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ABSTRACT 
 
 

It has been observed over last several decades that bandwidth greediness of applications never gets fulfilled. 
Hence, scientists, researchers, and engineers keep working on new ways of providing higher bandwidth. 
Recently, a new modulation technique called Orthogonal Frequency Division Multiplexing (OFDM) has 
been introduced which provides very high data rates. In OFDM the high frequency input signal is modulated 
over a large number of low frequency sub-carrier signals which are orthogonal to each other. This feature 
makes it very robust against efficiency degradation at higher frequencies. That is the reason why OFDM is a 
choice for the modern high and ultra-high data rate communication systems. However, it suffers from high 
levels of the peak power to the average power also called Peak-to-Average Power Ratio or PAPR. Reducing 
PAPR in OFDM is a hot research area. There are many schemes available which attempt to reduce PAPR. 
Some are in fact able to reduce PAPR but not sufficient enough to make these feasible. Others do reduce it 
but increase its complexity to an extent that these become unfeasible to realize. From literature it has been 
identified that SLM performs better than other methods in terms of computational complexity at the same 
performance level. 
The main motivation behind this research effort is to find a mechanism which reduces PAPR for OFDM 
systems and has a reasonable level of complexity so that it may be realizable. As an outcome of this research 
activity, a novel framework based on Artificial Neural Networks (ANN) and Selective Mapping (SLM) is 
proposed. The kernel used by the ANN in proposed framework is a modified version (proposed by us) of an 
already available kernel called Novel Kernel Based – Radial Basis Function (NKB-RBF). We show through 
simulations results that our proposed kernel, Modified NKB-RBF (MNKB-RBF), is more efficient than 
NKB-RBF and gives better results in selection of low frequency sub-carriers with lowest PAPR. 

 

Keywords: Orthogonal Frequency Division Multiplexing (OFDM), Peak-to-Average Power Ratio (PAPR), 
Selective Mapping (SLM), Artificial Neural Networks (ANN), Radial Basis Function (RBF) 
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1. INTRODUCTION  
 

As the data rates of communication systems 
increase so does the demand by the applications. 
Current applications, like high definition TV, good 
quality video, on-line gaming, vehicle navigation 
systems, etc., demand ultra-high data rates. Another 
demand of modern applications is an ability of the 
communication systems to sustain these high data 
rates without service disruption, for example, to 
devices present in vehicles moving at very high 
speed, i.e., fast moving cars, electric trains, 
airplanes, etc. These demands of high date rates 
with seamless service require new and ingenious 
techniques to be employed in communication 
systems. In order to fulfil this requirement, one area 
of focus is the modulation techniques because 
efficient modulation techniques can multiply the 
data rates. 

Recently, a new modulation technique called 
Orthogonal Frequency Division Multiplexing 
(OFDM) has been introduced which provides very 
high data rates and is based on multiplexing of 
frequencies [1]. The key feature of OFDM is the 
orthogonality of carrier frequencies. This feature 
makes it very robust against efficiency degradation 
at higher frequencies unlike other modulation 
techniques which suffer from substantial 
degradation of service at higher frequencies. This is 
the reason for the OFDM to be a choice technology 
for the modern high and ultra-high data rate 
communication systems [2].   

However, OFDM suffers from high levels of 
the peak power to the average power ratio also 
called Peak-to-Average Power Ratio (PAPR). In 
OFDM, PAPR is high mainly due to the reason that 
the summation of peaks of many sub-carriers may 
result in very high value. Note that in OFDM the 
high frequency input signal is modulated over a 
large number of low frequency sub-carrier signals 
which are orthogonal to each other. Though the 
average of these sub-carriers would be quite low, 
the peak power which is the summation of all peaks 
may become very high. 

Reducing PAPR in OFDM is a hot research 
area. There are many schemes available which 
attempt to reduce PAPR. Some are in fact able to 
reduce PAPR but not sufficient enough to make 
these feasible. Others do reduce it but increase its 
complexity to an extent that these become 
unfeasible to realize. Sufficient details of these 
schemes, their merits and demerits are provided in 
literature. However, the issue is not settled yet.  

The rest of the paper is organized as follows. 
In section 2, we visit basics of OFDM and the 
importance of PAPR to refresh the knowhow of the 
reader. In section 3, we list and elaborate upon 
various well-known and promising PAPR 
reduction schemes. The information presented in 
this section is obtained through the survey of the 
available literature on the subject matter. In 
particular, we show in this section that SLM, one of 
these scheme, has better promise to reduce PAPR 
along with an issue that is a major bottleneck in its 
performance. In section 4, we propose a modified 
RBF kernel called MNKB-RBF which is going to 
be the main component of our proposed PAPR 
reduction scheme as detailed in section 5. In section 
6, we present the evaluation of our proposed 
scheme and establish that it performs better. And 
finally, we conclude this paper in section 7. 

