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ABSTRACT 
 
We investigate the detection of person in the omnidirectional images, adopting a linear SVM. We have 
implemented HOG-based descriptors, for omnidirectional and spherical images. In this paper we studied 
the influence of each parameter in our algorithm on the performances of person detections in catadioptric 
images. However, few studies have elaborated the problem of human detection using this type of cameras; 
therefore we have set up our own test base. Our results show that our detector can robustly detect people in 
omnidirectional images, as soon as the algorithm is adapted to the distortions introduced by the use of the 
omnidirectional camera. 

Keywords: Omnidirectional Sensor, HOG, Human Detection, Spherical Images Spherical Images 
Spherical Images. 

 
1. INTRODUCTION  
 
This Human tracking is a highly processed research 
subject in computer vision, as it is the main part of 
several applications such as surveillance video 
systems, human-machine interaction and 
benchmarking applications. Omnidirectional 
cameras are useful for person detection and 
tracking, since they expand the field of view to 
360o. Furthermore, they are well modelized [1] and 
already used in many applications like visual 
control [2], robot navigation, visual SLAM and 
motion estimation [3], [4]. The human detection in 
perspective images was wildly studied by the 
computer vision community. Several methods have 
been implemented; a survey summarizing the most 
popular ones is given in [5]. However, few works 
have been proposed omnidirectional image based 
per-son detection. Dupuis et al. [6], propose face 
detection in panoramic image obtained by 
unwrapping the omnidirectional image, to allow a 
better detection with viola and Jones algorithm. In 
[7]], the authors used HOG for person detection in 
panoramic image. However, the image processing 
for these approaches are directly applied in 
panoramic image and thus not adapted to the 
geometry of omnidirectional camera. Recently, 
Cinaroglu et al propose in [8] to adapt the image 
processing to the geometry of omnidirectional 
image using the Riemannian metric in order to 

improve the detection process. Nevertheless, the 
learning phase is based on perspective image 
database. Usually, human detection in images is 
based on gradient. In [18] the authors propose HOG 
descriptor and show that it significantly 
outperforms other methods for human detection. In 
order to increase the performances of the pedestrian 
detection, HOG algorithm was also combined with 
other descriptors like LBP [10].  

Felzenszwalb et al [11] improved the robustness of 
HOG against partial occlusion using mixtures of 
deformable part models. Indeed there approach 
allows detection different parts of the human body 
through several windows. In order to use HOG for 
spherical images efficiently, an adequate metric for 
gradient computation is necessary. Several works 
have been done in this field. In, [12], the authors 
introduced the use of Riemannian metric to adapt 
the gradient computation in omnidirectional image. 
Shigang proposes in [13] a new spherical gradient 
operator based on centroidal spherical voronoi 
tessellation. This approach allows to define an 
adapted neighborhood for a point into the sphere, 
and hence to compute the gradient with high 
accuracy. In this paper, we propose to develop a 
new approach for human detection in 
omnidirectional image using the spherical 
representation. We first introduce a HOG-based 
descriptor, computed directly in the spherical space 
where an adapted gradient is used. To our 
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knowledge, human detection approaches in 
omnidirectional image proposed in the literature, 
underestimate the nature of the database which is 
usually proposed for conventional camera. In the 
continuity of our work [9], we propose in this work 
an algorithm to generate an omnidirectional 
database from an existing perspective one. Indeed, 
the adapted database used for SVM training 
increases the performances of the person detection. 
This paper is organized as follows. In section 2, we 
first present the spherical model valid for the most 
omnidirectional cameras. Then we show how the 
omnidirectional database is generated from an 
existing perspective one. The last part of this 
section concerns the adaptation of HOG descriptor 
for spherical image geometry. In section 3, we 
present the real experimental results for our human 
detection approach. Section 4 gathers conclusions 
and suggestions for future research. 

   Figure 1: Unit Sphere Model 

 

2. METHODOLGY 

In this section, we first present briefly the 
generic model for all central cameras (conventional 
and non-conventional) based on the unit sphere. 
Then our approach is divided in two parts. The first 
part shows how we generate the omnidirectional 
database from an existing perspective database. The 
second one concerns the adaptation of the HOG 
descriptor for spherical image.  
 
