. [8] proposed hybrid discrete PSO (DPSO) with
both global and local search to find optimal results.
Xia and Wu [9] designed a hybrid GA and SA for a
dual-resource constrained job shop-scheduling
problem. Niu and Li [10] proposed PSODE, a new
hybrid global optimization algorithm that
combining PSO with DE. Mirsadeghi and Panahi
[11] proposed a new hybridized ABC with SA in
order to improve the ABC search performance and
decrease its computational cost. The authors
incorporate the SA exploration/exploitation
balancing strategy with the original ABC algorithm.
Agasthiya and Latha Mercy [12] combined two
heuristic optimization algorithms: ABC and GA.
The authors run the ABC algorithm first until the
stopping criterion is met. Then, they used the final
population generated by the ABC as a starting point
to GA to solve the economic load dispatch (ELD)
problem. Shi and Jia [13] proposed a combinatorial

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

24

ABC version, named HABC-SA, to solve the
travelling salesman problem (TSP). The crossover
and mutation operators are applied to do a local
search (i.e. complete neighbourhood search) and the
SA is imported to increase the food sources
diversity. Yurtkuran and Emel [14] applied a new
solution acceptance rule instead of greedy selection
between old and new solutions with the acceptance
probability of worse candidate solutions. The
authors also employ three distinct search equations
with varying intensification and diversification
abilities. Rahmi et al. [15] proposed a hybrid SA-
GA algorithm to solve the distribution problem. The
SA algorithm based on the crossover process is
utilized to generate the initial population for GA.
The current work is a step forward in this regards.
The novelty of this work is utilizing the advantages
of SA into two different places: (i) using SA based
on the uniform crossover to improve the initial
(randomly generated) food source set of the ABC;
(ii) applying the Yurtkuran and Emel [14]'s
acceptance rule in place of greedy selection through
only the employed bee phrase to improve the
diversification.

The rest of this paper is organized as
follows. Section 2 outlines two optimization
algorithms, ABC and SA algorithms. Section 3
describes a new hybridized ABC-SA algorithm. A
summary of the stream cipher systems and
modeling of current work are given in Section 4.
Section 5 presents the results of the experiments we
have carried out on various stream cipher system
parameters and compares the stability and rate of
convergence of the two optimization algorithms on
this problem. Section 6 presents a summary
discussion.

2. OPTIMIZATION ALGORITHMS

In the current work, two popular
optimization algorithms are used that are artificial
bee colony algorithm (ABC) and simulated
annealing (SA). The reasons behind the selection
of these two algorithms are because these
algorithms have verified to be effective and
powerful in search processes, and have gotten
(near) optimal solutions, making them approved for
solving large and complex problems.

2.1 Artificial bee colony (ABC) algorithm

In the ABC algorithm, the artificial bees’
colony consists of three groups [16]: (1) employed
bees going to the food source, which is a feasible
solution to the problem to be optimized, that they
have visited previously; (2) onlookers waiting to

choose a food source; and (3) scouts carrying out
random search. In the colony, the first half includes
the employed artificial bees and the second half
consists of the onlookers and scouts. Both the
number of employed bees and the number of food
sources are equal. The employed bee of an
abandoned food source becomes a scout. The
pseudo-code of the original ABC algorithm is
shown in Figure 1 [17].

ABC follows three steps during each
cycle: (i) moving both the employed and onlooker
bees onto the food sources; (ii) calculating their
nectar amounts (fitness value); and (iii) determining
the scout bees and then moving them randomly
onto the possible food sources.

The ABC algorithm has been widely used
in many optimization applications since it is easy to
implement and has fewer control parameters than
the other popular algorithms such as GA.

