
Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

236

A SYSTEMATIC REVIEW ON DISTRIBUTED DATABASES
SYSTEMS AND THEIR TECHNIQUES

1KATEMBO KITUTA EZÉCHIEL, 2SHRI KANT, 3RUCHI AGARWAL

1Ph D. Scholar, Department of Computer Science and Engineering, Sharda University, Greater Noida, India

2Professor, Research and Technology Development Centre, Sharda University, Greater Noida, India

3Associate Professor, Department of Computer Applications, JIMS Engineering Management Technical

Campus, Greater Noida, India

E-mail : 1kkitutaezechiel@yahoo.com, 2shri.kant@sharda.ac.in, 3dr.ruchi@outlook.com

ABSTRACT

Distributed Databases Systems (DDBS) are a set of logically networked computer databases, managed by
different sites and appearing to the user as a single database. This paper proposes a systematic review on
distributed databases systems based on respectively three distribution strategies: Data fragmentation, Data
allocation and Data replication. Some problems encountered when designing and using these strategies have
been pointing out. Data fragmentation involves join optimization problem since when a query has to combine
more than one fragment stored on different sites. This produces the high time response. Heuristic approaches
have been examined to solve this problem as it is known as a NP-Hard problem. Data Allocation is also
another particular problem which involves finding the optimal distribution of fragments to Sites. This has
already been proved to be a NP-complete Problem. The review of some heuristics methods as solutions has
been conducted. Finally, Data replication, with its famous synchronization algorithm, which is the unique
strategy to manage exchange of data between databases in DDBS, has been studied. Thus, following
problems have retained our attention: serialization of update transactions, reconciliation of updates, update
of unavailable replicas in Eager or synchronous replication, sites autonomy and the independence of
synchronization algorithm. Therefore, this has been our motivation to propose an effective approach for
synchronization of distributed databases over a decentralized Peer-to-Peer (P2P) architecture.

Keywords: Distributed Database, Data Fragmentation, Data Allocation, Data Replication, Data
Synchronization, Peer-to-Peer (P2P) architecture.

1. INTRODUCTION

Not long ago, various organisations were using
Centralized Databases Systems (CDBS) for daily
transactions in different domains such as: banking,
commerce, booking etc. Even today, there are those
that work under this approach. However, we can
observe some issues related to the complexity,
maintenance, performance, and cost of data
communication in a centralized database system
during query processing, depending on end-user
demand from different sites. So, since a certain time,
some of them are motivated to implement efficient
Distributed Database Systems (DDBS) or
Decentralized Database Systems in their
administrative environments for scalability.

The Distributed Database (DDB) System
technique derives from the combination of two
diametrically opposed approaches to data
processing: Databases and their Networking. This
approach implicates different factors. The most
common are: Data replication, Data fragmentation
and Data allocation, etc. [1], [2]. According to [3],
[9], a Distributed Database is a set of more than one
database interconnected and propagated physically
across various locations (sites) which communicate,
via a computer network. Moreover [10], offer a
practical and illustrative definition so that: “A
Distributed Database is a collection of multiple,
logically interrelated databases distributed over a
Computer Network.” He adds that “sometimes
Distributed Database System is used to refer jointly
to the Distributed Database and the Distributed
Database Management System”. In this approach, as

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

237

shown in Figure 1, in a computer network, data,
process and interface components of an information
system are also distributed in multiple locations in
the network [9].

Designing a Distributed Database, it is necessary
that it be entirely resident on various sites in a
computer network or its portion. In this logic, there
must be at least two sites hosting the database, and
not necessarily each one, in the Computer Network.
The major objective of a Distributed Database
System is to appear as a centralized system to end-
users or user terminals or terminal emulators [9]. The
administration of Distributed Database activities is
conducted by the Distributed Database Management
Systems (DDBMS). This last is a software that
manages the Distributed Database so that each site
maintains its database locally and the more it
provides access mechanisms to users so to connect
to the system so that their data is distributed and
replicated on several sites as shown in Figure 1;
disparate from the Centralized Database System
(CDBS), where only one copy of the Database is
stored as shown in Figure 2 [5], [10].

Figure 1. Architecture of a Distributed Database System.

If the architecture of a Distributed Database
System was such that the database resides on a single
node of the computer network (Figure 2), then
despite the existence of this network the distribution
problems of database management would be
identical to the problems encountered in the
architecture of a Centralized Database System.
Because in this last logic, the Database is managed
by one computer system on a central site (Site 3 in
Figure 2) and all transactions or queries are oriented
to that site.

Figure 2. Architecture of Centralized Database System.

So in this way, as additional consideration, it is
clear that the system has to work with a big
transmission delays due to the unique node which is
supposed to receive all requests. So, it is evident that
it is not necessarily the existence of a computer
network that suffices to justify the establishment of
a Distributed Database System. That is why our
interest is focused on an environment where data is
distributed on multiple sites (Figure 1) [10].

1.1 Types of Distributed Databases

In general, there are two categories of
Distributed Database Systems [1], [9], [24], [26],
[32]:

 Homogeneous Distributed Database Systems: In
these Systems, the data is dispersed over servers
on which it’s running the same schema of the
physical Database (same schema of its portions)
and same Database Management System
(DBMS) software, same Operating System and
Hardware.

 Heterogeneous Distributed Database Systems: In
these Systems, dissimilar sites may work under
the control of different schemas of the physical
Databases, diverse DBMSs and so different
Operating Systems and Hardware. These
databases systems are always interconnected to
allow access to data stored on multiple sites.

1.2 Advantages and disadvantages

Here are some advantages of Distributed
Databases Systems [9], [10], [27]:

 Robustness in the functioning of the whole
system: The problems experienced in one branch

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

238

of the organization do not influence the other
branches in the same way;

 The temporary interruption of the network that
connects the branches of the company does not
interrupt the operation of the local database;

 Data security: Staff access may be limited to only
the part of the data that it needs to access;

 Non-overloading the network with reduced
traffic also reduces the cost of bandwidth;

 Good and high performance: queries and updates
are handled locally so that there is no more
bottleneck on the network;

 Local errors are kept locally and do not affect the
entire organization.

Here are the few drawbacks of distributed
database systems [9], [10], [27]:

 Complex implementation: A distributed database
presents a certain complexity in its installation as
well as its maintenance; less complicated task in
a centralized architecture;

 Data security: the multiplicity of access points or
remote sites with access to data does not
guarantee their security;

 Data integrity: given that access to data is no
longer restricted to the unique users of a site,
their corruption is likely;

 In order to be able to achieve data efficiency in
distributed database systems, one has to carefully
place the data;

 Again, to make the distributed database system
efficient, we have to reduce significantly the
interaction between the sites.

The purpose of this paper is to review previous
work, focusing on the published literature between
2008 to 2017, by highlighting their strengths and
weaknesses with the aim of achieving an effective
solution to maintain consistency in homogeneous
Distributed Databases architecture in full migration
toward Peer-to-Peer (P2P) environment. However,
the structure of the remainder of this paper is
organised as follows: apart from Section 1 which is
devoted to the Introduction, Section 2 review the
general literature about the Distributed Database
design techniques or strategies and issues
encountered in the design and the usage of
Distributed Databases and possible solution which
already exist, while Section 3 propose the new model
of synchronization through the replication process,
and finally Section 4 concludes the study.

2. LITERATURE REVIEW

This paper is not the first to direct its thoughts on
the problem of DDBS and their techniques. It is

therefore essential for to review the literature that fits
in this area in order to justify our research. This
literature review is organized as follows: the first
unit ‘A’ discusses the Distributed Database design
techniques or strategies used, while the second unit
‘B’ discusses the issues encountered in the design
and the utilization of Distributed Databases.

2.1 Distributed Databases Design Techniques

2.1.1 Design strategies

The term Distributed Database design has a very
broad and un-precise meaning. The design of
distributed computer systems involves deciding on
the assignment of data and programs to the computer
network sites, as well as the design of the network
itself [1]. The aspects of the design of a Distributed
Database cover, for the first time, those of the
Centralized Database such us [10], [22]:

 The modelling of the conceptual diagram to
describe the integrated database: the data used by
the applications manipulated by the users;

 The design of the physical schema: to illustrate
the conceptual schema by determining the data
storage areas and the appropriate access
methods.

In a Distributed Database these two problems
become the design of the global schema and the
design of the local physical databases at each site.
The techniques which can be applied to these aspects
are the same as in Centralised Databases. The
distribution of the database adds to the above aspects
two new ones [1], [10]:

 The fragmentation Design: this is how to define
the partitions of the global relations according to
horizontal, vertical or mixed partitions;

 The design of fragment allocation: the
representation of diagrams on physical images
that define how fragments will be allocated to
sites and then replicated.

There are two major ingenuities in designing
Distributed Databases: the top-down method and the
bottom-up method [1], [10], [11]. These methods
convey very different techniques in the design
process. The top-down method is much more
suitable when designing homogeneous strongly
cohesive Distributed Databases, while the bottom-up
method is more suitable for heterogeneous or multi-
databases.

2.1.1.1 Top-down method

Mostly used when the Distributed database is
implemented from beginning; as illustrated in the
Figure 3. The design process starts from the analysis

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

of requirements. This phase includes the company
situation analysis, the problems definition and
constraints, the objectives definition, and the scope
design and boundaries [1], [12].

Figure 3.Top-Down Design Method [1]

The next two tasks to be undertaken are
conceptual modelling and view design. Conceptual
modelling deals with the formalization and
standardization of entity relationships. It also
focuses on data requirements while view design
activity defines the end user interfaces. As the
conceptual modelling process determines the types
of entities and the relationships among them, then
the entity analysis goes further in determining the
entities and their attributes. The functional analysis
determines the fundamental functions involved in
the organisation modelling. View integration is an
activity that defines the conceptual model that must
support existing applications as well as future
applications [1].

2.1.1.2 Bottom-up method

This method is used when Distributed Database
already exists and other features or another Database
have to be added in existing environment [11]. In this
way, the problem is the integration of several
existing local schemas into a global conceptual
schema considered as already developing a
distributed system.

When combining many existing databases to
develop a distributed system, the bottom-up method

is used because it is based on the integration of
several existing schemas into a single global schema.
It is during, the combination of more than one
existing heterogeneous system to build a distributed
database system using the ascending method is also
possible. Thus, the Bottom-up design process
requires the following steps [1], [10], [12]:

 The selection of a mutual prototype to describe
the global schema of the database;

 The conversion of all local schemas into a mutual
data model;

 The unification of local patterns to arrive at a
mutual global schema.

2.1.2 Distribution strategies

The design of the Distributed Database System
includes that of the global conceptual schema, which
is added to local schemas, based on the three-level
architecture of the DBMS in all sites. The
establishment of a computer network across sites of
a distributed system is an additional complex
problem of design. The vital design problem
concerns the distribution of data between the sites of
the distributed system; therefore, the modelling and
implementation of the Distributed Database System
is a daunting task of which we can cite the following
significant factors [10], [20]:

2.1.2.1 Data fragmentation

The term decentralized or distributed database is
referred to distribution of the data over the computer
network architecture where the copy of the entire
database is distributed or stored at different sites.
Likewise, it can also be a single database, split into
pieces and scattered across different sites. Thus each
site stores the data or relationships it often needs and
gets the rest if needed from other sites [9], [10], [17].
These relations may be divided into portions of the
original relation: this is what is called Data
fragmentation or partitioning. Fragmentation is the
process of breaking down a relation into small
relations which are called fragments usually stored
at different sites [1], [2], [10]. A relation can be
fragmented in diverse form: horizontally, vertically,
or hybrid [2], [6], [9], [17], [18], [19], [20], [21],
[22]:

 Horizontal fragmentation: It divides a relation R
into fragments based on its tuples or records, as
depicted in Figure 4. All fragments are tuples
subsets of the original relation. To constitute a
fragment, the selection of certain specific record
lines is done according to criteria [2], [17], [18],
[19]. According to [9], every fragment comprises

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

a subset of rows of the original relation. The idea
behind horizontal fragmentation is that each site
must store the data it currently uses so that when
querying the database by a select query, the
transaction executes as fast as possible [20].
Horizontal fragmentation divides the “Rows” of
R where
R = R1 U R2 U…U RN.

R(Attr1, Attr2, Attr3, Attr4, Attr5)

 R1(Attr1, Attr2, Attr3, Attr4, Attr5),

 R2(Attr1, Attr2, Attr3, Attr4, Attr5),

 RN(Attr1, Attr2, Attr3, Attr4, Attr5).

