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ABSTRACT 
 

A new hybrid evolution algorithm (ABC-SA), i.e. artificial bee colony algorithm (ABC) with multi 
simulated annealing (SA) using, is presented. In ABS-SA procedure, the ABC provides a global search and 
the SA algorithm provides local search. SA processes are used to improve the original ABC algorithm into 
two different manners: (i) repair the initial food sources of ABC, which is generally carried out randomly, 
in order to look for promising areas; and (ii) selecting a candidate food source because SA can escape from 
local optimum point by accepting worse solutions at a particular probability in the neighbor searching 
period.  

The ABC-SA algorithm has been applied to break a number of linear and nonlinear stream cipher systems, 
which is one of the hard electronic cipher systems because of high security and difficulty in breaking it.  

The current findings are encouraging. Comparison of the results indicated that in most cases the ABC-SA 
algorithm outperforms the original ABC algorithm. 
 

Keywords: Artificial Bee Colony Algorithm, Simulated Annealing, Hybrid algorithm, Stream Cipher 
System 

 
 
1. INTRODUCTION  
 

Optimization plays a key role in many 
fields and applications. A number of algorithms 
have been offered in this regard such as artificial 
bee colony (ABC) [1], simulated annealing (SA) 
[2], genetic algorithm (GA) [3], particle swarm 
optimization (PSO) [4], differential evolution (DE) 
[5], and others [6]. Each of these algorithms has 
good and weak points that make them work good in 
a set of problems and weak in some other problems. 
Therefore, one popular way to cover the weakness 
of each algorithm and have a better performance 
than can be obtained by any of them in isolation is 
by hybridizing them. Many authors in the literature 
have proposed different hybridizing strategies in 
this regard. Some of these strategies are briefly 
explained in the following lines. 

Juang [7] combined GA with PSO, named 
HGAPSO. The author applied HGAPSO algorithm 

to recurrent neural-fuzzy network design. Chen et 
al. [8] proposed hybrid discrete PSO (DPSO) with 
both global and local search to find optimal results. 
Xia and Wu [9] designed a hybrid GA and SA for a 
dual-resource constrained job shop-scheduling 
problem. Niu and Li [10] proposed PSODE, a new 
hybrid global optimization algorithm that 
combining PSO with DE. Mirsadeghi and Panahi 
[11] proposed a new hybridized ABC with SA in 
order to improve the ABC search performance and 
decrease its computational cost. The authors 
incorporate the SA exploration/exploitation 
balancing strategy with the original ABC algorithm. 
Agasthiya and Latha Mercy [12] combined two 
heuristic optimization algorithms: ABC and GA. 
The authors run the ABC algorithm first until the 
stopping criterion is met. Then, they used the final 
population generated by the ABC as a starting point 
to GA to solve the economic load dispatch (ELD) 
problem. Shi and Jia [13] proposed a combinatorial 



Journal of Theoretical and Applied Information Technology 
15th January 2019. Vol.97. No 1 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
24 

 

ABC version, named HABC-SA, to solve the 
travelling salesman problem (TSP). The crossover 
and mutation operators are applied to do a local 
search (i.e. complete neighbourhood search) and the 
SA is imported to increase the food sources 
diversity. Yurtkuran and Emel [14] applied a new 
solution acceptance rule instead of greedy selection 
between old and new solutions with the acceptance 
probability of worse candidate solutions. The 
authors also employ three distinct search equations 
with varying intensification and diversification 
abilities. Rahmi et al. [15] proposed a hybrid SA-
GA algorithm to solve the distribution problem. The 
SA algorithm based on the crossover process is 
utilized to generate the initial population for GA. 
The current work is a step forward in this regards. 
The novelty of this work is utilizing the advantages 
of SA into two different places: (i) using SA based 
on the uniform crossover to improve the initial 
(randomly generated) food source set of the ABC; 
(ii) applying the Yurtkuran and Emel [14]'s 
acceptance rule in place of greedy selection through 
only the employed bee phrase to improve the 
diversification. 