 
2. OFDM & PAPR 
 
2.1 OFDM 

OFDM is a modulation technique which uses 
multiple low frequency sub-carriers (orthogonal to 
each other) instead of a single high frequency 
carrier and is very popular these days to transmit 
high speed digital data [3][6]. Since, each sub-
carrier is of low frequency, modulation is done at 
low symbol rate. However, overall symbol rate is 
quite high because multiple sub-carriers are used.  

We know that using high symbol rate over a 
single carrier results in severe channel conditions 
(attenuation, interference, fading, etc.). In OFDM, 
these conditions are reduced substantially due to 
low symbol rate on each sub-carrier. Moreover, due 
to low symbol rate we do not need to use a guard 
interval between symbols. This results in 
elimination of Inter-Symbol Interference (ISI) and 
achievement of better Signal-to-Noise Ratio 
(SNR). 

 

2.2 PAPR 
In OFDM System Model, the input channel 

signals are modulated first using either Phase Shift 
Keying (PSK) or Quadrature Amplitude 
Modulation (QAM) and then undergo Inverse Fast 
Fourier Transform (IFFT) operation at the 
transmitter end [7][8]. This creates low-frequency 
sub-carriers (orthogonal to one another) at the 
transmitter side [9]. These transmitted signals can 
deliver high peak values in the time domain and 
these high peak values when get summed up due to 
alignment produce high ratio of peak power to the 
average power [4]. The high PAPR is a 
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consequence of the summing up of sonic waves and 
non-constant envelope [10]. The injurious effect of 
high PAPR is that it brings down the performance 
of power amplifier. Therefore, RF power amplifiers 
need to be controlled in a very large linear region, 
otherwise the signal peaks will enter into a non-
linear region and will cause deformation. Though 
there are many schemes which reduce PAPR, the 
efficiency of any PAPR reduction scheme is 
measured through Cumulative Distribution 
Function (CDF) [5]. PAPR of a signal is calculated 
using equation (1) [11]. Here, E[.] indicates the 
Expectation Operator. 

 

𝑃𝐴𝑃𝑅(𝑥) =  
max |𝑥(𝑡)|ଶ

𝐸[|𝑥(𝑡)|ଶ]
                          (1) 

 
2.3 Research Motivation  
In today’s digital world, the explosive usage of Big 
Data, Internet of Things, real-time multimedia 
streaming, etc. demand efficient mechanisms to 
seamlessly accommodate massive wireless data 
transmissions. The 4th generation communication 
systems use OFDM as a high-data rate multiplexing 
agent to transmit large data at higher data rates. 
However, the highest data rate that can be 
accommodated by the OFDM is limited by the 
well-known PAPR problem. Therefore, it is 
pertinent and need of the hour to solve PAPR 
problem in order for the OFDM to be used by the 
4th and 5th generation wireless communication 
systems at still higher data rates. In this paper, we 
propose a mechanism to maximize the bandwidth 
utilization in OFDM by using PAPR minimization. 
This mechanism is expected to act as major 
contribution for 5th generation communication 
systems as well. 
 
2.4 Research Objectives 

The objectives of this research are; 
 Investigate the existing techniques which 

give better results in selection of low 
frequency sub-carriers with low PAPR. 

 Find mechanism to reduce the PAPR of 
OFDM systems with less complexity to 
utilize the maximum bandwidth of 
OFDM. 

 

3. PAPR REDUCTION SCHEMES – A 
LITERATURE SURVEY 

This section describes various PAPR reduction 
schemes and discusses their performance as given 
in the literature. The performance comparison in 

tabular form is shown in Table 1. In [12], it has been 
shown that Selective Mapping is a better candidate 
for potential to reduce PAPR and remains 
computational less complex. 

 
Table 1: Performance of PAPR Reduction Techniques 

S# Technique Performance 

1. Selective 
Mapping 
 

 Reduces Distortion 
 No Power Raise 
 Selects lowest PAPR sub-

carriers 
2. Partial 

Transmit 
Sequence  

 Reduces Distortion 
 No Power Raise 
 High Computational 

Complexity 
3. Tone 

Reservation  
 Reduces Distortion 
 Power Gets Raised 
 Less Complex than PTS 

4. Tone 
Injection 

 Reduces Distortion 
 Power Gets Raised 
 PAPR Reduction without 

Data Rate Reduction 
5. Clipping and 

Filtering 
 Introduces Distortion 
 No Power Raise 
 One of the Simplest 

 
3.1 Selective Mapping 

The research that introduced the “Selective 
Mapping Technique” was penned down by Bamul, 
Fischer and Huber in 1996 [13].  SLM is one of the 
most favorable PAPR reduction techniques as it 
does not introduce distortion and effectively 
reduces PAPR [12][13][14][15]. In this technique 
the input data blocks are multiplied by each of the 
given phase-rotated sequences to generate 
alternative input symbol sequences. Part of the 
alternative sequences is processed further under 
IFFT and their PAPR is determined. Then the 
signal with lowest PAPR is selected for 
transmission [13][14][15].  