2.1 Unified spherical model 
 

Sections Geyer et al proposed in [14] a 
generic model for omnidirectional image formation. 

This model is defined by a central projection onto 
unitary sphere, followed by a perspective projection 
onto an image plane. This model takes into account 
the mirror parameter (𝜉) and the intrinsic camera 
parameters K. Fig.1. shows the unit sphere model 
where 𝐹 and 𝐹 are the projection centers of the 
mirror and the camera respectively.  
The projection of a 3D point is then described by:  
1- Projection of a 3D point X on the sphere 
according to the mirror reference coordinate frame:  
 

 
(𝑋)𝐹 → (𝑋ௌ)𝐹 =

𝑋

‖𝑋‖
= (𝑋ௌ, 𝑌ௌ, 𝑍ௌ) 

(1) 

 
2- Changing the reference center 𝐶 → 𝐶  

 
(𝑋ௌ)𝐹 → (𝑋ௌ)𝐹 = (𝑋ௌ, 𝑌ௌ , 𝑍ௌ

+ 𝜉) 
(2) 

 
3- Projected into the normalized plane  

 𝑚 = ൬
𝑋ௌ

𝑍ௌ + 𝜉
,

𝑌ௌ

𝑍ௌ + 𝜉
, 1൰ = ℎ(𝜒ௌ) (3) 

 
4- Changing from image plan to pixelic image plan:  

 𝑷 = 𝑘𝑚 = 
𝑓 𝑓𝜂𝛼 𝑢

0 𝑓𝜂 𝑢

0 0 1

൩ 𝑚 (4) 

 
 
We note 𝑓 the focal length, (𝑢, 𝑣) the main point 
and 𝛼 is the skew. the (𝜉) parameter related to the 
geometry of omnidirectional camera can be 
obtained by calibration. Since the function 𝑓 is 
bijective [15], any omnidirectional image can be 
warped onto the unit sphere through the inverse 
projection 𝑓ିଵ [16]:  
 

 𝑓ିଵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜉 + ඥ1 + (1 − 𝜉ଶ)(𝑥ଶ + 𝑦ଶ)

𝑥ଶ + 𝑦ଶ + 1
𝑥

𝜉 + ඥ1 + (1 − 𝜉ଶ)(𝑥ଶ + 𝑦ଶ)

𝑥ଶ + 𝑦ଶ + 1
𝑦

𝜉 + ඥ1 + (1 − 𝜉ଶ)(𝑥ଶ + 𝑦ଶ)

𝑥ଶ + 𝑦ଶ + 1
− 𝜉

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(5) 

 

   

 

 𝑓ିଵ =

⎣
⎢
⎢
⎡

𝑥
𝑦

1 −
𝑥ଶ + 𝑦ଶ + 1

𝜉 + ඥ1 + (1 − 𝜉ଶ)(𝑥ଶ + 𝑦ଶ)⎦
⎥
⎥
⎤

 
(5) 

 

   
This unified projection model is valid for any single 
point-of-view camera, including perspective 
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cameras. Indeed, just take ξ = 0 to find a 
perspective projection (pinhole model). ξ is also the 
parameter whose value depends on the shape of the 
mirror. Finally, even if the fisheye camera is not 
unique, this projection model is a good 
approximation of the actual projection and can be 
used to model some cameras of this type [19]. The 
model introduced by [20] makes it possible to add 
radial and tangential distortion in the image 
formation model compared to other models present 
in the literature. Its model makes the calibration 
parameters easily identifiable and offers a good 
compromise between an overly generic model and 
an over-parameterization. 
 

 
Figure 2: Diagram of the appropriate method 

 
2.2 Omnidirectional Database Generator (ODG) 
 

Image database has a central impact to 
enhance the efficiency of human detection 
algorithm. Several database for person detection are 
proposed in the literature. However, all of them are 
adapted for conventional images and no adapted 
database for omnidirectional image is proposed 
thus far. Within this scope, we propose a technique 
to create an adapted database for omnidirectional 
image, from any conventional database.  
Let 𝐼 be a perspective image of the conventional 
database. If we consider that image as a planar 
object observed by an omnidirectional camera, the 
corresponding omnidirectional image can be used 
for generating the adapted database. Indeed, the 
omnidirectional image of a person is generated by 
the omnidirectional camera. This hypothesis can be 

verified for a sufficient distance between the 
camera and the detected person. 