The rest of this paper is organized as 
follows. Section 2 outlines two optimization 
algorithms, ABC and SA algorithms. Section 3 
describes a new hybridized ABC-SA algorithm. A 
summary of the stream cipher systems and 
modeling of current work are given in Section 4. 
Section 5 presents the results of the experiments we 
have carried out on various stream cipher system 
parameters and compares the stability and rate of 
convergence of the two optimization algorithms on 
this problem. Section 6 presents a summary 
discussion. 

2. OPTIMIZATION ALGORITHMS 

In the current work, two popular 
optimization algorithms are used that are artificial 
bee colony algorithm (ABC) and simulated 
annealing (SA).  The reasons behind the selection 
of these two algorithms are because these 
algorithms have verified to be effective and 
powerful in search processes, and have gotten 
(near) optimal solutions, making them approved for 
solving large and complex problems. 

 
2.1 Artificial bee colony (ABC) algorithm 

In the ABC algorithm, the artificial bees’ 
colony consists of three groups [16]: (1) employed 
bees going to the food source, which is a feasible 
solution to the problem to be optimized, that they 
have visited previously; (2) onlookers waiting to 

choose a food source; and (3) scouts carrying out 
random search. In the colony, the first half includes 
the employed artificial bees and the second half 
consists of the onlookers and scouts. Both the 
number of employed bees and the number of food 
sources are equal. The employed bee of an 
abandoned food source becomes a scout. The 
pseudo-code of the original ABC algorithm is 
shown in Figure 1 [17]. 

ABC follows three steps during each 
cycle: (i) moving both the employed and onlooker 
bees onto the food sources; (ii) calculating their 
nectar amounts (fitness value); and (iii) determining 
the scout bees and then moving them randomly 
onto the possible food sources. 

The ABC algorithm has been widely used 
in many optimization applications since it is easy to 
implement and has fewer control parameters than 
the other popular algorithms such as GA. 

 
2.2 Simulated Annealing algorithm 

Simulated annealing (SA) is an 
optimization algorithm, which is deduced from the 
metals annealing process. In SA, a temperature is 
defined as the algorithm parameter and is gradually 
reduced with increasing the iterations. The SA 
works as follows: initial iteration, a particle (i.e. an 
initial point) is randomly generated in the state-
space which is named “particle”. In the next 
iteration, a new point is randomly generated in the 
particle neighborhood and the temperature is 
reduced by the cooling strategy. The fitness of the 
first point is compared with the second one. If the 
second one is better, the particle will move to the 
second point and this movement is named the 
downhill movement since the particle moves 
towards a fitter point; otherwise, dividing the 
current temperature on the initial one. A value 
between 0 and 1 is produced that is called the uphill 
movement probability. Next, a randomly generated 
real value between 0 and 1 is compared with the 
uphill movement probability. If it is larger, uphill 
movement, i.e. moving towards a worse point 
hoping to meet with a batter point in its 
neighborhood, will take place. The algorithm 
terminates until the stopping criterion, such as the 
number of iterations or the temperature, is met. The 
temperature here is the most creative part of SA 
that controls the exploitation/exploration 
capabilities at different search process stages. The 
pseudo-code of the SA algorithm is shown in 
Figure 2 [2]. 
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3. HYBRID ARTIFICIAL BEE COLONY AND 

SIMULATED ANNEALING (ABC-SA) 

ALGORITHM 

 Each of the ABC and SA algorithms has 
good and weak points that may make them work 
well in some problems and not well in some others. 
The ABC-SA algorithm combines the advantages 
of faster computation of the original ABC 
algorithm with the robustness of SA to exploit the 
unique advantage of each algorithm, reduce its 
computational cost, and increase the global search 
capability.  

