
Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

337

FRACTAL METHOD FOR NON-METAMORPHIC
ANIMATION USING ITERATED FUNCTION SYSTEM

ALGORITHM

1 DEWI ROSMALA, 2 TEDJO DARMANTO, 3 DELFIAN PUTRA CALIBRA

1,3 Department of Informatics Engineering, ITENAS Bandung, Bandung, Indonesia
2 STMIK AMIK-Bandung, Bandung, Indonesia

E-Mail : 1 d_rosmala@itenas.ac.id, 2 tedjodarmanto@gmail.com, 3 delfianputrac@gmail.com

ABSTRACT

In this research, the Fractal method is implemented for Non-Metamorphic animation using Iterated
Function System Algorithm. This study aims to find out how implementation process of animation created
by a fractal method with IFS algorithm. The method used in this design is the drawing and animating stage.
The fractal method is used at the stage of drawing; therefore reading and calculation of the input of data
values of the IFS codes are done. The coordinate points generated from the IFS code consisting of the
dimensional coefficient relative to the frame and the values of the points so that the affine coefficient is
obtained through calculating the IFS algorithm matrix and forming a fractal object. In the animating stage,
the object that has been obtained from the drawing stage is processed by non-metamorphic animation
process through calculating the number of locations and the duration between the points of the object
location so that the object is seen moving from the point of the initial location to the point of the final
location. Based on the results of the fractal method for testing IFS, it can be applied to the animation using
an object of fractal which the best results requires a sufficient iteration value of 10000 times to form a full
fractal object and the iteration process does not last long, and as well as the off set value search testing
performed on various iteration tests, having an offset value average by 0.11735%.

Keywords: Affine Coefficient, Drawing, Fractal, IFS Code, Non-Metamorphic Animation

1. INTRODUCTION

Animation is a shaped picture of a set of
objects (drawings) arranged regularly following a
predetermined flow of movement at each additional
time count [10]. The process of animation is an
ordinary work done by an animator, which is where
an animator first creates images or objects that are
needed then combined them so that they become an
animation or moving image.

The process of animation have problems
encountered, such as lack of animator, obstacle in
creation of animation application, and the size of
the finished animated file took a huge amount of
storage space, which makes the animated files
lagging.

From these problems, the research
conducted using fractal method in the making of
non-metamorphic animation. Iterated Function
System is a fractal object construct algorithm that
processes elements or IFS code to be decoded and
iterated according to random probability to form an
object and non-metamorphic animation. Animation

created by moving objects based on x and y
coordinates.

It can be formulated several problems how
to implement fractal method in creating fractal
object using IFS algorithm and the process of
animating objects to become non-metamorphic
animation.

The scope of the problems are limited to the
object or drawing is made in the form of a two-
dimensional figure, especially triangle creation of
objects using the IFS Fractal method. The
animation is displayed in the web.

2. METHODS

There are 3 main theoretical foundations
which are:
a. Animation

Animation is a moving picture of a set of
objects (drawings) that arranged regularly follow
the flow of a movement that has been determined at
each increase in the count of time that occurred.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

338

The images can be images of living things,
inanimate objects, or texts.

According to Hofstetter, Animation is
consisting of four types which are:
a) Frame Animation

Frame animation is an animation created by
changing objects on each frame. These objects
will be visible at different locations on the
screen.

b) Vector Animation
Vector animation is an animation created by
changing the shape of an object.

c) Computational Animation
Computational animation or also called Non-
Metamorphic is an animation created by moving
objects based on x and y coordinates.
Coordinate x for horizontal position and y
position for vertical position.

d) Morphing
Morphing or also can be called Metamorphic is
the transition of one form of object to another
object by manipulating more than one frame so
that it will be generated a whole movement is
very gentle to change one form to another.

Animation is also referred to a technique of
displaying sequential images in such a way that the
audience feels the illusion of movement (motion) in
the displayed image. The illusion of movement is a
change that is visually detected by the eye so that
changes that occur do not have to be in the form of
movement but can also be a change of color [10].

b. Fractal

Fractal refers to the object that part of the
body is similar to the whole in some way, and has
been considered as a powerful tool to study
complex shapes and structures in nature [8].

The term ‘fractal’ was coined in 1975 by
Benoit Mandelbrot (1924-) from the Latin fractus,
meaning “broken” or “irregular.” This term was
used to describe shapes that have the characteristic
of self-similarity, i.e. that when you magnify any
part it looks just like (or has the same structure) as
the original [7].