Figure 4. Horizontal fragmentation

Horizontal fragmentation is further comprises of
two types [10], [17], [22]:

Primary horizontal fragmentation: This is
realized when tables in a database are not linked or
have not any dependencies. So, the relationship
doesn’t exist among them.

Derived Horizontal Fragmentation: This type of
fragmentation is suitable for relations in parent-child
relationships. It ensures that fragments of tables that
are linked together by means of primary keys on the
parent side and foreign key on the child side are
stored on the same site.

 Vertical fragmentation: It splits a single relation
R into subsets of relations those are projections
of relation R in the respect of attributes subset, as
shown in Figure 5. These relations are grouped
with attributes and usually accessed by queries.
When these fragments joined the original relation
is rebuilt [2], [17], [18]. According to [9], every
portion comprises a subset of columns of the
original relation. Vertical fragmentation thus
consists in subdividing a relation into sub-
relations by the projection principle of an
original relation into a subset of attributes, apart
from the primary key (s), so constitute fragments
each of which must include the attribute (s) of the
primary key (s) of the original relation [19], [20].
This harmonization only makes sense if various
sites are predisposed to use the same entity or
relation for different functions [20].

Vertical fragmentation splits “Columns” of R
where
R = R1 R2 … RN. Attr1 is the
primary key.

R(Attr1, Attr2, Attr3, Attr4, Attr5)

 R1(Attr1, Attr2, Attr3),

 R2(Attr1, Attr4, Attr5),

 RN(Attr1,…, AttrN).

Figure 5. Vertical fragmentation

 Hybrid fragmentation (mixed fragmentation): it
combines the two previous ones. In this type of
fragmentation, the relations is broken down into
random fragments, according to the expectations
of the design, as represented in Figure 6 here
below. Each fragment can be assigned to a
defined site [20], [21]. This type is the most
complex because the two preceding types
(horizontal and vertical) are used to build a
schema that can meet the requirements of the DB
application. The original relation is obtained by
joining or union operations [17], [20]. Mixed
fragmentation thus consists of a veritable
fragmentation followed by horizontal
fragmentation, or the opposite [20], [21]. In this
fragmentation we combine the selection and
projection operators of relational algebra to
achieve this:
П_p(_Attr1,...,AttrN(R)) or П
_Attr1,...,AttrN(_p(R)).

Figure 6. Hybrid fragmentation

Data fragmentation major advantages in
Distributed Database are [1], [9], [10], [23]:

 Effectiveness and Optimization: the system
becomes efficient because the response time of a
transaction is reduced significantly when the data

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

are stored closely and isolated from those used
by other users and other applications;

 Easy roll-in and rollout of data.

Following are the disadvantages of data
fragmentation [1], [10], [23]:

 Low performance: applications performance
which use queries combining the data from the
fragments stored on different sites is low because
the temporal complexity of a selection or union
retrieval that involves various relations of
various sites is high;

 Integrity problem: relation functional
dependency including the data they carry must
also be fragmented to be allocated to different
sites across the computer network to preserve the
referential integrity.

2.1.2.2 Data replication

The replication concept connotation is
understood in the sense that the storage of the same
data or the same relations is done on more than one
site. These technologies assure to copy and to
distribute data or database objects from one database
to another in order to run synchronization between
them for maintaining the consistency [13], as shown
in Figure 7. It stores separate copies of the database
or their portions at two or more sites. It is a popular
fault tolerance technique of distributed databases
[14]. In a replication model the major problem turns
out to be the maintenance of consistency between the
data [23]. In this way, setting up a replication
procedure involves deciding which fragments or
tables of the database will be replicated [31].

Figure 7. Data replication protocol

From this point of view, we retain two notions
which we will first of all clear up: synchronization
and consistency.

Data synchronization is a process that establishes
consistency between data from a Source or Master or
Parent to a Destiny or Slave or Child and vice versa.
This technology is parameterized and runs in time
according to any harmonization that can make it
trigger automatically or run manually, as appropriate
to copy the data changes in one or two directions [8],
[49], [50], [51].

These Data Synchronization directions are as
follows [40], [49]:

 One-way or Unidirectional or Asymmetrical
Data Synchronization [40], [41]: This process
transmits the changed data to the source or main
node Database toward the target node's Database.
Sometimes this form of synchronization is
practiced to unload a Database to another to
make an analysis, to make the Database backup
in order to prevent breakdowns or for
maintenance reasons of Database under usage.

 Two-ways or Bidirectional or Symmetrical Data
Synchronization [7], [40]: This is used when it’s
mandatory to keep the same copy of the data in
each data storage node on the network. The data
is replicated on all the nodes and the exchange is
done dynamically between them. This
configuration is used to duplicate the same data
across multiple nodes to reduce server load and
maintain data access very quickly.

In turn, the Data consistency is the capacity for a
Replication model to reflect on the copy of a data or
replicas the changes or updates made on other copies
of this data. The consistency of Replication models
is essential to abstract away execution particulars,
and to classify the functionality of a given system
[15]. At the same idea angle [23] emphasizes that
mutual reliability rules need the identity of all
fragments or whole relations. Therefore, the DBMS
must ensure that the Database update transaction is
performed on all sites where copies of data exist, to
maintain the reliability of the data between the
replicas.

From this emerge two methods of replication
which are as follows [1], [9], [16]:

 Synchronous Replication: Each copy of modified
relations (fragments) must be updated before the
commitment of the transaction. It must be
remembered that the end user has received the
most freshly actuated data. Many tools
integrating the synchronous replication
algorithm allow data to be written to the Master
Database and to the Slave (s) or Replica (s)
simultaneously, in “real time”. This ensures that
all copies remain in sync.

 Asynchronous Replication: Asynchronous
replication tolerates momently the difference
between values of same relation or fragment
copies. Data is updated after a predefined interval
of time. Tools that integrate asynchronous
replication algorithms allow data to first be
written to the Master database before being
copied to the Slave (s) or Replica (s). Here,

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

therefore, the replication takes place in near-real
time, i.e. that it takes place based any program or
planning. For example, it can be planned that the
update transactions will be transferred to the
Slave (s) in batches on a periodic basis of fifteen
minutes.

2.1.2.3 Data allocation

Allocation is the DB distribution approach in
which DDB fragments are assigned on a distributed
network sites [23]. The allocated data can be
replicated (double copies) or not replicated (single
copy). Fragments replication improves effectiveness
and consistency of read-only queries but increase
update cost [20]. Four alternatives strategies have
been identified for data allocation [1], [10], [22],
[23], [26], [46]:

 Centralized: in this strategy, the distributed
system is just a single database and DBMS stored
at one site with users distributed across the
communication network. Remote users can
access centralized data over the network; thus,
this strategy is similar to distributed processing.

 Fragmented (or partitioned): this technique
divides the entire database into disjoint

fragments, where each fragment is assigned to
one site. In this strategy, fragments are not
replicated.

 Complete (or full) replication: each site of the
system maintains a complete copy of the entire
database. Since all the data are available at all
sites, locality of reference, availability and
reliability, and performance are maximized in
this approach.

 Selective replication: this is the combination of
centralized, fragmented, and complete
replication strategies. In this approach, some of
the data items are fragmented and allocated to the
sites where they are used frequently, to achieve
high localization of reference. Some of the data
items or fragments of the data items that are used
by many sites simultaneously but not frequently
updated are replicated and stored at all these
different sites. The data items that are not used
frequently are centralized.

Here below, in the Table 1, it will be described
these different data allocation strategies and also
drew a comparison between them.

Table 1. Comparison of strategies for Data allocation [10], [46]

 Locality of
reference

Reliability and
availability

Workload distribution
and performance

Storage costs Communication costs

Centralized Lowest Lowest Poor Lowest Highest
Fragmented High Low for data item,

high for system
Satisfactory Lowest Low

Complete
replication

 Highest Highest Best for reading Highest High for updating low
for reading

Selective
replication

High Low for data item,
high for system

Satisfactory Average Low

2.2 Distributed Databases Design Issues

In the previous section, we highlighted that
relations in the schema of a Database are typically
divided into smaller fragments. The primary
distributed database design goal is to break the
relation, to allocate and to replicate the fragment in
different sites of the distributed system with local
optimization on each site [2]. Thus, the aim of this
section is to go into detail about the problems
encountered during fragmentation, allocation of
fragments and replication between them.

2.2.1 Data fragmentation problem

The fundamental problem highlighted for the
fragmentation techniques commonly used and

presented in this work here above is minimizing
distributed joins or join query optimization [2]. One
database interaction issue is the join query execution
across sites [37]. First and foremost, let's talk about
the query processing.

2.2.1.1 Query processing

A Query is a text that gives to a DBMS an order
to run on a Database. The Query consists of
keywords or declarative query language commands.
The Structured Query Language (SQL) is mostly
used to facilitate the interaction with the database.
Generally, there are two types of queries [47], [55]:

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

 Data retrieval query which consists of selecting
data from the database. It is materialized by
Select SQL command;

 Data action or update query which consists of
modifying data. It is materialized by Insert,
Delete and Update SQL commands.
Query processing is further categorized in to

distributed query processing of multidatabase query
processing:

1. Distributed query processing

As far as the "database fragmentation" approach
is concerned, when we talk about the query
processing, we refer to the data retrieval query,
according to this section problem, already mentioned
above. The query processing is an important issue in
centralized and decentralized or distributed
databases architecture. However, the solution to this
problem is more difficult to reach in decentralized
environment than centralized because of sites
dispersion and relations fragmented/replicated.
Theses parameters affect considerably the
distributed query performance because the join of
relations/fragments from different sites increase
communication and processing cost [1], [57]. Once
submitted, there are layers which are involved in
distributed query processing. These layers are the
succession of 4 steps, depicted in Figure.8, followed
by the processing such that [25], [32], [33]:

 Query decomposition: The query decomposition
is the first phase of the query processing which
consists of breaking down the request into a
series of operations of the relational algebra.
DBMSs typically exploit seven set operators that
are selection, join, projection, Cartesian product,
union, intersection, and difference.

 Data localization: The inputs of the second layer,
data localization layer, is an algebraic query on
the global conceptual schema. As generally, the
relations are fragmented and separated into
disjoint subsets, called fragments, stored on
different sites, this layer determines the
fragments that are involved in the query and
transforms the distributed query into a query
about the fragments.

 Query optimization: The inputs of the query
optimization, which is the third layer, is an
algebraic query on fragments whose purpose is
to find the near the optimum strategy for
executing the query. Finding the optimal solution
is intractable by computation. An execution
strategy for a distributed query can be described
with relational algebra operators and
communication primitives for data transfer
between sites. In short, query optimization

consists of finding the "best" ranking of the
operators in the query, including the
communication operators that minimize a cost
function.

 Query execution: The last layer is the query
execution to be performed by all sites with
fragments involved in the query. Each local
query, i.e. running on a local site, is optimized
using the local schema of the site and executed.
However, the algorithms for performing the
relational operators can be chosen. Local
optimization uses the algorithms of centralized
systems.

Figure 8. Query processing in Distributed Databases [1]

The query optimization, phase 3, makes it
possible to improve the performance of a database
query. In this way, query optimization defines the
best execution by the DBMS of a given code. The
database query performance is achieved when the
processing of an action assigned to is done
effectively and / or efficiently. In this approach it is
necessary to know that there must be certain factors
on the basis of which the level of performance must
be calculated; e.g. the time of execution or of answer,
the space of memory, etc. [25].

2. Multidatabase query processing

Multidatabase is one of heterogeneous DDSs
aspects that advocates the empowerment of DBMSs
in a distributed environment. This aspect is not
supported by homogeneous DDBSs. However,
multidatabase query processing is more complex
than processing in homogeneous DDBSs. The
reasons which characterize this complexity can be
pointing out [1]:

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

 DBMSs don’t have same computing capabilities,
performance and behaviour to process complex
queries;

 DBMSs don’t have same query processing cost
so that the local query optimisation depend on
each local DBMS;

 DBMSs don’t have same query language as well
as data models so that queries translation is a
challenge.

Mostly, multidatabase query processing is
performed by mediator/wrapper architecture which
allow the cooperation between different DBMSs.
Thus, like in homogenous distributed three main
layers or steps of query processing which are Query
decomposition & Data localization, Query
optimization & execution and Query translation &
execution are involved in the multidatabase query
processing. The Mediator performs the two first
steps, Query decomposition & Data localization by
rewriting queries using views and Query
optimization & (some) execution by taking in
consideration local fragments/relations, whereas the
Wrapper performs the last layer, the Query
translation & execution by returning, to the
Mediator, the results provided by the execution on
each DBMS of translated queries according to its
language syntax [1], [55], [57].