The current ABC-SA algorithm applies 
SA into different manners:  

  

(i) In its early search stages, the hybrid algorithm 
focuses mostly on looking for promising areas 
by applying SA processes to improve the initial 
set of food source (population) of the ABC that 
randomly generated. After the initial 
population is generated and evaluated, the SA 
is performed for each solution (see Figure 3, 
step 4). During the SA process, we used the 
GA crossover operator, uniform crossover 
(UX), which exchanges building blocks 
between two individuals with a specific 
probability to create a new solution. Next, the 
best solutions obtained from the SA are the 
starting population for the next cycles; 

(ii) When the search space promising areas have 
been well identified, the hybrid ABC-SA 
algorithm allows higher exploitation levels by 
selecting a candidate food source based on the 
SA idea in order to keep the balance of 
convergence speed and convergence precision. 
SA has the ability to escape from local 
optimum solution, especially when hybrid with 
other algorithms since it accepts worse 
solutions at a particular probability in the 
neighbor-searching period.  

To achieve this, we follow the solution 
acceptance rule that proposed by Yurtkuran 
and Emel [14] (see Figure 3, step 8), but in 
place of the greedy selection process in 
employed bee phase only, not like [14] for both 
employed bee phase and onlookers bee phase, 
because it is responsible for diversification. 
The worst solution may have a chance to be 
accepted as the new solution according to 
acceptance probability. By doing this, the 
process may jump out of local optimum and 
explore the search space in an active way. 

In hybrid ABC-SA algorithm, if the worst 
solution is generated during the employed bee 
phase, it is processed using the following: if 

the generated solution vij has an equal or better 
fitness f(vij) than the fitness of old source f(xij), 
then vij is chosen as the candidate solution. 
Otherwise, the new solution vij is accepted if a 
random number within the range [0,1] is less 
than a probability Pa that is explained in 
Equation 1, else xij is chosen as the candidate 
solution. 
 
Pa= P0 ((1+cos((iter/MaxIter) ) × 0.5),      (1) 

 
where P0 is the initial probability, iter and 
MaxIter denote the current and maximum 
iteration number. As can be seen from 
Equation 1, the acceptance probability Pa is 
nonlinearly decreased from P0 to 0 during the 
search process. The range of Pa is [0, P0]. The 
trial counter is incremented, regardless of a 
worse candidate solution is accepted or not. 

 
The hybrid ABC-SA algorithm may be 

able to cover each component weaknesses and has a 
better performance than its component. The 
pseudo-code of this algorithm is shown in Figure 3. 

 
4. APPLICATION 

a. Stream cipher systems 

In order to check the effectiveness of the 
hybrid ABC-SA algorithm, we tested it for 
breaking stream cipher systems (SCs) with a known 
plaintext attack, which is a complicated problem 
and challenging. SCs convert a plaintext to a 
ciphertext one bit at a time. The output bits stream 
(K1, …, Ki) of the keystream generator is XORed 
with plaintext bits stream (P1, …, Pi) to produce 
ciphertext bits (C1, ..., Ci).  At the decryption end, 
the ciphertext bits are XORed with an identical 
keystream to recover the plaintext bits as shown in 
Figure 4 [18]. 

 

 

Figure 4: Stream Cipher Encryption System 
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The linear feedback shift register (LFSR) 

is the main component of the keystream generator 
that consists of two parts: the shift register and 
feedback function as shown in Figure 5. 

 

Figure 5: Linear Feedback Shift Register (LFSR) System 

 

As it can be seen in Figure 5, all the bits 
(bn,…,b1) in the shift register are shifted to the right. 
The new left-most bit is computed as a function of 
the other bits [2]. The period of the shift register is 
the length of the output sequence before it starts 
repeating. Moreover, more than one LFSR may 
generate a binary sequence and the short one that 
generating this sequence is known as the linear 
equivalence. The LFSR characteristics polynomial 
is named the minimal polynomial with degree equal 
to the linear equivalence. In addition to the number 
of LFSR bits is equal to that of the linear 
equivalence of the sequence generated from that 
register. 

 
b. Modeling 

In the current experiments, the main goal 
of using hybrid ABC-SA algorithm is to find the 
linear equivalence of a given key stream through 
finding: Initial state, feedback function, and shift 
register length, with knowing part of the plain text 
that a cipher text and part of it are known. 