2.2 Simulated Annealing algorithm

Simulated annealing (SA) is an
optimization algorithm, which is deduced from the
metals annealing process. In SA, a temperature is
defined as the algorithm parameter and is gradually
reduced with increasing the iterations. The SA
works as follows: initial iteration, a particle (i.e. an
initial point) is randomly generated in the state-
space which is named “particle”. In the next
iteration, a new point is randomly generated in the
particle neighborhood and the temperature is
reduced by the cooling strategy. The fitness of the
first point is compared with the second one. If the
second one is better, the particle will move to the
second point and this movement is named the
downhill movement since the particle moves
towards a fitter point; otherwise, dividing the
current temperature on the initial one. A value
between 0 and 1 is produced that is called the uphill
movement probability. Next, a randomly generated
real value between 0 and 1 is compared with the
uphill movement probability. If it is larger, uphill
movement, i.e. moving towards a worse point
hoping to meet with a batter point in its
neighborhood, will take place. The algorithm
terminates until the stopping criterion, such as the
number of iterations or the temperature, is met. The
temperature here is the most creative part of SA
that controls the exploitation/exploration
capabilities at different search process stages. The
pseudo-code of the SA algorithm is shown in
Figure 2 [2].

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

25

3. HYBRID ARTIFICIAL BEE COLONY AND

SIMULATED ANNEALING (ABC-SA)

ALGORITHM

 Each of the ABC and SA algorithms has
good and weak points that may make them work
well in some problems and not well in some others.
The ABC-SA algorithm combines the advantages
of faster computation of the original ABC
algorithm with the robustness of SA to exploit the
unique advantage of each algorithm, reduce its
computational cost, and increase the global search
capability.

The current ABC-SA algorithm applies
SA into different manners:

(i) In its early search stages, the hybrid algorithm
focuses mostly on looking for promising areas
by applying SA processes to improve the initial
set of food source (population) of the ABC that
randomly generated. After the initial
population is generated and evaluated, the SA
is performed for each solution (see Figure 3,
step 4). During the SA process, we used the
GA crossover operator, uniform crossover
(UX), which exchanges building blocks
between two individuals with a specific
probability to create a new solution. Next, the
best solutions obtained from the SA are the
starting population for the next cycles;

(ii) When the search space promising areas have
been well identified, the hybrid ABC-SA
algorithm allows higher exploitation levels by
selecting a candidate food source based on the
SA idea in order to keep the balance of
convergence speed and convergence precision.
SA has the ability to escape from local
optimum solution, especially when hybrid with
other algorithms since it accepts worse
solutions at a particular probability in the
neighbor-searching period.

To achieve this, we follow the solution
acceptance rule that proposed by Yurtkuran
and Emel [14] (see Figure 3, step 8), but in
place of the greedy selection process in
employed bee phase only, not like [14] for both
employed bee phase and onlookers bee phase,
because it is responsible for diversification.
The worst solution may have a chance to be
accepted as the new solution according to
acceptance probability. By doing this, the
process may jump out of local optimum and
explore the search space in an active way.

In hybrid ABC-SA algorithm, if the worst
solution is generated during the employed bee
phase, it is processed using the following: if

the generated solution vij has an equal or better
fitness f(vij) than the fitness of old source f(xij),
then vij is chosen as the candidate solution.
Otherwise, the new solution vij is accepted if a
random number within the range [0,1] is less
than a probability Pa that is explained in
Equation 1, else xij is chosen as the candidate
solution.

Pa= P0 ((1+cos((iter/MaxIter) ) × 0.5), (1)

where P0 is the initial probability, iter and
MaxIter denote the current and maximum
iteration number. As can be seen from
Equation 1, the acceptance probability Pa is
nonlinearly decreased from P0 to 0 during the
search process. The range of Pa is [0, P0]. The
trial counter is incremented, regardless of a
worse candidate solution is accepted or not.

The hybrid ABC-SA algorithm may be

able to cover each component weaknesses and has a
better performance than its component. The
pseudo-code of this algorithm is shown in Figure 3.

