
Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2402

USING DRIFT INTENSITY AS A BASIS FOR HANDLING
CONCEPT DRIFT IN CLASSIFICATION SYSTEMS

1HISHAM OGBAH, 2ABDALLAH ALASHQUR

1Faculty of Information Technology,

Applied Science University, Amman, Jordan
2Professor, Faculty of Information Technology

Middle East University, Amman, Jordan
Email: hisham.ogbah@gmail.com , aalashqur@meu.edu.jo

ABSTRACT

Concept drift is a known problem that can occur in classifier systems. Detecting and handling concept drift
is an active area of research. Once a concept drift is detected, it has to be handled by updating or re-generating
the classification model. In this paper, a new approach is introduced for handling concept drift, where a drift
intensity measure is used to quantify the intensity of a concept drift. The model generation process uses the
drift intensity measure while generating a new model. If the drift intensity is high, the model generation
process discards old data (data before the drift occurrence) and builds a new model solely based on the new
data after drift. On the other hand, if the drift intensity is low or moderate, the model generation process takes
into account both old data and new data but it gives more weight (proportional to the drift intensity) to the
new data as compared to old data.

Keywords: Data Mining, Classification, Concept Drift, Drift Handling, Big Data.

1. INTRODUCTION

In classification each tuple in a dataset is mapped
to one of a limited set of classes. A specific column
in the dataset is designated as the class label, in
which the class name of each tuple is stored
[1,2,3,4,5,6]. The primary objective of a classifier
is to be able to predict the classification of newly
added tuples that have not yet been classified. This
is usually accomplished by, first, going through a
machine learning phase in which the system learns
the classification model from a training dataset (i.e.,
a pre-classified dataset). After learning the
classification model, the system is ready to go
through the second phase in which it can predict
the classification of new tuples [7,8].

A problem takes place if the distribution of data
tuples with respect to classes changes after a period
of time. Meaning that data tuples that used to
legitimately map to, say, class1, now map to
another class, say, class2. However, a system that
learned the classification model prior to the change
in data distribution will continue to predict class1
for the same piece of data, while in reality it should
be class2. Thus a mismatch occurs between the
system’s predictions and the actual classifications,
which is referred to as concept drift [9,10,11]. If a

concept drift is not detected and dealt with properly,
it results in producing inaccurate predictions.

In this paper we introduce a new algorithm for
handling a concept drift. It is based on the authors’
earlier work on detecting concept drift [6], where a
way for quantifying and measuring the drift
intesity (DI) was introduced. Further, based on the
DI value, the intensity of a drift was categoriezed
as either high, medium, or low.

The handling algorithm introduced in this paper
generates a new classification model if a drift has
been detected. It is different from existing
algorithms in that the newly generated model is
based on both data before drift as well as data after
drift. However the weight given to data after drift
by the algorithm is larger than the weight given to
data before drift. Therefore data after drift has
more influence on the new model generation
process than data before drift.

The difference between the weight given to data
after drift and data before drift is adjusted by the
algorithm in a way proportional to the drift
intensity. In other words, the higher the drift
intensity is, the more is the influence of data after
drift on the model generation process as compared
to the influence of data before drift.

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2403

In the extreme case when the drift intensity is sever,
the algorithm gives a weight of zero to the data
before drift and full weight to the data after drift.
In this case it generates a new classification model
solely based on the data after the drift whereas the
data before drift is totally ignored during the model
generation process.

The user is given the ability to overwrite the
algorithm’s default weights. For example, if the
drift intensity is low, the algorithm will give some
weight to data before drift. The user can overwrite
this behavior and decide to give zero weigh to data
before drift and full weight to data after drift, thus
forcing the generation of a new model solely based
on data after drift. This capability makes our new
algorithm more generic in the sense that it can
mimic the behavior of traditional concept drift
algorithms, which totally ignore data before drift
when generating a new classification model.

The remainder of this paper is organized as follows.
In Section 2 we provide a survey of related work.
Section 3 presents the formulas used to compute
the Drift Intensity. Section 4 describes the new
algorithm used for handling concept drift. Section
5 explains decision tree algorithm and how to
apply weight-based approach with classification
algorithm. Implementation results are shown in
Section 6. Finally, conclusions are given in Section
7.

