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ABSTRACT 
 

In the recent era, RSA is one of the widely known and largely used public key cryptosystems in the world. 
To improve the performance and speed of RSA cryptosystems, many variants to original RSA have been 
suggested in the literature. But there is no published literature on the evaluation of these faster variants 
based on the security aspects such as attacks and mitigation strategies. Through this article we intended to 
perform a classification of faster RSA variants, cryptanalytic attacks of RSA, mapping of different attacks 
to mitigation strategies and a complete evaluation of Faster RSA variants based on the severity of security 
threats. To assess the severity of threats, a Threat Severity Evaluation classification of these variants has 
been made. Also, we extended our study to look upon how the performance of RSA variants changes with a 
change in the decryption algorithms and build a suitability analysis to check the applicability of Aryabhatta 
Remainder Theorem(ART) in place of Chinese Remainder Theorem(CRT). RPrime RSA is the fastest 
known variant of modified RSA cryptosystems with no known security attacks or threats. RPrime uses 
Chinese Remainder Theorem for solving congruence equations in the decryption stage, which requires 
more modulo inverse operations. The decryption speed can be improved by reducing the number of modulo 
inverse operations required to solve the congruence. Aryabhatta Remainder Theorem takes only one 
modulo inverse operation to solve two congruence relations. When compared with Chinese Remainder 
Theorem, ART requires lesser modulo inverses. In this article, we have replaced RPrime’s CRT with 
Aryabhatta Remainder Theorem. Performance of our new model is tested with larger modulo such as 2048 
and 4096. 

Keywords: Aryabhatta Remainder Theorem, Attacks, Chinese Remainder Theorem, RSA Variants, Threat 
severity. 

 
1. INTRODUCTION 
  
 Cryptosystems are widely used in electronic 
payments, transactions for securely signing, 
encrypting, and decrypting information. Security 
sensitive applications and devices need faster 
encryption, decryption and signing mechanisms. In 
1977 Rivest, Shamir and Adleman developed a 
Public key Cryptosystem which is ubiquitous with 
e-commerce and digital payments. This later 
became one of the most widely used public key 
cryptosystems with its applications in Net Banking, 
Secure Telephony, Smart cards and in other secure 
communications over networks. From being a 
modest Laboratory invention at MIT, it turned out 

into one the widely used cryptosystems in security–
dependent products. 
 
 Many Researchers have identified some 
performance concerns with this cryptosystem and 
presented their own modified variants of RSA. 
Faster Variants such as Multi Prime RSA, Multi 
Power RSA, Rebalanced RSA, Batch RSA and 
RPrime RSA are prominent but researchers have 
identified that they too lack in some area or the 
other. The performance of RSA can be improved in 
three key areas, key generation, Encryption stage 
and decryption stage, the prime concern being the 
Key generation stage and the decryption stage. 
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 All the attacks on RSA cryptosystem are 
theoretical and it is a very time-taking process to 
attack this cryptosystem with the present-age 
computer technology. It may be possible to break 
the RSA system in future if technology such as 
quantum computers is introduced. All the present-
day research is based on the assumption that if such 
situation arises, we must be ready with a stronger 
version of RSA system to counterfeit the attacks. 
 
 The overall aim of this research is to frame a 
more strengthened RSA cryptosystem both in terms 
of security as well as fast processing speed. In this 
paper, we have presented a comparative study of 
these faster variants of RSA based on identified 
security threats and decryptions speeds of 
algorithm. All of these variants use Chinese 
Remainder Theorem (CRT) in the decryption phase 
to obtain the message. 
 
 TRN Rao and Yang [18] suggested that public 
key cryptosystems could be improved on their 
performance front by using Aryabhatta Remainder 
theorem (ART) in place of the existing CRT. Also, 
Aryabhatta remainder theorem requires less modulo 
inversions to solve for residues when compared 
with the CRT. In this paper, we extend the 
application of ART to Rprime RSA in place of 
CRT and analyze how ART can improve the 
performance of Rprime RSA. 
 
