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ABSTRACT 

Concept drift is a known problem that can occur in classifier systems. Detecting and handling concept drift 
is an active area of research. Once a concept drift is detected, it has to be handled by updating or re-generating 
the classification model. In this paper, a new approach is introduced for handling concept drift, where a drift 
intensity measure is used to quantify the intensity of a concept drift. The model generation process uses the 
drift intensity measure while generating a new model. If the drift intensity is high, the model generation 
process discards old data (data before the drift occurrence) and builds a new model solely based on the new 
data after drift. On the other hand, if the drift intensity is low or moderate, the model generation process takes 
into account both old data and new data but it gives more weight (proportional to the drift intensity) to the 
new data as compared to old data. 

Keywords: Data Mining, Classification, Concept Drift, Drift Handling, Big Data.

1. INTRODUCTION 

In classification each tuple in a dataset is mapped 
to one of a limited set of classes. A specific column 
in the dataset is designated as the class label, in 
which the class name of each tuple is stored 
[1,2,3,4,5,6]. The primary objective of a classifier 
is to be able to predict the classification of newly 
added tuples that have not yet been classified. This 
is usually accomplished by, first, going through a 
machine learning phase in which the system learns 
the classification model from a training dataset (i.e., 
a pre-classified dataset). After learning the 
classification model, the system is ready to go 
through the second phase in which it can predict 
the classification of new tuples [7,8]. 

A problem takes place if the distribution of data 
tuples with respect to classes changes after a period 
of time. Meaning that data tuples that used to 
legitimately map to, say, class1, now map to 
another class, say, class2. However, a system that 
learned the classification model prior to the change 
in data distribution will continue to predict class1 
for the same piece of data, while in reality it should 
be class2. Thus a mismatch occurs between the 
system’s predictions and the actual classifications, 
which is referred to as concept drift [9,10,11]. If a 

concept drift is not detected and dealt with properly, 
it results in producing inaccurate predictions. 

In this paper we introduce a new algorithm for 
handling a concept drift. It is based on the authors’ 
earlier work on detecting concept drift [6], where a 
way for quantifying and measuring the drift 
intesity (DI) was introduced. Further, based on the 
DI value, the intensity of a drift was categoriezed 
as either high, medium, or low. 

The handling algorithm introduced in this paper 
generates a new classification model if a drift has 
been detected. It is different from existing 
algorithms in that the newly generated model is 
based on both data before drift as well as data after 
drift. However the weight given to data after drift 
by the algorithm is larger than the weight given to 
data before drift. Therefore data after drift has 
more influence on the new model generation 
process than data before drift.  

The difference between the weight given to data 
after drift and data before drift is adjusted by the 
algorithm in a way proportional to the drift 
intensity. In other words, the higher the drift 
intensity is, the more is the influence of data after 
drift on the model generation process as compared 
to the influence of data before drift.  
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In the extreme case when the drift intensity is sever, 
the algorithm gives a weight of zero to the data 
before drift and full weight to the data after drift. 
In this case it generates a new classification model 
solely based on the data after the drift whereas the 
data before drift is totally ignored during the model 
generation process.  

The user is given the ability to overwrite the 
algorithm’s default weights. For example, if the 
drift intensity is low, the algorithm will give some 
weight to data before drift. The user can overwrite 
this behavior and decide to give zero weigh to data 
before drift and full weight to data after drift, thus 
forcing the generation of a new model solely based 
on data after drift. This capability makes our new 
algorithm more generic in the sense that it can 
mimic the behavior of traditional concept drift 
algorithms, which totally ignore data before drift 
when generating a new classification model.  

The remainder of this paper is organized as follows. 
In Section 2 we provide a survey of related work. 
Section 3 presents the formulas used to compute 
the Drift Intensity. Section 4 describes the new 
algorithm used for handling concept drift. Section 
5 explains decision tree algorithm and how to 
apply weight-based approach with classification 
algorithm. Implementation results are shown in 
Section 6. Finally, conclusions are given in Section 
7.  