4. APPLICATION

a. Stream cipher systems

In order to check the effectiveness of the
hybrid ABC-SA algorithm, we tested it for
breaking stream cipher systems (SCs) with a known
plaintext attack, which is a complicated problem
and challenging. SCs convert a plaintext to a
ciphertext one bit at a time. The output bits stream
(K1, …, Ki) of the keystream generator is XORed
with plaintext bits stream (P1, …, Pi) to produce
ciphertext bits (C1, ..., Ci). At the decryption end,
the ciphertext bits are XORed with an identical
keystream to recover the plaintext bits as shown in
Figure 4 [18].

Figure 4: Stream Cipher Encryption System

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

26

The linear feedback shift register (LFSR)

is the main component of the keystream generator
that consists of two parts: the shift register and
feedback function as shown in Figure 5.

Figure 5: Linear Feedback Shift Register (LFSR) System

As it can be seen in Figure 5, all the bits
(bn,…,b1) in the shift register are shifted to the right.
The new left-most bit is computed as a function of
the other bits [2]. The period of the shift register is
the length of the output sequence before it starts
repeating. Moreover, more than one LFSR may
generate a binary sequence and the short one that
generating this sequence is known as the linear
equivalence. The LFSR characteristics polynomial
is named the minimal polynomial with degree equal
to the linear equivalence. In addition to the number
of LFSR bits is equal to that of the linear
equivalence of the sequence generated from that
register.

b. Modeling

In the current experiments, the main goal
of using hybrid ABC-SA algorithm is to find the
linear equivalence of a given key stream through
finding: Initial state, feedback function, and shift
register length, with knowing part of the plain text
that a cipher text and part of it are known.

The food source is represented as a binary
string (a0,…,aLx) with variable lengths and an even
length, Lx. It is divided into two equal parts, one for
the feedback function (a0,…,a(Lx/2)-1) and the other
for the initial state of the LFSR equivalent to the
attacked generator (a(Lx/2),…,aLx-1) as shown in
Figure 6.

Figure 6: Current food source structure

The nectar (fitness) value is the percentage

matching between the knowing part of the plaintext
and the generated text as the number of matched
bits between them when the highest matching is
better as explained in the following equation.

fitness(X)= (


n

i 1

(1-|Ai-Bi|)/n)×100, (2)

where x is an individual, n is the length of the
knowing part of the plaintext, Ai is ith bit of the
knowing part of the plaintext, and Bi is ith bit of the
generated text. The best value for fitness is equal to
n, which means the knowing part of the plaintext
and the generated text are identical.

 We used the hybrid ABC-SA algorithm
with the following settings:

 The colony size is 20 solutions;
 The percentages of onlooker bees and

employed bees were 50% of the colony;
 The number of scout bees was selected as one;
 The maximum number of cycles for foraging is

1000 cycles. The algorithm terminates when
either a maximum number of cycles has been
produced, or a fitness value of an individual
equals to the length of the knowing part of the
plaintext.

5. EXPERIMENTAL RESULTS

In this section, we will answer the question
as to which algorithm (original ABC algorithm or
hybrid ABC-SA algorithm) works best for our task?
To answer the above question, we need to answer
two main subsidiary questions: (i) how good a
value does it produce?; and (ii) how quickly does it
produce this value?

Feedback
Polynomial
Coefficients

a
0

a
1 … a 1

2


lx a
2

lx … a 1lx

Initial State

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

27

In general, to answer the above questions,
we have to experiment to find out, since they are
applications-independent. Generally, the most
serious challenge in the use of optimization
algorithms is concerned with the quality of the
results, in particular, whether or not an optimal
solution is being reached. One way of providing
some degree of insurance is to compare results
obtained for N times under different seeds of the
initial population. We, therefore, performed both
algorithms three times with different random seeds
for each run and the same initial seed for both
algorithms.

To assess the reliability of the original
ABC and hybrid ABC-SA algorithm, we calculate
the average performance (fitness) and cycles of
them for the whole set of runs. A more reliable
algorithm should produce (in our case) a higher
value for mean, preferably near to the global
maximum one.

In the current work, four diverse
experiments are performed.

Experiment 1

In the first experiment, a linear stream
cipher is chosen with different LFSR lengths and
constant length of known key stream equals to 20-
bit. The results are shown in Table 1.