Fractals are discovered as the fixed points of
certain set maps [1].Fractals are very interesting
and ubiquitous objects. They are very common in
nature, from blood vessels, through plants,
coastlines, and lightning to the structure of the
Universe. But, as it turns out, fractals are also
observed in a street network or literary works [9].

c. Iterated Function System

Michael Barnsley (1988) represents fractals
into mathematical models called the Iterated

Function System (IFS), through books, Fractals
Everywhere. IFS is modeled as a photocopy
machine called Multiple Reduction Copy Machine
(MRCM). MRCM has a lot of lenses and every lens
does a lot of image reduction. The image generated
from the copy machine is restarted as an input to
make the next copy [6].

Iterated Function System (IFS) is a
collection of contracting operators that act on
subsets of vector spaces. And, as such, they have a
fixed point which also a subset of the underlying
space. The fixed points of the IFS can be obtained
by iterative processes with a random selection of
operators from the IFS and can, therefore, be
defined algorithmically. Very complex sets may,
therefore, be defined with very few parameters (that
specify the operators in the IFS.) [11].

A two-dimensional fractal object can be
encoded into a two-dimensional iteration function
code (2D IFS) that represents a set of
transformation coefficients. The IFS code is the set
of affine transformations of any contractive
function that can be translated into fractal imagery
in accordance with the collage theorem and
property of the likeness [2]. Mathematically, the
IFS 2D code can be represented by the affine
transformation equations with 'a', 'b', 'c', 'd', 'e' and
'f' as the coefficients of a transformation function :

 𝑤 ൤
𝑥′
𝑦′
൨ = ቂ

𝑎 𝑏
𝑐 𝑑

ቃ ∗ ቂ
𝑥
𝑦ቃ + ቂ

𝑒
𝑓ቃ (1)

The collection of IFS codes as

representations of fractal objects can be converted
into fractal imagery by using deterministic
algorithms. The solid portion of the image depends
on the probability of the contractive function as the
representation of the image portion. To construct
fractal imagery, IFS codes with probability
coefficients can be translated by random iteration
algorithms [3].

The sum of the affine functions is calculated
based on the number of lines of the IFS code. The
IFS code obtained from the initialization is being
calculated with the value of x and y that have been
initialized to get the coefficient of affine value.

The number of lines in the text file input is
the sum of the affine object functions through the
IFS code reading procedure. The total of the
opportunity is being obtained from the chances of
the affine function when doing the iteration process.
The part is done through the variables that become
the last chance of previous affine transformation
coefficient which is added at the beginning of the
chance range of affine transformation coefficient

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

339

value so that the point coordinate value of the affine
coefficient becomes random and different.

In the IFS decode procedure, the pixel or
point is distributed according to the odds at the
coordinate location for each value of the affine
coefficient function transformed through the IFS
code to perform the pixel image process and
iteratively decodes using the matrix search function
of the affine transformation coefficient value.

The value of w or affine transformation
coefficient value is the coordinate of the pixel
image location that has been processed through the
IFS decode, and is derived from the calculation of a
line of affine functions initialized at the beginning
(a, b, c, d, e, and f) and the values of x and y , to get
the coordinates of the location to be drawn on a
canvas, frames, and so on.

2.1. Designing

The design used in this research is divided
into two stages, which are drawing stage and the
animation stage. The drawing stage focuses on the
implementation of the fractal method, which reads
and calculates the data of the elements needed to
find the value of the affine transformation
coefficient obtained by computing the IFS
algorithm matrix. The value of affine
transformation coefficient that has been obtained
has the iteration process to get the location of pixel
coordinates so as to form a fractal object.

At the animating stage, fractal objects that
have been obtained from the stage of the image is
animating by non-metamorphic animation process
by calculating the location of the first coordinate
object and the location of the final coordinates so
that the object is seen moving from the initial
location to another location.
2.1.1. Drawing Stage

In the drawing stage, the fractal object
builder algorithm that processes the IFS code and
other elements are used to generate the coefficient
value of affine transformation to form the fractal
object.

IFS codes consisting of the values of
variables a, b, c, d, e, and f, are calculated with the
values of x and y by using the search coefficient
matrix function of affine coefficient contained in
Formula 1.

The value of affine transformation
coefficient that has been obtained, followed by the
iteration process by calculating the value of affine
coefficient with a scale that has been initialized at
the beginning, so that obtained the coordinates of
the pixel location on the frame or canvas.