2. RELATED WORK 

Many adaptive algorithms used for learning 
use the most recent data as a basis for prediction 
because they assume such data to be most 
informative. Therefore, data management typically 
aims at learning from the most recent data. There 
are two types of training windows size: fixed or 
variable. Sliding window of a fixed size stores a 
particular number of the most recent instances. 
When a new instance arrives, it is saved in the 
training window and the oldest one is thrown away. 
The sliding window of variable size, on the other 
hand, varies the number of instances in a the 
window as time goes on depending on either the 
indications of a change detector, or after a certain 
timestamp. This approach uses heuristics to adjust 
the window size to the current extent of drift [12, 
13]. Below is a brief description of some of the 
techniques and mechanisms that are used to handle 
the predictive models of evolving data. 

The WINNOW [14] is a linear classifier that 
uses an approach in which the trainer responds to 
each sample according to a certain hypothesis. 

Based on the current classification of the example, 
the learner can updates the hypothesis. The main 
characteristic of WINNOW is its resilience to 
irrelevant features [14]. WINNOW does not have 
explicit forgetting techniques. Therefore, 
adaptation takes place mainly when the old 
concepts are diluted, because of the new arriving 
data. The WINNOW is capable of adapting itself to 
slow drifts over time. Its main limitation is the slow 
adaption to the occurrence of sudden drifts. A 
tradeoff between stability and sensitivity is 
required for setting these parameters [10, 15]. 

The algorithm family FLORA [16] presents a 
new approach in which the predictive model is 
kept consistent with a set of very recent instances. 
FLORA uses a sliding window of fixed size. It 
stores the most recent models on the basis of a first-
in-fist-out (FIFO) approach. At each step the 
algorithm builds a new model based on instance 
selection from the training window that moves 
over recently arrived instances. The model is 
updated depending on two processes: a 
learning/selecting process, which updates the 
model based on the recent data. And a forgetting 
process that throws away data that is moved out of 
the window. The primary challenge in this 
approach is to determine an appropriate window 
size. In case of using a large window it gives a 
better performance in stable periods. But it 
responds to concept drifts in slower fashion. In 
case of using a short window, it mimics the current 
distribution more precisely. Therefore, it can 
guarantee fast adaptation as time goes on with 
concept drifts. But during stable period a very short 
window degrades the performance of the system 
[10, 17]. 

The FLORA2 [16] is one of the earliest 
algorithms, that uses an varying window size. 
Adaptive window maintains the consistency of the 
predictive model with current concept. Upgraded 
versions of the algorithm have been improved to 
work with recurring concept such as FLORA3, and 
noisy data FLORA4. Another study described in 
[18] presents a theoretically supported technique 
for recognizing and handling concept drift with 
Support Vector Machines (SVM). The assumption 
behind depending on windowing is that the novelty 
of the data is associated with relevance and 
significance. But this assumption may not be true 
in every circumstance. For example, when 
concepts reoccur or when data is noisy, novelty of 
data does not mean relevance. Learning adaptive 
window is presented in [19, 20]. 
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The author of [21] presents a new approach for 
gradual forgetting, that is applied to learn concept 
drift. The approach proposes the introduction of a 
time-based forgetting function, which makes the 
last instances observation more significant for the 
learning algorithms than the old ones. The 
advantage of time-based forgetting function that 
there are no instances are completely discarded 
from the training dataset. And, they are decreased 
with time. This approach provides each training 
instance with a weight that reflects their age, 
according its appearance over time. Instance 
weighting is based on an the assumption that the 
significance of an tuple in the training dataset must 
be decreased with as time goes on. This approach 
which is linear decrease approach can also be 
found in [22], and another technique that uses 
exponential decrease is published in [23]. 