2. SECURITY ANALYSIS OF RSA 

VARIANTS 

 The security of RSA can be classified based on 
the functioning of the cryptosystem, involving 
information leakages and those prone to faults and 
bugs. Possible attacks on faster variants of RSA. 
The security of RSA can be classified based on the 
functioning of the cryptosystem, involving 
mathematical calculations such as factorization, 
public and private exponents, implementation 
information leakages and those prone to faults and 
bugs. Possible attacks on faster variants of RSA and 
applicability of Mitigation strategies is discussed 
here. 

2.1 Batch RSA 
 
 Though Boneh and Shacham [1] suggest that 
there are no possible attacks on Batch RSA, as this 
variant uses a small public exponent, the attacks 
which are applicable to low encryption attacks 
(table 1) effect this variant of RSA.  These attacks 
can be mitigated using random padding, ensuring 
the padding length is greater than 1/9 times the 

original message, using a larger public exponent of 
e=65537. 

Table 1: Attacks on Batch RSA 
Short 
Code 

Type of Attack 
Be 

Mitigated? 

A11 
Encryption 

 Exponent [2] 

✓ 
A12 Hastad’s Attack [3] 

A13 
Related Message 

 Attack [4] 

A14 
Short Padding Attack 

[5] 
 

2.2 RSA Re-Balanced 
 
 The low encryption attacks are not applicable 
to this variant of RSA and the only known attack 
(shown in table 2) is the Boneh’s Lattice 
Factorization Attack [1] and this attack can be 
mitigated by choosing the length of k= 160 bits.  
 

Table 2: RSA Rebalanced 
 

Short Code Type of Attack 
Be 

Mitigated? 

A22 
Boneh 

Factorization Attack [1] 
✓ 

 
 

2.3 RSA MPrime 
 
 There are a numerous possible attacks on 
MPrime RSA. As this variant uses a low private 
exponent (d), Weiner [6] exploited this weaker area 
of MPrime RSA and published the first known 
attack on this variant, and later other authors have 
worked on the areas where MPrime RSA can be 
attacked. For some attacks listed for this variant, 
there are no applicable mitigation strategies, the 
other attacks can be mitigated using a private 
exponent (d) of length >=300 bits. 
 

Table 3: Attacks on MPrime RSA 
 

Short 
Code 

Type of Attack 
Be 

 
Mitigated? 

A2 
General Number Field 

Sleeve GNFS [7, 8] 
✗ 

A9 
Attack on Low CRT 

decryption Exponent [9] 

A8 
Wiener’s Low Decryption 

Exponent Attack [6] 
✓ 

A10 
Partial Key exposure 

Attack [10] 
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2.4 RSA MPower 
 

 M.Esgin et.al [11] present a partial key 
exposure attack on MPower RSA which can be 
mitigated by using a larger value of encryption 
exponent and keep the the LSB values secure. The 
side channel attack on RSA MPower can be 
mitigated by a secure implementation suggested by 
Kirtane and Pandu [12], where they use a secure 
Hensel Lifting algorithm implementation of 
MPower RSA. 

 
Table 4: Attacks on MPower RSA 

 
Short 
Code 

Type of Attack 
Be 

Mitigated? 

A10 
Partial Key exposure 

Attack [10] 
✓ 

A17 
Side Channel Attacks 

[13] 
 

 
2.5 RSA RPrime 

RPrime is relatively new, and there are no known 
attacks on this faster RSA variant. The size of 
private exponent d is greater than160 bits and it 
offers a security of 280making the Factorization 
attacks useless [14]. Also, as the size of d is large, 
attacks on low decryption exponent are invalid 
against this RSA variant, making it highly secure 
when compared with the other RSA variants. Figure 
1 shows the attacks on Faster RSA variants. 

 
2.6 Threat Severity Evaluation 
 
 To evaluate the RSA variants based on the 
severity of the threats, a threat severity 
classification was developed based on Threat 
Severity Value (T.S.V).A threat severity value is 
obtained by the ratio of Number of Threats 
Applicable n(T) to the number of threats that can be 
mitigated n(M.T). 

 
T.S.V=n (T)/ n (M.T) 

 
 The Threat severity for a particular RSA 
variant decreases with the increase in the number of 
mitigated threats and vice versa. Table 5 shows the 
threat classification based on T.S.V.  