The matrix function formula 1 is the key in
implementing fractal method this research, so the
code in PHP language will be as follows:
$x1 = ($affine1[0] * $x1) + ($affine1[1] * $y1) + $affine1 [4];
$y1 = ($affine1[2] * $x1) + ($affine1[3] * $y1) + $affine1 [5];

Affine function used alone, is input that
initialized before to in process of decode IFS. Here
is an array of IFS codes variables:
$affine1 = array (0.5, 0, 0, 0.5, 1, 1);
$affine2 = array (0.5, 0, 0, 0.5, 1, 50);
$affine3 = array (0.5, 0, 0, 0.5, 50, 50);

And the next most vital code in
implementing this fractal method is the code to
represent an object point.
imagesetpixel ($ image, $ xnew, $ ynew, $ color);

Where $draw is the size of the image frame, $xnew
and $ynew are the results of the affine function
calculation and $color.
$image = @imagecreate ($width, $height) or die
("Description");

$color is the predefined RGB color using the code:
$color = imagecolorallocate ($ bg, 0, 0, 0)

0 in the code that determines the color is the
decimal value of a color, and the value of 0, 0, 0 is
black.
2.1.2. Animating Stage

in the animating stage, the fractal object
resulting from the drawing stage is processed to
become non-metamorphic animation. Non-
metamorphic is an animation created by moving
objects based on x and y coordinates. Coordinate x
for horizontal position and y position for vertical
position, so in the animating process, a fractal
object will be made to move from start location to
another location.

The first process is to determine where the
object is located on the canvas or frames along with
the duration of time the object animation moves
from the location to another location. In addition,
the initialized animation time is divided into several
chunks of time corresponding to the number of
coordinate points of location that objects will be set.

From the amount of point duration that
obtained, then determine how long the duration of
time at each point by determining the percentage
duration. By combining the overall animation
settings containing the fractal object with the
location of the initial location coordinates and other
location coordinates where the location of the
fractal object moves according to the division of the
total duration of time into the duration of the
portion as much as the coordinate point that being
set. From the results that obtained when animation
executed, a fractal object will be seen to moving.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

340

3. DISCUSSION

In the drawing and animating process, the
elements to be studied are as follows:

a. Frame Size
Frame size is the size of the frame or canvas that is
where the pixel or fractal object is depicted to be
displayed on the monitor screen.
b. IFS Code
The IFS code is a unique code to obtain the value of
the affine transformation coefficient. IFS code
consists of variables a, b, c, d, e, and f, which are
important elements in the construction of fractal
objects and function as a regulator of objects to be
built
c. Values of x and y
x and y are the initialization values used to
construct fractal objects that are computed by the
IFS code to obtain the coefficient value of affine
transformation.
d. Scale
Scale is the value for the scaling of the final
coordinates obtained from the product times with
the final result of IFS decoding.
e. Number of iterations
The number of iterations is the value used to
determine the number of pixel images to construct
fractal objects.
f. Time Duration
Time duration used in non-metamorphic fractal
object animation to determine how long the
animation process lasts from start to end.
g. Object location
Object location or coordinate locations is the
location of the object during the animation process
takes place. Next is discussion scenario. The first
discussion scenario is the drawing stage by
experimenting to insert the affine transformation
coefficient calculation function to build the fractal
object in order to display on the web. There are the
discussion scenario at the drawing stage:
a. Testing of 4 IFS code builders of different

fractal objects, but the x and y values, scales,
and iterations used are the same.

b. Testing of 3 different x and y values, but same
IFS, scale, and iteration codes.

c. Testing of 3 different scale values, but the IFS
code, the x and y values, and the iterations used
the same.

d. Testing of 7 different iteration values, but the
IFS code, the values of x and y, and the scale
used is the same.

e. Testing the calculation of off set values on each
fractal object constructed by doing 30
experiments on the same object according to the
theory according to Roscoe (1975), the rule of
thumbs.

While the second discussion scenario is the
animating stage conducted experiments directly by
creating animated images of fractal objects. Non-
metamorphic animation results from fractal objects
are displayed over the web. Here is the discussion
scenario at the stage of animate is testing the fractal
object in a total duration by 10 seconds and 4 points
of object displacement locations.
Prior to the discussion of what is done during the
study, from the two stages described in the design
stage, first will be discussed about the flow of the
research process described in Figure 1.

start

IFS code
Scaler
x & y

Iteration

i = 0; i < 30; i++

w(x’) = a*x +
b*y + e

w(y’) = c*x +
d*y + f

j = 0; j <
iteration; j++

w(x’) = (w(x’) + x) /
scaler

w(y’) = (w(y’) + y) /
scaler

Print pixel
w(x’),w(y’)

Duration
Location
nLocation

nDuration =
(duration /

nLocation) * 100%

Fractal object

w(x’)
w(y’)

Animation

End

4

3

Figure 1. Flowchart Program

Explanation of the steps at each stage are

described as follows:
a. The first program begins by including the IFS

code of the constructed fractal object (a, b, c, d,
e, and f), along with the values of x and y, the
scale, and the number of iterations.

b. Second by entering into looping to find the
value of affine transform coefficient (w(x’) and
w(y’)) using IFS algorithm function, and the
result data is stored temporarily to find the last
w value, in this case, the last value is the
thirtieth.

c. The last w(x’) and w(y’) values called to be
calculated by adding the first x and y values

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

341

randomly and divided by the scale entered, and
the result of the new w value obtained is the
location of the drawn pixel coordinates. This
process is repeated as many inputs to the
number of iterations illustrated an object.

d. The finished object image is printed as input
data in the animation process along with the
input of the object location during non-
metamorphic animation takes place, the number
of location of the object during the animation,
and the duration of the object for the animation
process.

e. The total duration used by the animation from
the beginning to the end of the calculation of the
division by the number of locations to find the
duration of animation from each location.

f. The image object that has been processed is
displayed on the monitor display as the finished
animation.