As it can be seen from the results
presented in Table 1, the hybrid ABC-SA algorithm
the outperforms original ABC algorithm in all runs
in terms of the quality of the results (average of the
reliability of results is 100% compared to 88% for
the original ABC) and the number of cycles (the
hybrid ABC-SA algorithm takes less average
number of cycles than the original ABC algorithm
for all tests). The original ABC algorithm also fails
to get correct results when LFSR length more than
7. Besides that, whenever the length of the shift
register increases (key size), the average number of
cycles increases too.

Experiment 2

This experiment is for examining the
effect of the known key stream length on the
convergence speed. Linear stream cipher with the
shift register of length 5 bits is chosen. Table 2
shows the results of this experiment.

The first thing to note in Table 2 that the
hybrid ABC-SA algorithm outperforms the original
ABC algorithm in terms of the number of cycles for
the most length of the known key stream. Both
algorithms are fully reliable.

Experiment 3

In the third experiment, two known
nonlinear stream cipher systems, which are the
Hadmard system (Figure 7) and the Bruer system
(Figure 8), are adopted. The GCD(k1, …, kn) should
be equal to 1. The results of this experiment are
illustrated in Table 3 for the known keystream
length equals 15-bits.

Figure 7: General diagram of Hadmard system.

Figure 8: General diagram of Bruer system.

As it can be seen from the Table 3, the

hybrid ABC-SA algorithm obtains the best result
with less number of cycles compared with the
original ABC. In addition, the average number of
cycles of Bruer system is greater than that of the
Hadmard system for both algorithms. This is
because the nonlinearity degree of Bruer system is
greater. Furthermore, we note that the nonlinear
systems need more time to be broken than the linear
systems because the nonlinearity degree of the key
generator is greater.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

45

55

65

75

85

95

105

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

Fi
tn

es
s

Cycle

The performance of ABC

Best fitness Mean fitness

Experiment 4

For the purpose of comparing the behavior
of the hybrid ABC-SA algorithm more clearly with
the behavior of the original ABC, we used
‘performance graphs’ [19]. This a graph is a curve
showing the best individual performance in the
population in addition to the average performance
of the entire population over the chosen number of
cycles.

Figure 9: The performance of ABC.

Figure 10: The performance of hybrid ABC-SA.

Figures 9 and 10 demonstrate plots of the
best and average values of the fitness across 100
cycles for both the original ABC algorithm and the
hybrid ABC-SA algorithm respectively, where both
algorithms have been run with the same initial
population and the same colony size (population) of
20. The other settings are the same for both
algorithms. In these graphs, the x-axis indicates
how many cycles have been created and evaluated
at the particular point in the run, and the y-axis
represents the fitness value at that point.

The first thing to note in Figure 9 is that
the best fitness is around doubled over the 300
cycles. The best fitness curve rises slowly at the
beginning of the experiment (until cycle 39), but
stays flat after cycle 40 until the end, with very
small increments at cycles 2, 20, 34, 36 and 39
respectively. This algorithm gets the optimal fitness
at cycle 39. The average fitness curve rises nearly
gradual and the population converges nearly on the
best solution at the beginning of the experiment
(until cycle 39), but then it shows erratic behavior
between 68 and 79 (apart from very minor
increments at cycles 19-22).

On the other hand, the best fitness curve
obtained by the hybrid ABC-SA algorithm in
Figure 10 shows an even steeper improvement at
the beginning of the experiment (until cycle 9),
which converges very quickly to the best fitness but
stays flat for the end. The average fitness curve
starts with gradual improvement and the population
converges nearly on the best solution at the
beginning of the experiment (until cycle 8), and
then it shows erratic behavior between 72 and 82
(again apart from very minor decrements at cycles
15, 24 and 59 respectively and very minor
increments at cycles 210-214 and 298-300
respectively). Besides, the average fitness obtained
by the hybrid algorithm is a higher value than that
for original ABC by around three.