 
(a) Perspective image  

 
(b) Image on the sphere  

Figure 3: Perspective image transformation to spherical 
image 

 
The proposed technique is spelled out in the 
following steps:  
First, a virtual perspective camera is defined for a 
given calibration parameters𝐾ఔ. We will use  𝐾ఔ to 
move from the image 𝐼 to the normalized plane  𝐼 
according to the standard pinhole model. Ic is 
defined at an adequate distance from the unit sphere 
and perpendicular to the axis passing through the 
north pole (as depicted in Fig.2). We assume a 
point Pn in the image 𝐼 and a point 𝑃 in the 
image 𝐼 . 
 𝑃 = 𝐾ఔ

ିଵ ∗  𝑃   (6) 
 
We move from pixelized image 𝐼 to normalized 
image 𝐼(𝑥, 𝑦 , 𝑧). Then, the generated 
normalized image is projected onto the unit sphere 
to obtain a spherical image: 
Then, the generated planar object is projected onto 
the spherical space using the unified projection 
model:  

 𝑃௦ =
𝑃

||𝑃||
 

(7) 
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We note that the adapted database is generated and 
defined on spherical space. Spherical space has the 
advantage of being invariant to rotation and 
therefore only one spherical image (θ, φ) is 
generated for each perspective image as can be seen 
in the figure (Figure 3). This will not be the case 
when we want to generate omnidirectional images. 
It will be necessary to distinguish between the 
rotations around the axis φ and the rotations around 
the axis θ. The rotation around the axis φ in the 
spherical space this translates into the 
omnidirectional image by a rotation around the 
center and which consequently does not modify the 
distortions created in the projected image. On the 
other hand, the rotations around the axis θ in the 
sphere will be reflected in the omnidirectional 
image by a movement from the center of the image 
to the outer circle (or the opposite) or in the 
omnidirectional image the distortions are not the 
same in the center of the omnidirectional image and 
on the edges. 
To integrate this phenomenon into our 
omnidirectional image database, we define θmin, 
θmax which are the limits of the visibility zone of 
our omnidirectional image as in the figure (figure 
2). Thus, we will use equations (6) and (7), to 
obtain our image 𝑰  which represents the 
omnidirectional image as follows: 
 

𝑰

=  𝐾ఔ

∗ ℎ ቌ
cos(𝜃) − sin(𝜃) 0

sin(𝜃) cos(𝜃) 0
0 0 1

൩

∗ 

cos(𝜃) 0 0

0 cos(𝜃) − sin(𝜃)

0 sin(𝜃) cos(𝜃)
ቍ  (8) 

 
With  𝐾ఔ the intrinsic parameters of our 
omnidirectional camera. The number of 
omnidirectional images generated from a single 
perspective image will be equal to θrot divided by 
the step we have chosen. As can be seen in the 
figure (Figure 4), the closer the image is to the 
edge, the larger the distortions.  
 

 
2.3 Adapted HOG descriptor 
 

Two HOG adaptation according to the 
gradient computation are proposed in this section. 
In the first one, the Riemannian metric is used. The 

second one consists on computing gradient directly 
in the spherical space. 
 

 
Figure 4: Perspective image transformation 

 
2.3.1 Differential Operators on Riemannian 

Manifolds  
 

In [17] and [12], the differential operator 
on the manifold is used to compute the gradient. 
Let  be a parametric surface on 𝑅ଷ with an 
induced Riemannian metric 𝑔 that encodes the 
geometrical properties of the manifold. 𝑥 is a local 
system of coordinates on . The gradient 
associated to a Riemannian metric is defined as 
follows:  

 𝛻𝑓 =   𝑔



ୀଵ



ୀଵ

𝜕𝑓

𝜕𝑥

𝜕

𝜕𝑥
 (9) 

 
Where 𝑔  is the inverse of the Riemannian metric 
𝑔. A point on the unit sphere𝑆ଶ, it can be 
represented in Cartesian and polar coordinate by: 
(𝑋, 𝑌, 𝑍) = (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑐𝑜𝑠𝜃) 
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The Euclidean line element is defined as follows:  
 