2.2.1.2 Status of the problem

 Problem definition: This problem consists of
finding an optimal approach to minimize the data
transmission cost in DDBS, even with the one
join attribute. Determining the optimal sequence
of join procedures in query optimization leads to
exponential complexity. In DDBS, principles of
query optimization can be the cost of the query
or the response time of the query. The cost of the
query has primarily two things to be considered:
local processing cost and communication cost.
The communication cost minimization is the
crucial problem to solve. The cost of the data
communication between two sites is a function of
the linear form B + A.X where “B” is the starting
cost of the transmission, “A” is the constant cost
related to the transfer of a unit of data and “X” is
the volume of data transmitted from one site to
another [38]. The most proposed efficient
solution strategies which reduce the transmission
cost are based on semi-join operation, assumed
that the transmission cost is the dominant factor
in distributed databases. Thus [38] proposed a
modelling to this problem as follow: Given a
Database D of j tables D = {T1, T2,…..Tj},
distributed over n sites {S1, S2,….Sn}. For

optimizing the processing of a query Q, query is
of form Ti1 join(Key1) Ti2 join(key2) Tih
join(keyh).

 Methods: There are diverse techniques to
optimize the databases queries. These techniques
improve the performance of the query and
decrease the cost. In this way [37] and [39]
presented two of them as follow:

 Data replicated: The first technique for the
join request to transfer data from the servers
to the client and insert it into the client
Database so that the results are executed by
join query, on the client site and take the data
directly on its own Database. The basic
strategy of data replicated is to send the
smaller table to the site that contains the
larger table, and perform the join on that site.

 Data non-replicated: Second technique
performs the join query on the client site
without inserting the data into its database.
Parallel processing doesn't focus on
minimizing the data transmission quantity but
rather maximizing the simultaneous
transmissions number.

2.2.1.3 Some heuristics

The distributed joins or Join query optimization
problem is a NP-Hard problem. The worst case is
when the query is submitting over the global schema
i.e. all sites so that data fetch from those sources
through packaging [25], [27]. To deal with such a
problem, there is need of heuristic approaches to
solve the problem in polynomial time [28], [38].

T. Robert [58] has designed a cost model that
identifies opportunities for inter-operator parallelism
in query execution plans. This makes it possible to
estimate more precisely the response time of a query.
It has merged two existing centralized optimization
algorithms DPccp (Dynamic Programming
connected subset complement pair Algorithm for
Query Optimization) and IDP1(Iterative Dynamic
Programming Algorithm for Query Optimization) to
create a much more efficient IDP1ccp algorithm. He
proposed the multi-level optimization algorithm
framework that combines heuristics with existing
centralized optimization algorithms. The proposed
Distributed Multilevel Optimization Algorithm
(DistML) uses the idea of distributing the
optimization phase across multiple optimization
sites to make full use of available system resources.

W. Di [59], proposed the Cluster-and-Conquer
algorithm for query optimization for federated

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

database which take into account the execution
conditions. He first considered the entire federation
as a clustered system, grouping the data sources
according to the network infrastructure or the
boundaries of the enterprise; then he provided each
group of data sources with their own cluster
mediator. This algorithm divides the optimization of
the query into two procedures: firstly, the global
mediator decides on inter-cluster operations, and
secondly, cluster mediators treat cluster subqueries
with consideration of execution conditions.

In this section, queries were considered as
positive relational algebra involving the conjunction
of selection, join, projection, Cartesian product,
union, intersection, and difference. The query
optimization problem faced by everyday query
optimizers is becoming more complex with the
increasing complexity of user queries. The NP-Hard
join order problem is a central problem that an
optimizer must face to produce optimal plans. This
has always motivated researchers in this field to find
effective solutions.

However, the problem of DDBSs does not only
meant finding an effective solution of join query
processing. Nevertheless, as soon as a database is
partitioned, it is necessary to proceed by allocating
the fragments to the respective sites. Thus, the next
section will deal with the issue of fragment
allocation.

2.2.2 Data allocation problem

The resources allocation across computer
network nodes is an ancient distribution topic that
has been studied widely [1]. Let's put a set of
fragments F = {F1, F2, …, Fn} and a distributed
environment containing sites S = {S1, S2, …, Sm} on
which a set of query Q = {q1, q2, …, qq} is running.
The allocation problem involves finding the
“optimal” distribution of F to S.

2.2.2.1 Status of the problem

 Problem: The problem of allocation implicates to
find the “optimal” distribution of F to S. Problem
of fragments allocation is one of the significant
issues that need to be discussed in the optimality
definition. The optimality can be defined with
respect to two measures [1], [10]:

 Minimal cost. This is a function that includes
the storage cost of each Fi on a site Sj, the
query cost of Fi on the site Sj, the cost of
updating Fi on all the sites where it is stored
and the cost of data transmission. The
allocation problem is to find an optimal

solution by minimizing the combined cost
function.

 Performance. The allocation strategy is put in
place to maintain performance measure. Two
well-known methods consist of minimizing
response time and maximizing system
throughput at each site.

 Generic model: To optimize system throughput
or minimize response time at each site, several
models have been designed. But, find one that
improves to achieve "optimality" that takes into
account performance and cost factors, in other
words a model that responds to requests from
users in a minimum time and also the cost of
minimal processing. This remains a very
complex problem. However, [1] proposed very
simple modelling of the problem that is general:
Let F and S, considering a single fragment, Fk.
Let us set a number of hypotheses and definitions
that can formalize the allocation problem.

1. Assume that Q can be modified so that it is
possible to identify the update and the select
queries, and define the following for a single
fragment Fk:
T = {t1, t2, …, tm} where ti is the traffic of the
select transaction generated at site Si for Fk,
and U = {u1, u2, …, um} where ui is the traffic
the update transaction generated at site Si for
Fk.

2. Assume that the transmission cost between
two sites Si and Sj is set for a unit. Moreover,
assume that there is the difference between
the Update and the Select transaction so that:
C(T) = {c12, c13, …, c1m, …, cm-1, m} and C’(U)
= {c’12, c’13, …, c’1m, …, c’m-1, m} where cij is
the unit transmission cost for Select queries
between sites Si and Sj, and c’ij is the unit
transmission cost for Update queries between
sites Si and Sj.

3. Assume that the fragment storing cost at site
Si is di. So we can state that D = {d1, d2, …,
dm} to store the fragment Fk at each site.

4. Assume that for sites, no storage constraints
or transmission constraint. Thus, this same
problem can be formulated as that of cost
minimization where it is necessary to find the
set I𝐶S which specifies the place of storage
of the replicas of the fragment. Subsequently,
xj presents the decision variable for storage as

𝑥 = ൜
1 if fragment 𝐹 is assigned to site 𝑆

0 otherwise

The accurate description is the following:

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

min ቌ 𝑥𝑢𝑐′ + 𝑡 min
|ௌೕ∈

𝑐

|ௌೕ∈

ቍ + 𝑥𝑑

|ௌೕ∈

ୀଵ

Focus to

𝑥 = 0 𝑜𝑟 1

The second term of the objective function
above illustrates the total cost of storing all
replicas of the fragments, whereas the first
refers to the cost of passing updates to all sites
that own the fragment replicas and to the cost
of execution of selection transactions on the
site. Finally, it can result in a minimum cost
of data transmission [1].

But this model has been designed without
taking into account information requirements
or measurable data on the database. That's
why it remains generic. According to [1], this
model is NP-complete and several different
modelling of the same problem proved to be
so difficult for a long time. The complexity
of the problem lies in the fact that there may
be fragments and sites in large numbers. So
finding optimal solutions is not surely
computational. Thus, several researches have
already been done to try to have good
heuristics that can offer some optimal
solutions

2.2.2.2 Some heuristics

Most of research have already proved that the
solution of the Database Allocation Problem (DAP)
formulation is NP-complete. Thus one has to
examine some heuristic approaches that yield
optimal solutions and taking into account
requirements of information indicated here above.

U. Tosun, T. Dokeroglu and A. Cosar [34],
developed a series of heuristic algorithms and
adapted them to each other through experiments and
defined the most efficient way to solve the DAP in
distributed databases. In their experiments, the
execution times and the quality of fragment
allocation alternatives were studied. They managed
to produce reliable and more or less satisfactory
results even for a considerable number of fragments
and sites. Their model is up to determine the sites
where each fragment will be allocated and thus a
single fragment for each site. The fragments
replication on several sites and the assignment of
several fragments to any site have not been
considered in this work.

A. Amer and H. Abdalla [35], have implemented
a heuristic for the replicated and unreplicated
dynamic reassignment model that has developed an
optimal solution for reassigning fragments in a
Distributed Database System. This method stipulates
that the allocation of fragments on the sites is
executed generally based on the frequency of the
requests that one executes on this site. Starting from
this frequency, the model proposes a plan to reassign
fragments based on transmission costs between sites
and updates the cost values for each fragment. The
reallocation operation is performed taking into
account the maximum update cost values for each
fragment and consequently the reassignment
decision. Finally, the results proved that this method
contributes effectively to the resolution of problems
of dynamic reallocation of fragments.

Referring only to these two authors, above, let us
end these lines, reminding nevertheless that several
models that convey heuristic methods have already
been developed to solve these problems encountered
when designing the distribution of data. The scope
of solutions for the DAP is based on the replicated
and non-replicated static or dynamic fragments
allocation.

These two approaches, diametrically opposed,
focus successively on [34], [36]:

 Static algorithms: they use predefined
information requirements;

 Dynamic algorithms: they take modifications of
information requirements into consideration.

Since the database still only fragmented, this
problem is seen from one side whereas when
fragments have to share data among them through
replication procedure, then it takes another look. In
this way, here below, we have to review the
replication problem separately because sometimes
one can design distribution models based on existing
fragmentation and fragments allocation patterns.

2.2.3 Data replication problem

The Data replication is another issue to consider
during the design since when we advocate designing
a Distributed System in which fragments or whole
relations have to exchange data among them. This
exchange of data is performed by the mean of
synchronization procedures which are sets of
transactions execution. Concretely this problem
consists to keep reliability and availability among
replicas [1], [57].

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

2.2.3.1 Transaction management

In Distributed Database Management System
(DDBMS) a transaction is a sequence of Read or
Write operations that takes the database from one
reliable being state to another reliable state and
ending with one of the following two statements
[24], [31]:

 Commit: indicating the validation of all
operations performed by the transaction;

 Rollback or Abort: indicating the cancellation of
all operations made by the transaction.

In this way, all operations of the transaction must
be validated or cancelled jointly. Essentially,
DDBMSs own a query language to interact with
databases, of which Structured Query
Language/Programming Language (PL/SQL) is
mostly used [24], [47]. As indicated beforehand, a
transaction can perform two types of operations:
read operation known as a query transaction,
materialized by Select operator and write operation
known as an update transaction, materialized by
Insert, Update and Delete operators in SQL [42],
[47], [55].

a) Transaction properties

DDBMSs ensure that transaction execution
meets a set of good properties that lead to the
consistency and reliability of a distributed database
and conveniently summarized by Atomicity,
Coherence, Isolation, Durability (ACID) as follow
[24], [29], [31]:

 Atomicity is guaranteed by the rollback
command to cancel any changes made to the
database during the transaction. It also releases
any locks placed on the data during the
transaction by the system. In this logic, a
transaction is either performed completely (so
until the commit that concludes) or cancelled
completely (rollback or abort in the system, in
case of a possible failure or deadlock or
cancelling by the user himself);

 Consistency: all commit and rollback must be set
to run when the database is in a consistent state.
It must always be remembered that a commit or
a rollback marks the end of a transaction, and
therefore defines the set of operations that must
execute jointly (or "atomically");

 Isolation is the property that ensures that the
execution of a transaction is completely
independent of other transactions. Consequently,
no other transaction can read or modify data that
is being modified by another transaction;

 Durability is guaranteed by the commit
command to make all updates made on the
database permanent during the transaction. The
system ensures that any system interruptions
occurring after the commit will not affect these
updates.

b) Concurrency control

In DDBMSs the simultaneous execution of
multiple applications can cause concurrent access
problems such that the same information being
handled by multiple users at the same time. The
concurrency unit is the transaction that also plays a
role with respect to the control of data integrity [27].
A database must be consistent before and after a
transaction. So, the problem is that consistency can
be violated during the concurrent execution of
transactions. In this way the concurrency control is
the set of methods implemented by a database server
to ensure the good behaviour of transactions,
including their isolation [23].