In SLM, input data is partitioned into smaller 
data blocks which result in parallel data streams. 
Each element in a data block is multiplied by a 
phase-rotated sequence [13][14][15]. 

The fundamental idea that lies in this 
technique is that it helps to select the signal with 
lowest PAPR value from a pool of phase-rotated 
sequences. 
 

3.2 Issue of SLM Scheme 
SLM scheme is based on the core principle 

of selecting one sequence of sub-carriers (lowest 
PAPR) from a set of available sequences of phase-
rotated sub-carriers. Selection of a particular 
sequence is a major issue and determines the 
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performance of SLM in terms of the magnitude by 
which the PAPR is reduced. Selection of an 
appropriate phase-rotated sequence of sub-carriers 
is essentially an optimization problem. We intend 
to solve the above stated problem by using the ANN 
(Artificial Neural Networks) framework. ANN is 
one of the best ways to solve optimization 
problems. 

 
4. PROPOSAL OF MODIFIED NKB-RBF 
 

4.1 Artificial Neural Networks and Radial Basis 
Functions 

Computational model for ANNs was first 
proposed by McCulloch and Pitts [16]. Since then, 
ANNs have been recognized as a decision making 
tool by many researches [17][18]. ANN are 
particularly very useful in solving optimization 
problems. An optimization problem is either 
difficult or almost impossible to solve with the help 
of conventional rule-based programming [19]. 

An RBF network [20] is an ANN whose 
activation functions are radial basis functions. It 

was first introduced by Broomead and Lowe [21] 
and since then it has become a very popular 
methodology to solve optimization problems that 
suit ANN paradigm [19][20][21].   The main 
advantage of RBF when compared with other 
algorithms based on ANN paradigms is the 
simplicity of the computation of network 
parameters [20]. RBF networks have been used in 
diverse optimization domains, including pattern 
classification [22], time series prediction [23], 
systems and control [24], and function 
approximation [25]. 

In the conventional RBF kernel, mostly 
Gaussian of the Euclidean distance between feature 
vector and neuron’s center is used [26]. However, 
there can be scenarios where Euclidean distance is 
not the dominant measure to find separation among 
the features, for example, if two feature vectors are 
separated by equal distance from the center but 
separated from the center via unequal angles. In that 
case, the cosine of the angle can play a vital role in 
differentiating the feature vectors.  

 
 

 

Figure 1: Architecture of the RBF Based ANN 
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4.2 Conventional RBF 
RBF networks in their general form consist 

of three layers. These layers are called an input 
layer, a hidden layer, and a linear output layer.  The 
hidden layer is one where nonlinear activation 
functions operate. The layout is shown in Figure 1. 
Generally, the input is a real vector, x ∈  R୬. The 
network output maps the input vector to a 
scalar, y: R୬ →  R, which is achieved using 
equation (2).  

 

y୧ =   ω୧



୧ୀଵ
φ୧(‖x − c୧‖) + b୨      ∀j

= 1,2 … , N୭              (2) 

Where N and No are the number of hidden 
and output layer neurons, respectively, c୧ ∈ R୬ is 
the center for i୲୦ neuron, ω୧ is output layer weight 
for i୲୦neuron, b୨ is the bias term for the j୲୦ output 
neuron, and φ୧ is the basis function associated with 
ith hidden neuron. 

The domain of activation function is 
typically taken to be the Euclidean distance 
between input and the centers of every neuron. 
Most commonly used RBF kernels are multi-
quadrics, inverse multi-quadrics and Gaussian. 

 
4.3 Recently Proposed “Novel Kernel Based 
RBF (NKB-RBF)” 

Motivated by the observation that “in many 
scenarios Euclidean distance (ED) is not the 
dominant measure to find the separation among 
features”, Aftab et.al, propose in [27] a novel RBF 
kernel which consists of a linear combination of 
Gaussian and cosine RBF kernels. The cosine RBF 
kernel computes the cosine of the angle between 
supplied feature vector and the center vector 
associated with that neuron. 

Aftab et.al, in [27] state that intuition 
suggests that ED is not the only measure to contrast 
the FVs. For example, in the case when FVs are 
equally separated in distance, then the ED will be 
no more effective. To deal with this issue, they 
proposed a generalized RBF kernel by linearly 
combining the conventional ED based RBF kernel 
and a cosine based RBF kernel which is formulated 
as given in equation (3). 