 
𝑑𝑙ଶ = 𝑑𝑥ଶ + 𝑑𝑦ଶ + 𝑑𝑧ଶ

= 𝑑𝜃ଶ(𝑠𝑖𝑛𝜃)ଶ𝑑𝜙 
(10) 

 
A point on the sphere is represented by (𝜃, 𝜙) 
becomes after a polar stereographic projection a 
point (𝑅, 𝜙) in the image plane. The angle 𝜃 
depends on the calibration parameters of our 
camera, while 𝜙 remain the same.  
In the general case we have:  

 
 

𝜃

= 𝑎𝑟𝑐𝑡𝑎𝑛 ൭
𝑅൫1 + 𝜉 + ඥ(1 + 𝜉)ଶ − 𝑅ଶ(𝜉ଶ

1 + 𝜉 − 𝑅ଶ𝜉 + ඥ(1 + 𝜉)ଶ − 𝑅ଶ(

(1
1) 

 
Thus the metric becomes:  

𝑑𝑙 =
൫𝜉 + 𝜉ଶ + ඥ(1 + 𝜉)ଶ − 𝑅ଶ(𝜉ଶ − 1)൯

ଶ

 

𝑑𝑙ଶ =
൬𝑅ଶ𝑑𝜙ଶ +

(1 + 𝜉)𝑑𝑅ଶ

1 − 𝑅ଶ(𝜉 − 1) + 𝜉
൰

(𝑅ଶ + (1 + 𝜉)ଶ)ଶ
 

 
Using the identities:𝑅 = 𝑥ଶ + 𝑦ଶ and 𝜙 =

𝑡𝑎𝑛ିଵ ቀ
௬

௫
ቁ we have:  

 

 

𝑑𝑙ଶ

= 𝜆 ቆ4(𝑦𝑑𝑥 − 𝑥𝑑𝑦)ଶ

−
4(1 + 𝜉)(𝑥𝑑𝑥 + 𝑦𝑑𝑦)ଶ

(𝑥ଶ + 𝑦ଶ)(𝜉 − 1) − 𝜉 − 1
ቇ 

(13) 

with:  
 

 
𝜆

=
൫𝜉 + 𝜉ଶ + ඥ(1 + 𝜉ଶ)ଶ − (𝑥ଶ + 𝑦ଶ)(𝜉ଶ −

4(𝑥ଶ + 𝑦ଶ)(𝑥ଶ + 𝑦ଶ + (1 + 𝜉)ଶ)ଶ

(14
) 

 
From (11) we can calculate 𝑔  and its inverse 
matrix 𝑔 we obtaine:  

 
𝑔

= 𝛾 ቀ ௫௬(కିଵ)
ି௫మ(కିଵ)ାకାଵ

  
ି௬మ(కିଵ)ାకାଵ

௫௬(కିଵ)
ቁ 

(15) 

 
with:  
 

 

𝛾

=
(𝑥ଶ + 𝑦ଶ + (1 + 𝜉)ଶ)ଶ

(1 + 𝜉)൫𝜉 + 𝜉ଶ + ඥ1 − (𝑥ଶ + 𝑦ଶ)(𝜉ଶ − 1

(1
6) 

 
 
The Riemannian metric its speed computation, as 
can be seen as the weighting function of the 
conventional gradient computed in the 
omnidirectional image.Fig.5b shows the calculation 
of the omnidirectional gradient of a real 
omnidirectional image. Its HOG descriptor is 
shown in Fig.5c. 

 𝛻𝑓 = 𝑔
𝜕𝑓

𝜕𝑥
 (17) 

2.3.2 Calculation of spherical gradient in the 
spherical space. 

 
The spherical gradient can be obtained 

knowing the perceived metric of a unit sphere 𝑟 =

1 if 𝑔 = ቀ
1 0
0 𝑠𝑖𝑛𝜃

 ቁ then 𝑔 = ቆ
1 0

0
ଵ

௦ఏ

ቇ   

The spherical gradient is thus defined by: 
 

 
𝛻ௌమ𝐼௦(𝜃, 𝜙) =

𝜕𝐼௦(𝜃, 𝜙)