 
Table 5: Threat Severity Classification 
TS.V. Threat  

Classification 

If T.S.V<1 HIGH 
T.S.V>1 LOW 
T.S.V=0 No Threats Applicable 

 
 
3. COMPARISON OF FASTER RSA 

VARIANTS 
  
 A comparison is done on the Faster RSA 
variants based on Threat severity classification, 
decryption speed, and the measure of gain based on 
different implementation strategies.  
 
3.1 Security 
 
 The Table 6 shows a Classification of RSA 
variants based on Threat Severity Value mention in 
the section IV.  
 

Table 6: Threat Severity comparison using Threat 
Severity Value 

 

Variants 
Attacks Mitigation 

Strategies 
Severity 

of 
Threats 

Batch 

A11 S4 

LOW 
A12, 
A13 

S4, S6 

A14 S4, S7 
Re-

Balanced 
A22 S9 LOW 

MPrime 
A2, A9 

Not 
Available 

HIGH 
A8 S2, S4 
A10 S4 

MPower 
A10 S4 

LOW 
A17 S5 

RPrime 
No Known Attacks No 

Threats 
 
 RPrime is a relatively newer variant when 
compared with the others and no there are no 
known attacks on this RSA variant. MPrime has the 
highest threat from cryptanalytic attacks, as there 
are a few possible attacks, which do not have any 
applicable mitigation strategy. Though there are 
several known attacks on BatchRSA, Rebalanced 
RSA and MPower RSA the threats can be mitigated 
using the applicable mitigation strategies mentioned 
in Appendix. 
 
3.2 Speed Gain with Varied Implementation 

Approaches 
 
 There are several implementation approaches 
to improve the decryption speed on original RSA 
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such as using Chinese Remainder Theorem (CRT) 
+ Garner’s Theorem [15], CRT+Gauss Theorem 
[15], Aryabhatta Remainder Theorem [16] etc. In 
this study we have compared how the RSA varaints 
behave when only a CRT+Gauss theorem is applied 
and when CRT is applied in combination with 
Garner’s Theorem. Only Garner’s theorem is 
chosen for this comparison as Garner’s theorem 
with CRT is made a defacto standard in Public Key 
Cryptography Standards (PKCS#1).   
 
3.2.1 CRT + Gauss 
 
 Figure 2 shows the decryption time measure in 
microseconds using CRT+Gauss[15]. To conduct 
the experiment, for each faster RSA variant, and for 
each modulus (768, 1024 and 2048), 500 messages 
were encrypted and decrypted, the average speed 
for the execution was measured. 
 
3.2.2 CRT + Garner 

 
 The traditional CRT algorithm i.e., CRT + 
Gauss [15] needs a number of reductions on the 
modulus  and a total of O(b.t)2 operartions (a 
modulus m with b bit integer), whereas, the CRT + 
Garner [15] doesn’t and only needs only 
O(t.b2)operations, making it much more efficient 
than the former. Figure 3 shows the avaerage 
decryption time taken by each varaint using the 
CRT + Garner theorem. 
 

From the figures 2 and 3, Rebalanced RSA 
and MPower RSA have 20% improvements in their 
decryption speed for a768 bit modulus using 
Garner’s approach. RPrime has an overall better 
performance with the larger modulus and has the 
best decryption speed with a 1024bitmodulus.  

 
Variations in the implementation approach 

did not have any effect on the Batch RSA and it had 
a very low decryption speed when compared with 
all other variants.  Based on the above comparison 
we have made the following observations on each 
faster RSA variants and an overall ranking of has 
been provided for the RSA variants shown in Table 
7.   

 
3.3. Observations on Security and Speed 
 
3.3.1 Batch RSA 

 
 Needs to deal with overhead of 

agglomerating the messages [14]. 
 

 In Batch RSA every key must have a 
corresponding RSA certificate in the 
decryption server and as the number of 
batch increases the number of certificates 
to be maintained keeps growing. As the 
issuing and verification of certificates by 
CA’s involves monetary transactions, it is 
can be said costly considering the 
certificates to be maintained and the 
money involved [1]. 