 

φ୧(x, c୧) =  αଵφ୧ଵ(x. c୧) +  αଶφ୧ଶ(‖x −

c୧‖)                    (3)                           

 Where αଵ, αଶ are weightage parameters for 
cosine and Euclidean kernels, respectively, which 
can acquire values in this range: 0 ≤  αଵ, αଶ  ≤ 1.  
4.4 Issues of NKB-RBF 

Recently proposed Novel Kernel Based RBF 
(NKB-RBF) is shown in [27] to perform well with 
different problems as it utilizes the complimentary 
property of two kernels that are based on the 
Euclidean (distance) and Cosine (angle) or 
correlation measure. However, the NKB-RBF 
suffers from the manual selection of the mixing 
parameter.  

We can see in equation (2) that αଵ and αଶ are 
the mixing parameters of Cosine and Euclidean 
kernels. The manual selection (as suggested by 
MNKB-RBF) of the mixing parameters αଵ and αଶ  
is a critical issue particularly in the situations with 
no generalization of the problem. For the selection 
of these mixing parameters one needs prior 
information about the problem. In cases where 
cosine is the good measure of similarity or in other 
words the angle is the discriminating element we 
will have to choose higher value for αଵ (close to 1) 
and lower value for αଶ (close to 0) to have optimal 
performance. The reverse must be selected for these 
mixing parameters, i.e., αଵ (close to 0) and higher 
value for αଶ (close to 1), for the problem where 
angle is not the optimal discriminating element. If 
this guide line is not followed, we will face 
degradation in performance instead of 
improvement. Table 2 shows the criteria for the 
manual selection of mixing parameters αଵ and αଶ. 

 
Table 2: Criteria for Manual Selection of 

Parameters 𝜶𝟏 and 𝜶𝟐 

αଵ αଶ 

 
 Weightage to the 

Cosine Distance (CD) 
should be high in case 
where CD is the 
distinguishing 
element. 
 

 Should be low if the 
CD is the confusion 
factor. 

 
 NKB-RBF allows to 

choose α1 manually 
which is not possible 
in the dynamic 
scenario of SLM 

 
 Weightage to the 

Euclidean Distance 
(ED) should be high in 
case where ED is the 
distinguishing 
element. 
 

 Should be low if the 
ED is the confusion 
factor. 
 

 NKB-RBF allows to 
choose α2 manually 
which is not possible in 
the dynamic scenario 
of SLM 
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To get the best performance from the NKB-

RBF one needs to select the optimal values of the 
mixing parameters. The manual selection of mixing 
parameters as suggested by NKB-RBF requires 
prior knowledge of the system. This restricts the 
application of NKB-RBF to only the problems 
where prior information about the system is known. 
In the case of SLM, we need as adaptive 
optimization algorithm that can select the optimal 
weights of the individual kernels to harness the 
complimentary properties of the two kernels 
without the prior knowledge of the incoming signal 
type. 

 
4.5 Proposed Solution: Modified NKB-RBF 

(MNKB-RBF) 
The critical issue of NKB-RBF is the manual 

tuning of the mixing parameters αଵ and αଶ. In order 
to use it for optimization of selection of one phase 
rotated sub-sequence of signals among many 
candidate in SLM (with minimum PAPR), we need 
to make the tuning of αଵ and αଶ dynamically 
adaptive. Since the core objective of the proposed 
adaptive algorithm is to minimize the overall error 
of the system, we propose to use the error energy 
besides distance for tuning of αଵ and  αଶ. We call 
our new algorithm as Modified NKB-RBF or 
MNKB-RBF in short. 

In order to incorporate the error energy, we 
replace αଵ and αଶ with the η(n) and 1-η(n) in 
equation (3), to make them time varying as shown 
in equation (4). We can rewrite the kernel equation 
as: 

φ୧(x, c୧) =  η(n)φ୧ଵ(x. c୧) +  ൫1 − η(n)൯φ୧ଶ(‖x −

c୧‖)       (4)           

Where, 
η(n) = weight of Cosine Distance (CD) 
1- η(n) = weight of Euclidean Distance (ED) 

 
The MNKB-RBF algorithm uses the update 

rule of a Robust Variable Step-Size Least Mean 
Square (RVS-SLMS) algorithm [28] for its learning 
rate where the update is obtained by an estimate of 
the autocorrelation between current error e(n) and 
past error e(n-1). 

If ρ(n) is the final output error, the error 
energy of the MNKB-RBF algorithm is defined as 
follows: 

 

ρ(n) = β ρ(n) + (1 − β)e(n)e(n − 1)   where 0 <  β

< 1 

Note that ρ(n) is the error energy at nth 
instant.  