𝜕𝜃
𝑒ఏ

+
1

𝑠𝑖𝑛𝜃

𝜕𝐼௦(𝜃, 𝜙)

𝜕𝜙
𝑒థ 

(18) 

 
Where (𝜃, 𝜙) a spherical image is (𝜃, 𝜙) are the  

   
          (a) Omnidirectional Image          (b) Gradient compute with  the               (c) Visualization of HOG 

    Reimanienne Metric of 
       the image (a)   

Figure 5: Example of HOG training in omnidirectional images. 
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(a) Omnidirectional image projected onto 

the unit sphere 

 
(b) spherical gradient of the image (a 

 
(c) Visualization of the spherical HOG 

calculated in the image (𝜃, 𝜑) 
 
Figure 6: Visualization of the spherical HOG calculated 

in the image(𝜃, 𝜑) 

longitude and colatitude angles respectively. 𝑒ఏ and 
𝑒థ are the unit vector.  
In practice, the gradient is computed using the first-  
 
Order Image derivatives: 

 
ቀ𝛻ௌమ𝐼௦൫𝜃 , 𝜙൯ቁ

ଶ
= |𝐼௦൫𝜃ାଵ, 𝜑൯ − 𝐼௦൫𝜃 , 𝜑ାଵ൯|ଶ +

ଵ

௦మ(ఏೕ)
|𝐼௦(𝜃ାଵ, 𝜑ାଵ) − 𝐼௦(𝜃 , 𝜑ାଵ)|ଶ           (19) 

Once the gradient is calculated on the sphere, we 
will be able to generate the HOG descriptor on the 
spherical space. Fig.6b shows the calculation of the 
spherical gradient of a real omnidirectional image. 
Its HOG descriptor is shown in Fig.6c. Example of 
HOG training in omnidirectional images.   
 
3. EXERIMENTAL RESULTS 

In order to validate our approach, we use 
the INRIA perspective database. During our 
experiments, we compare three methods Fig.8. The 
first method is based on using a classical HOG. For 
this method we use the INRIA database to train our 
linear SVM. In the second method, HOG is used 
with an adapted computation of the gradient to the 
omnidirectional image, through the Riemannian 
metric as in the work of [8] .  
Using the proposed method ODG in the previous 
section, the learning phase for this method is based 
on the adapted training database generated by 
transforming positive perspective images of the 
INRIA database into omnidirectional images. Each 
perspective image generates 11 omnidirectional 
images, for the training stage; we have generate 
16500 positive learning images. The calibration 
parameter of our virtual omnidirectional camera as 
well as the sampling size of the unit sphere was 
made such that a person on a certain distance with 
respect to the sensors has a reasonable view in the 
template. Negative images are generated using 
omnidirectional images.  
For the learning phase of the third method based on 
the spherical gradient, the processing will be 
performed on the spherical images 𝐼(𝜃, 𝜑). The 
advantage of this method is that during the 
transformation of perspectives positive images of 
INRIA database, a perspective image will generate 
a single spherical image. This is due to the fact that 
the spherical image is invariant to the rotation. So 
we will have 1500 positive images, the processing 
will thereafter be made on the spherical image. 
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(a) Detection in unwrapped image 

  
(a) Detection in omnidirectional image                         (c)  Detection with spherical HOG) 

Figure 8: Example of detection with the three methods 

 
During the learning phase of SVM, we have 
divided the training database into two parts.  
The first one allows us to make an initial learning, 
the second one helps us to reinforce that learning by 
performing a hard examples. These methods consist 
of testing SVM trained with the second part of the 
database image. Only poorly detected images will 
be reintegrated again in the learning database. For 
the test database we use 130 images acquired 
directly using an omnidirectional camera with 
hyperbolic mirror Fig.7 to quantify the 
performances of our detector, we relied on the 
curve Receiver Operating Characteristic (ROC) as 
shown in Fig.9.  
To quantify the performance of our detector, we 
relied on the curve Receiver Operating 
Characteristic (ROC) as we can see in Figures 8-10, 
the x-axis represent the True positive rate 

ቀ𝑟𝑒𝑐𝑎𝑙𝑙 𝑜𝑟
்௨ ௦

்௨ ௦ାி௦ ே
ቁ and the y-axis the 

false positive rate valueቀ
ி௦ ௦

ி௦ ௦ା்௨ ே
ቁ. It 

allows to easily comparing our three methods, 
taking into account the area under the curve (AUC). 