3.1. Data Set

Data collection is a step in an important
process, because only by getting the right data then
the research process will last until the researchers
get answers from the formulation of the problem
that has been set.
a. Frame Size

The size data of the frame or canvas. The size
data of the frame or canvas used is 300 x 300
pixels.

b. IFS Code
Table 1. IFS code for a Sierpinski triangle.
Row of Affine a b c d e f

1 0.5 0 0 0.5 1 1
2 0.5 0 0 0.5 1 50
3 0.5 0 0 0.5 50 50

The IFS code in Table 1 is a unique IFS code
forming triangle and has three lines of IFS code
or three coefficients of affine transformation.

Table 2. IFS code for a square.
Row of Affine a b c d e f

1 0.5 0 0 0.5 1 1
2 0.5 0 0 0.5 50 1
3 0.5 0 0 0.5 1 50
4 0.5 0 0 0.5 50 50

The IFS code in Table 2 is a unique IFS code
forming a square and has four lines of IFS code
or four coefficients of affine transformation.

Table 3. Random IFS code for testing 2 lines of IFS code.
Row of Affine a b c d e f

1 0.5 0 0 0.5 1 1
2 0.5 0 0 0.5 50 50

The IFS code in Table 3 is the IFS Code of any
arbitrary object and has two lines of IFS code or

affine transformation coefficient. The goal is to
test what objects are formed by using two lines
of IFS code.

Table 4. Random IFS code for testing 3 lines of IFS code.
Row of Affine a b c d e f

1 0 0 0 0.5 0 1
2 0.42 0.32 0.22 0.5 1.6 25
3 0.5 0 0.1 0.5 10 60

The IFS code in Table 4 is the IFS Code of any
arbitrary object because the values of variables a,
b, c, d, e, and f use random or analytic values
and have three lines of IFS code or three
coefficients of affine transformation. The goal is
to test what objects are formed by using three
lines of IFS code that have random IFS code
variables.

c. Values of x and y
The x and y values used in the test are x = 300
and y = 300, x = 100 and y = 100, and x = 500
and y = 500.

d. Scale
Scale values used in the tests are 1, 2, and 3.

e. Number of iterations
The number of iterations used in the test is 1, 10,
100, 1000, 10000, 100000, and 1 million.

f. Time Duration
The time duration used in the animation testing
from start to finish is for 10 seconds.

g. Object location
The four coordinate point locations for the
objects used in the test are coordinates (0,0),
(0,450), (600, 450), and (0,0).

3.2. Drawing Stage Discussion

In the test of the drawing stage, testing is
done by implementing the fractal method with
Iterated Function System algorithm to be displayed
on the web. Testing is done by using PHP code to
build an image by using point according to the
definition of fractal itself.
3.2.1. IFS Code Testing

The first test is to test four different IFS
codes, with x = 300 and y = 300, scale = 2, and
iteration = 10000.
a. Testing the IFS Code of Convergence of Triangle.

The first test of IFS code testing, tested by
constructing a triangular-shaped fractal object. By
using IFS code in Table 1 and Formula Function 1,
then performed calculations to find the affine
transformation coefficient as follows:

w1.1(x’) = (0.5 * 300) + (0 * 300) + 1 = 151
w1.1(y’) = (0 * 300) + (0.5 * 300) + 1 = 151


w1.2(x’) = (0.5 * 151) + (0 * 151) + 1 = 76.5
w1.2(y’) = (0 * 151) + (0.5 * 151) + 1 = 76.5

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

342


w1.30 (x’) = 2
w1.30 (y’) = 2

w2.1(x’) = (0.5 * 300) + (0 * 300) + 1 = 151

w2.1 (y’) = (0 * 300) + (0.5 * 300) + 50 = 200


w2.2(x’) = (0.5 * 151) + (0 * 200) + 1 = 76.5
w2.2(y’) = (0 * 151) + (0.5 * 200) + 50 = 150


w2.30 (x’) = 2

w2.30 (y’) = 100

w3.1(x’) = (0.5 * 300) + (0 * 300) + 50 = 200
w3.1(y’) = (0 * 300) + (0.5 * 300) + 50 = 200


w3.2(x’) = (0.5 * 200) + (0 * 200) + 50 = 150
w3.2(y’) = (0 * 200) + (0.5 * 200) + 50 = 150


w3.30 (x’) = 100
w3.30 (y’) = 100

From the calculation result, the value of affine
transformation coefficient for IFS code line one is
w(x') = 2 and w (y') = 2, line two is w(x') = 2 and w
(y') = 100, and line three is w(x') = 100 and w (y') =
100. After that, the result of the w value obtained is
entered into the calculation for the pixel depiction
process as much as the iteration value and produces
the object as in Figure 2.