2. RELATED WORK

Many adaptive algorithms used for learning
use the most recent data as a basis for prediction
because they assume such data to be most
informative. Therefore, data management typically
aims at learning from the most recent data. There
are two types of training windows size: fixed or
variable. Sliding window of a fixed size stores a
particular number of the most recent instances.
When a new instance arrives, it is saved in the
training window and the oldest one is thrown away.
The sliding window of variable size, on the other
hand, varies the number of instances in a the
window as time goes on depending on either the
indications of a change detector, or after a certain
timestamp. This approach uses heuristics to adjust
the window size to the current extent of drift [12,
13]. Below is a brief description of some of the
techniques and mechanisms that are used to handle
the predictive models of evolving data.

The WINNOW [14] is a linear classifier that
uses an approach in which the trainer responds to
each sample according to a certain hypothesis.

Based on the current classification of the example,
the learner can updates the hypothesis. The main
characteristic of WINNOW is its resilience to
irrelevant features [14]. WINNOW does not have
explicit forgetting techniques. Therefore,
adaptation takes place mainly when the old
concepts are diluted, because of the new arriving
data. The WINNOW is capable of adapting itself to
slow drifts over time. Its main limitation is the slow
adaption to the occurrence of sudden drifts. A
tradeoff between stability and sensitivity is
required for setting these parameters [10, 15].

The algorithm family FLORA [16] presents a
new approach in which the predictive model is
kept consistent with a set of very recent instances.
FLORA uses a sliding window of fixed size. It
stores the most recent models on the basis of a first-
in-fist-out (FIFO) approach. At each step the
algorithm builds a new model based on instance
selection from the training window that moves
over recently arrived instances. The model is
updated depending on two processes: a
learning/selecting process, which updates the
model based on the recent data. And a forgetting
process that throws away data that is moved out of
the window. The primary challenge in this
approach is to determine an appropriate window
size. In case of using a large window it gives a
better performance in stable periods. But it
responds to concept drifts in slower fashion. In
case of using a short window, it mimics the current
distribution more precisely. Therefore, it can
guarantee fast adaptation as time goes on with
concept drifts. But during stable period a very short
window degrades the performance of the system
[10, 17].

The FLORA2 [16] is one of the earliest
algorithms, that uses an varying window size.
Adaptive window maintains the consistency of the
predictive model with current concept. Upgraded
versions of the algorithm have been improved to
work with recurring concept such as FLORA3, and
noisy data FLORA4. Another study described in
[18] presents a theoretically supported technique
for recognizing and handling concept drift with
Support Vector Machines (SVM). The assumption
behind depending on windowing is that the novelty
of the data is associated with relevance and
significance. But this assumption may not be true
in every circumstance. For example, when
concepts reoccur or when data is noisy, novelty of
data does not mean relevance. Learning adaptive
window is presented in [19, 20].

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2404

The author of [21] presents a new approach for
gradual forgetting, that is applied to learn concept
drift. The approach proposes the introduction of a
time-based forgetting function, which makes the
last instances observation more significant for the
learning algorithms than the old ones. The
advantage of time-based forgetting function that
there are no instances are completely discarded
from the training dataset. And, they are decreased
with time. This approach provides each training
instance with a weight that reflects their age,
according its appearance over time. Instance
weighting is based on an the assumption that the
significance of an tuple in the training dataset must
be decreased with as time goes on. This approach
which is linear decrease approach can also be
found in [22], and another technique that uses
exponential decrease is published in [23].

In general, the existing approaches to cope up
with the phenomenon of concept drift can be
divided into two categories. First, approaches that
adapt a model at regular intervals without
considering whether drifts have really occurred or
not, such as fixed or variable sliding window and
weighted instances. When a sliding window is
used, the model is created only from the instances;
that are included in the window within a particular
number of the most recent instances in fixed
sliding window or within a certain time in variable
sliding window. Besides forgetting all previous
instances. The key point in this approach is how to
select the appropriate window size. Whereas the
idea of weighted instances is based on that the
importance of instances should decrease with time
according to their age and appearance. Second,
approaches that first detect drifts, and then the
model is adapted to these drifts. In order to detect
concept drifts, the model is monitored over time. If
a concept drift occurred, some procedures to adapt
the model to these drift should be taken. For
example, when a sliding window of variable size is
used these procedures usually lead to decrease the
window size according to the extent of concept
drift. In both categories, none of them uses weight
approach and gives more weight to the recent data,
and gives less weight to the older data rather than
discard them.

3. DRIFT INTENSITY (DI)

 In this section, the drift intensity (DI) measure,
as introduced by the authors of this paper in [6], is
summarized. DI is a metric used to measure the
intensity of a drift in the underlying data with
respect to their classes. The DI value provides a

measure of how sever the drift is. Furthermore, in
this paper, we use the DI value to guide the concept
drift handling process.