For our database test all images have been marked 
with a suitable annotation.  
A detected window is considered to be a true 
positive if it encroaches on an annotated box for at 
least 50% of its surface.  
 
 

 
𝑎𝑟𝑒𝑎(𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑊𝑖𝑛𝑑𝑜𝑤 ∩ 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝐵𝑜𝑥)

𝑎𝑟𝑒𝑎(𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑊𝑖𝑛𝑑𝑜𝑤 ∪ 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝐵𝑜𝑥)
> 0.5 

 

 
It must be noted that the proposed detection 
methods, on the unit sphere, allow a significant 
improvement in performance of detections: 7.53% 
compared to the method based on the calculation of 
the gradient with the Riemann metric and 16.91% 
compared to the naive HOG method. We have also 
tested the different possibilities for the spherical 
detector, as we can see in Fig.11, on the three 
spherical descriptors, the one based on the sobel 
filter gives the best performances; it improves by 
2% the detection in our database. We establish that 
the choice of the window size can be important in 
the setting up our descriptor. We found that the best 
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performances are due to the use of 96x160 as can 
be seen in the Fig.10. 

 
Figure 7: A catadioptric camera with an hyperbolic 

mirror. 
  
 

 
Figure 10: Effect of window size in spherical case. 

 
Overall, we note that the proposed improvements 
which are adapting the database for the 
omnidirectional camera with our omnidirectional 
image generator and calculating HOG on the 
spherical image, allow efficient detection of 
persons on the spherical images, even if it is less 
efficient than the detections made by prospects 
methods on perspective images.  

 

 
 

Figure 11: Effect of filter. 
 
 
 

4. CONCLUSION 

In this work we have described an efficient 
system for the 3D detection of people with an 
omnidirectional camera. using the spherical 
gradient combined with a conventional SVM. We 
presented our approach that allows a significant 
improvement in the performance of the HOG 
algorithm for the detection of people in 
omnidirectional images using the spherical 
representation. This is possible thanks to the use of 
the unified model. We have studied the influence of 
various descriptor parameters and concluded that 
filter and window size are important for good 
performance. The experimental results presented in 
this paper confirm the effectiveness and robustness 
of the proposed approach. Moreover during the 
implementation of the experimental part it was 
necessary to create an omnidirectional database for 
the tests we introduced a method for converting 
perspective images into omnidirectional image to 
transform a database perspective into a database 
omnidirectional data. So in the approach proposed 
during the learning step we do not need to create 
multiple images for a single perspective person 
depending on his position in the image, since the 
spherical image is invariant to the rotation. Future 
work has focused on the implementation of a larger 
database and the improvement of sampling during 
the transition from the omnidirectional space to the 
spherical space. 

 



Journal of Theoretical and Applied Information Technology 
30th April 2018. Vol.96. No 8 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
2093 

 

REFRENCES:  

[1]  Geyer, C., Daniilidis, K. (2000). A unifying 
theory for central panoramic systems and 
practical implications. In Computer Vision—
ECCV 2000 (pp. 445-461). Springer Berlin 
Heidelberg. 

 [2] Hicham Hadj Abdelkader, Youcef Mezouar, 
Nicolas Andreff, and Philippe Martinet, 
“Image-based control of mobile robot with 
central catadioptric cameras,” in Robotics and 
Automation, 2005. ICRA 2005. Proceedings of 
the 2005 IEEE International Conferenceon. 
IEEE, 2005, pp. 3522–3527. 

[3] Alejandro Rituerto, Luis Puig, and Jose Jesus 
Guerrero, “Visual slam with an omnidirectional 
camera,” in Pattern Recognition (ICPR), 2010 
20th International Con-ference on. IEEE, 2010, 
pp. 348–351. 

[4] Bazin, J. C., Demonceaux, C., Vasseur, P., 
Kweon, I. S. (2010). Motion estimation by 
decoupling rotation and translation in 
catadioptric vision.Computer Vision and Image 
Understanding, 114(2), 254-273. 