Figure 2. IFS Triangle Code Testing.

b. Testing the IFS Code of Convergence of Square.
The second test of IFS code testing, tested

by constructing a square-shaped fractal object. By
using almost the same calculation to find the
coefficient of affine transformation by using the
IFS code in Table 2, the resulted values of w (x')
and w (y') line one are 2 and 2, line two are 100 and
2, line three are 2 and 100, and line four are 100
and 100. With the value obtained previously,
produces the object as in Figure 3.

Figure 3. IFS Square Code Testing.

c. Testing the IFS Code of Convergence of 2 IFS
Codes.

The third test of IFS code testing,
constructing a fractal object using 2 lines IFS codes.
By using almost the same calculation to find the
coefficient of affine transformation by using the
IFS code in Table 3, the resulted values of w (x ')
and w (y') line one are 2 and 2, and line two are 100
and 100. With the value obtained previously,
produces the object as in Figure 4.

Figure 4.2 Lines IFS Code Testing.

d. Testing the IFS Code of Convergence of 3
random IFS Codes.

The fourth or last test of IFS code testing,
constructing a fractal object using 3 lines IFS codes.
By using almost the same calculation to find the
coefficient of affine transformation by using the
IFS code in Table 4, the resulted values of w (x ')
and w (y') line one are 0 and 3, line two are 40 and
68, and line three is 20 and 124. With the value
obtained previously, produces the object as in
Figure 5.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

343

Figure 5. 3 Lines Random Variable IFS Code

Testing.
3.2.2. Testing values of x and y

The second test carried out is testing three
different things x and y in forming a fractal object.
the values of x and y to be tested are as follows :
a. x = 100 and y = 100
b. x = 300 and y = 300
c. x = 500 and y = 500

By using the IFS code in Table 1 and the
same scale and iteration values to find the value of
the affine transform coefficient, here is the
calculation on the first row with different x and y
values.

w100.1(x') = (0.5 * 1 00) + (0 * 100) + 1 = 51
w100.1(y') = (0 * 100) + (0.5 * 100) + 1 = 51


w100.2(x') = (0.5 * 51) + (0 * 51) + 1 = 26.5
w100.2(y') = (0 * 51) + (0.5 * 51) + 1 = 26.5


w100.30(x') = 2
w100.30(y') = 2

w300.1(x') = (0.5 * 300) + (0 * 300) + 1 = 1 51
w300.1(y') = (0 * 300) + (0.5 * 300) + 1 = 151


w300.2(x') = (0.5 * 151) + (0 * 151) + 1 = 6.5
w300.2(y') = (0 * 151) + (0.5 * 151) + 1 = 76.5


w300.30(x') = 2
w300.30(y') = 2

w500.1(x') = (0.5 * 500) + (0 * 500) + 1 = 251
w500.1(y') = (0 * 500) + (0.5 * 500) + 1 = 251


w500.2(x') = (0.5 * 2 51) + (0 * 2 51) + 1 = 126.5
w500.2(y') = (0 * 2 51) + (0.5 * 2 51) + 1 = 126.5


w500.30 (x') = 2
w500.30 (y') = 2

From the calculation results using different x
and y values of 100, 300, and 500 on the test with
the first line of the IFS code, the same affine
transform coefficient is obtained, so that in the
development of the fractal object will be the same.
The result is made no difference as in Figure 6.

Figure 6. The result of testing values of x and y.

3.2.3. Scale Testing
The third test is 3 different scale tests to

form a fractal object, with IFS code in Table 1, x =
300 and y = 300, and iteration = 10000.
a. Scale Testing = 1

The first test of scale testing, the test input
scale = 1. The result of the constructed fractal
object is shown in Figure 7.

Figure 7. Result of scale= 1

In Figure 7, there is no visible fractal object.
Because the built-in fractal object exceeds the size
of the frame (300 x 300 pixels). Here is the
coordinate location of the calculation of affine
transformation coefficient in Table 5.

Table 5.Coordinates of pixel of scale = 1

Number of Iteration Coordinate

1 302 , 400

2 304 , 500

3 306 , 600

4 308 , 602

5 310 , 702

.. ..

.. ..