In the proposed method the weight of the 
cosine kernel can be calculated as follows: 

 

η(n + 1) =  τ ∗  η(n) +  σρ(n)  where 0 < τ < 1, 0

< σ < 1  

Here η(n+1) is the weight of the Cosine 
Distance for next iteration and τ, σ and β are the 
momentum coefficients. 

 
 
 

η(n + 1)

=  ቐ

1,        η(n + 1)  > 1

η(n + 1), 0 < η(n + 1) < 1

0,        η(n + 1) < 0
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Figure 2: Block Diagram of the Proposed PAPR Reduction Scheme using MNKB-RBF 

 
 
5 PROPOSAL OF A NOVEL PAPR 

REDUCTION SCHEME BASED ON 

MNKB-RBF 
 

In previous, we proposed a novel technique 
for the autonomous selection of weights of mixing 
parameters of the NKB-RBF algorithm and named 
it MNKB-RBF. The proposed kernel can be used in 
the dynamic environments where little or no prior 
information about the discriminating measure in 
known. As in the case of Selective Mapping (SLM) 
we want to make our system adaptive and suitable 
for dynamically selecting an optimal sub-sequence 
(with lowest PAPR) from a set of available sub-
sequences of the frequencies with unknown effects 
on PAPR. The proposed kernel is expected to 
perform well in this scenario because it 
autonomously selects weights based on the error 
energy. 

Framework of proposed technique (based on 
MNKB-RBF and SLM) is shown in Figure 2, 
which selects the sub-sequence with the lowest 
PAPR from the given sequences. From this figure 
it can be seen that the selection of the optimal phase 

rotation is performed by advanced technique of 
optimized weighted kernel. In the proposed system 
the signal will first pass through the frequency 
transformation block and then the SLM block, 
which will select the appropriate carrier signal for 
the given signal.  
The SLM block in modified to indicate the 
selection of the best carrier sub-sequence based on 
the intelligent decision of the dynamic method of 
MNKB-RBF to minimize the chances of the rise in 
PAPR. The argument is supported by extensive 
simulations/experiments performed and discussed 
in next section. 

 

6 PERFORMANCE EVALUATION OF 

PROPOSED PAPR REDUCTION 

SCHEME 
 

The performance of the proposed scheme for 
selection of a phase-rotated sequence of signals 
from a set of available sequences depends on 
MNKB-RBF and SLM (Selective Mapping). Since 
SLM is already a known and evaluated scheme, 
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hence the performance of our scheme solely 
depends upon the performance of MNKB-RBF. In 
this section, a thorough evaluation of our scheme is 
presented and we show that it performs better than 
the scheme which uses SLM and NKB-RBF. 

 

6.1 Performance Evaluation Environment 
We have performed a comprehensive 

evaluation of MNKB-RBF (Modified Novel Kernel 
Based RBF) against NKB-RBF (Novel Kernel 
Based RBF) by using simulations of ANNs on 
MATLAB using these kernels. 

In order to have a good level of confidence 
in the deductions that we make after comparison of 
these two kernels, nine different datasets have been 
generated on which the performances of both of 
these kernels are tested and compared. The details 
of the simulation environment, test cases, and the 
nature of the datasets are being given in the 
following section. 

In order to compute final output error ρ(n) 
and error energy of the MNKB-RBF algorithm we 
used following variables: 
 

 CD – Cosine Distance 
 ED – Euclidean Distance 
 α1 α2 – Mixing Parameters 
 φ – Error Energy 
 e(n) – Current Error 
 e(n-1) – Past Error 

 

6.2 Simulation Environment & Test Cases 
In order to train and test the ANNs which use 

the Novel RBF and the proposed RBF (MNKB-
RBF), first of all nine different datasets of one 
hundred randomly generated messages are 
generated. In each dataset, the initial fifty messages 
are for the purpose of training the ANN and the 
later fifty messages are to be used for testing the 
performance of the ANN. 

 

6.2.1 Regarding Datasets 
Regarding dataset 1, 2, and 3, the carrier is to 

be selected from a pool of 64 sequences of phase-
rotated carriers. However, 8-QAM (Quadrature 
Amplitude Modulation), 16-QAM, and 32-QAM 
are used to modulate each message in dataset 1, 
dataset 2, and dataset 3 respectively. This is done in 
order to see whether or not changing modulation 
changes the pattern of results or leads to the same 
conclusion. In our graphic or numeric results are 
indicated the nature of dataset by the following 
scheme [64 x 8], [64 x 16] and [64 x 32]. In this 

scheme, the first numeric value indicates the 
number of phase-rotated sequences in the pool and 
the second numeric value represents the number of 
symbols used in QAM for modulation, for example, 
in [64 x 8], the pool has 64 sequences and 8 
symbols are used to modulate the messages. 