The food source is represented as a binary 
string (a0,…,aLx) with variable lengths and an even 
length, Lx. It is divided into two equal parts, one for 
the feedback function (a0,…,a(Lx/2)-1) and the other 
for the initial state of the LFSR equivalent to the 
attacked generator (a(Lx/2),…,aLx-1) as shown in 
Figure 6.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 6: Current food source structure 

 
The nectar (fitness) value is the percentage 

matching between the knowing part of the plaintext 
and the generated text as the number of matched 
bits between them when the highest matching is 
better as explained in the following equation. 

 

fitness(X)= (


n

i 1

(1-|Ai-Bi|)/n)×100,            (2)  

 
where x is an individual, n is the length of the 
knowing part of the plaintext, Ai is ith bit of the 
knowing part of the plaintext, and Bi is ith bit of the 
generated text. The best value for fitness is equal to 
n, which means the knowing part of the plaintext 
and the generated text are identical. 
 

 We used the hybrid ABC-SA algorithm 
with the following settings: 

 
 The colony size is 20 solutions; 
 The percentages of onlooker bees and 

employed bees were 50% of the colony; 
 The number of scout bees was selected as one; 
 The maximum number of cycles for foraging is 

1000 cycles. The algorithm terminates when 
either a maximum number of cycles has been 
produced, or a fitness value of an individual 
equals to the length of the knowing part of the 
plaintext. 

 
5. EXPERIMENTAL RESULTS 

In this section, we will answer the question 
as to which algorithm (original ABC algorithm or 
hybrid ABC-SA algorithm) works best for our task?  
To answer the above question, we need to answer 
two main subsidiary questions: (i) how good a 
value does it produce?; and (ii) how quickly does it 
produce this value?  

Feedback 
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1  …  a 1

2


lx  a
2

lx  … a 1lx  

Initial State 



Journal of Theoretical and Applied Information Technology 
15th January 2019. Vol.97. No 1 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
27 

 

In general, to answer the above questions, 
we have to experiment to find out, since they are 
applications-independent. Generally, the most 
serious challenge in the use of optimization 
algorithms is concerned with the quality of the 
results, in particular, whether or not an optimal 
solution is being reached. One way of providing 
some degree of insurance is to compare results 
obtained for N times under different seeds of the 
initial population. We, therefore, performed both 
algorithms three times with different random seeds 
for each run and the same initial seed for both 
algorithms.  

To assess the reliability of the original 
ABC and hybrid ABC-SA algorithm, we calculate 
the average performance (fitness) and cycles of 
them for the whole set of runs. A more reliable 
algorithm should produce (in our case) a higher 
value for mean, preferably near to the global 
maximum one. 

In the current work, four diverse 
experiments are performed. 

 
Experiment 1 

In the first experiment, a linear stream 
cipher is chosen with different LFSR lengths and 
constant length of known key stream equals to 20-
bit. The results are shown in Table 1. 

As it can be seen from the results 
presented in Table 1, the hybrid ABC-SA algorithm 
the outperforms original ABC algorithm in all runs 
in terms of the quality of the results (average of the 
reliability of results is 100% compared to 88% for 
the original ABC) and the number of cycles (the 
hybrid ABC-SA algorithm takes less average 
number of cycles than the original ABC algorithm 
for all tests). The original ABC algorithm also fails 
to get correct results when LFSR length more than 
7. Besides that, whenever the length of the shift 
register increases (key size), the average number of 
cycles increases too. 

 
Experiment 2 

This experiment is for examining the 
effect of the known key stream length on the 
convergence speed. Linear stream cipher with the 
shift register of length 5 bits is chosen. Table 2 
shows the results of this experiment.   