Concurrent execution without synchronization
constraints can produce a number of problems who’s
the most important are loss of operations and
improper readings. Thus, it is necessary to fix a
property determining a correct execution of
transactions completion: the serializability [28]. The
serializability is NP-Complete problem [10].
Transactions concurrent execution is correct
(produces the same result) if it is equivalent to a
serial running. Serialization is a strong property that
limits parallelism to execution and improve
performance [31]. We can distinguish two main
techniques to ensure serialization [1], [10], [22],
[29]:

1. Pessimistic or a priori approach makes sure that
we cannot have an incorrect execution. We have
found two algorithms: Two-Phase Locking
(2PL) and Timestamp Ordering (TO), already
implemented in most of commercial DDBMSs
and also a hybrid technique.

a) Two-Phase Locking (2PL) technique

In an industrial way, the only solution
implemented is the locking approach. The
2PL algorithm is the oldest, and still the most
used, concurrency control method ensuring
strict serializability. Unfortunately, it is
reputed to induce deadlocks as well as
rejections of transactions [23], [30].

The 2PL is based on the locking of current
read or update tuples. The idea is simple: each
transaction wishing to read or write a tuple
must first obtain a lock on this tuple. Once

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

obtained, the lock remains held by the
transaction that placed it, until this
transaction decides to release the lock. A lock
is a state variable associated with an object of
the database and indicating its state with
respect to read / write operations [29], [31].

The 2PL transactions execution concretely
means that each transaction has a growth
phase, where it obtains locks and accesses the
data elements, and a shrink phase, during
which it releases locks. The lock point is
when the transaction has reached all locks but
has not yet begun to release one of them.
Thus, the lock point determines the end of the
growth phase and the beginning of the
shrinkage phase of a transaction [1]. The
Figure 9 here below depicts 2PL execution
protocol.

Figure 9. Growing and shrinking phases in 2PL Protocol

[1]

b) Timestamp Ordering (TO) technique

In order to maintain transactions serialization
in a Distributed Databases, apart from the
Locking-based algorithm, there is a
Timestamp-based algorithm. With this
technique, to maintain the execution of
transactions in serial order, on the
initialization of transactions, the transaction
manager assigns to each one a unique
timestamp for its identification and for
transactions ordering [23], [30].

The main rule is enunciated as follow:
Suppose two conflicting operations, which
can be read or write SQL commands in a
transaction such that Oij and Okl respectively
belonging to the transactions Ti and Tk, and ts,
the Timestamp. Oij is executed before Okl if
and only if ts(Ti) < ts(Tk) in other words, Ti

would be the oldest transaction and Tk would
be the youngest. This protocol avoid
completely deadlocks of transactions because
even if ts(Ti)<ts(Tk), the transaction Tk cannot
rollback rather the operation Okl will be

rejected and the transaction manager would
restart the whole transaction with a new
Timestamp [1].

c) Hybrid technique

The visible limitation of Timestamp Ordering
(TO) technique is that several restart of
transactions can also influence negatively the
performance of the system. There are other
algorithms to attempt to improve this TO
technique: Conservative TO and Multi-
version TO Algorithms which aims to reduce
the number of transaction restarts [1], [10],
[22].

However, if one uses timestamp technique in
locking-based algorithm in order to improve
the concurrency level and efficiency, it
should emerge the Hybrid technique. This
technique should combine the advantages of
2PL algorithm and TO algorithm, in other
word the notion transaction lock as well as
the transaction timestamp. According to [1],
this still being a challenge, since when it has
never been implemented in any commercial
DDBMS. But, some researches, [29], [30],
[31], have already proposed Wait-Die (WD)
&Wound-Wait (WW). This algorithm
follows 2PL technique principals but
overcome deadlock problem by applying the
TO technique rule.

2. Optimistic or a posteriori approach execute the
transaction without constraints and one moment
of the validation one verifies that there are no
conflicts with the other transactions. The
optimistic approach of the concurrency control
technique is appropriate in low conflict systems
because the validation of each transaction for
serialization, much like the pessimistic approach,
can reduce performance. In these cases, the
serialization test is adjourned just before
validation because the conflict rate is low and the
probability of aborting no serializable
transactions is low as well [1].

Until today no research has yet attempting to
implement the 2PL technique for the optimistic
approach [10]. But according to [1], it would be
possible to design a technique lock-based for this
approach. Some of the proposed algorithms are
timestamp-based and some have already been
extended to DDBMSs [22]. One of them is
Distributed Optimistic Protocol (OPT) [23], [29],
[30], [31]. It is a time-based concurrency control
algorithm that works by exchanging certification
information during the commitment. For each

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

data item, a read timestamp and a write
timestamp are retained. OPT can provide the
possibility of serialization under the restrictions
imposed by two timestamps read and write
basically assuming here above. If the
concurrency check is not used, non-serializable
execution orders can be generated by concurrent
transactions.

a. Deadlock management

The 2PL protocol guarantees serializability
property but does not prevent deadlock situations.
Deadlock occurs when a transaction Ti is blocked
waiting for resources Ri from another transaction Tj
which in turn wait for resources Rj hold by Ti so that
none process can complete [1], [4]. More generally,
a deadlock can occur between n transactions [23].
The Figure 10 here below illustrate deadlock
situation between two transactions Ti and Tj.

Figure 10. Wait for graph for deadlock process [1]

To manage this situation, two techniques are
possible, a pessimist which prevent deadlock and an
optimist for detecting deadlock [10], [28], [29], [30]:

 Deadlock prevention and avoidance:

 Deadlock prevention is an alternative
method for resolving a blocking situation in
which the system is designed so that
blocking is impossible. In these schemas, the
transaction manager checks a transaction
during its initial launch and does not allow
to perform a prior action in case of risk likely
to cause a blockage.

 Deadlock avoidance is a technique which
ensures that the blocking situation will not
occur in a distributed system. The resource
pre-command is a deadlock avoidance
technique in which each data element in the
database system is numbered and each
transaction requests locks on those data
elements in numerical order. This technique
requires that each transaction gets all its
locks before execution. The numbering of
the data elements can be done globally or
locally.

 Deadlock detection and resolution: we maintain
a graph of dependencies between the transactions
which makes it possible to detect the situations
of deadlock (presence of a cycle in the graph). It
is then necessary to kill one of the transactions
participating in the deadlock. The choice is made
heuristically (transaction with the least updates to
undo, most recent transaction, ...). It is this
technique that is implemented in commercial
systems.

No solution is ideal and a choice must be made
between the risk of occasional and unpredictable
anomalies, and blockages and rejections that are just
as punctual and unpredictable but which ensure the
correction of concurrent executions [1].

b. Recovery management

Recovery is the process of ensuring that a
database can achieve a reliable state in the event of
failure. The failure recovery is, as the name implies,
to ensure that the system is able, to recover the state
of the database at the time the failure occurred. The
basic unit of recovery in a database system is the
transaction, i.e. on recovering time one should make
sure that transactions display the properties of
atomicity and durability [10]. The term fault here
refers to any event that affects the operation of the
processor or main memory. This could be, for
example, an electrical interruption interrupting the
data server, a software failure, or hardware failure.
We will distinguish four types of failure (whatever
the cause) [1], [22]:

 Transaction failures (aborts): usually occasioned
by incorrect input and detection of deadlock.
This conduce the transaction to abort and re-
establish the database to the state before the
initiation of the transaction;

 Site (system) failures: is caused mostly by
hardware or software failure which leads to the
loss of the main memory content while the
secondary memory (disk) is safe and correct. The
Site failure, the more usually make the
concerning site unreachable in a distributed
system;

 Media (disk) failures: is the failure of the
secondary memory or disk which store the
database. This can be due to disk crash or
operating system errors. But since when the
backup technique exists, the system can avoid
such kind of catastrophe by recovering the
database from the backup disk;

 Communication line failures: it results to
network problems or destination site problems

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

250

which can make impossible the communication
and the transaction outcome. This issue is
particularly identifying to distributed systems,
but centralized one aren’t very implicated.
However, the strength of distributed systems is
so that even if the communication line fail, it
cannot affect all sites but some of them.

2.2.3.2 Status of the problem

Problem definition: Even though data replication
presents perfect profits, it faces the challenge of
keeping data copies synchronized. However, this
problem, in simple way, consists of maintaining
consistency among data copies or replicas as well as
data availability [1], [46]. Data or Replica reliability
is the domain presented by a set of data, in this case,
Databases that contain the same information and
placed on different nodes of the computer network
when they are editable, they must all be updated (or
synchronized) to maintain reliability [41]. Thus, it
emerges two approaches [4]:

One is mutual reliability, which deals with the
convergence of values of physical data elements that
correspond to logical data. Mutual reliability of
replicate databases can be strong or weak:

 Strong mutual reliability: Need that all data item
copies contain the same data at the commitment
of an update transaction.

 Weak mutual reliability: don’t necessitate the
data item replicas values to be same when an
update transaction ends. In this way, it is
necessary that when the update ends at a given
moment, the data ends up becoming identical.
This is normally called final reliability and this
means that the replica data may not be the same
over time, but eventually converge.

The second is transaction reliability is one of the
transaction management proprieties which refer to
activities of concurrent transactions. It is desired that
the database keep a reliable state even if there are
many read or update requests from users that are
simultaneously submitted to it. On the other hand, to
ensure the reliability of transactions, as it has been
indicated here, this is the very objective of the
concurrency control.

Updates propagation methods: Replica reliability
is obviously a part of the data replication, which is in
turn a method to overcome the problem of slow data
access, low availability, fault tolerance, etc., in
DDBSs. Previously it has been presented two general
approaches to manage updates propagation that
allowed the categorization of replication models.

These strategies depend on “when” parameter i.e. we
need to know when updates are propagated. Thus, it
emerges two update strategies as follow [1], [4],
[41], [46], [52]:

 Eager or synchronous or active or pessimistic
replication: This method recommends that all
data replicas be updated in the same transaction
as the write transaction. This transaction
typically presents itself as a basic Two-Phase-
Commit (2PC) an atomic broadcast protocol. But
after the operation all the replicas are coherent
and bear the same physical state. Consequently,
it is clear that disconnected sites can still block
an update procedure because the 2PC protocol
works by the principle according to which if a
transaction is executed on multiple sites it must
commit on all sites or abort on all these sites [1],
[6]. This strategy provides strong mutual
consistency or reliability.

 Lazy or asynchronous or passive or optimistic
replication: The second method, in turn,
introduces a new approach to overcome the
difficulty of distributed locks. Its technicality
prone to update a subset of replicas during the
execution of an update transaction and then
transmit the modification to the other replicas a
little later. Only a part of replicas is updated.
Other replicas are fetched up-to-date lazily after
the commitments of the transaction. This process
can be triggered by the commitment of the
transaction or another periodically executing
transaction. This approach provides weak mutual
consistency or reliability.

These replication dimensions are orthogonal
with “where” parameter i.e. we need to know where
updates are going to take place. From this we have
[1], [4], [41], [46], [52]:

 Single Master or Primary Copy or Mono Master
with Limited or Full Replication Transparency
(centralized): only one copy of the data is
updated (master copy) and all others (secondary
copies) are subsequently updated to reflect the
changes in the master copy.

 Update everywhere or Multi Master
(decentralized or distributed): updates are done
on any data copy i.e. all sites that have a copy of
the data can perform the data update and the
changes are replicated to all other copies.

2.2.3.3 Types of replication protocols

Assume a fully replicated database and each site
work under a Two-Phase-Locking (2PL)

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

251

concurrency control technique. Therefore, we have
four possible combinations [1], [4], [41], [46], [52]:

1. Eager centralized

In this approach, on a master site, operations
(mostly write transactions) on a data element are
conducted. These procedures are combined with
strong consistency methods, so that the single update
transaction which is committed using the Two-
Phase-Commit (2PC) protocol performs logical data
item updates.

First case: Single Master with Limited Replication
Transparency

Let W(x) be a write transaction and R(x) be a
read transaction where x is the replicated data item.
The Figure 11, here below depicts the Eager Single
Master Replication Protocol in the logic of Read-
Any, Write-All (RAWA) or Read-One, Write-All
(ROWA) using Time-Stamping Algorithm. The user
submits the Write Transaction on the Master Site
only and the Master Transaction Manager System
forward synchronously these updates/changes to
Slaves. A Read-only transaction can be submitted to
anyone of Slaves Sites or the Master Site itself.

Figure 11. Eager Single Master Replication Protocol

(1) A Write transaction is performed on the DB on
the Master Site;

(2) Write is then despatched to other replicas;

(3) At the commitment time updates become
permanent;

(4) Read transactions are routed to any slave copy.

This case present one major drawback of
overloading the master site by write transactions. As
presented in the Figure 11, here above, every write
transaction from each user application need to be
deferred to the master copy before being dispatching
to Slaves. Moreover, one important issue that persist

is to make the difference between an “update”
transaction and a “read-only”.