9996 339968 , 674442

9997 339970 , 674444

9998 339972 , 674544

9999 339974 , 674644

10000 339976 , 674744

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

344

b. Scale Testing = 2
The second test of scale testing, the test

input scale = 2. The result is the same as in figure 2
and Figure 6. Because the result of the calculation
of the affinity transformation coefficient is the same.
c. Scale Testing = 3

The third test of scale testing, the input test
scale = 3. The result of the constructed fractal
object is shown in Figure 8.

Figure 8. Result of scale= 3

the result shown in Figure 8, looks fractal
object its size becomes small. Since the value of the
affine transformation coefficient is divided by scale
= 3, it makes the location of the coordinates small.
3.2.4. Iteration Testing

The fourth test carried out was the testing of
different iterative values, which were tested on 7
different iteration values in the forming of a fractal
object, and the result is shown in Table 6 which
shows the result of the construction of the fractal
object. The size of the frame or canvas used is 200
x 200 pixels and the x, y coordinates tested are
300,300 and IFS code in Table 1.

Table 6. Summary of test results on the number of

iterations.
No. Fractal Images Number of Iterations

1

Iteration = 1

2

Iteration = 10

3

Iteration = 100

4

Iteration = 1000

5

Iteration = 10000

6

Iteration = 100000

7

Iteration = 1000000

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

345

The first test of iteration testing, the test
input iteration = 1. The result is no fractal object is
built. But actually there is a pixel is imaged, but
because the iteration value used is 1, making the
object invisible because that is built with only 1
pixel.

The second test of iteration testing, the test
input iteration = 10 which displays a number of
pixel dots are illustrated.

The third test of iteration testing, the test
input iteration = 100, the pixel image has already
begun to form a triangle.

The fourth test of iteration testing, the test
input iteration = 1000, pixels already form a
triangle, but the result is still blurry.

The fifth test of iteration testing, the test
input iteration = 10000, the triangle is perfectly
formed.

The sixth test of iteration testing, the test
input iteration = 100000, the triangular fractal
object is still the same as in the fifth test, but the
triangle object looks thicker.

The seventh test of iteration testing, the test
input iteration = 1000000, just like in the sixth test,
the triangle object looks thicker than the previous
test result.

From six tests of drawing stages by testing
the number of iterations from 1 to 1 million times,
it produces images of fractal objects that are
constructed. This shows that in the drawing process,
the more the number of iterations the fractal object
will appear more dense and thick or unlike a set of
dots or pixels
3.2.5. Off set value testing

The off set value is the result of the iteration
where the pixel is located away from the fractal
object. In the test to obtain the test result on the off-
set value, the test was carried out for 30 samples
and the research was also done with 4 different
iterations, but the IFS code, the x and y values, and
the same scale.
a. Off set value of iteration = 1000

Testing the value of the first set off is 1000
times iteration, the results of the percentage in
Table 7 as follows:

Table 7. Off set value of iteration = 1000

Number Off set Occurrences Percentage
1 3 times 3/30 * 100% = 10%
2 6 times 6/30 * 100% = 20%
3 1 2 times 12/30 * 100% = 40%
4 1 time 1/30 * 100% = 3.3 %
5 4 times 4/3 0 * 100% = 13.3%
6 1 time 1/30 * 100% = 3.3%
7 2 times 2/30 * 100% = 6.6%
8 1 time 1/30 * 100% = 3.3%

From 30 times the experiment, the
percentage of off set values is probable. From Table
7, the result of testing the off set value of 1000-
times iteration that often occurs is 3 coordinates
with possibly 40%, then two coordinates with
possibly 20%, 5 coordinates with 13.3% possibility,
1 coordinate with 10% possibility, 7 coordinates
with a probability of 6.6%, and for the offset values
of 4, 6, and 8 the coordinates only appear with a
probability of 3.3% of 30 trials.

Then the percentage of off set values
obtained will yield the following off set possibility
equation :

Possible Off set =
(Total Occurrences) /

Experiment * 100%
Iterate

Thus, the calculation is obtained:

Possible Off set =

((1 * 3) + (2 * 6)
+ (3 * 12) + (4 *
1) + (5 * 4) + (6
* 1) + (7 * 2) + (8

* 1)) / 3 0)

* 100%

1000

Possible Off set = 0.343% or average 3.43 value

 The calculation result from the equation to
find the percentage of the possibility of the number
of off set value for iteration as much as 1000 times
that is 0.343% of the total iteration.
b. Off set value of iteration = 5000

The test of the first set off value is the
iteration 5000 times, the results of the percentage in
Table 8 as follows:

Table 8. Off set value of 5000 iterations

Number Off set Occurrences Percentage
1 4 times 4/30 * 100% = 13.3%
2 7 times 7/30 * 100% = 2 3.3%
3 7 times 7/30 * 100% = 23.3 %
4 6 times 6/30 * 100% = 20 %
5 2 times 2/30 * 100% = 6.6 %
6 3 times 3/30 * 100% = 10 %
7 1 time 1/30 * 100% = 6.6%