A set of mathematical equations were introduced
in [6] to measure the DI value. Two sample subsets
are taken from the dataset, one from before the drift
location (DBD) and the other one from after the drift
location (DAD). It is assumed that DBD and DAD are
of equal size. Using sample subsets instead of the
entire dataset enables us to avoid scanning the
whole dataset, which degrades performance when
dealing with big data sets. A reasonable size of
each of DBD and DAD can be no more that 0.5% of
the dataset.

In the following, the error rate in predictions (i.e.,
the rate at which the predicted classes are
inconsistent with the actual classes) in both subsets,
DBD and DAD, is used as a way to measure the
intensity of a drift.

Let NBD and NAD be the number of data tuples in
DBD and in DAD, respectively. Also, let EBD and EAD
be the number of inaccurate classifications in DBD,
and DAD, respectively. Furthermore, let REBD and
READ be the classification error rates in DBD and
DAD, respectively. REBD and READ can be
calculated as follows.

REୈ ൌ 	
Eୈ

Nୈ
ൗ 					ሺ1ሻ

REୈ ൌ 	
Eୈ

Nୈ
ൗ 					ሺ2ሻ

The drift intensity can be computed by dividing the
error rate before drift by the error rate after drift as
shown in below.

DI ൌ 	
REୈ
REୈ

However, because the resulting value of DI based
on the above equation can be a very huge number,
the above equation is modified as shown in
Equation 3 by applying log2 in order to attenuate
the value of DI.

DI ൌ logଶ
REୈ
REୈ

						ሺ3ሻ

Note that the denominator in Equation 3 (REBD)
becomes zero if EBD is zero. To avoid this zero,
Equation 1 is altered by adding “one” to the
numerator as shown in Equation 4 below.

REୈ ൌ 	
Eୈ 1
Nୈ

						ሺ4ሻ

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2405

In summary, to calculate DI we need to compute
first the values of REBD and READ from Equations
4 and 2, respectively. Then we can substitute in
Equation 3. An example of how to compute DI is
shown below.

Example. Assume a certain dataset contains 3M
tuples. Further assume a detection algorithm
detects a drift in the third quarter of this dataset.

The sizes of the sample subsets DBD and DAD are
16000 rows each (which is approximately 0.5% of
the size of the dataset). Also, assume that the
number of inaccurate classifications in DBD is NBD
= 600 and the number of inaccurate classifications
in DAD is NAD = 4000. This combination of values
is summarized in Table 1.

Table 1: Errors Before And After Drift

No. of

elements
No. of inaccurate

prediction
Before Drift Nୈ ൌ 16,000 Eୈ ൌ 600

After Drift Nୈ ൌ 16,000 Eୈ ൌ 4000

By Substituting in Equations 2 and 4 we obtain:

ܧܴ ൌ 	
ܧ 1

ܰ
	ൌ

601
16,000

ൌ 0.0375

ܧܴ ൌ 	
ܧ
ܰ
	ൌ

4000
16,000

ൌ 0.25

Substituting the above results in Equation 3, we
obtain.

ܫܦ ൌ logଶ
ܧܴ
ܧܴ

	ൌ logଶ 6.66 ൌ 	2.736

3.1 DI Zones

 The DI range of values is divided into three
zones [6]. The low drift intensity zone ZL
represents values of DI in the range between 0.1
and 3, the medium intensity zone ZM represents
values of DI in the range between 3 and 6, and the
high intensity zone ZH represents any values of DI
greater than 6. Table 2 summarizes these zones.

Table 2: DI Zones

Zones DI value range Intensity of drift

 Low drift intensity 3 – 0.1 ࡸࢆ
 Medium drift intensity 6 - 3 ࡹࢆ
 Greater than 6 High drift intensity ࡴࢆ

4. CONCEPT DRIFT HANDLING

This chapter provides a description of a new
handling algorithm called Weight-based Concept
Drift Handling (WCDH) algorithm that we
proposed for handling the phenomenon of concept
drift in a dataset with class labels. The proposed
WCDH algorithm introduces a new approach for
handling concept drift depends on weight-based
technique.