Second case: Single Master with Full Replication
Transparency

This case overcomes the issue of Master
overloading by Write Transactions from users. Thus
apart from the Eager replica control algorithms
coupled with Time-Stamping algorithm, the
concurrency control which uses the coordinating
Transaction Manager has been introduced.

However, the logic of RAWA or ROWA is still
keeping but using Transaction Management
algorithm. The user application is alleviated to know
the Master Site. Even if the implementation of this
case is more complicated than the first alternative
discussed but it is responsible to provide Full
Replication Transparency, keeping the same schema
depicted in Figure 11, but using the Transaction
Management algorithm.

Third case: Primary Copy with Full Replication
Transparency

Let W(x) and W(y) be a write transactions and
R(x) be a read transaction where x and y are
replicated data items, successively first routed to
Master(x) and Master(y). The Figure12, here below
depicts the Primary Copy with Full Replication
Transparency with the supposition of fully
replication. A is the Master Site storing the data x
and B and C are Slave Sites containing replicas; in
the same way, C is the Master Site that holds the data
y with B and D its Slave Sites.

Figure 12. Eager Primary Copy Replication Protocol

(1) Read or Write transactions for all element of data
are directed to that master of data items. A Write
transaction is first performed at the Master;

(2) Updates are then despatched to the other replicas;

(3) The commitment of Updates is performed.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

252

Primary copy method requires a sophisticated
repertory at all sites, as well as a joint replica
concurrency control technique, but it also overcomes
some issues discussed in the previous approaches
such that to reduce the load of the Master Site
without producing a great volume of transmission
among the transaction managers and the lock
managers.

2. Eager distributed

Changes or updates can come from anywhere to
first update the local replica and then send to other
replicas. If the updates result from a site where there
is no data element, it is sent to one of the replica sites,
which in turn harmonizes the execution. The update
transaction is responsible for fulfilling all these
possibilities. The user is notified and the updates
become permanent when the transaction commit.

Let W(x) be a write transaction where x is a data
item duplicated at sites A, B, C and D. The Figure
13, here below depicts how two operations modify
different copies (at two sites A and D). This
procedure turns with the logic of Read-Any, Write-
All or Read-One, Write-All constructed on the
concurrency control techniques.

Figure 13. Eager Distributed Replication Protocol

(1) Two different Write transactions are
simultaneously performed on two different
local replicas of the same item of data;

(2) Write transactions are transmitted to the other
replicas independently;

(3) At the time of commitment Updates become
available.

3. Lazy centralized

 This protocol provides algorithms which are
alike eager centralized replication. But in this
procedure updates or modifications are first
performed to a Master replica and then transmitted

to the slaves. The greatest dissimilarity is that the
modifications or updates can’t be dispatched through
the update transaction, but forwarded by a separate
refresh transaction to Slaves, asynchronously after
the transaction commits. Thus, it is possible that a
read transaction from any Slave, anytime, reads an
out-of-date copy as the updates are pushed to Slaves
one lapse long after the Master's update.

First case: Single Master with Limited Transparency

Let W(x) be a write transaction and R(x) be a
read transaction where x is the replicated data item.
The Figure 14, below, illustrates the sequence of
execution steps for Single Master with partial
sharpness. Here the write transactions are executed
and deferred precisely on the main site (exactly as
for Single Master). The second transaction, which
we qualify as a refresh transaction, shares the
updates to the slaves after validation of the first
transaction. As soon as there is one master copy for
all the data elements, the execution command is done
according to the timestamp attached to each
refreshing transaction at the site, according to the
order of the commitment of the transaction.
modification or actual update. Thus, in the
timestamp order, Slaves would smear refresh
transactions.

Figure 14. Lazy Single Master Replication Protocol

(1) The modification is performed on the local
replica.;

(2) Updates become available as soon as transaction
validation is successful;

(3) A refresh transaction propagates updates to other
replicas;

(4) A read transaction is routed to a local copy of the
slave.

When databases are partially replicated, a desired
primary copy with a limited replication transparency
approach makes sense if update transactions access

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

253

only data items whose master sites are identical,
since update are fully executed by a master. The
same problem exists in the case of lazy primary
copy, limited replication approach. The problem in
both cases is how to design the distributed database
so that meaningful transactions that can recognize
the difference between an "update" and a "read only"
transaction can be executed.

Second case: Single Master or Primary Copy with
Full Replication Transparency

This protocol is an alternative that provides
complete transparency by allowing the submission
of read and write transactions to some site and then
despatching them to the appropriate Master. This is
delicate and involves two problems: the first is that,
unless cautious, the global history in a serial order
may not be definite; the second problem is that a
transaction may not see its own updates.

So far, these two difficulties have found a partial
solution: [1], proposed an algorithm respecting a
chronological sequence of transactions executions.
This algorithm is presented in the same way as that
of centralized Eager, a primary copy with complete
replication transparency case, but with the difference
which is such that it makes it possible to retrace
sequentially the history of serial transactions. Thus,
a transaction does not start until the commitment of
another, so lazily.

Although this algorithm manages the first
problem, but the second according to which a
transaction does not see its own scripts remains
unresolved. To solve this problem, it has been
advocated to keep a list of all the modifications made
by a transaction and to consult this list when
executing a reading. Nonetheless, as soon as only the
master knows the updates, he deviated more to keep
the list and all transactions (reading as well as
writing) must be executed on the master.

4. Lazy distributed

In the control of lazy distributed replicas, updates
come from wherever, they are first run on the local
replica, and then propagated to other replicas later.
In this way, the read and write transactions are
executed on the local copy and the commitment of
the transaction is locally before the refresh
transaction propagate updates to other sites.

 Let W(x) be a write transaction where x is a
duplicated data item at sites A, B, C and D. The
Figure 15, here below shows how two transactions
modify or update two different copies (at sites A and
D) and after commit the refresh forward updates to
all sites.

Figure 15. Lazy Distributed Replication Protocol Actions

(1) Two modifications or updates are performed on
two local copies;

(2) Commitment of the transaction makes the
modifications available;

(3) The modifications or updates are self-reliantly
transmitted to the other replicas.

Once implemented, these protocol guarantees
availability of updates although propagated instantly
on all sites. Nevertheless, they leave the door open
to investigation because they may present certain
limitations that can be analysed in order to improve
them. Although, these protocols establish the
external appearance of replication; but one may need
to know what's going on internally. On this
preoccupation the answer is that internally there is
synchronization procedures which are responsible to
coordinate the exchange of data by running
transactions in order to maintain replicas consistent.
So the next section will present briefly the
synchronization algorithm.

2.2.3.4 Synchronization algorithm

Data synchronization is part of the replication
procedure that ensures that each storage object in the
database contains the same data [8]. Mostly the
synchronization is a technique used for working
"online" and "offline", in the absence of the network
or during server failures so that Data are stored in the
user’s site Database (Local Server), in order to be
automatically synced with the server (Central
Server) in serial order when the system recover from
the failure [45], [56].

The synchronization procedure is mostly
appropriate for lazy or asynchronous replication
because it is this approach which can allow
momently replicas discrepancies. Thus, it is a set of
transactions which broadcast updates made on a
Master toward a Slave (s) in near real-time.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

254

Similarly, the synchronization procedure in Eager or
synchronous replication use real-time transactions to
broadcast updates. So it is from these approaches
replication procedures which are used in most of
DBMSs are working. They forward updates audit-
log based, the combination of timestamp [1] and
triggers [7] technique, stored procedure based [42],
Message digest based [43], XML Based [45], etc.

1. Timestamp and current datetime

The timestamp is a data type in most of DBMSs
so that if a table contain a timestamp column, each
time a row is modified by an Insert, Update, or
Delete statement, that column capture the change
and the timestamp value of the row is set or the
current value is incremented by 1. Basically, it is a
combination of date and time plus a minimum of six
positions for decimal fractions of seconds and an
optional with time zone qualifier [55], [57]. The
simple timestamp technique consists to concatenate
the number of site with the local clock i.e. the
combination of date and time so that when a row is
modified the current date and time in the timestamp
value also change. But one can also prefer to record
the current dates and times of data changes in a table,
using the datetime or smalldatetime datatype in a
particular column. Thus, replication refreshing
transactions can be scheduled to take place
according to the timestamps and datetime
comparison [1]. Certainly, the problem remains with
the synchronization of the clock because there is no
global agreement in time between sites in a
distributed system.

2. Triggers

Typically, triggers are used to form the Audit
Log of the database. This supports: Data Definition
Language, to keep the history of activities that
modify the physical schema of the database, Data
Manipulation Language, to keep the history of the
data modification and Data Control Language, to
save the access history to the database by users [7].
In terms of database synchronization, the trigger is
actually a stored procedure that execute a custom
action before or after a certain event on database
table records, such as Inserts, Updates and Deletions.
Today almost all DBMSs support triggers, to keep
records history. There are two types of triggers [42],
[55], [57]:

 Before triggers are used to update or validate
record values before saving them to the database;

 After triggers are used to access system-defined
field values, and to apply changes to other
records. Records that activate the after trigger are
read-only.

Most synchronization procedures use this
method to capture data changes in order to broadcast
data updates. To achieve this, the table identifier or
the primary key, the audit action type and the last
timestamp of the audit table are required for a record.
This is why the use of timestamp is very important
for the comparison between records. The timestamp
is used to check if there is inserted data, updated
data, or deleted data from the synchronized database
based on the identifier, the audit action and the
timestamp.

3. Stored procedure

Stored procedures are code scripts that automate
actions, which can be very complex. A stored
procedure is actually a series of SQL statements
designated by a name [55], [57]. They are stored in
the database and used, just like all objects in the
database. Once the procedure is created, it is possible
to call it, by its name. The instructions of the
procedure are then executed. Stored procedures can
be initiated by a user or automatically by a triggering
event [42].

4. Message digest

Only used for mobile database synchronization,
the Synchronization Algorithms based on Message
Digests (SAMD), is an algorithm which run data
synchronization between a server side database and
a mobile database. It allows data exchange between
two message digest tables, one on the server-side and
another on the mobile side. The message digest is a
function which detects changes made on rows and
facilitate the exchange of data in order to maintain
consistency between the mobile database and the
server database [43]. Other varieties of message
digest algorithms are:

 ASWAMD: Advanced Synchronization
Wireless Algorithm based on Message Digest, a
synchronisation technique to assure data
synchronization under the image format between
the mobile device database and the server-side
database. Based on an image stored in a message
digest table, this algorithm compares two images
and identifies the lines to be synchronized [71].

 ISAMD: Improved Synchronization Algorithms
based on Secured Message Digest, like
ASWAMD, this algorithm compares images and
run their synchronization between the mobile
device database and the server-side database.
This algorithm does not use techniques that
depend on specific database providers; it also
does not use triggers, stored procedures, or
timestamps. It uses only standard SQL functions
to synchronize [72].

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

255

5. XML (Extensible Mark-up Language)

Many mobile synchronization techniques based
on XML have already been developed. Same of them
are presented here below [45]:

 Synchronization Mark-up Language (SyncML)
is a mobile database synchronization technique
based on XML, to carry messages over a
network.

 DefferedSync is another synchronization
technique to transform relational database into an
XML tree structure and then makes use of
deferred views in order to minimize bandwidth
and storage space on mobile client.

Subsequently we will proceed to review also
software structures which generally implement these
replication protocols and all these techniques
aforementioned here above. Thus, we will study the
replication under some most used DBMSs.

2.2.3.5 DBMSs and types of replications

It has been necessary to select some most used
DBMSs under which replications procedures ran, to
properly investigate Data replication. This survey
will examine the key feature and efficiency provided
by Data replication in following Distributed
Database Management Systems: Oracle DB,
MySQL, SQL Server, and PostgreSQL. First of all,
let us talk a bit about them and the types of
replications they provide.

1. Replication in Oracle DB

Oracle DB is a Relational Database Management
System (RDBMS) that since the introduction of
object model support in version 8 can also be called
Object Relational Database Management System
(ORDBMS). It is provided by Oracle Corporation
and incorporates the SQL database query language.
It has the necessary tools for Database replication,
which makes it a Distributed Object Relational
Database Management System (DORDBMS). It is
Multiplatform, it can allows following
environments: Windows, Linux, Mac OS, and
others [63]. Two forms of replication are supported
by Oracle: basic and advanced replication [64], [65].