The first thing to note in Table 2 that the 
hybrid ABC-SA algorithm outperforms the original 
ABC algorithm in terms of the number of cycles for 
the most length of the known key stream. Both 
algorithms are fully reliable. 

Experiment 3 

In the third experiment, two known 
nonlinear stream cipher systems, which are the 
Hadmard system (Figure 7) and the Bruer system 
(Figure 8), are adopted. The GCD(k1, …, kn) should 
be equal to 1. The results of this experiment are 
illustrated in Table 3 for the known keystream 
length equals 15-bits. 

 

 

Figure 7: General diagram of Hadmard system. 

 

 

Figure 8: General diagram of Bruer system. 

 
As it can be seen from the Table 3, the 

hybrid ABC-SA algorithm obtains the best result 
with less number of cycles compared with the 
original ABC. In addition, the average number of 
cycles of Bruer system is greater than that of the 
Hadmard system for both algorithms. This is 
because the nonlinearity degree of Bruer system is 
greater. Furthermore, we note that the nonlinear 
systems need more time to be broken than the linear 
systems because the nonlinearity degree of the key 
generator is greater. 
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Experiment 4 

For the purpose of comparing the behavior 
of the hybrid ABC-SA algorithm more clearly with 
the behavior of the original ABC, we used 
‘performance graphs’ [19]. This a graph is a curve 
showing the best individual performance in the 
population in addition to the average performance 
of the entire population over the chosen number of 
cycles. 

 

Figure 9: The performance of ABC. 

 

Figure 10: The performance of hybrid ABC-SA. 

 

Figures 9 and 10 demonstrate plots of the 
best and average values of the fitness across 100 
cycles for both the original ABC algorithm and the 
hybrid ABC-SA algorithm respectively, where both 
algorithms have been run with the same initial 
population and the same colony size (population) of 
20. The other settings are the same for both 
algorithms. In these graphs, the x-axis indicates 
how many cycles have been created and evaluated 
at the particular point in the run, and the y-axis 
represents the fitness value at that point. 

The first thing to note in Figure 9 is that 
the best fitness is around doubled over the 300 
cycles. The best fitness curve rises slowly at the 
beginning of the experiment (until cycle 39), but 
stays flat after cycle 40 until the end, with very 
small increments at cycles 2, 20, 34, 36 and 39 
respectively. This algorithm gets the optimal fitness 
at cycle 39. The average fitness curve rises nearly 
gradual and the population converges nearly on the 
best solution at the beginning of the experiment 
(until cycle 39), but then it shows erratic behavior 
between 68 and 79 (apart from very minor 
increments at cycles 19-22).   

On the other hand, the best fitness curve 
obtained by the hybrid ABC-SA algorithm in 
Figure 10 shows an even steeper improvement at 
the beginning of the experiment (until cycle 9), 
which converges very quickly to the best fitness but 
stays flat for the end. The average fitness curve 
starts with gradual improvement and the population 
converges nearly on the best solution at the 
beginning of the experiment (until cycle 8), and 
then it shows erratic behavior between 72 and 82 
(again apart from very minor decrements at cycles 
15, 24 and 59 respectively and very minor 
increments at cycles 210-214 and 298-300 
respectively). Besides, the average fitness obtained 
by the hybrid algorithm is a higher value than that 
for original ABC by around three. 

 

To conclude, as it can be seen from the 
results presented in experiments 1-4, hybrid ABC-
SA algorithm outperforms ABC in all runs in terms 
of the quality of the results (this is the answer for 
the first question) and the convergence speed of the 
hybrid ABC-SA is better than ABC under the same 
conditions (this is the answer for the second 
question). 

The present findings of these experiments 
are encouraging and prove that using selection 
process for employed bee phase differ from that 
used in onlookers bee phase will explore the search 
space in an active way because it takes the 
advantages of both selection processes. Further 
work in this regard would be very worthwhile. 