4.1 Overview of the WCDH Algorithm

The WCDH algorithm depends on the results
that are found by the BCDD algorithm [6]. If the
BCDD algorithm detects that there is a drift in the
underlying data distribution, then the WCDH
algorithm is called to handle the classification
model depending on the DI value that was obtained
from the BCDD algorithm. The following points
distinguish WCDH algorithm from existing similar
studies:

1) The WCDH algorithm gives the data in the
underlying distribution dataset different
weights according to their position (i.e.,
whether before or after the drift). While, the
previous studies give all the data in the
underlying dataset the same weight except the
algorithm in [21], which decreases the weight
of tuples gradually according to their age
without considering whether a drift occurred
or not. Therefore, the WCDH algorithm is
different from other algorithms in detecting
the drift and distributing the weight between
old data and recent data according to the DI
value.

2) The WCDH algorithm gives the data before
drift less weight than the data after the drift.
The change in weight is proportional to the DI
value. This means that when building a new
classification model it gives more significance
to the data after drift and less significance to
data before drift. While the previous studies
either forget all the data before the drift and
use only the data after the drift, or treat the old
data the same as the recent data [19.20].

The WCDH algorithm will use the DI as a
guidance and give the user advices as to how the
concept drift should be handled. When the DI is in
ZH, the system may choose to rebuild a new
classification model only based on the data after
the drift and totally discard the old data. And, when
the DI is in ZL or ZM, the system may choose to

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2406

give more weight to data after drift and, at the same
time, take into consideration data before the drift
but give it less weight. That means the data after
the drift will influence in the newly classification
model more than it is influence by data before the
drift.

The increase in the weight value after the drift
point is proportional to the value of DI. Similarly
the reduction of the weight value before the drift is
proportional to the value of DI. Therefore, if the DI
value is high, the weight of data after the drift can
be high and continues to increase until it gives full
weight for data after the drift and, in contrast, zero
weight for data before the drift when the value of
DI is very high. On the other hand, the user can
overwrite the default weight generated by the
WCDH algorithm and provide another weight
value. Also, the user can discard the old data and
only consider the recent data on the model
generation process when the DI value in the high
zone. And so, the WCDH algorithm will have
behavior similar to previous algorithms.

This flexibility in determining the weight for data
before drift and weight for data after drift gives
satisfying results based on the user needs. It must
be emphasized that the proposed approach does not
consider all the historical data as a training set, but
a sufficient subset of the dataset that was selected
to compute the DI value.

4.2 Flowchart and Pseudo Code of the
Algorithm

Figure 1 shows the flowchart of the WCDH
algorithm. At the beginning, the WCDH algorithm
receives the following from the system: a sample
subset of the dataset before drift (DBD), a sample
subset of the dataset after drift (DAD), drift intensity
(DI), and the position of drift (P) from the system.

After that, the training set is generated by
concatenating the sample datasets DBD and DAD.
The algorithm checks the DI value, if the DI value
is in ZH , the algorithm starts by giving the user the
option for discarding the old data or computing the
weight for DBD and DAD . If the user selects to
discard DBD from the generated training set, the
algorithm discards DBD and goes to the final step,
which is re-generate a new classification model
without DBD. On the other hand, if the user selects
to compute the weight for DBD and DAD or the DI
is not in ZH, the algorithm invokes
Compute_Weight function to compute weight for

DBD and DAD based on the formulas introduced in
Section 4.3.

After computing the weight for DAD and DAD the
algorithm gives the user the option to adjust the
default weight value. Accepting the weight
generated by the algorithm, the next step is to set
weight for the generated training dataset.
Otherwise, the algorithm allows the user to
overwrite the default weight and then continue
with processing weight for each tuple based on
their position before or after the drift. The final step
is to re-build a new classification model using any
classification algorithm based on the weight
assigned for tuples in data.

Figure 2 shows the pseudo-code of the WCDH
algorithm. It works similar to the logic explained
for the flowchart.

4.3 Compute_Weight Function

This section introduces the formulas that are
used by WCDH algorithm to compute the weight
of data before and after the drift. The weight is
computed based on the DI value. The main
processing of Compute_Weight function is to
calculate the weight to be given to tuples. It gives
more weight to data tuples after the drift and less
weight to data tuples before the drift. The default
if DI is in ZL or ZM is to use the weight computed
by the system. The user can modify that if he
chooses. And, the default if DI is in ZH is to let the
user use the weight values computed by the system
or discard the old data and rebuild a new model
based on the recent data as shown in Figure 1 and
Figure 2.

