<u>30<sup>th</sup> April 2018. Vol.96. No 8</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org



## NON-CONVEX ECONOMIC LOAD DISPATCH PROBLEMS USING NOVEL BAT ALGORITHM

<sup>1</sup>HARDIANSYAH

<sup>1</sup>Department of Electrical Engineering, Tanjungpura University, Indonesia

E-mail: <sup>1</sup>hardi\_eka@yahoo.com

#### ABSTRACT

In this paper a novel bat algorithm (NBA) is proposed for solving non-convex economic load dispatch (ELD) problems so as to minimize the total generation cost when considering the linear and non linear constraints. The proposed algorithm combines the bats' habitat selection and their self-adaptive compensation for Doppler effects in echoes into the basic bat algorithm (BA). The selection of bats' habitat is modeled as the selection between their quantum behaviors and mechanical behaviors. Many nonlinear characteristics of the power generators and practical constraints, such as power loss, ramp rate limits, prohibited operating zones and valve-point effects, are considered. The effectiveness and feasibility of the proposed method are demonstrated by two real power systems and compared with other optimization algorithms reported in literature.

Keywords: Novel Bat Algorithm, Non-Convex Economic Load Dispatch, Ramp Rate Limits, Prohibited Operating Zones, Valve-Point Effects

#### 1. INTRODUCTION

Modern power utilities are expected to generate power at a minimum cost. The generated power has to meet the load demand and transmission losses. Economic load dispatch (ELD) is one of the important optimization problems in power system that has the objective of dividing the power demand among the online generators economically while satisfying various constraints [1]. Since the cost of the power generation is prohibitive, an optimal dispatch saves a considerable amount of money. Traditional algorithms like lambda iteration, gradient method, base point participation factor, and Newton method can solve the ELD problems effectively if and only if the fuel-cost curves of the power generation are piece-wise linear and monotonically increasing [2].

The basic ELD problem considers the power balance constraint apart from the generating capacity limits. However, a practical ELD must take ramp rate limits, prohibited operating zones, valve-point effects, and multi-fuel options into consideration to provide the completeness for the ELD formulation. Dynamic programming (DP) [3] can solve such type of problems, but it suffers from the curse of dimensionality. Over the past few decades, as an alternative to the conventional mathematical approaches, many salient methods have been developed for ELD problem such as genetic algorithm (GA) [4], tabu search (TS) [5], simulated annealing (SA) [6], neural network (NN) [7], evolutionary programming (EP) [8, 9], particle swarm optimization (PSO) [10]-[13], biogeography-based optimization (BBO) [14, 15], differential evolution (DE) [16, 17], artificial bee colony (ABC) algorithm [18], harmony search (HS) algorithm [19], and firefly algorithm (FA) [20].

Nowadays, to find out the optimized solution of complex problem evolutionary algorithms are used over algorithmic models. Meta-heuristic Algorithms are based on natural phenomenon and are suitable for complex optimization problems. These algorithms solve the optimization problem according to population and keep on searching and evaluating for a number of times until an optimized result is obtained. New algorithms developed are either nature inspired or are dependent on the behavior of animals. Apart from development of new optimization algorithms, many new variations of a particular algorithm are being continuously developed. One such instance is the bat algorithm (BA), which was originally proposed in [21]-[23], and has seen a variety of modifications being incorporated to find which among them proves to be most optimal. In other words, variations of the same algorithm are developed to determine the best solution of a particular problem in a particular field of study. In this paper, a novel bat algorithm (NBA) © 2005 - ongoing JATIT & LLS

<u>www.jatit.org</u>



E-ISSN: 1817-3195

has been discussed [24] and applied for an ELD 2 problem.

In this paper, a novel and efficient approach is proposed to solve the non-convex ELD problems using a NBA technique. The performance of the proposed approach has been demonstrated on two different test systems, i.e. 6-unit and 15-unit systems. Obtained simulation results demonstrate that the proposed method provides very remarkable results for solving the ELD problem. The results have been compared to other method reported in the literature. The rest of the paper is organized as follows. After this introduction, section 2 describes the problem formulation of ELD. In section 3, bat algorithm and the proposed NBA technique are detailed. Simulation results are presented in section 4 and section 5 provides a conclusion.

#### 2. PROBLEM FORMULATION

The ELD problem having an objective function minimize the total generation cost while fulfilling various constraints when supplying the required load demand of a power system. The objective function is given by (1) as follows:

$$F_T = \sum_{i=1}^n F_i(P_i) = \sum_{i=1}^n \left( a_i P_i^2 + b_i P_i + c_i \right)$$
(1)

where  $F_T$  is total fuel cost of generation in the system (\$/hr),  $a_i$ ,  $b_i$ , and  $c_i$  are the cost coefficient of the *i*-th generator,  $P_i$  is the power generated by the *i*-th unit and *n* indicate the number of generators.