 Basic replication

Basic replication consists of a Master-Slave
environment where updated data from the Master are
propagated to Slaves for read-only. However, Slave-
based applications may have access to query local
replica data for read-only purposes, but in case the
changes are needed, these applications must access

data on the Master. Basic replication can be used for
several types of applications: information
distribution, information off-loading, and
information transport. The main technique used here
is read-only table snapshots that consist of a local
copy of table data from one or more remote primary
tables. To make this technique more efficient,
Snapshot Refreshes is used to make this capture
reflect a real state of its Master.

 Advanced replication

Advanced replication is the expansion of basic
replication capabilities in that it allows applications
to update table replicas in a replicate database
system. Replicas of data from any site in the
replication environment can be accessed for read and
write. So, Oracle database servers which make up the
replication system must automatically converge the
data replicas and ensure the overall consistency of
the transactions and the integrity of the data.

Advanced replication can be used for several
types of applications with special requirements:
Disconnected Environments, Failover Site,
Distributing Application Loads and Information
Transport. Advanced replication allows basic
components replication such as: objects, groups,
sites, and catalogues. To make easy the replication,
Oracle DB provides an administrative tool, “Oracle
Replication Manager”, to run Advanced replication.
Oracle require a proper replication administrator, a
user whose responsibility consists of setting up the
replicated environment and for this it require a
specific user account.

Despite all these assets, advanced replication
process leaves a challenge of possible conflict as it
allows update anywhere. One can distinguish 3 types
of conflicts [65]:

 Uniqueness conflicts due to entity integrity
violation (primary key, foreign key, unique
constraint);

 Update conflicts due to attempting to update a
row which is being updated by another process;

 Delete conflicts due to attempting to delete or
update a row which is being deleted by another
process.

However, Oracle integrate some technique for
detecting and resolving conflicts. To detect conflict,
it runs the comparison of amount of row from the
Master site and the Slaves site; if there is the
difference, the conflict is detected. The second way
consists of the recommending the usage of the
primary key in order to identify records. If a table
don’t have a primary the user must designate an

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

256

alternative key. Advanced replication is essentially
asynchronous. This technique uses mechanisms of
high concurrency control to resolve conflicts
between transactions at the Slave site. Nevertheless,
this replication can be synchronous if and only if an
application updates all replicas in the same
transactions directed to the local replica. Advanced
replication in turn supports the following replication
configuration types [65]:

a) Peer-to-Peer replication

Peer-to-Peer replication, also known as Multi-
Master replication, allows multiple equal peers from
different sites to manage replicate database objects.
Thus, applications access and update any replicate
data from tables stored on any peer in the replication
environment. Peer-to-Peer replication uses the
asynchronous method to propagate peer updates.

b) Materialized View replication

The Master sites of a replication system can
consolidate the information updated by the
applications on remote snapshot sites. In this logic,
applications can make insertions, updates and
deletions of table rows via snapshots. These kinds of
remote snapshots are called Updatable Snapshots or
Materialized Views, which gives this type the name
of Materialized View Replication.

c) Hybrid replication

Peer-to-Peer replication combined with
Materialized View Replication gives rise to hybrid
or "mixed" configurations to meet different
application requirements. In these kinds of
configurations, one can have any number of master
sites and more than one view site materialized for
each master.

2. Replication in MySQL

MySQL is a Relational Database Management
System (RDBMS), one of the most widely used
database management software in the world, both by
the general public (mainly web applications) and by
professionals. SQL refers to the Structured Query
Language, the query language that it uses. It was
purchased from Sun Microsystems by Oracle
Corporation. As a result, it holds two competing
products, Oracle Database and MySQL. It is
Multiplatform, it can allows following
environments: Windows, Linux, Mac OS, and
others [69]. It owns also the Data replication strategy
which make it to be a Relational Distributed
Database Management System (RDDBMS).

In MySQL, the replication is a mechanism for
copying data from a source or master MySQL

database server to one or more other destinations,
MySQL databases servers or slaves. So this
replication is Mono-Master/Multi-Slaves. By
default, replication in MySQL is asymmetrical and
asynchronous, that is to say it only allows updating
to be done in near real-time in one direction. The
permanent connection between slaves and master is
not recommended to receive updates from the
master, so if an update transaction finds an
unconnected slave, the system has the option to
update it time as soon as he connects i.e. lazily. With
MySQL replication can be customized in two ways
but keeping the idea of the principle Mono-
Master/Multi-Slave: replication of all databases and
replicate selected databases or even select tables in a
database [70].

3. Replication in SQL Server

Microsoft SQL Server is a Relational Database
Management System (RDBMS) which incorporate
SQL language developed and marketed by
Microsoft. It runs on Windows and Linux since
March 2016, but it is possible to launch it on Mac OS
after downloading some necessary components [60].
It assures the distribution of Databases by the
replication strategy warrantied by synchronization
procedures to maintain consistency among
Databases objects. This is why it is a Relational
Distributed Database Management System
(RDDBMS). Types of replication provided by SQL
Server for use in distributed applications are
following:

 Snapshot Replication

 This replication consists in taking a snapshot of
the data published in the database (the publisher) and
move them to another, which may or may not be
stored in the same machine (the distributor), in order
that the distribution agent transmits in turn these data
to other databases (subscribers) periodically based
on the specified schedules. This type of replication
requires little work overload for the publisher server
because the operation is punctual. Subscribers are
updated by copying all published data rather than just
making the changes (Insert, Update, and Delete) that
occurred [61], [62].

This replication is well suited for small volume
publications; otherwise subscriber updates may
require significant network resources. Snapshot
replication is often used when subscribers need
access to read only information and they do not need
to know the information in real time. The Snapshot
Agent is responsible for performing the job to
prepare the files containing the schemas and data

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

from the published tables. These files are stored on
the distributor [13].

 Transactional replication

It is used to replicate objects in a database.
Transactional replication uses the log to recognize
changes occurred to published data. These changes
are stored first on the distributor before being
propagated to subscribers as they occur (i.e. in real
time) in the publication, to ensure transactional
consistency. This is a dynamic replication mostly
used in Server-to-Server replication [61], [62].

This type of replication requires low latency
between sites when changes are made to the
publisher and the changes arrive at the subscriber. So
in an environment where connections are optimal,
the latency between the publisher and subscribers
can be very low. The publisher has a very large
volume of Insert, Update, and Delete activities
because as database users insert, update, or delete
records on the publisher, transactions are transmitted
to subscribers. The publisher or subscriber can have
different types of DMBS [13].

 Merge replication

 Merge replication allows two or more databases
to be synchronized. All changes applied to a database
are automatically transferred to other databases and
vice versa. It allows data modifications on the
publisher and the subscriber, but also allows offline
scenarios i.e., it can allow synchronization to take
place automatically between the subscriber and the
publisher after a subscriber has been disconnected
from an editor for a given period. And here, the
Merge Agent is responsible for synchronizing
changes between the publisher and its subscribers
[61], [62].

The logic of operation remains the same with that
of the snapshot replication, with the difference that
is such that it uses a set of triggers to identify the
items (records) that have changed and save these
changes finally that the merge agent uses this history
to update subscribers [13].

 Peer-to-Peer Transactional replication

 SQL Server peer-to-peer replication ensures high
availability and a scaling solution that maintains
multiple copies of data across multiple peers
(servers). It is based on transactional replication and
broadcasts updates by consistent transactions in
near-real time. It advocates redundancy of peer data
to increase availability. In a peer-to-peer replication
system, read performance on a peer is similar to that
of the entire topology because changes from insert,

update, and delete operations are propagated to all
peers [61].

The main problem with Peer-to-Peer replication in
SQL Server is that modifying a record on more than
one peer causes a conflict or loss of update when
propagating updates. To ensure consistency, it is
recommended that a record be updated by one and
only one peer. In addition, when dealing with an
application that requires immediate visibility of the
last changes, there should be a problem of dynamic
load balancing between multiple peers. Also, as far
as conflict management is nowadays concerned in
almost all research about peer-to-peer replication,
this also has an option to detect and to avoid conflicts
and loss of updates. Unfortunately, this feature is not
yet very effective, especially since the resolution
consists of treating the problem as a critical error that
causes the distribution agent to fail; and finally the
data remains inconsistent until a manual resolution is
made throughout the topology [13].

4. Replication in PostgreSQL

PostgreSQL is a Relational and Object Database
Management System (RODBMS). It owns features
for Database replication, which make it a Distributed
Object Relational Database Management System
(DORDBMS). It is a free tool and available
according to the terms of the license used. This
system competes with other free or commercial
DBMSs due to its availability. Like the Linux
operating system free project, PostgreSQL is not
controlled by a single company, but rather based on
a global community of developers and companies. It
is mostly used as an open source relational database
chosen by many organisations and people for their
experimentations. It runs on almost all operating
system. The origins of PostgreSQL are based on the
Ingres database, which was developed by Michael
Stonebraker in Berkeley. He decided in 1985 to
restart the development of Ingres to finally arrive at
a new product that he named Postgres, shortened
post-Ingres. In 1995, the SQL features had been
added and the product was renamed Postgres95. This
name was finally changed in PostgreSQL [66]. In
PostgreSQL, replication can be classified in 3
generic ways [67], [68]:

 Synchronous and asynchronous replication

PostgreSQL asynchronous replication take place
after the transaction has been committed on the
master. In other word, the slave is never ahead of the
master; and in the case of writing, it is usually a little
behind the master and this delay it takes to forward
data from the master to a slave is called lag. The
Synchronous replication is considered in

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

PostgreSQL as a method to enforce rules of high
consistency by running a write transaction from one
server (the master) and the same transaction before
commit, it updates at least two servers at the
commitment time. This implies that the slave does
not lag behind the master and the data seen by the
end users will be identical on both the servers. In
some cases, the quorum server decision is used to
commit the transaction; in this way, more than a half
of servers must agree so that the transaction
commits.

According to S. Hans-Jürgen [67], synchronous
replication still produces overhead since when if a
transaction is replicated synchronously, PostgreSQL
has to reassure that the data reaches the destination
node. This lead to latency issues whose a lot of works
have been done to reduce this overhead as much as
possible, but efficient solution is not yet reached.
Another more problem he pointed out about
asynchronous replication, is the case when the
Master dies before forwarding updates carried to it
by local committed transactions. The Slave will
never get these updates. The small lag is required to
reduce data loss, but in any case, lag cannot be equal
to zero, it is always more than zero and lag larger
than zero is susceptible to data loss and sacrifice the
consistency. This problem also need an effective
solution.

 Single-Master and Multi-Master replication

PostgreSQL provide Single-Master replication
which consists to direct all updates on the Single-
Master so that this last forwards these updates
synchronously or asynchronously to the Slave(s). In
turn the Multi-Master replication allows updates to
be done anywhere. So as writes can go toward many
nodes at the same time, possible conflicts can be
known between replicas; which is the main challenge
of this configuration because the conflicts resolution
increases network traffic which finally turn in
scalability issue causes by latency.

 Logical and physical replication

The Logical replication is which is based on the
flow of logical data like for instance data which are
provided by function while physical replication is
based on the flow of data as it is to the remote node.

5. DBMSs replication critical analysis

The features to which this investigation has been
fixed are the following: the approaches of updates
propagation, the direction of updates propagation
and the configuration (number of Masters and
different DBMSs supported).

Table 2. Replication Approaches and Directions

Approaches

DBMSs

Synchronous Asynchronous

Symmetric Asymmetric

Oracle DB Yes Yes Yes Yes
MySQL No Yes No Yes
SQL Server Yes Yes Yes Yes
PostgreSQL Yes Yes No Yes

This table 2 presents the directions and replication
approaches based on the "when" parameter in the

four aforementioned DBMSs. SQL Server and
Oracle DB answer all questions positively.

Table 3. Replication Confifurations

Configurations

DBMSs

Mono-Master Multi- Master Mono-DBMS Multi-DBMS

Oracle DB Supported Supported Perfect Not Perfect
MySQL Supported Supported Perfect Not Perfect
SQL Server Supported Supported Perfect Not Perfect
PostgreSQL Supported Supported Perfect Not Perfect

This table 3 shows the replication configurations
based on the "where" parameter in the four above-
mentioned DBMSs. However, almost all four

DBMSs can support Multi-Master replication. But as
for the interoperability between DBMSs, when it is
done, it is after a long journey of settings, which

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

remains a work of insiders alone. At this level, it is
necessary to consider a platform that can guarantee
cooperation between DBMSs from the point of view
of data replication.

The replication systems offered by these four
DBMS investigated above are based on generic
replication protocols. Of course each corporation
providing a DBMS possessing replication tools, as
Microsoft and Oracle have already programmed
these tools to address various problems, in different
ways and under different circumstances. But the
bedrock of reflection remains the same, namely the
two main approaches to replication based on the
parameters “when” and “where”. During this
investigation, the attention remained more focused
on the parameter where and more specifically the
Multi-Master configuration or Update everywhere.