 From 30 times the experiment, then got the

percentage of possible off set value obtained. From
Table 8, the result of the value of off set of iteration
5000 times that often appears are 2 and 3
coordinates with the possibility of 23.3%, then 4
coordinates with possibly 20 %, 1 coordinate with
13.3% possibility, 6 coordinates with 10%, 5
coordinates with a probability of 6.6%, and for a set
off value of 7 coordinates only appear with possibly
3.3% of 30 attempts.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

346

Then the percentage of off set values
obtained will yield the following off set possibility
equation :

Possible Off set =

(1 * 4) + (2 * 7) + (3 *
7) + (4 * 6) + (5 * 2) +
(6 * 3) + (7 * 1)) / 30) * 100%

5000

Possible Off set = 0.0653% or an average of 3.265
values

The calculation results from the equation for
looking percentage of the possibility of the number
of off set values for iteration as much as 5000 times
that is 0.0653% of the total iteration.
c. Off set value of Iteration = 10000

The first set off value test is 10000 times
iteration, the results of the percentage in Table 9 as
follows:

Table 9. Off set value of 10000 iteration

Number Off set Occurrences Percentage
1 1 time 1/30 * 100% = 3 .3%
2 4 times 4/30 * 100% = 1 3.3%
3 13 times 13/30 * 100% = 43 .3%
4 4 times 4/30 * 100% = 13.3%
5 3 times 3/30 * 100% = 10%
6 3 times 3/30 * 100% = 10%
8 2 times 2/30 * 100% = 6.6%

From 30 times the experiment, then got the

percentage of possible off set value obtained. From
Table 9, the result of testing the off-set iteration
10000 times that often arises is as much as 3
coordinates with possibly 43.3%, next is 2 and 4
coordinates with 13.3% probability, 5 and 6
coordinates with 10% probability, 8 coordinates
with 6.6%, and for off set value 1 coordinate only
appears with possibly 3.3% of 30 experiments.

Then the percentage of off set values
obtained will yield the following off set possibility
equation :

Possible Off set =

((1 * 1) + (2 * 4) + (3 *
13) + (4 * 4) + (5 * 3)
+ (6 * 3) + (8 * 2)) /

30)
* 100%

10 000

Off Possible set = 0.0376 % or an average 3.76
values.

The calculation results from the equation
look for the percentage of the possibility of the
number of off set for the iteration of 10000 times
that is equal to 0.0376% of the total iteration.
d. Off set value of iteration = 15000

Testing the value of the first set off is the
iteration 15000 times, the results of the percentage
in Table 10 as follows:

Table 10 . Off set value of 15000 iteration

Number Off set Occurrences Percentage
1 3 times 3/30 * 100% = 100%
2 8 times 8/30 * 100% = 26.6%
3 9 times 13/30 * 100% = 30 %
4 1 time 4/30 * 100% = 3.3%
5 3 times 3/30 * 100% = 10%
6 1 time 3/30 * 100% = 3 %
7 5 times 5/30 * 100% = 16.6%

From 30 times the experiment, then got the

percentage of possible off set value obtained. From
Table 10, the result of the test of the off-set
iteration value of 15000 times that often arises is 3
coordinates with possibly 30%, then 2 with 26.6%
possibility, 7 coordinates with 16.6% probability, 1
dam 5 coordinates with possibility 10%, 4 and 6
coordinates with 3% probability of 30 experiments.

Then the percentage of off set values
obtained will yield the following off set possibility
equation :

Possible Off set =

(((1 * 3) + (2 * 8) + (3 * 9)
+ (4 * 1) + (5 * 3) + (6 * 1)

+ (7 * 5)) / 30) * 100%

1 5 000

Possible Off set = 0.0235% or 3.525 average value

The calculation results from the equation to
find the percentage of the possibility of the number
of off set values for iteration as much as 15000
times that is equal to 0.0235% of the total iteration.
 From the off set value is found, it can also
produce an average percentage and average of the
number of values off set that often arise:

Average percentage = 0.343 + 0.0653 + 0.0376 + 0.0235
 4
 = 0.4694 = 0.11735%
 4
Average off set = 3.43 + 3.265 + 3.76 + 3.525 = 13.98 = 3.495
 4 4

The calculation result from the average

percentage obtained, ie 0.11735% and off set value
obtained, ie 3.495 off set value.

3.3. Animating Stage Discussion

Animation stage test result is done by giving
duration process and coordinate location of a fractal
object to move during animation.

The coordinates tested were 4 coordinates
consisting of the initial coordinates, the second
coordinate, the third coordinate, and the final
coordinates.