  [5] Dollar, P., Wojek, C., Schiele, B., Perona, 
P.(2012). Pedestrian detection: An evaluation of 
the state of the art. Pattern Analysis and 
Machine Intelligence, IEEE Transactions on, 
34(4), 743-761. 

[6]  Dupuis, Y., Savatier, X., Ertaud, J. Y., Vasseur, 
P. (2013). Robust radial face detection for 
omnidirectional vision. Image Processing, IEEE 
Transactions on,22(5), 1808-1821. 

[7] Hariyono, J., Hoang, V. D., Jo, K. H. (2015). 
Human Detection from Omnidirectional 
Camera Using Feature Tracking and Motion 
Segmentation. In Intelligent Information and 
Database Systems (pp. 329-338). Springer 
International Publishing. 

 [8] Cinaroglu, I., Bastanlar, Y. (2015). A direct 
approach for object detection with catadioptric 
omnidirectional cameras. Signal, Image and 
Video Processing, 1-8. 

[9] Boui, M., Hadj-Abdelkader, H., Ababsa, F. E., 
Bouyakhf, E. H. (2016, September). New 
approach for human detection in spherical 
images. In Image Processing (ICIP), 2016 IEEE 
International Conference on (pp. 604-608). 
IEEE. 

[10] Wang, X., Han, T. X., Yan, S. (2009, 
September). An HOG-LBP human detector with 
partial occlusion handling. In Computer Vision, 
2009 IEEE 12th International Conference on 
(pp. 32-39). IEEE. 

 
  [11] Felzenszwalb, P. F., Girshick, R. B., 

McAllester, D. (2010, June). Cascade object 
detection with deformable part models. In 
Computer vision and pattern recognition 
(CVPR), 2010 IEEE conference on (pp. 2241-
2248). IEEE. 

 
[12] Bogdanova, I., Bresson, X., Thiran, J. P., 

Vandergheynst, P. (2007). Scale space analysis 
and active contours for omnidirectional images. 
Image Processing, IEEE Transactions on, 16(7), 
1888-1901.  

[13]  Li, S. (2013). Spherical gradient operator. IEEJ 
Transactions on Electrical and Electronic 
Engineering, 8(S1), S61-S65. 

[14] Geyer, C., Daniilidis, K. (2003, October). 
Mirrors in motion: Epipolar geometry and 
motion estimation. In Computer Vision, 2003. 
Proceedings. Ninth IEEE International 
Conference on (pp. 766-773). IEEE. 

[15] BARRETO, Joao P. et ARAUJO, Helder. 
Geometric properties of central catadioptric line 
images and their application in calibration. 

   
(a) Result Method 1             (b) Result Method 2                          (c) Result Method 3 

Figure 9: Example of detection with the three methods 
 



Journal of Theoretical and Applied Information Technology 
30th April 2018. Vol.96. No 8 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
2094 

 

Pattern Analysis and Machine Intelligence, 
IEEE Transactions on, 2005, vol. 27, no 8, p. 
1327-1333. 

[16] Hicham Hadj-Abdelkader, Ezio Malis, and  
 Patrick Rives, “Spherical image processing for 

accurate visual odometry with omnidirectional 
cameras,” in The 8th Workshop on 
Omnidirectional Vision, Camera Networks and 
Non-classical Cameras-OMNIVIS, 2008.  

[17] Puig L., Guerrero, J. J., Daniilidis, K. (2014). 
Scale space for camera invariant features. 
Pattern Analysis and Machine Intelligence, 
IEEE Transactions on, 36(9), 1832-1846. 

[18] Dalal, N., Triggs, B. (2005, June). Histograms 
of oriented gradients for human detection. In  

 Computer Vision and Pattern Recognition, 
2005. CVPR 2005. IEEE Computer Society 
Conference on (Vol. 1, pp. 886-893). IEEE. 

[19] Ying, X., & Hu, Z. (2004, May). Can we 
consider central catadioptric cameras and 
fisheye cameras within a unified imaging 
model. In European Conference on Computer 
Vision (pp. 442-455). Springer, Berlin, 
Heidelberg. 

[20] Mei, C., & Rives, P. (2007, April). Single view 
point omnidirectional camera calibration from 
planar grids. In Robotics and Automation, 2007 
IEEE International Conference on (pp. 3945-
3950). IEEE. 

 