To conclude, as it can be seen from the
results presented in experiments 1-4, hybrid ABC-
SA algorithm outperforms ABC in all runs in terms
of the quality of the results (this is the answer for
the first question) and the convergence speed of the
hybrid ABC-SA is better than ABC under the same
conditions (this is the answer for the second
question).

The present findings of these experiments
are encouraging and prove that using selection
process for employed bee phase differ from that
used in onlookers bee phase will explore the search
space in an active way because it takes the
advantages of both selection processes. Further
work in this regard would be very worthwhile.

6. CONCLUSIONS

A new hybridized artificial bee colony
algorithm with simulated annealing (ABC-SA) is
presented in the current work. To keep the balance
of convergence speed and convergence precision,
SA is repaired the initial food sources of ABC and

45

55

65

75

85

95

105

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

Fi
tn

es
s

Cycle

The performance of hybrid ABC-SA

Best fitness Mean fitness

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

is imported to select the candidate solution with a
probability of acceptance to select the worst
solution during the employed bee phase instead of
the greedy selection that is used in the original
algorithm.

The hybrid ABC-SA algorithm is tested on
breaking stream cipher systems with a known
plaintext attack. The algorithm should find the
shortest LFSR which generates a sequence of key
stream knowing part of it. We have carried out a
number of experiments on linear/non-linear stream
cipher system using original ABC algorithm and
hybrid ABC-SA algorithm.

The simulation results of these
experiments show that the performance of the
hybrid ABC-SA algorithm, in terms of the quality
of results, convergence speed and avoidance of
local maxima, is better than the original ABC
algorithm under the same conditions. Its
performance is very good in terms of the local and
the global optimization due to the selection
schemes employed and the neighbor production
mechanism used. Moreover, the nonlinear stream
cipher systems need more time for breaking it than
the linear one because the degree of nonlinearity is
greater. Consequently, it can be concluded that the
hybrid ABC-SA algorithm based approach can
successfully be used in the optimization of breaking
linear and nonlinear stream cipher systems

We intend to investigate other techniques
between the ABC algorithm and the SA algorithm.
Further experimental investigations are needed to
hybridizing other optimization techniques, such as
PSO, DE, GA, and others.

Another interesting task for future
exploration is testing a stacking technique between
two algorithms.

REFERENCES:

[1] D. Karaboga and B. Basturk, "A powerful and

efficient algorithmfor numerical function
optimization: artificial bee colony (ABC)
algorithm," Journal of Global Optimization,
vol. 39, pp. 459–471, 2007.

[2] A. Scollen and T. Hargraves, Simulated
Annealing: Introduction, Applications and
Theory: Nova Science Pub. Inc., 2018.

[3] L. Jacobson and B. Kanber, Genetic
Algorithms in Java Basics: Springer, 2015.

[4] M. Clerc, Particle Swarm Optimization, 1st
ed.: Wiley-ISTE, 2006.

[5] K. Price, R. Storn, and J. Lampinen,
Differential Evolution: A Practical Approach

to Global Optimization Springer-Verlag
Berlin, 2011.

[6] D. Simon, Evolutionary Optimization
Algorithms, 1st ed.: Wiley, 2013.

[7] C. F. Juang, "A hybrid of genetic algorithm
and particle swarm optimization for recurrent
network design," Secondary A hybrid of
genetic algorithm and particle swarm
optimization for recurrent network design,
vol. 34, pp. 997-1006, 2004.

[8] A. Chen, G. Yang, and Z. Wu, "Hybrid
discrete particle swarm optimization
algorithm for capacitated vehicle routing
problem," Secondary Hybrid discrete particle
swarm optimization algorithm for capacitated
vehicle routing problem, vol. 7, pp. 607-614,
2006.

[9] W. Xia and Z. Wu, "An effective hybrid
optimization approach for multi-objective
flexible job-shop scheduling problems,"
Secondary An effective hybrid optimization
approach for multi-objective flexible job-shop
scheduling problems, vol. 48, pp. 409-425,
2005.