In general, the existing approaches to cope up 
with the phenomenon of concept drift can be 
divided into two categories. First, approaches that 
adapt a model at regular intervals without 
considering whether drifts have really occurred or 
not, such as fixed or variable sliding window and 
weighted instances. When a sliding window is 
used, the model is created only from the instances; 
that are included in the window within a particular 
number of the most recent instances in fixed 
sliding window or within a certain time in variable 
sliding window. Besides forgetting all previous 
instances. The key point in this approach is how to 
select the appropriate window size. Whereas the 
idea of weighted instances is based on that the 
importance of instances should decrease with time 
according to their age and appearance. Second, 
approaches that first detect drifts, and then the 
model is adapted to these drifts. In order to detect 
concept drifts, the model is monitored over time. If 
a concept drift occurred, some procedures to adapt 
the model to these drift should be taken. For 
example, when a sliding window of variable size is 
used these procedures usually lead to decrease the 
window size according to the extent of concept 
drift. In both categories, none of them uses weight 
approach and gives more weight to the recent data, 
and gives less weight to the older data rather than 
discard them. 

3. DRIFT INTENSITY (DI)  

 In this section, the drift intensity (DI) measure, 
as introduced by the authors of this paper in [6], is 
summarized. DI is a metric used to measure the 
intensity of a drift in the underlying data with 
respect to their classes. The DI value provides a 

measure of how sever the drift is. Furthermore, in 
this paper, we use the DI value to guide the concept 
drift handling process.  

A set of mathematical equations were introduced 
in [6] to measure the DI value. Two sample subsets 
are taken from the dataset, one from before the drift 
location (DBD) and the other one from after the drift 
location (DAD). It is assumed that DBD and DAD are 
of equal size. Using sample subsets instead of the 
entire dataset enables us to avoid scanning the 
whole dataset, which degrades performance when 
dealing with big data sets. A reasonable size of 
each of DBD and DAD can be no more that 0.5% of 
the dataset.  

In the following, the error rate in predictions (i.e., 
the rate at which the predicted classes are 
inconsistent with the actual classes) in both subsets, 
DBD and DAD, is used as a way to measure the 
intensity of a drift.  

Let NBD and NAD be the number of data tuples in 
DBD and in DAD, respectively. Also, let EBD and EAD 
be the number of inaccurate classifications in DBD, 
and DAD, respectively. Furthermore, let REBD and 
READ be the classification error rates in DBD and 
DAD, respectively. REBD and READ can be 
calculated as follows.  

REୈ ൌ 	
Eୈ

Nୈ
ൗ 					ሺ1ሻ 

REୈ ൌ 	
Eୈ

Nୈ
ൗ 					ሺ2ሻ 

The drift intensity can be computed by dividing the 
error rate before drift by the error rate after drift as 
shown in below.  

DI ൌ 	
REୈ
REୈ

 

However, because the resulting value of DI based 
on the above equation can be a very huge number, 
the above equation is modified as shown in 
Equation 3 by applying log2 in order to attenuate 
the value of DI. 

DI ൌ logଶ
REୈ
REୈ

						ሺ3ሻ 

Note that the denominator in Equation 3 (REBD) 
becomes zero if EBD is zero. To avoid this zero, 
Equation 1 is altered by adding “one” to the 
numerator as shown in Equation 4 below.  

REୈ ൌ 	
Eୈ  1
Nୈ

						ሺ4ሻ 
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In summary, to calculate DI we need to compute 
first the values of REBD and READ from Equations 
4 and 2, respectively. Then we can substitute in 
Equation 3. An example of how to compute DI is 
shown below.  

Example. Assume a certain dataset contains 3M 
tuples. Further assume a detection algorithm 
detects a drift in the third quarter of this dataset.  

The sizes of the sample subsets DBD and DAD are 
16000 rows each (which is approximately 0.5% of 
the size of the dataset). Also, assume that the 
number of inaccurate classifications in DBD is NBD 
= 600 and the number of inaccurate classifications 
in DAD is NAD = 4000. This combination of values 
is summarized in Table 1.  