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2407

Figure 1: Flowchart of WCDH algorithm

The weight of each tuple in the training set is equal
to one. What we want to do is decrease the weight
given to data tuples before the drift in a way
proportional to DI and, at the same time, increase
the weight for data after the drift in a way
proportional to DI. The minimum value of the
weight before the drift is zero. And, the maximum
value of weight after the drift is two. That means
the proposed weight that will be added or
subtracted from the default weight is in the range
of 0 and 1.

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2408

WCDH algorithm
Inputs: - Sample subset from dataset before drift (DBD);

- Sample subset from dataset after drift (DAD);
- Position where the drift occurred (P);
- Drift intensity value (DI);

Method:
(1) WBD = 1;default weight for each tuple before drift;
(2) WAD = 1;default weight for each tuple after drift;
(3) Generate a training dataset from DBD and DAD ;
(4) if DI in ZH and user deiced to discard DBD then
(5) Discard DBD from the training set;
(6) else
(7) call Compute_Weight(DI) for WBD and WAD;
(8) if user want to overwrite the generated weight then
(9) provide another weight for WBD and WAD;
(10) end if
(11) for each row in the generated training dataset
(12) if row.RID < P then
(13) row.weight = WBD;
(14) else
(15) row.weight = WAD;
(16) end if
(17) end loop
(18) end if
(19) Regenerate a new classification model;
Output: New classification model;

Figure 2: Pseudo-code of the WCDH algorithm

In the following, a way to compute the weight
based on DI is shown. The weight value is a
function of DI. Let DIMin be the minimum value for
DI that is equal to 0.1. And, DIMax be either equal
to 10 in case of DI < 10 or take the same value as
DI in case of DI ≥ 10. We assume that DIMax be as
DI value when DI ≥ 10 since the drift in this case
is very high and is preferred to give zero weight for
data before drift. In other words, DIMax can be
expressed as shown in Equation 6.

DIୟ୶ ൌ ൝
10, if	DI ൏ 10

or
DI,				otherwise

		ሺ6ሻ

Let W∆ be the amount of change of the weight that
needs to be added or subtracted from the default
weight given to tuple. To guarantee that W∆ is in
the range of 0 to 1 we use the following equation.

W∆ ൌ	
DI െ DI୧୬	

DIୟ୶ 	െ DI୧୬	
		ሺ7ሻ

Let WBD be the weight of tuple before the drift, and
WAD be the weight of tuple after the drift. We
expect the value of WBD to be lower if we subtract
W∆ from the default weight. The formula for
calculating the value of WBD can be expressed as
shown in Equation 8.

Wୈ ൌ 1 െ	W∆			ሺ8ሻ

Also, we expect the value of WAD to be higher if
we add W∆ to the default weight. The formula for
calculating the value of WAD can be expressed as
shown in Equation 9.

Wୈ ൌ 1 	W∆				ሺ9ሻ

In conclusion, the value of WBD to be lower by
substituting in Equation 8, and the value of WAD to
be higher by substituting in Equation 9. The
following subsection shows an example.

4.4 Example of Applying Compute_Weight
Function

In this example we will use the same sample
subsets from dataset that we used in the example
of applying DI equations. Where DI value is equal
to 2.73 and the sample subsets of DBD and DAD that
forming the generated training is 16000 rows, each
subset is 8000 rows.

For computing W∆, first determine the value of
DIMin and DIMax which they are equal to 0.1 and 10
respectively. DIMax is 10 since DI value is less than
10. Substituting in Equations 7, W∆ result is
obtained:

W∆ ൌ	
DI െ DI୧୬	

DIୟ୶ 	െ DI୧୬	
ൌ 	
2.736 െ 0.1	
10	 െ 0.1	

ൌ 0.266

Substituting in Equations 8 and 9, the following
results are obtained:

Wୈ ൌ 1	 െ	W∆ 	ൌ 	1 െ 	0.266 ൌ 0.734

Wୈ ൌ 1 		W∆ 	ൌ 1 	0.266	 ൌ 1.266

The weight for each tuple before the drift point in
the training set is equal to 0.734 and the weight for
each tuple from the drift point to the end of the
training set is 1.266.

5. BUILD A NEW MODEL USING
WEIGHT-BASED APPROACH

This section introduces an explanation of building
a classification model using classification
algorithm with the proposed weight-based
approach. And, describes how to integrate weight-
based approach within classification algorithms.
The weight is distributed on the tuples of the
generated training dataset based on their position
either before the drift point or after the drift point,
then a new classification model is derived based on

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2409

the analysis of the training dataset. A decision tree
classification algorithm is one of the most popular
classification algorithms in data mining [24,25]
and it is applied in this paper to derive a new
classification model. The following subsection
describes the decision tree classification and shows
how to apply the proposed weight-based approach
with the decision tree for building a new
classification model.