 
 The other issue with BATCH RSA is that 

it uses a very small public exponent such 
as 3,5,7,11,13 etc. Though D. Boneh and 
Shacham [1] suggests that there are no 
known attacks, low public exponents are 
prone to Attacks such as Related Message 
Attack [4], Hastad’s Broadcast attack [3] 
and short padding Attack[5]. 

 
 If the public exponent of BATCH RSA is 

set to e=65537 then it increases the 
decryption time, losing its “FASTER” 
capabilities and making it a very slower 
than the other variants, also than the 
traditional RSA. 
 

3.3.2 MPrime 
 Paixao does not recommend this Faster 

variant for the use in smaller modulus 
where n= 768 bits [1].  
 

 Also another limitation is that when we 
use a 1024 bit modulus only three primes 
should be considered as using more primes 
would again decrease its overall 
performance [1].  
 

3.3.3 Re-balanced RSA 
 
 Re-Balanced RSA offers a better 

decryption speed when compared with 
variants such Batch, MPrime and Mpower.  
 

 Also, we can use a low encryption 
exponent to increase the decryption speed 
but at the cost of attacks such as security 
attacks such as Hastad’s [3]. 

3.3.4 MPower RSA 
 
 It is resilient to Lattice factoring attacks 

[1] as it can only factor integers of the N= 
pkq, where K is large as it uses a factoring 
of N=p2q, where k is very small and equal 
to 3 (Mpower uses a modulo of the form 
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N=p k-1q). 
  
 At times, some of the SSL cards do not 

support the modular inversion through 
Henselliftings [17], which is the major 
difference and improvement of Mpower 
over Mprime RSA. This restricts the 
applicability and advantages of MPower. 

 
3.3.5 Rprime RSA 
 

 This is really a faster variant of RSA and 
offers high decryption speed when 
compared to the other variants and there 
are no known possible attacks on this 
variant. 
 

 When implemented in combination with 
the Garner’s algorithm, it shows an even 
better performance in the decryption 
speeds. 

 
Note:  
Batch RSA and MPower RSA do not support 
the family of Public Key Cryptographic 
Standards (PKCS#1) when compared with 
other faster Variants. 

 
Table 7: Ranking of Faster Variants of RSA 

Variants Security 
 Ranking 

Speed 
 Ranking 

Overall  
Ranking 

Batch 2 5 4 
Rebalanced 2 2 2 
MPower 2 3 3 
MPrime 5 4 5 
RPrime 1 1 1 

 
 Based on the aforementioned observations, we 
have provided a ranking of the faster variants of 
RSA based on the severity of security threats, 
decryption speed and other considerations such as 
adhering to standards, CA’s etc. RPrime RSA has 
the best overall ranking when compared with the 
other variatns and MPrime RSA has the least. 
MPrime RSA has a very decryption speed and is 
prone to threats of high severity such as GNFS[7, 
8]. 
 
4. DECRYPTION OF RSA VARIANTS 
  
All of studied RSA variants use Chinese Remainder 
Theorem in the decryption phase to obtain the 
message. TRN Rao and Yang [18] suggested that 
public key cryptosystems could be improved on 
their performance front by using Aryabhatta 

Remainder theorem in place of the existing CRT. 
Also, Arybhatta remainder theorem requires less 
modulo inversions to solve for residues when 
compared with the CRT [1].  In the following 
sections we provide the decryption process and a 
suitability analysis of ART to faster variants based 
on their decryption process. 
 
4.1 RPrime RSA 
 

 By selecting m size integers (d1, d2, .., dk) 
such that the G.C.D of primes and 
decryption exponent is equal to 1, the 
decryption exponent d is chosen, and d can 
be obtained by solving the congruence 
using Mi= Cdi mod pi where 1<= i<= k, 
and M = Cd mod N. 

 
 The decryption process is same the 

MPrime RSA [1]. 
 
4.2 BatchRSA 

 Fiat [19] observed that, when small 
exponents are used for encryption say e1 
and e2, the cost of decrypting two cipher 
texts is similar to cost of decrypting one. 
 

 The Batch RSA deals with public key 
exponents, based on a batch of k distinct 
and pairwise relative prime public key 
exponents e1,e2,..,en to obtain M which is 
equal to Ci 1/ei for i= 1, 2,..,k [4]. 