Table 1: Errors Before And After Drift 

 
No. of 

elements 
No. of inaccurate 

prediction 
Before Drift Nୈ ൌ 16,000 Eୈ ൌ 600 

After Drift Nୈ ൌ 16,000 Eୈ ൌ 4000 

By Substituting in Equations 2 and 4 we obtain: 

ܧܴ ൌ 	
ܧ  1

ܰ
	ൌ

601
16,000

ൌ 0.0375 

ܧܴ ൌ 	
ܧ
ܰ
	ൌ

4000
16,000

ൌ 0.25 

Substituting the above results in Equation 3, we 
obtain. 

ܫܦ ൌ logଶ
ܧܴ
ܧܴ

	ൌ logଶ 6.66 ൌ 	2.736 

3.1 DI Zones 

 The DI range of values is divided into three 
zones [6]. The low drift intensity zone ZL 
represents values of DI in the range between 0.1 
and 3, the medium intensity zone ZM represents 
values of DI in the range between 3 and 6, and the 
high intensity zone ZH represents any values of DI 
greater than 6. Table 2 summarizes these zones.  

 

Table 2: DI Zones 

Zones DI value range Intensity of drift 

 Low drift intensity 3  – 0.1 ࡸࢆ
 Medium drift intensity 6 - 3 ࡹࢆ
 Greater than 6 High drift intensity ࡴࢆ

4. CONCEPT DRIFT HANDLING 

This chapter provides a description of a new 
handling algorithm called Weight-based Concept 
Drift Handling (WCDH) algorithm that we 
proposed for handling the phenomenon of concept 
drift in a dataset with class labels. The proposed 
WCDH algorithm introduces a new approach for 
handling concept drift depends on weight-based 
technique. 

4.1 Overview of the WCDH Algorithm 

The WCDH algorithm depends on the results 
that are found by the BCDD algorithm [6]. If the 
BCDD algorithm detects that there is a drift in the 
underlying data distribution, then the WCDH 
algorithm is called to handle the classification 
model depending on the DI value that was obtained 
from the BCDD algorithm. The following points 
distinguish WCDH algorithm from existing similar 
studies: 

1) The WCDH algorithm gives the data in the 
underlying distribution dataset different 
weights according to their position (i.e., 
whether before or after the drift). While, the 
previous studies give all the data in the 
underlying dataset the same weight except the 
algorithm in [21], which decreases the weight 
of tuples gradually according to their age 
without considering whether a drift occurred 
or not. Therefore, the WCDH algorithm is 
different from other algorithms in detecting 
the drift and distributing the weight between 
old data and recent data according to the DI 
value. 

2) The WCDH algorithm gives the data before 
drift less weight than the data after the drift. 
The change in weight is proportional to the DI 
value. This means that when building a new 
classification model it gives more significance 
to the data after drift and less significance to 
data before drift. While the previous studies 
either forget all the data before the drift and 
use only the data after the drift, or treat the old 
data the same as the recent data [19.20]. 

The WCDH algorithm will use the DI as a 
guidance and give the user advices as to how the 
concept drift should be handled. When the DI is in 
ZH, the system may choose to rebuild a new 
classification model only based on the data after 
the drift and totally discard the old data. And, when 
the DI is in ZL or ZM, the system may choose to 



Journal of Theoretical and Applied Information Technology 
15th May 2018. Vol.96. No 09 

  © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                              www.jatit.org                           E-ISSN: 1817-3195  

2406 
 

give more weight to data after drift and, at the same 
time, take into consideration data before the drift 
but give it less weight. That means the data after 
the drift will influence in the newly classification 
model more than it is influence by data before the 
drift. 

The increase in the weight value after the drift 
point is proportional to the value of DI. Similarly 
the reduction of the weight value before the drift is 
proportional to the value of DI. Therefore, if the DI 
value is high, the weight of data after the drift can 
be high and continues to increase until it gives full 
weight for data after the drift and, in contrast, zero 
weight for data before the drift when the value of 
DI is very high. On the other hand, the user can 
overwrite the default weight generated by the 
WCDH algorithm and provide another weight 
value. Also, the user can discard the old data and 
only consider the recent data on the model 
generation process when the DI value in the high 
zone. And so, the WCDH algorithm will have 
behavior similar to previous algorithms. 