The decision tree represents an effective
classification technique. It aims to split the training
set into groups as possible in terms of the variable
to be predicted. It takes as input a set of classified
data (training set), and produces a tree that
resembles a flowchart like tree structure, where
each non-leaf node (internal node) represents a test
on an attribute and each edge represents a result of
the test. If the result of a test has two possible
tuples belong to more than one class, further tests
are required to complete the classification along
that branch through adding more non-leaf nodes to
the tree. Alternatively, if the outcome of a test
consists of tuples that belong to the same class,
then a leaf node is inserted to indicate that the
tuples that satisfy the conjunction of the tests along
the path from the root-node to the leaf-node are
belong to only one class.

Various algorithms are available for
constructing decision trees from training datasets
such as: ID3 (Iterative Dichotomizer 3), C4.5, and
CART (Classification and Regression Tree) [2, 4,
26]. There are many differences between these
algorithms such as selecting certain attributes for
splitting nodes in the tree.

In order to build a decision tree from training
dataset an attribute selection measure is needed.
The attribute selection measure is used to
determine how the tuples at a given node are to be
split. The attribute selection measure provides a
ranking for each attribute representing the given
training dataset. The attribute that have the highest
score of the measure is selected as the splitting
attribute for the given tuples.

Several common measures exist in the
literature. In this paper a measure called Entropy
(also called Information Gain) is used as one of
those measures. This measure is used by ID3 for
building decision trees [26]. At each node in the
decision tree the attribute with the highest Entropy
is selected as the splitting attribute. To find the
attribute has the highest entropy, a three-step

proces is applied. Those steps are represented in
the form of three equations 10, 11, and 12, that are
explained as the following.

 Step (1). Equation 10 is applied to compute the
information needed to classify a tuple in the
dataset ܦ , where ݅ is the class label, ܲ is
the probability a tuple falls in the ݅௧ class.

ሻܦሺ݂݊ܫ ൌ 	െ ܲ 	logଶ ܲ

ୀଵ

			ሺ10ሻ

 Step (2). Equation 11 is applied to find the
information required to classify the dataset ܦ
based on the partitioning by ܺ. Each ܦ is a
partition of the dataset ܦ , and |ܦ| is the
number of the tuples in the partition.

ሻܦሺ݂݊ܫ ൌ 	െ
หܦห
|ܦ|

ൈ ൯ܦ൫ܫ

௩

ୀଵ

			ሺ11ሻ

 Step (3). In Equation 12 information gained by
branching on attribute ܺ can be obtained by
subtracting the result of Equation 11 from the
result of Equation 10 as shown below.
ሺܺሻ݊݅ܽܩ ൌ ሻܦሺ݂݊ܫ	 െ	݂݊ܫሺܦሻ			ሺ12ሻ

Equation 10 is applied to the dataset only one time
at the beginning. Equations 11 and 12 are applied
for each attribute. The attribute that has the highest
information gain is selected as the splitting
attribute. This process is repeated at each level of
the tree until leaf nodes are reached, which
represent tuples that belong to only one class.

The contribution to improve decision tree is
proposed by enabling the decision tree algorithm
to support the weight-based approach. Indeed,
when the result of a test belongs to different classes
and no further splitting is possible, then decision
tree selects a leaf node by choosing the most
frequent class label. The integrating with proposed
weight-based algorithm provides better solution
for this issue, where a leaf node is selected by
grouping the tuples that have same classes and
using SUM function to compute the weight for
each class. Then, selects the class that has the
highest weight as a leaf node for the selected
branch in the tree. The following subsections show
how the decision tree with weight-based approach
is built.

6. IMPLEMENTATION AND RESULTS

This section discusses the implementation of the
WCDH algorithm and results obtained when
applying it with decision tree algorithm to build a

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2410

new classification model. An experiment was
conducted to evaluate the effectiveness of the
WCDH algorithm with classification algorithm,
and how the proposed approach achieves
promising results. The model of the experiment is
built using a decision tree algorithm. We use the
first dataset that was used in evaluation the BCDD
algorithm [6], which has one million row. Before
conducting the experiment, let’s see how the model
of the “Deals” dataset was been before it was
injected with a drift. Figure 3 shows the decision
tree model of Deals dataset.