Similarly, in dataset 4, 5, and 6, the pool has 
128 phase-rotated sequences with messages 
modulated using 8-QAM, 16-QAM, and 32-QAM 
respectively. 

Lastly, in dataset 7, 8, and 9, there are 256 
phase rotated sequences and messages are 
modulated using 8-QAM, 16-QAM, and 32-QAM 
respectively. 

 
6.2.2 Regarding Test Cases 

Multiple iterations of simulations are 
performed for both “Training Phase” as well as 
“Testing Phase” on all of the datasets as specified 
in the above section. Large number of iterations are 
performed to enhance the reliability of the 
deductions. 

 
6.3 Training Results 

Training of both kernels, i.e., NKB-RBF and 
MNKB-RBF is done using three different training 
cases. Each test case consists of tests done on three 
datasets of similar nature as listed below. 

 
Training Case I: Dataset having 64 phase-
rotated sequences.  
 Dataset 1 – [  64 x   8] 
 Dataset 2 – [  64 x 16] 
 Dataset 3 – [  64 x 32] 

 
Training Case II: 128 sequences  
 Dataset 4 – [128 x   8] 
 Dataset 5 – [128 x 16] 
 Dataset 6 – [128 x 32] 

 
Training Case III: 256 sequences 
 Dataset 7 – [256 x   8] 
 Dataset 8 – [256 x 16] 
 Dataset 9 – [256 x 32] 

 
The results of the training phase in graphical 

form are shown in Figures 3 to Figure 11. The 
results correspond to Training Case I, Training 
Case II and Training Case III respectively. 
Evaluation and analysis of training phase results are 
given in the next section. 
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6.3.1 Evaluation, Analysis, and Deductions 
The x-axis in these graphs (Figures 3 to 11) 

represent the number of epochs for which the 
simulation was run. The y-axis gives the magnitude 
of the mean of the squared error (MSE). Each graph 
has two curves, i.e., the dashed-line curve (red 
colored curve) for the Novel RBF (NKB-RBF) and 
the solid-line curve (blue curve) for the Proposed 
RBF (MNKB-RBF). 

Let us first of all analyze graphs of the 
“Training Case I” (64 sequences of carriers) in 
Figure 3. It can be seen that 8 symbols are used for 
modulation and that for only the first epoch, the 
MSE (Mean Square Error) is higher for MNKB-
RBF. Whereas, from 2nd epoch and onwards, MSE 
for MNKB-RBF is lower than NKB-RBF. This 
indicates much early successful training of ANN 
which uses our proposed kernel. After around only 
7th epoch, MSE for MNKB-RBF reaches its 
minimum which is 2 and is an excellent result 
showing that less time is needed to train MNKB-
RBF based ANN.  

It can be also seen that curves in Figure 4 & 
Figure 5 do not show substantial change in their 
pattern even after increase in modulation symbols 
from 8 to 16 and 32. This leads us to deduce that 
MNKB-RBF is robust against variation in 
modulation symbol rate. This is important for 
MNKB-RBF to be indeed practically used in not 
only PAPR reduction schemes but also in other 
optimization applications. 

Let us now focus on results of “Training 
Case II & III” which are shown in Figures 6 to 
Figure 11. Some interesting observations can be 
made. For one, the performance of MNKB-RBF 

does not change even though the pool of candidate 
phase-rotated sequences is increased from 64 to 
256. In all of these graphs it can be seen that MSE 
exponentially reduces (solid blue curve) and 
minimizes after around 7 epochs. This analysis 
leads us to the deduction that MNKB-RBF is 
robust against variation in the size of the pool of 
phase-rotated carrier sequences as well.  

On the other hand, the performance of NKB-
RBF has degraded with increase in the pool size of 
carrier sequences. MSE for NKB-RBF is not 
reducing fast enough which is evident from the less 
steepness of the dashed-line red curves for NKB-
RBF in Figure 3 to Figure 11. 

Now look at the final value of MSE for which 
both NKB-RBF and MNKB-RBF stabilize. It is 
visible in these graphs that the final MSE value for 
NKB-RBF is around 5, whereas for MNKB-RBF, 
MSE keeps on decreasing as we increase the size 
of the pool of sequences and becomes almost zero. 
We have summarized the final MSE values 
(approximated) against size of pool of sequences in 
the following table for MNKB-RBF. Hence, we 
conclude that MNKB-RBF performs much better 
than NKB-RBF in terms of training of ANN. 
 