This flexibility in determining the weight for data 
before drift and weight for data after drift gives 
satisfying results based on the user needs. It must 
be emphasized that the proposed approach does not 
consider all the historical data as a training set, but 
a sufficient subset of the dataset that was selected 
to compute the DI value. 

4.2 Flowchart and Pseudo Code of the 
Algorithm 

Figure 1 shows the flowchart of the WCDH 
algorithm. At the beginning, the WCDH algorithm 
receives the following from the system: a sample 
subset of the dataset before drift (DBD), a sample 
subset of the dataset after drift (DAD), drift intensity 
(DI), and the position of drift (P) from the system.  

After that, the training set is generated by 
concatenating the sample datasets DBD and DAD. 
The algorithm checks the DI value, if the DI value 
is in ZH , the algorithm starts by giving the user the 
option for discarding the old data or computing the 
weight for DBD and DAD . If the user selects to 
discard DBD from the generated training set, the 
algorithm discards DBD and goes to the final step, 
which is re-generate a new classification model 
without DBD. On the other hand, if the user selects 
to compute the weight for DBD and DAD or the DI 
is not in ZH, the algorithm invokes 
Compute_Weight function to compute weight for 

DBD and DAD based on the formulas introduced in 
Section 4.3. 

After computing the weight for DAD and DAD the 
algorithm gives the user the option to adjust the 
default weight value. Accepting the weight 
generated by the algorithm, the next step is to set 
weight for the generated training dataset. 
Otherwise, the algorithm allows the user to 
overwrite the default weight and then continue 
with processing weight for each tuple based on 
their position before or after the drift. The final step 
is to re-build a new classification model using any 
classification algorithm based on the weight 
assigned for tuples in data. 

Figure 2 shows the pseudo-code of the WCDH 
algorithm. It works similar to the logic explained 
for the flowchart. 

4.3 Compute_Weight Function  

This section introduces the formulas that are 
used by WCDH algorithm to compute the weight 
of data before and after the drift. The weight is 
computed based on the DI value. The main 
processing of Compute_Weight function is to 
calculate the weight to be given to tuples. It gives 
more weight to data tuples after the drift and less 
weight to data tuples before the drift. The default 
if DI is in ZL  or ZM is to use the weight computed 
by the system. The user can modify that if he 
chooses. And, the default if DI is in ZH is to let the 
user use the weight values computed by the system 
or discard the old data and rebuild a new model 
based on the recent data as shown in Figure 1 and 
Figure 2. 
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Figure 1: Flowchart of WCDH algorithm 

The weight of each tuple in the training set is equal 
to one. What we want to do is decrease the weight 
given to data tuples before the drift in a way 
proportional to DI and, at the same time, increase 
the weight for data after the drift in a way 
proportional to DI. The minimum value of the 
weight before the drift is zero. And, the maximum 
value of weight after the drift is two. That means 
the proposed weight that will be added or 
subtracted from the default weight is in the range 
of 0 and 1. 
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WCDH algorithm 
Inputs: - Sample subset from dataset before drift (DBD); 

- Sample subset from dataset after drift (DAD); 
- Position where the drift occurred (P); 
- Drift intensity value (DI); 

 

Method:  
(1) WBD = 1;default weight for each tuple before drift; 
(2) WAD = 1;default weight for each tuple after drift; 
(3) Generate a training dataset from DBD and DAD ; 
(4) if DI in ZH and user deiced to discard DBD then 
(5) Discard DBD from the training set; 
(6) else 
(7) call Compute_Weight(DI) for WBD and WAD; 
(8) if user want to overwrite the generated weight then 
(9) provide another weight for WBD and WAD; 
(10) end if 
(11) for each row in the generated training dataset 
(12) if row.RID < P then 
(13) row.weight = WBD; 
(14) else 
(15) row.weight = WAD; 
(16) end if 
(17) end loop 
(18) end if 
(19) Regenerate a new classification model; 
Output: New classification model; 