The following are some notes about the xperiment
we conducted:

1- The model was injected with a drift in the right
branch in which “Age = 34–72” and goes
through the edges identified by conditions
“Gender = male”, and “Payment Method =
credit card” ends up at the leaf node labeled
with a “yes”. It is assumed that this path is
changed to map class “no”.

2- The experiment show that the number of
tuples before the drift point that map to class
“yes” is 1400 and the number of tuples that
was injected to map class "no" after the drift is
731.

3- After conducting the proposed approaches for
detecting and handling concept drift the
decision tree algorithm was called to build a
new model.

The dataset was injected to contain a medium DI
in ZM. After running the BCDD algorithm for
detecting the drift and measuring its intensity, the
BCDD algorithm shows that the DI is 4.6. Then the
WCDH algorithm was called to handle the drift by
distributing the weight for each tuple in the
generated training dataset based on its position
before or after the drift. The WCDH algorithm
shows that WBD is 0.546 and WAD is 1.454. After
that, the decision tree was invoked to build a new
classification model.

As shown in Figure 4, the subtrees in which “Age
> 34” was pruned since all the leaf nodes for that
branch belong to the same class. The leaf node in
which “Payment Method = credit card”, results to
class “no”, because the weight of class “no” is
higher than the weight of class “yes”, where weight
of class “no” is 1063.2 and weight of class “yes” is
763.8 therefore this branch is mapped to class
“no”. The two right branches in Figure 3 which
“Age = 34-72” and “Age > 72” have been merged

to one branch in which “Age > 34” as shown in
Figure 4 since they map to the same class.

From the above experiment it can be concluded
that using the weight-based approach for
generating a new classification model gives
satisfying results. This is the same with what we
expected since the weight-based approach will
support a classification model to produce more
accurate classification.

7. CONCLUSION

The occurrence of a concept drift in data is
considered a problem that impacts the results of a
classifier. A concept drift inhibits a classifier from
generating accurate predictions because it results
in making the classification model outdated if not
totally obsolete. It is important to be able to detect
and handle a concept drift properly. This paper
introduces a novel algorithm for handling concept
drift. The key distinguishing feature of this
algorithm is that it adapts itself based on the drift
intensity. If the drift intensity is in the high zone,
the algorithms, by default, gives zero weight to
data before the drift and full weight to data after
the drift whenever it generates a new classification
model. The user is given the option to overwrite
the default behavior.

However, if the drift is in the low or medium zones,
the algorithm computes weights such that the
weight given to the data after the drift is more than
the weight given to the data before the drift. The
higher the drift intensity, the more weight is given
to the data after the drift as compared to data before
the drift. Again here, the user is given the option to
overwrite the default behavior. The user can supply
weights different from the default ones to influence
how the new model is generated.

This ability to generate a new model based on the
new data (after drift) and old data (before drift) can
be useful in some applications especially if the
drift intensity is small. It keeps the power in the
hands of the user, who may decide that the older
data has some merit and can be considered in the
model generation process but with less weight. The
user may also interfere and decide to give older
data zero weight, thus, generating the new model
solely based on the data after the drift point.

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2411

REFERENCES

[1] A. Alashqur, "A Novel Methodology for
Constructing Rule-Based Naïve Bayesian
Classifiers," International Journal of
Computer Science & Information
Technology (IJCSIT), vol. 7, no. 1, pp. 139-
151, February 2015.

[2] A. Alashqur, "Representation Schemes Used
by Various Classification Techniques–A
Comparative Assessment," International
Journal of Computer Science Issues (IJCSI),
vol. 12, no. 6, pp. 55-63, November 2015.

[3] H. Ogbah, A. Alashqur and H. Qattous,
"Predicting Heart Disease by Means of
Associative Classification," International
Journal of Computer Science and Network
Security (IJCSNS), vol. 16, pp. 24-32,
September 2016.

[4] J. B. Gray and G. Fan , "Classification tree
analysis using TARGET," Computational
Statistics & Data Analysis, vol. 52, no. 3, pp.
1362-1372, 2008.

[5] D. AL-Dlaeen and A. Alashqur , "Using
Decision Tree Classification to Assist in the
Prediction of Alzheimer’s Disease," In
Computer Science and Information
Technology (CSIT), 2014 6th International
Conference, pp. 122-126, March 2014.

[6] H. Ogbah and A. Alashqur, "A New
Approach for Detecting Concept Drift and
Measuring its Intensity in Large Datasets,"
International Journal of Computer Science
and Network Security (IJCSNS), vol. 16, no.
12, pp. 108-115, December 2016.