 
4.3 MPrimeRSA 

 The decryption exponent is computed 
using d = e-1 mod φ(N) and g.c.d(e, 
φ(N))=1, where φ(N)= Πki=1 (p-1). 
 

 The private key contains a tuple <N, d1, 
d2,..,dk> where 1<= i<= k; di= d mod (pi-
1) [1].  
 

 The public key is pair of <e, N> similar to 
the original RSA [15]. 
 

 To obtain the plain text from the cipher, 
Mi= Cdi mod pi where 1<= i<= k, and M 
=Cd mod N is obtained using CRT [1].  
 

 This decryption is similar to the RSA CRT 
[1]. 
 

 Singh [20] in his master thesis has 
integrated the improved Aryabhatta 
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Algorithm [21] with Lehmers Algorithm 
[15] on the MultiPrime RSA [1].  
 
 

 The results suggest that there is an 
improvement of decryptions speeds when 
compared with the CRT implementation. 

 
4.4  MPowerRSA 
 

 Except the change made to the Modulus N, 
for the values of r >=3, where N=pr-1q, 
the process of encryption is same as the 
original RSA . 

 
 Decryption use a Hensel Lifting Method 

[1] M1= Cr1 mod p and M2=Cr2 mod q. 
Thus M1e = C mod p and M2e = C mod q. 

 
4.5 Rebalanced RSA 
 

 Some of the RSA variants use a private 
key containing a triplet but here the private 
key contains of a quadruple <dp, dq, p, q>, 
where dp and dq are two integers of length 
w bits, where g.c.d (dp, p-1) = g.c.d (dq, q-
1) =1 and dp ≡ dq mod 2. 
 

 Also, d should satisfy a condition where d 
= dq mod (p-1) and d = dp mod (p-1). 
 

 Decryption is similar to the MPrime RSA 
which uses the same decryption process of 
RSA CRT [1] 

 
5. SELECTION OF A PARTICULAR 

VARIANT OF RSA FOR OUR 
RESEARCH 

 
To select a particular variant of RSA, a 

suitability analysis is made based on different 
criteria such as Decryption speed, speed gain, Time 
complexity of decryption and decryption model. 
We are only concerned about the decryption phase 
as we apply ART during the decryption of a 
Message (M) from a Cipher (C). For the decryption 
we consider N as 1024 bits, w=160 and r =3. As 
batch RSA and MPower RSA use different 
algorithms in decryption stage and are not similar 
to the original RSA or RSA CRT [1], they are not 
suitable to apply ART as suggested by TRN Rao 
and Yang [18]. Hence we excluded Batch RSA and 
MPower RSA from the comparison in Table 8. 
 

Table 8: Suitability Comparison 

 
Variant Time 

Complexity 
Overall 
Ranking 

Decryption 
process 

RPrime r x 
O(w(n/r)2) 

1 Same as 
RSA 

CRT[1] 
MPrime r x 

O((n/r)3) 
5 Same as 

RSA 
CRT[1] 

ReBalanced 2 x 
O(w(n/2)2) 

6.14 Same as 
RSA 

CRT[1] 
 

RPrimeRSA has a better time complexity and 
uses the original RSA decryption process, whereas 
RebalancedRSA has only half of RPrimeRSA’s 
speed while using Garner’s algorithm [21] and is 
below RPrimeRSA in the overall ranking 
comparison. Aryabhatta remainder theorem was 
applied on MPrimeRSA [18]. Hence from the 
above comparison we prefer that RPrimeRSA be 
used to carry out our research. 
 
6. RPrime RSA 

Observations from our work in the above 
sections suggest that RPrime RSA [14] has a higher 
ranking in terms of decryption speed or security 
threats when compared with the other variants. In 
the following sections we discuss the algorithm of 
RPrime RSA, usage of Aryabhatta Remainder 
Theorem (ART) [20] in place of Chinese 
Remainder Thorem and analyze how ART can 
improve the performance of RPrimeRSA.  

 
 This algorithm uses multiple primes with 

each prime of size log(n/k) bits with 
G.C.D (p1-1, p2-1, .., pk-1) =2. 
 