Figure 2: Pseudo-code of the WCDH algorithm 

In the following, a way to compute the weight 
based on DI is shown. The weight value is a 
function of DI. Let DIMin be the minimum value for 
DI that is equal to 0.1. And, DIMax be either equal 
to 10 in case of DI < 10 or take the same value as 
DI in case of DI ≥ 10. We assume that DIMax be as 
DI value when DI ≥ 10 since the drift in this case 
is very high and is preferred to give zero weight for 
data before drift. In other words, DIMax can be 
expressed as shown in Equation 6. 

DIୟ୶ ൌ ൝
10, if	DI ൏ 10

or
DI,				otherwise

		ሺ6ሻ 

Let W∆ be the amount of change of the weight that 
needs to be added or subtracted from the default 
weight given to tuple. To guarantee that W∆ is in 
the range of 0 to 1 we use the following equation. 

W∆ ൌ	
DI െ DI୧୬	

DIୟ୶ 	െ DI୧୬	
		ሺ7ሻ 

Let WBD be the weight of tuple before the drift, and 
WAD be the weight of tuple after the drift. We 
expect the value of WBD to be lower if we subtract 
W∆ from the default weight. The formula for 
calculating the value of WBD can be expressed as 
shown in Equation 8. 

Wୈ ൌ 1 െ	W∆			ሺ8ሻ 

Also, we expect the value of WAD to be higher if 
we add W∆ to the default weight. The formula for 
calculating the value of WAD can be expressed as 
shown in Equation 9. 

Wୈ ൌ 1 	W∆				ሺ9ሻ 

In conclusion, the value of WBD to be lower by 
substituting in Equation 8, and the value of WAD to 
be higher by substituting in Equation 9. The 
following subsection shows an example. 

4.4 Example of Applying Compute_Weight 
Function  

In this example we will use the same sample 
subsets from dataset that we used in the example 
of applying DI equations. Where DI value is equal 
to 2.73 and the sample subsets of DBD and DAD that 
forming the generated training is 16000 rows, each 
subset is 8000 rows. 

For computing W∆, first determine the value of 
DIMin and DIMax which they are equal to 0.1 and 10 
respectively. DIMax is 10 since DI value is less than 
10. Substituting in Equations 7, W∆ result is 
obtained: 

W∆ ൌ	
DI െ DI୧୬	

DIୟ୶ 	െ DI୧୬	
ൌ 	
2.736 െ 0.1	
10	 െ 0.1	

ൌ 0.266 

Substituting in Equations 8 and 9, the following 
results are obtained: 

Wୈ ൌ 1	 െ	W∆ 	ൌ 	1 െ 	0.266 ൌ 0.734 

Wୈ ൌ 1 		W∆ 	ൌ 1  	0.266	 ൌ 1.266 

The weight for each tuple before the drift point in 
the training set is equal to 0.734 and the weight for 
each tuple from the drift point to the end of the 
training set is 1.266. 

5. BUILD A NEW MODEL USING 
WEIGHT-BASED APPROACH 

This section introduces an explanation of building 
a classification model using classification 
algorithm with the proposed weight-based 
approach. And, describes how to integrate weight-
based approach within classification algorithms. 
The weight is distributed on the tuples of the 
generated training dataset based on their position 
either before the drift point or after the drift point, 
then a new classification model is derived based on 
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the analysis of the training dataset. A decision tree 
classification algorithm is one of the most popular 
classification algorithms in data mining [24,25] 
and it is applied in this paper to derive a new 
classification model. The following subsection 
describes the decision tree classification and shows 
how to apply the proposed weight-based approach 
with the decision tree for building a new 
classification model. 