[7] S. B. Kotsiantis, "Supervised Machine
Learning: A Review of Classification
Techniques," Informatica, vol. 31, pp. 249-
268, 2007.

[8] M. Goudbeek and D. Swingley, "Supervised
and Unsupervised Learning of
Multidimensional Acoustic Categories,"
Journal of Experimental Psychology:
Human Perception and Performance, vol.
35, no. 6, p. 1913–1933, 2009.

[9] R. Elwell and R. Polikar, "Incremental
Learning of Concept Drift in Nonstationary
Environments," IEEE Transactions on
Neural Networks, vol. 22, no. 10, pp. 1517-
1531, October 2011.

[10] I. Zliobaite, "Learning under Concept Drift:
an Overview," arXiv preprint arXiv, 2010.

[11] I. Zliobaite, M. Pechenizki and J. Gama, "An
overview of concept drift applications," In
Big Data Analysis: New Algorithms for a
New Society ,Springer International
Publishing, pp. 91-114, 2016.

[12] A. Arasu and G. S. Manku, "Approximate
Counts and Quantiles over Sliding
Windows," In Proceedings of the twenty-
third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database
systems, pp. 286-296, June 2004.

[13] M. Matysiak, "Data Stream Mining: Basic
methods and techniques," RWTH Aachen
University, 2012.

[14] N. Littlestone, "Learning Quickly When
Irrelevant Attributes Abound: A New
Linear-threshold Algorithm," In
Foundations of Computer Science, pp. 68-
77, October 1987.

[15] G. A. Carpenter, S. Grossberg and D. B.
Rosen, "Fuzzy ART: Fast Stable Learning
and Categorization of Analog Patterns by an
Adaptive Resonance System," Neural
Network, vol. 4, pp. 759-771, 1991.

[16] G. Widmer and M. Kubat, "Learning in the
Presence of Concept Drift and Hidden
Contexts," Machine Learning, vol. 23, pp.
69-101, 1996.

[17] A. Tsymbal, "The problem of concept drift:
definitions and related work," Computer
Science Department, Trinity College
Dublin,, 29 April 2004.

[18] R. Klinkenberg and T. Joachims, "Detecting
concept drift with support vector machines,"
In ICML, pp. 487-494, 2000.

[19] M. A. Maloof and R. S. Michalski, "A
method for partial-memory incremental
learning and its application to computer
intrusion detection," In Proc. of the 7th IEEE
Int. Conf. on Tools with Artif. Intell., p. 392–
397, 1995.

[20] I. Žliobaite and L. Kuncheva, "Determining
the training window for small sample size
classification with concept drift," In Proc. of
IEEE Int. Conf. on Data Mining Workshops.
ICDMW, p. 447–452, 2009.

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2412

[21] I. Koychev, "Gradual Forgetting for
Adaptation to Concept Drift," In Proc. of
ECAI Workshop on Current Issues in Spatio-
Temporal Reasoning, p. 101–106, 2000.

[22] I. Koychev, "Tracking changing user
interests through prior-learning of context,"
In Proc. of the 2nd int. conf. on Adaptive
Hypermedia and Adaptive Web-Based
Systems, p. 223–232, 2002.

[23] R. Klinkenberg, "Learning drifting
concepts: Example selection vs. example
weighting," Intelligent Data Analysis, vol. 8,
no. 3, p. 281–300, 2004.

[24] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh,
Q. Yang, H. Motoda, G. J. McLachlan, A.
Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M.
Steinbach, D. J. Hand and D. Steinberg,
"Top 10 algorithms in data mining,"
Knowledge and information systems, pp. 1-
37, 2008.

[25] R. C. Barros, M. P. Basgalupp, A. C. P. L. F.
d. Carvalho and A. A. Freitas, "A Survey of
Evolutionary Algorithms for Decision-Tree
Induction," IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications
and Reviews), pp. 291-312, 2012.

[26] B. Hssina, A. Merbouha, H. Ezzikouri and
M. Erritali, "A comparative study of
decision tree ID3 and C4.5," International
Journal of Advanced Computer Science and
Applications ((IJACSA), pp. 13-19, 2014.

Journal of Theoretical and Applied Information Technology
15th May 2018. Vol.96. No 09

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2413

Figure 3: Decision Tree Model of ‘Deals’ dataset before it was injected with drift

Figure 4: Decision Tree Model of ‘Deals’ dataset after re-building a new model using Weighting approach