 

6. CONCLUSIONS 

A new hybridized artificial bee colony 
algorithm with simulated annealing (ABC-SA) is 
presented in the current work. To keep the balance 
of convergence speed and convergence precision, 
SA is repaired the initial food sources of ABC and 
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is imported to select the candidate solution with a 
probability of acceptance to select the worst 
solution during the employed bee phase instead of 
the greedy selection that is used in the original 
algorithm. 

The hybrid ABC-SA algorithm is tested on 
breaking stream cipher systems with a known 
plaintext attack. The algorithm should find the 
shortest LFSR which generates a sequence of key 
stream knowing part of it. We have carried out a 
number of experiments on linear/non-linear stream 
cipher system using original ABC algorithm and 
hybrid ABC-SA algorithm. 

The simulation results of these 
experiments show that the performance of the 
hybrid ABC-SA algorithm, in terms of the quality 
of results, convergence speed and avoidance of 
local maxima, is better than the original ABC 
algorithm under the same conditions. Its 
performance is very good in terms of the local and 
the global optimization due to the selection 
schemes employed and the neighbor production 
mechanism used. Moreover, the nonlinear stream 
cipher systems need more time for breaking it than 
the linear one because the degree of nonlinearity is 
greater. Consequently, it can be concluded that the 
hybrid ABC-SA algorithm based approach can 
successfully be used in the optimization of breaking 
linear and nonlinear stream cipher systems 

We intend to investigate other techniques 
between the ABC algorithm and the SA algorithm. 
Further experimental investigations are needed to 
hybridizing other optimization techniques, such as 
PSO, DE, GA, and others. 

Another interesting task for future 
exploration is testing a stacking technique between 
two algorithms. 
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SN  size of the population. 
D    number of optimization parameters. 
xi j   solution i,j, i = 1 ...SN, j = 1 ...D 
 
1: Initialize the population of solutions xi, j , i = 1...SN, j = 1...D, triali = 0; 
2: Evaluate the population; 
3: cycle = 1; 
4: Repeat 
5: Produce new solutions vi j for the employed bees (using vi j = xi j +i j(xi j −xk j), where k  {1, ...,SN}and 

i j is a random number between [-1,1]) and evaluate them; 
6: Apply the greedy selection process for the employed bees (if the new solution vi j has an equal or better 

nectar (fitness) than the old source, it is replaced with the old one in the memory. Otherwise, the old one 
is retained in the memory); 

7: Calculate the probability values pi = fiti/ fiti , i=1..SN for the solutions xi; 
8: Produce the new solutions vi j for the onlookers from the solutions xi selected depending on pi and 

evaluate them; 
9: Apply the greedy selection process for the onlookers; 
10: Determine the abandoned solution for the scout, if exists, and replace it with a new randomly produced 

solution xi by xj
i = xj

min+rand[0,1](xj
max-xj

min); 
11: Memorize the best solution achieved so far; 
12: cycle = cycle+1; 
13: Until (cycle = maximum cycle  number); 

Figure 1: Pseudo-code of the original ABC algorithm.

1: Initialize Scurrent; 
2: T= <some high value>; 
3: While T >  <specific value> 
4: For iteration= 1 to <some constant value> 
5:       Scandidate = Scurrent 
6:               E = Error(Scandidate) - Error(Scurrent) 
7:               If  E ≤ 0 
8:                   Scurrent = Scandidate 
9:                  Else 
10:                   prob = e (-E/T) 
11:                   If rand(0,1) ≤ prob 
12:                       Scurrent = Scandidate 
13:                   Endif 
14:               Endif 
15: Endfor 
16: decrement T     
17: Endwhile        

Figure 2: Pseudo-code of the SA algorithm. 
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SN  size of the population. 
D    number of optimization parameters. 
xi j   solution i,j, i = 1 ...SN, j = 1 ...D 
 