The decision tree represents an effective 
classification technique. It aims to split the training 
set into groups as possible in terms of the variable 
to be predicted. It takes as input a set of classified 
data (training set), and produces a tree that 
resembles a flowchart like tree structure, where 
each non-leaf node (internal node) represents a test 
on an attribute and each edge represents a result of 
the test. If the result of a test has two possible 
tuples belong to more than one class, further tests 
are required to complete the classification along 
that branch through adding more non-leaf nodes to 
the tree. Alternatively, if the outcome of a test 
consists of tuples that belong to the same class, 
then a leaf node is inserted to indicate that the 
tuples that satisfy the conjunction of the tests along 
the path from the root-node to the leaf-node are 
belong to only one class.  

Various algorithms are available for 
constructing decision trees from training datasets 
such as: ID3 (Iterative Dichotomizer 3), C4.5, and 
CART (Classification and Regression Tree) [2, 4, 
26]. There are many differences between these 
algorithms such as selecting certain attributes for 
splitting nodes in the tree. 

In order to build a decision tree from training 
dataset an attribute selection measure is needed. 
The attribute selection measure is used to 
determine how the tuples at a given node are to be 
split. The attribute selection measure provides a 
ranking for each attribute representing the given 
training dataset. The attribute that have the highest 
score of the measure is selected as the splitting 
attribute for the given tuples. 

Several common measures exist in the 
literature. In this paper a measure called Entropy 
(also called Information Gain) is used as one of 
those measures. This measure is used by ID3 for 
building decision trees [26]. At each node in the 
decision tree the attribute with the highest Entropy 
is selected as the splitting attribute. To find the 
attribute has the highest entropy, a three-step 

proces is applied. Those steps are represented in 
the form of three equations 10, 11, and 12, that are 
explained as the following. 

 Step (1). Equation 10 is applied to compute the 
information needed to classify a tuple in the 
dataset ܦ , where ݅  is the class label, ܲ  is 
the probability a tuple falls in the ݅௧ class. 

ሻܦሺ݂݊ܫ ൌ 	െ ܲ 	logଶ ܲ



ୀଵ

			ሺ10ሻ 

 Step (2). Equation 11 is applied to find the 
information required to classify the dataset ܦ 
based on the partitioning by ܺ. Each ܦ is a 
partition of the dataset ܦ , and |ܦ|  is the 
number of the tuples in the partition. 

ሻܦሺ݂݊ܫ ൌ 	െ
หܦห
|ܦ|

ൈ ൯ܦ൫ܫ

௩

ୀଵ

			ሺ11ሻ 

 Step (3). In Equation 12 information gained by 
branching on attribute ܺ can be obtained by 
subtracting the result of Equation 11 from the 
result of Equation 10 as shown below. 
ሺܺሻ݊݅ܽܩ ൌ ሻܦሺ݂݊ܫ	 െ	݂݊ܫሺܦሻ			ሺ12ሻ 

Equation 10 is applied to the dataset only one time 
at the beginning. Equations 11 and 12 are applied 
for each attribute. The attribute that has the highest 
information gain is selected as the splitting 
attribute. This process is repeated at each level of 
the tree until leaf nodes are reached, which 
represent tuples that belong to only one class. 

The contribution to improve decision tree is 
proposed by enabling the decision tree algorithm 
to support the weight-based approach. Indeed, 
when the result of a test belongs to different classes 
and no further splitting is possible, then decision 
tree selects a leaf node by choosing the most 
frequent class label. The integrating with proposed 
weight-based algorithm provides better solution 
for this issue, where a leaf node is selected by 
grouping the tuples that have same classes and 
using SUM function to compute the weight for 
each class. Then, selects the class that has the 
highest weight as a leaf node for the selected 
branch in the tree. The following subsections show 
how the decision tree with weight-based approach 
is built. 