 

Table 3: Final Mean Square Error (MSE) Comparison 

Size of Pool of  
Carrier Sequences 

MSE for 
Novel RBF 

MSE for 
Proposed RBF 

64 4.0 2.0 

128 3.5 1.0 

256 3.0 0.1 
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Figure 3: Training cost comparison between Novel RBF and Proposed RBF 
(Sequences = 64, Modulation = 8-QAM) 

 
 

 
Figure 4: Training cost comparison between Novel RBF and Proposed RBF 

(Sequences = 64, Modulation = 16-QAM) 
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Figure 5: Training cost comparison between Novel RBF and Proposed RBF 
(Sequences = 64, Modulation = 32-QAM) 

 

Figure 6: Training cost comparison between Novel RBF and Proposed RBF 
(Sequences = 128, Modulation = 8-QAM) 
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Figure 7: Training cost comparison between Novel RBF and Proposed RBF 

(Sequences = 128, Modulation = 16-QAM) 
 

 
Figure 8: Training cost comparison between Novel RBF and Proposed RBF 

(Sequences = 128, Modulation = 32-QAM) 
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Figure 9: Training cost comparison between Novel RBF and Proposed RBF 

(Sequences = 256, Modulation = 8-QAM) 
 

 
Figure 10: Training cost comparison between Novel RBF and Proposed RBF 

(Sequences = 256, Modulation = 16-QAM) 
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Figure 11: Training cost comparison between Novel RBF and Proposed RBF 

(Sequences = 256, Modulation = 32-QAM) 
 
 
6.4 Testing Results 

The second most important phase of 
performance evaluation of primarily MNKB-RBF 
is done and is generally termed as “Testing Phase” 
in the ANN community. However, in order to 
evaluate MNKB-RBF, we need to do its 
comparison with other similar algorithm. Hence, 
like the “Training Phase” performance of MNKB-
RBF is compared with NKB-RBF and additionally 
with simple SLM as well. 

Like the “Training Phase”, in the “Testing 
Phase” too three basic test cases are performed. 
Each testing case in turn consists of tests done on 
three datasets of similar nature as listed below: 

 
Testing Case I: Dataset having 64 phase-rotated 
sequences.  
 Dataset 1 – [  64 x   8] 
 Dataset 2 – [  64 x 16] 
 Dataset 3 – [  64 x 32] 

 
Testing Case II: 128 sequences  
 Dataset 4 – [128 x   8] 
 Dataset 5 – [128 x 16] 

 Dataset 6 – [128 x 32] 
 

Testing Case III: 256 sequences 
 Dataset 7 – [256 x   8] 
 Dataset 8 – [256 x 16] 
 Dataset 9 – [256 x 32] 

 
The results of the testing phase in graphical 

form are shown in Figures 12 to Figure 20. The 
results shown in these “Testing Case I, II and III”. 
6.4.1 Evaluation, Analysis, and Deductions 
The x-axis in these graphs represent the “Message 
Number” under focus. Recall that a total of 50 
messages  
are to be sent as separate transmissions selecting a 
phase-rotated sequence from a pool of given 
sequences. The sequence is to be selected in a 
manner to minimize PAPR for that message. 
Hence, it can be seen that there are 50 messages on 
x-axis with PAPR for each message shown on y-
axis. 

Each graph has three curves black solid-line 
curve representing our proposed RBF (MNKB-
RBF), blue dashed-line curve for the Novel RBF 
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(NKB-RBF) and red solid-line curve for simple 
SLM. 

At first glance it seems that the results are 
random. But a careful look at these graphs reveals 
the following. 
 
 For majority of the messages, the red solid-live 

curve is below the other two curves indicating 
high values of PAPR for simple SLM and thus 
it is knocked out of the competition with NKB-
RBF and MNKB-RBF. 

 Comparing and carefully analyzing the solid-
line black curve (MNKB-RBF) with the 
dashed-line blue curve (NKB-RBF) it can be 
seen that for majority of the messages PAPR 
for MNKB-RBF is lower than NKB-RBF. For 
only a few messages, PAPR for MNKB-RBF 
is higher than NKB-RBF.  
 

 As a whole it is concluded that MNKB-RBF 
outperforms both Simple SLM and NKB-RBF 
in terms of reduction in PAPR levels. 
 

The same pattern, i.e., curve for MNKB-RBF 
flowing under other curves for most of the 
messages, is observed in results of Test Case II & 
III. 

 
6.4.2 Probability of Selecting Carrier of Low 

PAPR 
In order to be clearer about the deduction drawn in 
the previous sub-section, the results of the previous 
sub-section are reprocessed to find the probability 
of selection of a phase-rotated carrier sequence 
with the lowest PAPR from a given pool of phase-
rotated sequence. The probability is calculated for 
all three schemes, i.e., Simple SLM, Novel RBF, 
and Proposed RBF and shown in Table 4. 