[10] B. Niu and L. Li, "A novel PSO-DE-based
hybrid algorithm for global optimization,"
Secondary A novel PSO-DE-based hybrid
algorithm for global optimization, pp. 156-
163, 2008.

[11] E. Mirsadeghi and M. S. Panahi, "Hybridizing
Artificial Bee Colony with Simulated
Annealing," International Journal of Hybrid
Information Technology, vol. 5, pp. 11-18,
2012.

[12] R. Agasthiya and E. Latha Mercy, "A Hybrid
ABC-GA Solution for the Economic Dispatch
of Generation in Power System,"
International Journal of Computer
Applications, pp. 5-10, 2013.

[13] P. Shi and S. Jia, "A Hybrid Artificial Bee
Colony Algorithm Combined with Simulated
Annealing Algorithm for Traveling Salesman
Problem," presented at the International
Conference on Information Science and
Cloud Computing Companion, Guangzhou,
China, 2014.

[14] A. Yurtkuran and E. Emel, "An Enhanced
Artificial Bee Colony Algorithm with
Solution Acceptance Rule and Probabilistic
Multisearch," Computational Intelligence and
Neuroscience, p. 13, 2016.

[15] A. Rahmi, W. F. Mahmudy, and S. Anam, "A
Crossover in Simulated Annealing for
Population Initialization of Genetic Algorithm
to Optimize the Distribution Cost," Journal of

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

Telecommunication, Electronic and Computer Engineering, vol. 9, pp. 177-182, 2017.
[16] D. Karaboga, B. Gorkemli, C. Ozturk, and N.

Karaboga, "A comprehensive survey:
artificial bee colony (ABC) algorithm and
applications," Artificial Intelligence Review,
vol. 42, pp. 21–57, 2014.

[17] B. Akay and D. Karaboga, "A Modified
Artificial Bee Colony Algorithm for Real-
Parameter Optimization," Information
Sciences, vol. 192, pp. 120-142, 2012.

[18] C. Paar and J. Pelzl, Understanding
Cryptography: A Textbook for Students and
Practitioners: Springer Berlin Heidelberg,
2010.

[19] M. Negnevitsky, Artificial Intelligence: A
Guide to Intelligent Systems, 3rd ed. England:
Pearson Education-Addison Wesley, 2011.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

SN size of the population.
D number of optimization parameters.
xi j solution i,j, i = 1 ...SN, j = 1 ...D

1: Initialize the population of solutions xi, j , i = 1...SN, j = 1...D, triali = 0;
2: Evaluate the population;
3: cycle = 1;
4: Repeat
5: Produce new solutions vi j for the employed bees (using vi j = xi j +i j(xi j −xk j), where k  {1, ...,SN}and

i j is a random number between [-1,1]) and evaluate them;
6: Apply the greedy selection process for the employed bees (if the new solution vi j has an equal or better

nectar (fitness) than the old source, it is replaced with the old one in the memory. Otherwise, the old one
is retained in the memory);

7: Calculate the probability values pi = fiti/ fiti , i=1..SN for the solutions xi;
8: Produce the new solutions vi j for the onlookers from the solutions xi selected depending on pi and

evaluate them;
9: Apply the greedy selection process for the onlookers;
10: Determine the abandoned solution for the scout, if exists, and replace it with a new randomly produced

solution xi by xj
i = xj

min+rand[0,1](xj
max-xj

min);
11: Memorize the best solution achieved so far;
12: cycle = cycle+1;
13: Until (cycle = maximum cycle number);

Figure 1: Pseudo-code of the original ABC algorithm.