6. IMPLEMENTATION AND RESULTS 

This section discusses the implementation of the 
WCDH algorithm and results obtained when 
applying it with decision tree algorithm to build a 
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new classification model. An experiment was 
conducted to evaluate the effectiveness of the 
WCDH algorithm with classification algorithm, 
and how the proposed approach achieves 
promising results. The model of the experiment is 
built using a decision tree algorithm. We use the 
first dataset that was used in evaluation the BCDD 
algorithm [6], which has one million row. Before 
conducting the experiment, let’s see how the model 
of the “Deals” dataset was been before it was 
injected with a drift. Figure 3 shows the decision 
tree model of Deals dataset. 

The following are some notes about the xperiment 
we conducted: 

1- The model was injected with a drift in the right 
branch in which “Age = 34–72” and goes 
through the edges identified by conditions 
“Gender = male”, and “Payment Method = 
credit card” ends up at the leaf node labeled 
with a “yes”. It is assumed that this path is 
changed to map class “no”.  

2- The experiment show that the number of 
tuples before the drift point that map to class 
“yes” is 1400 and the number of tuples that 
was injected to map class "no" after the drift is 
731. 

3- After conducting the proposed approaches for 
detecting and handling concept drift the 
decision tree algorithm was called to build a 
new model. 

The dataset was injected to contain a medium DI 
in ZM. After running the BCDD algorithm for 
detecting the drift and measuring its intensity, the 
BCDD algorithm shows that the DI is 4.6. Then the 
WCDH algorithm was called to handle the drift by 
distributing the weight for each tuple in the 
generated training dataset based on its position 
before or after the drift. The WCDH algorithm 
shows that WBD is 0.546 and WAD is 1.454. After 
that, the decision tree was invoked to build a new 
classification model.  

As shown in Figure 4, the subtrees in which “Age 
> 34” was pruned since all the leaf nodes for that 
branch belong to the same class. The leaf node in 
which “Payment Method = credit card”, results to 
class “no”, because the weight of class “no” is 
higher than the weight of class “yes”, where weight 
of class “no” is 1063.2 and weight of class “yes” is 
763.8 therefore this branch is mapped to class 
“no”. The two right branches in Figure 3 which 
“Age = 34-72” and “Age > 72” have been merged 

to one branch in which “Age > 34” as shown in 
Figure 4 since they map to the same class. 

From the above experiment it can be concluded 
that using the weight-based approach for 
generating a new classification model gives 
satisfying results. This is the same with what we 
expected since the weight-based approach will 
support a classification model to produce more 
accurate classification. 

7. CONCLUSION  

The occurrence of a concept drift in data is 
considered a problem that impacts the results of a 
classifier. A concept drift inhibits a classifier from 
generating accurate predictions because it results 
in making the classification model outdated if not 
totally obsolete. It is important to be able to detect 
and handle a concept drift properly. This paper 
introduces a novel algorithm for handling concept 
drift. The key distinguishing feature of this 
algorithm is that it adapts itself based on the drift 
intensity. If the drift intensity is in the high zone, 
the algorithms, by default, gives zero weight to 
data before the drift and full weight to data after 
the drift whenever it generates a new classification 
model. The user is given the option to overwrite 
the default behavior.  

However, if the drift is in the low or medium zones, 
the algorithm computes weights such that the 
weight given to the data after the drift is more than 
the weight given to the data before the drift. The 
higher the drift intensity, the more weight is given 
to the data after the drift as compared to data before 
the drift. Again here, the user is given the option to 
overwrite the default behavior. The user can supply 
weights different from the default ones to influence 
how the new model is generated.  

This ability to generate a new model based on the 
new data (after drift) and old data (before drift) can 
be useful in some applications especially if the 
drift intensity is small. It keeps the power in the 
hands of the user, who may decide that the older 
data has some merit and can be considered in the 
model generation process but with less weight. The 
user may also interfere and decide to give older 
data zero weight, thus, generating the new model 
solely based on the data after the drift point.  
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Figure 3: Decision Tree Model of ‘Deals’ dataset before it was injected with drift 

 

 

 

Figure 4: Decision Tree Model of ‘Deals’ dataset after re-building a new model using Weighting approach 