Microsoft and Oracle have already managed to
wrap the Multi-Master configuration to make it a
Peer-to-Peer replication. For PostgreSQL, being a
free DBMS open to all, its replication remains
generic and this work is not done yet, so it still offers
Multi-Master replication from the generic protocol
of decentralized replication. Nevertheless,
everywhere, two major challenges were highlighted,
namely: the possible conflicts between the updates
from several Masters at the same time and the
blocking due to the simultaneous update of the same
replica by several Masters at the same time. Thus,
these two problems deserve special attention and will
be clear in the lines that follow.

2.2.3.6 Deficiencies collected

We are not pretending clear all the collection of
issues about the replication procedure. But here we
present some problems we have been able to collect
during the literature conducing through this
Distribution strategy and for which we didn’t found
effective solution.

Disaster management differs between Eager
replication and Lazy replication methods. This last
case is reasonably easy because these procedures
allow for data discrepancy between master copies
and replicas, because when communication failures
make one or more sites inaccessible, accessible sites
only can simply continue processing.

However, it is also clear that more than one
update, carried by refreshing transactions, from
different sites can reach a destination site at the same
time. This needs an efficient serialization algorithm.
Moreover, these updates can be performed on
different sites, simultaneously on different copies of
the same data item. This calls for an efficient

algorithm to reconcile updates. According to [1], this
algorithm can be based on heuristics and in this logic
he gave the example of the importance of the
transmitter site in the hypothesis where there are sites
whose updates are more urgent than those of others.

But, the problem remains with Eager protocol
since when it implements the ROWA procedure,
which ensures that all of the replicas have the same
value when the update transaction commits. An
alternative to Read-One / Write-All (ROWA) that
should attempt to solve the problem of low
availability is the Read-One / Write-All Available
procedure (ROWA-A). The general idea is that write
transactions are performed on all available copies
and the operation ends. The copies those were
unavailable at the time when the transaction ran, will
have to “catch up” when they become available. This
also needs an effective approach which will remove
this limitation.

Centralized update propagation techniques, Eager
and Lazy, as shown in Figure 11, 12, and 14, present
a major problem that is such that they only offer a
single gateway, their Masters (Central Servers),
which are the bottlenecks of everything over the
network; because updates or modifications are first
performed at a Master copy and then propagated to
Slaves, (Clients). In this way the main disadvantage
is that, as in any centralized procedure, if there is one
central site that swarms all Masters, this site can be
encumbered and can become a hold-up. Distributed
update propagation techniques, Eager and Lazy have
overcome this limitation in the sense that updates can
originate and be forwarded from any site.

But, in order to overcome the limitations of
Homogeneous Distributed Database Systems
(HDDSs), early work on DDBMSs had primarily
concentrated on Peer-to-Peer (P2P) architectures. In
this approach there isn’t the difference between
nodes or sites in the system. The modern Peer-to-
Peer systems go beyond the simple description and
diverge from the old one by important ways like: the
massive distribution (thousand sites), sites
heterogeneity and autonomy, sites are rather often
i.e. people’s individual machines and they join and
leave the P2P system at will, etc. [1], [44].

First of all, let us notice that obviously the
Centralized update propagation techniques, Eager
and Lazy problems are same with what knew
Centralized Peer-to-Peer Architecture [44], which
work based a Central Server and Clients (Peers), as
shown in the Figure 16. The request is submitted by
a Peer “A” to the Central Server so that it provide a
list of nodes that satisfy to its demand. As soon as the

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

Peer “A” obtains the list which repays the Peer “B”
then he can communicate with “B”. So it would be
enough that this Server knew a breakdown to block
or to disconnect all Clients and to stop the operation
of the whole system because no Peer will have the
data no longer updated.

Figure 16. Centralized Peer-to-Peer Architecture

Therefore, it is necessary to design a
synchronization algorithm that can update several
copies of Databases at the same time. And each
machine in its roles will be identical to another, and
then we should call this type of system Decentralized
Pure Peer-to-Peer Synchronizer.

The replication protocols we have discussed here
above are appropriate for closely integrated
Distributed Database Systems where the protocols
are inserted into each DBMS components. So since
we advocate designing modern P2P system, we have
to remove the limitation of particular DBMS and
thing in the sense of multi-DBMS Synchronizer. In
multi-DBMS, the process of replication has to be
supported outside the DBMSs by “Mediators”. In
this way this synchronisation algorithm should be
implemented independently of DBMSs as a
Mediator or may be used by Distributed Databases
and applications designers since they will need
interaction between different DBMSs.

3. PROPOSED MODEL

After the course of the literature above offered by
our predecessors in this field, we realized however
that Distribution issues can be categorised in two
based on distribution strategies: Fragmentation and
Allocation from one side and Replication from
another side. In previous section we have presented
more than one approach, from previous works, to
resolve efficiently each of every one of these
problems.

So, in general, analyses from previous work
concluded that in the field of distributed database
systems the problems of data distribution, which are

grouped in two: fragmentation and allocation of
fragments on one hand and data replication on
another hand, have effective solutions when the
number of sites is still very limited and the sites are
still static and configured in a homogeneous way.
But with the arrival of Peer-to-Peer (P2P) network,
the efficiency still far from being found. Hence, the
new research in the field must take into account this
new technology that is in full emergence, where
peers can be business servers, personal computers or
even pocket computers and other electronic devices.

But particularly, the replication problem has
retained our attention; mostly while synchronization,
which is the process of propagating modifications or
updates to sites that hold the replicas of the fragment
or replicas of the whole relation, in the case of full
replication, is running.

3.1 Status of the Problems and Proposed
Solutions

Assuming that the Database is full replicated, the
proposed models would resolve following problems:

 Several updates carried by refreshing
transactions, from different sites can reach a
destination site at the same time but they cannot
be performed on the same time. Proposed
solution: an effective serialization algorithm
[10], [53].

 These updates can be performed on different
sites, simultaneously on different copies of the
same data item, if they reach the destination like
that then reliability or consistency will be lost
and there will be the risk of conflicts [10], [48].
Proposed solution: an effective algorithm to
reconcile updates.

 During Eager or synchronous replication which
is essentially Read-One/Write-All based, if some
copies were unavailable at transaction running
time, the update transaction can’t commit. But
normally the transaction should commit and
unavailable sites should get updates when they
become available [10], [54]. Proposed solution:
an effective approach taking in account Read-
One/Write-All-Available.

 These protocols suffer from many problems
which the introduction of the modern P2P
systems should overcome. Some innovations of
the modern P2P are: sites autonomy in the sense
that each machine in its roles is identical to
another, play same roles, and can leave and join
the Network anytime. Proposed solution: an
effective approach for synchronization over a
decentralized P2P architecture, as shown in

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

Figure 17, that can update several copies of the
databases in real-time or near real-time.

Figure 17. Decentralized Peer-to-Peer Architecture

 Moreover, this approach should overcome one
aspect of Distributed Databases homogeneity in
the sense that it should allow replication between
different DBMSs. So this synchronisation
algorithm should be implemented independently
of DBMSs as a Mediator, illustrated in Figure 18,
or used by designers when they need interaction
between Databases managed by different
DBMSs.

Figure 18. Peer-to-Peer mediator-synchronizer protocol

Figure 19. Peer-to-Peer synchronization Algorithm

The preliminary operations of this algorithm are
depicted in the Figure 19 as follows:

Step1. Select the local Peer and connect on it by
providing the login, password and the IP address
(facultative): if these provided parameters are
incorrect then no connection established else next
step;

Step2. Select remote Peers, by indicating theirs IP
addresses, to be sync and test connection with them
one by one: if Peer non-jointed then no connection
established, next Peer else next step;

Step3. Select Tables (Data) to be synchronised and
test Data inconsistency: if Data consistent then next
Peer else Peer (Table) retained for Synchronization,
next step;

Step4. Synchronize Tables (Data) of all retained
Peers at the same time.

3.2 Proposed Protocols

Assuming that the Database is full replicated, the
proposed models of the Decentralized Peer-to-Peer
Architecture are presented based on Eager
replication and Lazy replication as follows:

 Eager replication: Let W(x) be a write
transaction where x is a replicated data item at
Peers A, B, C and D. The Figure 20, here below
depicts how transactions update different copies

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

262

at all Peers and before commit the refresh
forward updates to all Peers.

Figure 20. Eager Decentralized Peer-to-Peer Replication
Protocol

(1) Updates are applied on all replicas;

(2) The updates are dependently propagated to the
other available replicas;

(3) Transaction commit makes the updates
permanent.

 Lazy replication: Let W(x) be a write transaction
where x is a replicated data item at Peers A, B, C
and D. The Figure 21, here below depicts how
transactions update different copies at all Peers
and after commit the refresh forward updates to
all Peers.

Figure 21. Lazy Decentralized Peer-to-Peer Replication
Protocol Actions

(1) Modifications are reflected to all replicas;

(2) The commitment of a transaction makes the
modifications stable;

(3) The modifications are independently transmitted
to the other data copies or replicas.

This work differs from others in the sense that it
set itself as a goal to completely review the literature
on distributed database systems in order to find out
if existing distribution approaches remain effective
when in full migration to P2P networks. Focusing
first on replication, it has been found that existing
replication approaches are not appropriate for
supporting replication on a P2P network. Thus, it has
been proposed new replication approaches adapted
to the P2P network.

4. CONCLUSION

In this paper, literature survey has been conducted
on Distributed Databases and their techniques.
Nonetheless in this relevant literature, distribution
strategies and some problems encountered when
designing and using distributed Databases have been
pointed out. These problems have been collected
based on respectively three distribution strategies:
Data fragmentation, Data allocation and Data
replication.

First of all, Data fragmentation has been analysed
and our attention has been retained by the join
optimization problem since when this problem
occurs when executing a query combining more than
one fragment stored on different sites. In this way
time response become high when the query has to
concatenate fragments by join. This problem is
known to be a NP-Hard one; so the exploration of
some existing heuristic approaches, as solution, has
been necessary.

Since Data or relations become fragmented the
next step is to allocate these fragments to sites. Thus
Data Allocation is also another particular problem
which involves finding the “optimal” distribution of
fragments to sites. This has already been proved to
be a NP-complete Problem. Its solution consists to
heuristic methods. So during this study the review of
some heuristic that yield suboptimal solutions have
been done.

On finish as fragments or whole relations have in
certain cases to exchange data among them, the Data
replication, which is the unique strategy to manage
this procedure, has been studied and its famous

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

263

synchronization algorithm. The main problem here
is to maintain consistency among fragments or whole
relations on different sites. However, in this
literature, we have indicated some issues which can
violet consistency, such that: no serialization of
update transactions, no reconciliation of updates, no
update of unavailable replicas in Eager or
synchronous replication, no sites autonomy, no
independent effective synchronization algorithm
which can play the role of Mediator between
different DBMSs.

Despite the correctness of all protocols studied
earlier, since these problems just indicated here
above are not solved then consistency can be broken
anytime in replicated database systems. Thus this has
been our motivation to propose an effective approach
for synchronization of distributed databases over a
decentralized peer-to-peer architecture.

As future work we will develop a complete and
DBMS independent algorithm in which it will be
presented step by step scenarios to synchronize
database tables. It will be implemented as a
prototype in a Graphical Interface User, as a
Mediator of DBMSs, to attempt to reach the aims of
modern Peer-to-Peer in Distributed Database
Systems.

REFERENCES
[1] Özsu MT, Valduriez P. Principles of distributed

database systems. Springer Science & Business
Media; 2011 Feb 24.

[2] Shareef MI, Rawi AW. The Customized
Database Fragmentation Technique in
Distributed Database Systems: A case
Study.2011.

[3] Kaur K., Singh H., “Distributed database system
on web server: A Review”. International Journal
of Computer Techniques, Vol. 3, pp. 12-16,
2016.

[4] Souri A, Pashazadeh S, Navin AH.,
“Consistency of data replication protocols in
database systems: a review”, International
Journal on Information Theory (IJIT), October
2014, 3, 19-32.

[5] Idowu SA, Maitanmi SO. Transactions-
Distributed Database Systems: Issues and
Challenges. International Journal of Advances in
Computer Science and Communication
Engineering (IJACSCE) Mar 2014; 2:24-6.

[6] Jain G. Distributed Data Management:
Challenges and Solution on Distributed Storage.
IJCER. 2016 May 14;5(2):24-7.

[7] Gudakesa R, Sukarsa I, Sasmita A, Made Ig.
Two-Ways Database Synchronization In

Homogeneous Dbms Using Audit Log
Approach. Journal of Theoretical & Applied
Information Technology. 2014 Jul 31;65(3).