The 1st column of this table (from left) gives 
the test number. The details regarding the size of 
the pool of sequences and the number of symbols 
used for modulation are given in the 2nd column. 
Whereas, the 3rd, 4th, and 5th column show the 
probability calculated for the Simple SLM, Novel 
RBF, and the Proposed RBF. Please note the values 
in these columns give the probability of the 
selection of the lowest PAPR which implies that the 
scheme with the highest probability is the best one. 
Hence, for each row the highest values are 
underlined and produced in bold font. 

One can easily notice that except for Test 
Case 1-3 and 3-2, the performance of the Proposed 
RBF is the best of the three. Therefore, we can 
conclude with a higher level of confidence that the 
performance of the Proposed RBF is better than the 
other two contenders. 
 
 
Table 4: Probability of Selecting Carrier of Low PAPR 

Test 
Case 
Number 

Test Case 
Details 
(Carriers x 
Symbols) 

SLM 
Novel 
RBF 

Proposed 
RBF 

1-1 256 x 32 0.54 0.82 0.88 

1-2 256 x 16 0.48 0.74 0.80 

1-3 256 x 8 0.44 0.80 0.76 

2-1 128 x 32 0.46 0.58 0.60 

2-2 128 x 16 0.40 0.52 0.66 

2-3 128 x 8 0.40 0.66 0.68 

3-1 64 x 32 0.58 0.58 0.62 

3-2 64 x 16 0.42 0.60 0.40 

3-3 64 x 8 0.40 0.56 0.58 
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Figure 12: Sequences = 64, Modulation = 8-QAM 
 
 

 

 
Figure 13: Sequences = 64, Modulation = 16-QAM 
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Figure 14: Sequences = 64, Modulation = 32-QAM

Figure 15: Sequences = 128, Modulation = 8-QAM 
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Figure 16: Sequences = 128, Modulation = 16-QAM 
 
 

 

Figure 17: Sequences = 128, Modulation = 32-QAM 
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Figure 18: Sequences = 256, Modulation = 8-QAM 

 

 

 

Figure 19: Sequences = 256, Modulation = 16-QAM 
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Figure 20: Sequences = 256, Modulation = 32-QAM 

 

7 NOVELTY AND IMPACT 
 
NKB-RBF suffers from manual selection of mixing 
parameters, which cause degradation in performance 
if optimal values are not selected, which requires 
prior knowledge of the system. In order to use it for 
optimization of selection of one phase rotated sub-
sequence of signals among many candidates in SLM 
(with minimum PAPR), we need to make the tuning 
of αଵ and αଶ dynamically adaptive. The novelty of 
the proposed algorithm is adaptability feature which 
dynamically tunes mixing parameters to reach 
optimal values. This feature is used to minimize the 
overall error of the system, we also propose to use 
the error energy besides distance for tuning of αଵ 
and  αଶ. 
 

8 CONCLUSION 
 

As stated in the previous section, the focus of 
this research activity is to propose a 
mechanism/framework which minimizes PAPR in 
majority of transmissions. Such a mechanism is 
indeed proposed and described in this dissertation. 
The core of the proposed scheme consists of both 

SLM scheme and ANN which uses a modified 
version (MNKB-RBF) of already available kernel.  

 
The conclusions of this research activity are 

enumerated below. 
 

 Selective Mapping (SLM), one of the PAPR 
reduction schemes, has the potential for further 
improvement in performance and can lead to 
optimal selection a sequence of phase-rotated 
sub-carrier from a pool of available sequences 
such that its PAPR is the lowest. 

 SLM used in conjunction with ANN has the 
potential to lead to optimal selection. 

 A recently proposed ANN kernel (NKB-RBF) 
is shown to perform better but suffers from the 
manual selection of weights of tuning 
parameters αଵ and αଶ. 

 The proposed kernel (MNKB-RBF) which uses 
error-energy to automatically adjust weights of 
αଵ and αଶ is shown in this dissertation through 
simulation results to perform better than NKB-
RBF. 
 

From analysis of simulation results 
(comprehensive set of scenarios) it is concluded that 
the probability of selection of a sequence of phase-
rotated sub-carriers from a pool of given sequences 
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in the proposed framework is the highest among all 
contenders (Simple SLM, NKB-RBF based SLM).  
 

9 FUTURE WORK 
 
The 5G mobile networks are supposed to achieve 
1000 times the system capacity, 10 times the spectral 
efficiency, higher data rates, 25 times the average 
cell throughput and other improvements over 4G 
systems [29].  Therefore, further improvement in 
existing OFDM model is still a major issue. In future 
work, new techniques must be investigated to 
increase and utilize maximum bandwidth by making 
OFDM more efficient for upcoming 5th generation 
communication systems.   
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