1: Initialize Scurrent;
2: T= <some high value>;
3: While T > <specific value>
4: For iteration= 1 to <some constant value>
5: Scandidate = Scurrent
6: E = Error(Scandidate) - Error(Scurrent)
7: If E ≤ 0
8: Scurrent = Scandidate
9: Else
10: prob = e (-E/T)
11: If rand(0,1) ≤ prob
12: Scurrent = Scandidate
13: Endif
14: Endif
15: Endfor
16: decrement T
17: Endwhile

Figure 2: Pseudo-code of the SA algorithm.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

SN size of the population.
D number of optimization parameters.
xi j solution i,j, i = 1 ...SN, j = 1 ...D

1: Set parameters: P0, SN, MaxIter
2: Initialize the population of solutions xi, j , i = 1...SN, j = 1...D, triali = 0;
3: Evaluate the population;

// the first updating: using of the SA algorithm to repair the initial population
……………………………………………………………………………………………………

4: Run SA based crossover operator on the randomly generated population to generate best values for all
individuals and pass these individuals to rest steps as starting population.
……………………………………………………………………………………………………

5: iter = 1;
6: Repeat

 // EMPLOYED BEE PHASE

7: Produce new solutions vi j for the employed bees (using vi j = xi j +i j(xi j −xk j), where k  {1, ...,SN} and

i j is a random number between [-1,1]) and evaluate them;

// the second updating: using of the solution acceptance rule that proposed by Yurtkuran and Emel [14] for

employed bee phase only (in [14] the author used this technique for both employed bee phase and
onlookers bee phase

…………………………………………………………………………………………………….
8: If the new solution vi j has an equal or better nectar (fitness) than the old source then

 xi j= vi j;
 triali = 0;
Else

 Calculate Pa= P0 ((1+cos((iter/MaxIter) ) × 0.5)
 If rand[0,1] < Pa then
 xi j= vi j;
 Endif
 triali = triali +1;
Endif
……………………………………………………………………………………………………

9: Calculate the probability values pi = fiti/ fiti , i=1..SN for the solutions xi;
10: Produce the new solutions vi j for the onlookers from the solutions xi selected depending on pi and evaluate

them;
11: Apply the greedy selection process for the onlookers;
12: Determine the abandoned solution for the scout, if exists, and replace it with a new randomly produced

solution xi by x ji = xj min+rand[0,1](xj max-xj min);
13: Memorize the best solution achieved so far;

14: iter = iter +1;
15: Until (iter > MaxIter OR the best solution fitness is reached the maximum value);

Figure 3: Pseudo-code of the hybrid ABC-SA algorithm.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

Table 1: Comparison between classic ABC and hybrid ABC-SA algorithm for three runs, different LFSR lengths with
constant known keystream length

Test LFSR length
Original ABC algorithm Hybrid ABC-SA algorithm

Mean of cycles Mean of fitness Mean of cycles Mean of fitness

1 4 22 100% 12 100%
2 5 38 100% 15 100%
3 6 244 100% 16 100%

4 7 177 100% 36 100%
5 8 1000 69% 55 100%
6 9 1000 99% 62 100%

7 10 1000 90% 143 100%
8 11 1000 77% 366 100%
9 12 1000 81% 421 100%

10 13 1000 65% 513 100%

Table 2: Comparison between original ABC and hybrid ABC-SA algorithm for three runs, constant LFSR length with
different known keystream lengths

Test Known keystream length
Original ABC algorithm Hybrid ABC-SA algorithm

Mean of cycles Mean of fitness Mean of cycles Mean of fitness
1 10 25 100% 11 100%

2 15 31 100% 14 100%
3 20 67 100% 16 100%
4 25 51 100% 12 100%

5 30 71 100% 18 100%
6 35 44 100% 12 100%

7 40 25 100% 15 100%
8 45 32 100% 17 100%
9 50 39 100% 10 100%

10 55 37 100% 11 100%

Table 3: Comparison between original ABC and hybrid ABC-SA algorithm for three runs, two non-linear stream
cipher systems

System name LFSR length
Original ABC algorithm Hybrid ABC-SA algorithm

Mean of cycles Mean of fitness Mean of cycles Mean of fitness
Hadmard 2,3 67 100% 46 100%

Bruer 2,3 86 100% 54 100%
Average 77 100% 50 100%