To provide an animation from one
coordinate to another, given the duration of the
coordinates obtained from the total duration during

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

347

the animation takes place divided by four which is
the number of coordinates and then the duration of
the coordinate in the conversion into the percentage
of duration.

Table 11. Location Coordinate of Fractal Objects

No. Coordinate Duration at any point

1 0,0 2,5 s
2 0,450 2,5 s
3 600,450 2,5 s
4 0,0 2,5 s

With the data and calculations obtained, the

implemented fractal object is processed into a non-
metamorphic animation displayed on the monitor
screen. The duration of the travel time from one
location point to another location has a duration of
2.5 s or 25% of the total duration of the animation
lasts from start to finish.

Previous data sets are calculated manually to
see the processes that occur in the stage of animate.
The total time duration of 10 seconds or 10 s and 4
object locations performs animation ie (0,0),
(0,450), (600,450), and (0,0).

Figure 9. Location of point coordinates on the monitor

screen
nDuration = 1 0/4 = 2.5 s

nPecentageDuration = (2.5/10) * 100% = 25%

The duration of each animation from one

location to another is 25%.

4. CONCLUSIONS

Based on research on the implementation of
fractal method using Iterated Function System
algorithm in making animation that has been done,
obtained the following conclusion:
1. The iterative value affects the image detail of

the constructed fractal object.
2. The IFS code variable is a unique code for

building fractal objects and determining object
shapes.

3. The x and y values do not affect the size of the
fractal object image in construction.

4. The iteration process done more than 1000000
times will experience slow pixel depiction
process, so that the fractal object construction
process will be longer.

5. The scale value determines the size of the object
of the fractal itself, the larger the value of the
scale, the smaller the fractal object is formed,
since the value of the affine transformation
coefficient is divided by the value of the scale.

6. The percentage of pixels off the set of
experiments using different iterations yields
different percentages as follows:
a. Iteration 1000 with 30 times has the

possibility of number of pixel off set by
0.343%.

b. Iteration 5000 with 30 times has the
possibility of number of pixel off set by
0.0653%.

c. Iteration 10000 with 30 times has the
possibility of number of pixel off set by
0.0376%.

d. Iteration 15000 with 30 times has the
possibility of number of pixel off set by
0.0235%.

Of the four pixel offset test results, it is
concluded in every process of constructing
fractal objects having a percentage of pixel
probabilities that set off less than 1% and the
average constructed fractal object has a possible
pixel value offset of 3.495 per fractal object
created and average percentage off set by
0.11735%.

7. During testing, pixel off sets often occur in the
first iteration until the eighth. In order to avoid
pixel off sets reflected on the frame, a first to
eighth iteration exception should be done in the
looping syntax for pixel depiction.

REFERENCES

[1] Barnsley, M. F., 2014, Fractals everywhere.
Academic press.

[2] Barnsley, M. F., and Demko, S., Iterated
Function Systems and the Global Construction of
Fractals, Proceedings of the Royal Society of
London, Series A Mathematical and Physical
Sciences, Vol. 399, No. 1817, June 8, 1985, pp.
243-275

[3] Darmanto, T., Suwardi, I. S., & Munir, R.,
Cyclical metamorphic animation of fractal
images based on a family of multi-transitional
IFS code approach, IEEE In Control, Systems &
Industrial Informatics (ICCSII), September 23-26,
2012, pp. 231-234

[4] Darmanto, T., Suwardi, I. S., & Munir, R.,
Hybrid animation model of multi-object in fractal
form based on metamorphic interpolation and
partitioned-random iteration algorithms,

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

348

International Journal on Electrical Engineering
and Informatics, Vol. 5, No. 3, 2013, pp.285-296.

 [5] Furmanek, P., Examples of fractal objects
generated as the union of terms of a sequence of
sets using the ifs method. Journal of Polish
Society for Geometry and Engineering Graphics,
Vol. 27, December, 2015, pp.53-61.

[6] Munir, Rinaldi., 2004, Pengolahan Citra Digital.
Bandung: Informatika.

[7] Snyder, S. S., 2006, Fractals and the Collage
Theorem.

[8] Yang, Fu., Zheng, Zeyu., Xiao, Rui., & Shi,
Haibo., Comparison of two fractal interpolation
methods, Physica A: Statistical Mechanics and its
Applications, Vol. 469, 2017, pp.563–571.

[9] Warchalowski, Wiktor & Krawczyk, J.
Malgorzata., Line graphs for fractals,
Communications in Nonlinear Science and
Numerical Simulation, Vol. 44, 2017, pp.506–
512.

[10] http://idseducation.com/articles/apa-itu-
animasi/ accessed in 7.34 pm 15 January 2017.

[11] https://www.cut-the-
knot.org/Curriculum/Geometry/ifs.shtml
accessed in 10.42 am 17 January 2017.