1: Set parameters: P0, SN, MaxIter 
2: Initialize the population of solutions xi, j , i = 1...SN, j = 1...D, triali = 0; 
3: Evaluate the population; 

 
// the first updating: using of the SA algorithm to repair the initial population 
…………………………………………………………………………………………………… 

4: Run SA based crossover operator on the randomly generated population to generate best values for all 
individuals and pass these individuals to rest steps as starting population. 
…………………………………………………………………………………………………… 

5: iter = 1; 
6: Repeat 

        // EMPLOYED BEE PHASE  

7: Produce new solutions vi j for the employed bees (using vi j = xi j +i j(xi j −xk j), where k  {1, ...,SN} and 

i j is a random number between [-1,1]) and evaluate them; 
 
// the second updating: using of the solution acceptance rule that proposed by Yurtkuran and Emel [14] for  

employed bee phase only (in [14] the author used this technique for both employed bee phase and 
onlookers bee phase 

…………………………………………………………………………………………………….  
8: If the new solution vi j has an equal or better nectar (fitness) than the old source then  

      xi j= vi j;  
     triali = 0; 
Else 

     Calculate Pa= P0 ((1+cos((iter/MaxIter) ) × 0.5) 
     If rand[0,1] < Pa then 
          xi j= vi j; 
     Endif 
     triali = triali +1; 
Endif 
…………………………………………………………………………………………………… 
 

9: Calculate the probability values pi = fiti/ fiti , i=1..SN for the solutions xi; 
10: Produce the new solutions vi j for the onlookers from the solutions xi selected depending on pi and evaluate 

them; 
11: Apply the greedy selection process for the onlookers; 
12: Determine the abandoned solution for the scout, if exists, and replace it with a new randomly produced 

solution xi by x ji = xj min+rand[0,1](xj max-xj min); 
13: Memorize the best solution achieved so far; 

14: iter = iter +1; 
15: Until (iter > MaxIter OR the best solution fitness is reached the maximum value); 

 

Figure 3: Pseudo-code of the hybrid ABC-SA algorithm.
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Table 1: Comparison between classic ABC and hybrid ABC-SA algorithm for three runs, different LFSR lengths with 
constant known keystream length 

 

Test LFSR length 
Original ABC algorithm Hybrid ABC-SA algorithm 

Mean of cycles Mean of fitness Mean of cycles Mean of fitness 

1 4 22 100% 12 100% 
2 5 38 100% 15 100% 
3 6 244 100% 16 100% 

4 7 177 100% 36 100% 
5 8 1000 69% 55 100% 
6 9 1000 99% 62 100% 

7 10 1000 90% 143 100% 
8 11 1000 77% 366 100% 
9 12 1000 81% 421 100% 

10 13 1000 65% 513 100% 
 
 

Table 2: Comparison between original ABC and hybrid ABC-SA algorithm for three runs, constant LFSR length with 
different known keystream lengths 

 

Test Known keystream length 
Original ABC algorithm Hybrid ABC-SA algorithm 

Mean of cycles Mean of fitness Mean of cycles Mean of fitness 
1 10 25 100% 11 100% 

2 15 31 100% 14 100% 
3 20 67 100% 16 100% 
4 25 51 100% 12 100% 

5 30 71 100% 18 100% 
6 35 44 100% 12 100% 

7 40 25 100% 15 100% 
8 45 32 100% 17 100% 
9 50 39 100% 10 100% 

10 55 37 100% 11 100% 
 
 

Table 3: Comparison between original ABC and hybrid ABC-SA algorithm for three runs, two non-linear stream 
cipher systems 

 

System name LFSR length 
Original ABC algorithm Hybrid ABC-SA algorithm 

Mean of cycles Mean of fitness Mean of cycles Mean of fitness 
Hadmard 2,3 67 100% 46 100% 

Bruer 2,3 86 100% 54 100% 
Average 77 100% 50 100% 

 