[8] Malhotra N, Chaudhary A. Implementation of
Database Synchronization Technique between
Client and Server. International Journal Of
Engineering And Computer Science. 2014 Jul
28;3(07).7070-7073.

[9] Tomar P. An overview of distributed databases.
International Journal of Information and
Computation Technology. 2014 Feb;4(2):207-
14.

[10] I. Singh and S. Singh, Distributed Database
Systems: Principles, Algorithms and Systems,
New-Delhi, India: Khanna Book Publishing, Co.
(P) Ltd, 2015.

[11] Hiremath DS, Kishor SB, Distributed Database
Problem areas and Approaches, Journal of
Computer Engineering: National Conference on
Recent Trends in Computer Science and
Information Technology, 2016, 2278-8727.

[12] Gadicha AB, Alvi AS, Gadicha VB, Zaki SM.
Top-Down Approach Process Built on
Conceptual Design to Physical Design Using
LIS, GCS Schema. International Journal of
Engineering Sciences & Emerging
Technologies. 2012;3:90-6.

[13] Microsoft Corporation, SQL Server Replication,
from Microsoft Documentation:
https://docs.microsoft.com/en-us/sql/relational-
databases/replication/sql-server-replication,
Retrieved September 2017.

[14] Truica CO, Boicea A, Radulescu F.
Asynchronous replication in Microsoft SQL
Server, PostgreSQL and MySQL.
InInternational Conference on Cyber Science
and Engineering (CyberSE’13) 2013 (pp. 50-
55).

[15] Souri A, Pashazadeh S, Navin AH. Consistency
of Data Replication protocols in database
Systems: A review. International Journal on
Information Theory (IJIT). 2014 Oct;3(4):19-32.

[16] Rouse M., Backup and recovery, from
TechTarget:
http://whatis.techtarget.com/glossary/Backup-
and-Recovery, Retrieved September 2017.

[17] Verma SK. Fragmentation Techniques for
Distribution Database: A Review. International
Journal of Innovative Computer Science &
Engineering. 2016 Apr;3(2):47-50.

[18] Kaundal G, Kaur S, Vashisht S. Review on
Fragmentation in Distributed Database

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

264

Environment. IOSR Journal of Engineering,
ISSN (e). 2014 Mar:2250-3021.

[19] Salunke IT, Potdar P. A Survey Paper on
Database Partitioning.A Survey Paper on
Database Partitioning”, International Journal of
Advanced Research in Computer Science &
Technology, 2014 2(3), 210-212.

[20] Bhuyar PR, Gawande AD, Deshmukh AB.
Horizontal fragmentation technique in
distributed database. International Journal of
Scientific and Research Publications. 2012
May;2(5):1-7.

[21] Kelemu Y, Patil S. Hybridized Fragmentation of
Distributed Databases using
Clustering.Hybridized Fragmentation of
Distributed Databases using Clustering.
International Journal of Engineering Trends and
Technology, July 2016 Vol. 37(1), 1-5.

[22] Ceri S. Distributed databases. Tata McGraw-Hill
Education; 2017.

[23] Ashish MK. Security and Concurrency Control
in Distributed Database System. International
Journal of Scientific Research and Management.
2014 Dec 5;2(12).

[24] Srivastava A, Shankar U, Tiwari SK. Transaction
management in homogenous distributed real-
time replicated database systems. International
Journal of Advanced Research in Computer
Science and Software Engineering. 2012 Jun.

[25] Boicea A, Radulescu F, Truica CO, Urse L.
Improving Query Performance in Distributed
Database. Journal of Control Engineering and
Applied Informatics. 2016 Jun 23;18(2):57-64.

[26] Johnsirani B, Natarajan M. An Overview of
Distributed Database Management System.
2015; 2(5):118-121

[27] Beynon-Davies P. Distributed Database
Systems. InDatabase Systems 1996 (pp. 107-
115). Palgrave, London.

[28] Bamnote GR, Joshi H. Distributed Database: A
Survey. International Journal Of Computer
Science And Applications. 2013;6(2):0974-1011.

[29] Bernstein PA, Goodman N. Concurrency control
in distributed database systems. ACM Computing
Surveys (CSUR). 1981 Jun 1;13(2):185-221.

[30] Gupta AM, Gore YR. Concurrency Control and
Security Issue in Distributed Database System.
International Journal of Engineering
Development and Research. 2016;4:177-81.

[31] Kaur M, Kaur H. Concurrency control in
distributed database system. International
Journal of Advanced Research in Computer

Science and Software Engineering ISSN. 2013
Jul;2277.

[32] Ip A, Rabayu W, Singh S. Query optimisation in
a non-uniform bandwidth distributed database
system. InHigh Performance Computing in the
Asia-Pacific Region, 2000. Proceedings. The
Fourth International Conference/Exhibition on
2000 May 14 (Vol. 2, pp. 818-823). IEEE.

[33] Umar YR, Welekar AR. Query Optimization in
Distributed Database: A Review. Query
Optimization in Distributed Database: A. 2014.

[34] Tosun U, Dokeroglu T, Cosar A. Heuristic
algorithms for fragment allocation in a
distributed database system. InComputer and
Information Sciences III 2013 (pp. 401-408).
Springer, London.

[35] Amer AA, Abdalla HI. A heuristic approach to
re-allocate data fragments in DDBSs.
InInformation Technology and e-Services
(ICITeS), 2012 International Conference on
2012 Mar 24 (pp. 1-6). IEEE.

[36] Kamali S, Ghodsnia P, Daudjee K. Dynamic data
allocation with replication in distributed
systems.Performance Computing and
Communications Conference (IPCCC), IEEE
30th International, Orlando, FL, USA,
November 2011.

[37] Jiang S, Ferner C, Simmonds D, Reinicke B,
Clark U. Optimizing Join Query in Distributed
Database. Annals of the Master of Science in
Computer Science and Information Systems at
UNC Wilmington. 2011 Apr 26;5(1).

[38] Mahajan SM, Jadhav VP. Tri-variate
Optimization Strategies of Semi-Join Technique
on Distributed Databases. International Journal
of Computer Applications. 2013 Jan 1;66(6).

[39] Kaur P, Sahiwal JK. Join Query Optimization in
Distributed Databases. International Journal of
Scientific and Research Publications.
2013;3(5):1-3.

[40] DBConvert Help Center, Bidirectional Database
Synchronization, from DMSoft Technologies
Articles: https://support.dbconvert.com/hc/en-
us/articles/201210922-Bidirectional-Database-
synchronization, Retrieved October 2017.

[41] Pucciani G, Donno F, Domenici A, Stockinger
H. Consistency of Replicated Datasets in Grid
Computing. InHandbook of Research on Grid
Technologies and Utility Computing: Concepts
for Managing Large-Scale Applications 2009
(pp. 49-58). IGI Global.

[42] M. Mali, Database Management System,
Computer Science and Engineering-Information

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

265

Technology, Mumbai University, India: Tech-
Max Publications, Pune, September 2015.

[43] Kalyanakumar P, Sangeetha A. A
Synchronization Algorithm For Mobile
Databases Using Samd.International Research
Journal of Engineering and Technology (IRJET),
May 2015. 2, pp. 2395 -0056.

[44] Vu QH, Lupu M, Ooi BC. Peer-to-peer
computing: Principles and applications. Springer
Science & Business Media; 2009 Oct 20.

[45] Kekgathetse MB, Letsholo KJ. A survey on
database synchronization algorithms for mobile
device. Journal of Theoretical & Applied
Information Technology. 2016 Apr 10;86(1).

[46] Nicoleta–Magdalena IC. The replication
technology in e-learning systems. Procedia-
Social and Behavioral Sciences. 2011 Jan
1;28:231-5.

[47] Bayross I. SQL, PL/SQL: The Programming
Language of Oracle. Tech Publications Pte
Limited; 2000.

[48] Kumar D, Sharma R. Data synchronization and
offloading techniques for energy optimization in
mobile cloud computing. InInfocom
Technologies and Unmanned Systems (Trends
and Future Directions) (ICTUS), 2017
International Conference on 2017 Dec 18 (pp.
633-638). IEEE.

[49] Shodiq M, Wongso R, Pratama RS, Rhenardo E.
Implementation of Data Synchronization with
Data Marker Using Web Service Data. Procedia
Computer Science. 2015 Jan 1;59:366-72.

[50] Choi M et al., A Database Synchronization
Algorithm for Mobile Devices, IEEE
Transactions on Consumer Electronics, May
2010,56(2).

[51] Balakumar V, Sakthidevi I. An efficient database
synchronization algorithm for mobile devices
based on secured message digest. InComputing,
Electronics and Electrical Technologies
(ICCEET), 2012 International Conference on
2012 Mar 21 (pp. 937-942). IEEE.

[52] Wiesmann M, Pedone F, Schiper A, Kemme B,
Alonso G. Understanding replication in
databases and distributed systems. InDistributed
Computing Systems, 2000. Proceedings. 20th
International Conference on 2000 (pp. 464-474).
IEEE.

[53] Pedone F, Schiper N. Byzantine fault-tolerant
deferred update replication. Journal of the
Brazilian Computer Society. 2012 Mar
1;18(1):3-18.

[54] Khayat G, Maalouf H. Trust in real-time
distributed database systems. InInformation
Technology (ICIT), 2017 8th International
Conference on 2017 May 17 (pp. 572-579).
IEEE.

[55] Silberschatz A, Korth HF, Sudarshan S.
Database system concepts. New York: McGraw-
Hill; 1997 Apr.

[56] Tang C, Donner A, Chaves JM, Muhammad M.
Performance of database synchronization
algorithms via satellite. InAdvanced satellite
multimedia systems conference (asma) and the
11th signal processing for space
communications workshop (spsc), 2010 5th 2010
Sep 13 (pp. 455-461). IEEE.

[57] Elmasri R, Navathe S. Fundamentals of database
systems. London: Pearson; 2016 Sep 2.

[58] Feng ZH, Qiao SU, JIAO YB, SUN JS. SQL
Query Optimization on Cross Nodes for
Distributed System. DEStech Transactions on
Environment, Energy and Earth Sciences.
2016(peem).

[59] Wang D, Mani M, Rundensteiner EA, Gennert
MA. Efficient Query Optimization for
Distributed Join in Database
Federation (Doctoral dissertation, Worcester
Polytechnic Institute)2009.

[60] Atkinson P, Vieira R. Beginning Microsoft SQL
Server 2012 Programming. John Wiley & Sons;
2012 Apr 16.

[61] Meine S. Fundamentals of SQL Server 2012
Replication. Red gate books; 2013 Aug 27.

[62] Hussain A, Khan MN. Discovering Database
Replication Techniques in RDBMS.
International Journal of Database Theory and
Application. 2014;7(1):93-102.

[63] Loney K. Oracle Database 11g The Complete
Reference. McGraw-Hill, Inc.; 2008 Dec 17.

[64] Deshpande K. Oracle Streams 11g data
replication.2011.

[65] Oracle Corporation, Database Advanced
Replication:
https://docs.oracle.com/cd/B19306_01/server.10
2/b14226/toc.htm, Retrieved June 2018.

[66] Matthew N, Stones R. Beginning Databases with
PostgreSQL. Apress; 2005.

[67] Schönig HJ. PostgreSQL Administration
Essentials. Packt Publishing Ltd; 2014 Oct 15.

[68] PostgreSQL Global Development Group,
Chapter 25. High Availability, Load Balancing,
and Replication:
https://www.postgresql.org/docs/9.2/static/high-
availability.html, Retrieved June 2018.

Journal of Theoretical and Applied Information Technology
15th January 2019. Vol.97. No 1

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

266

[69] McLaughlin M. MySQL Workbench: Data
Modeling & Development. McGraw Hill
Professional; 2013 Apr 30.

[70] B. Ronald and S. Chris “Effective MySQL
Replication Techniques in Depth”, New York,
United States of America: McGraw-Hill, 2013.

[71] U.R. Ramesh, G. Yogeswari and N. Tamil,
“Database Synchronization for Mobile Devices
by Using ASWAMD”, National Conference on
Computing and Communication-International
Journal of Innovative Research in Computer and
Communication Engineering, Vol.3, No.1, pp.
2320-9801, 2015.

[72] V. Balakumar and I. Sakthidevi, “An Efficient
Database Synchronization Algorithm for Mobile
Devices Based on Secured Message Digest”,
IEEE International Conference on Computing,
Electronics and Electrical Technologies
[ICCEET], 21-22 March, Kumaracoil, India,
2012.