 The decryption exponent d is chosen by 
selecting m size integers (d1, d2, .., dk) such 
that the G.C.D of primes and decryption 
exponent is equal to 1 and  d can be 
obtained by solving the congruence using 
the CRT.  
 

 The encryption process is same as the 
Rebalanced RSA [6] and decryption 
process is same the MultiPrime RSA [1]. 
 

 There are no known attacks on RPRime 
RSA but since it uses MultiPrimeRSA’s 
decryption, an improvement can be made 
by using ART in place of CRT in the 
decryption stage than the Key generation 
phase. 
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6.1 Usage Of Aryabhatta Remainder Theorem 

 
The problem of two residues can be solved 

with only one modular inverse operation using the 
original Aryabhatta remainder theorem, which is an 
improvement over the CRT[1]. Rao and Yang [18] 
have introduced and improved Aryabhatta 
Algorithm which can be applied to RSA 
cryptosystems which is comparable with other 
Remainder theorems in place such as CRT + Gauss 
and CRT +Garner. A. Singh [20] in his master 
thesis has implemented the improved Aryabhatta 
Algorithm [21] with Lehmers Algorithm [15] on 
the MultiPrime RSA [1]. The results suggest that 
there is an improvement of decryptions speeds 
when compared with the CRT implementation.   
 
As, the decryption process of RPrime RSA[14] is 
based on MultiPrime RSA[1], we chose to apply 
the Aryabhatta Remainder Theorem on the RPrime 
RSA. The following sections show the algorithm, 
implementation and the results.  

 
7. DECRYPTION OF RPRIME USING 

ARYABHATTA REMAINDER THEOREM 
 
 Aforementioned, the decryption phase of 
RPrime RSA is same as MultiPrimeRSA[1]. A. 
singh [20] in his master thesis presented a modified 
version of Arybhatta Remainder Theorem, 
combining Rao and Yang’s [18] Improved 
Aryabhatta Algorithm and Lehmers Algorithm 
[15]. We suggest that same algorithm with slight 
changes is applicable to RPrime RSA. The 
following is our RPrime ART algorithm, which 
does modular reductions by computing at once 
rather than every time we run the loop. 
 

RPRimeART(Ni, pi, cpi, dpi, mpi) 
Begin 

1)  Definec
pi

:= c mod pifor i = 

1,2,3,..,k.  
2)  Definedpi

:=d modpi–1 for 

i=1,2,3,..,k.  

3)  Define m
pi

:= c
pi

dpi
mod pifor i = 

1,2,3,..,k.  
4)  SetM

i
:= 1 

5)  Loop:forifrom 2 to k 
6)   do 
7)    Mi=Mipi 

8)    C
i
= M

i

-1

mod p
i 

9)  End Loop 
10)  Set u:= m

p1
 

11)  Loop: fori from 2 to k 
12)   do 

13)    v=(mpi -

u)C
i
modpi 

14)    u=u+vΠi-i
j=1pj

 

15)   End Loop 
16)  Setc := u 
17)  return c 

End 
 
7.1 Implementation Results of RPrime ART 
 
 RPrime ART has been implemented using the 
BigInteger class in Java to test for modulo sizes of 
4096 bit on Linux and Macintosh operating systems 
with Core i3 Processor and 4gb RAM. The 
implementation has been carried out in both single 
system as well as over LAN.  
 
 We have considered a sample size of 50 
Messages and calculated the average decryption 
time for the RPrime CRT and RPrime ART 
algorithms. Figure 5 below shows the 
implementation result of RPrime RSA on our 
Sample string “Improving the decryption speed of 
RPrime RSA using Aryabhatta Remainder 
Theorem”.  

 
 Two comparisons were made due to the nature 
of RPrime RSA [14] having variations in the 
number of primes (p1, p2,..,pk), mostly, also in the 
above sections comparisons were made on 3 
primes, so we have tested our implementation on 
number of primes ranging from 4 to 7 primes with a 
constant modulo size of 512 as shows in Figure 6.  
 
 The second set of comparisons was made 
against fixed number of primes, i.e., we chose 3 
primes, as shown in Figure 7. Decryption speed is 
measured in microseconds. A comparison was 
made on RPrime CRT and RPrime ART with 1024, 
2048 and 4096 size moduli. 

  
These results show that RPrime ART performs 

better with fixed modulo and variable moduli. 
There is a considerable improvement of decryption 
speed when the modulus is 4096. Though there is 
only slight improvement when the modulo size is 
less than or equal to 2048.  
 
8. CONCLUSION 
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 In this paper, a review of faster variants of 
RSA and mapping is carried out for the possible 
attacks and the available threat mitigation strategies 
to RSA cryptosystem. Further, a performance 
evaluation is conducted on different Fast variants of 
RSA such as Batch RSA, MPower RSA, 
Rebalanced RSA, MPrime RSA and RPrime RSA, 
of how these variants perform in cases of 
encryption and decryption, severity of threats and 
also checked for the difference in implementation 
mechanisms. Also, a ranking is provided based on 
decryption speed and severity of threats. The 
empirical data suggests that RPrime RSA possesses 
a higher degree of security and is very fast in 
decrypting a cipher text when compared to all other 
faster variants of RSA.  
 

For analyzing the performance of faster 
variants of RSA during decryption phase, we have 
made a selection of faster RSA variants based on 
the decryption model, time complexity and overall 
ranking from our work. From our observations, 
RPrime RSA and Rebalanced RSA use the same 
decryption process as the MPrime RSA.  RPrime 
RSA has a much better overall ranking and time 
complexity when compared with Rebalanced RSA 
and so we have selected it to carry out our research 
in this area. Through this article, we have proposed 
a new algorithm to increase the existing decryption 
speed of RPrime RSA by using Aryabhatta 
Remainder Theorem (ART) in place of Chinese 
Remainder Theorem (CRT). With the application of 
our new implementation technique, the decryption 
speed of the RPrime RSA improved significantly 
when compared with the traditional CRT algorithm. 
Also, a comparison was made over the performance 
of RPrimeART based on 2048 and 4096 size 
moduli. Our new technique went successful in 
improving the speed of RPrime in case of larger 
moduli. 
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Figure 1: Number of Attacks on RSA Variants 
 
 

 
 

Figure 2: Decryption time using CRT+Gauss 
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Figure 3: Decryption time using CRT+Garner  
 
 

 

 
 

Figure 4: Percentage gain in execution speed 
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Figure 5: Code and Result Snippet of RPrimeART with n=512 
 

 

 
 

Figure 6: Decryption Time with 4, 5, 6, 7 Primes 
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Fig. 7: Decryption Times with variable moduli length. 
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Appendix 
 

S.No Type of Attack Short Code 

1 Pollard’s p-1 Factorization Method [1, 20, 23] A1 

2 General Number field Sleeve [24, 25] A2 

3 Special Number field Sleeve [26] A3 

4 Attack on Common Modulo (N) [23] A4 

5 Attack on Multiplicative structure [11] A5 

6 Cyclic Attack [11] A6 

7 Attack on Decryption Exponent [1] A7 

8 Attack based on the Low Decryption Exponent [14] A8 

9 Attack based on the Low Decryption CRT Exponent [11] A9 

10 Attack based on the Fraction of Decryption exponent [27] A10 

11 Attacks on the Encryption Exponent [17] A11 

12 Hastad’s Attack [15] A12 

13 Related Message Attack [18] A13 

14 Short Padding Attack [19] A14 

15 Attacks based on Power Consumption [20, 21] A15 

16 Timing Attacks [2, 3, 16, 22] A16 

17 Side Channel Attacks [28] A17 

18 Hardware Bugs [12] A18 

19 Fault Based Attacks [13] A19 

20 Genetic Algorithms [9] A20 

21 Quantum Computing [10] A21 

22 Boneh‘s Factoring Attack [5] A22 

 
S.No Mitigation Strategy Short Code 

1 Optimum Asymmetric Encryption Padding (OAEP) [] S1 
2 Length of Private Exponent [14] S2 
3 Use of Strong Primes [1, 20, 23, 27] S3 
4 Value of e = 65,537 [27] S4 
5 Adding Delays [27] S5 
6 Random Padding [17, 19] S6 
7 Padding Length [11] S7 
8 G.C.D of N >1  S8 
9 K=160 S9 

 
 