#### 2.1 Active Power Balance

The active power balance is an equality constraint. In which the equilibrium is met when the total power generation must equals the total power demand  $P_D$  and the real power loss  $P_{Loss}$  in transmission lines. This is known as power balance constraint can be expressed as given in (2),

$$P_D = \sum_{i=1}^n P_i - P_{Loss} \tag{2}$$

The transmission losses  $P_{Loss}$  can be calculated by using *B* matrix technique and is defined by (3) as,

$$P_{Loss} = \sum_{i=1}^{n} \sum_{j=1}^{n} P_i B_{ij} P_j + \sum_{i=1}^{n} B_{0i} P_i + B_{00}$$
(3)

where  $B_{ij}$  is coefficient of transmission losses and the  $B_{0i}$  and  $B_{00}$  is matrix for loss in transmission which are constant under certain assumed conditions.

#### 2.2 Generation Limits

For normal system operations, real power output of each generator is within its lower and upper bounds and is known as generation capacity constraint is given by (4)

$$P_i^{\min} \le P_i \le P_i^{\max} \text{ for } i = 1, 2, \Lambda, n$$
(4)

where  $P_i^{\min}$  and  $P_i^{\max}$  are the minimum and maximum outputs of *i*-th generator, respectively.

#### 2.3 Ramp Rate Limits

By considering generator ramp rate limits, the effective real power operating limits restricted by their corresponding ramp rate limits. The ramp-up and ramp-down constraints can be written as (5) and (6), respectively.

$$P_i(t) - P_i(t-1) \le UR_i \tag{5}$$

$$P_i(t-1) - P_i(t) \le DR_i \tag{6}$$

where  $P_i(t)$  and  $P_i(t-1)$  are the present and previous real power outputs, respectively,  $UR_i$  and  $DR_i$  are the ramp-up and ramp-down limits of *i*-th generator (in units of MW/time period).

To consider the ramp rate limits and power output limits constraints at the same time, therefore, equations (4), (5) and (6) can be rewritten as follows:

$$\max\{P_i^{\min}, P_i(t-1) - DR_i\} \le P_i(t) \le$$

$$\min\{P_i^{\max}, P_i(t-1) + UR_i\}$$
(7)

#### 2.4 Prohibited Operating Zones

The generating units with prohibited operating zones have discontinuous and nonlinear cost characteristics. This characteristic can be formulated in ELD problems as follows:

$$P_{i} \in \begin{cases} P_{i}^{\min} \leq P_{i} \leq P_{i,1}^{l} \\ P_{i,k-1}^{u} \leq P_{i} \leq P_{i,k}^{l}, \quad k = 2,3, \mathrm{K}, pz_{i} \\ P_{i,pz_{i}}^{u} \leq P_{i} \leq P_{i}^{\max}, \ i = 1,2, \mathrm{K}, n_{pz} \end{cases}$$
(8)

where  $P_{i,k}^{l}$  and  $P_{i,k}^{u}$  are the lower and upper boundary of prohibited operating zone of unit *i*, respectively. Here,  $pz_i$  is the number of prohibited zones of unit *i* and  $n_{pz}$  is the number of units which have prohibited operating zones.

#### 2.5 Valve-Point Effects

The generating units with multi-valve steam turbines exhibit a greater variation in the fuel-cost functions [14]. The valve-point effects are taken

30th April 2018. Vol.96. No 8 © 2005 - ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org



E-ISSN: 1817-3195

into consideration in the ELD problem by basic quadratic fuel-cost superimposing the characteristics the rectified sinusoidal with component as follows:

$$F_{T} = \sum_{i=1}^{n} F(P_{i}) = \sum_{i=1}^{n} \left( \frac{a_{i}P_{i}^{2} + b_{i}P_{i} + c_{i}}{|e_{i} \times \sin(f_{i} \times (P_{i}^{\min} - P_{i}))|} \right)$$
(9)

where  $F_T$  is total fuel cost of generation in (\$/hr) including valve point loading,  $e_i$ ,  $f_i$  are fuel cost coefficients of the *i*-th generating unit reflecting valve-point effects.

#### **META-HEURISTIC OPTIMIZATION** 3.

#### 3.1 Bat Algorithm (BA)

Bat Algorithm is a meta-heuristic approach that is based echolocation behavior of bats. The bat has the capability to find its prey in complete darkness. It was developed by Xin-She Yang in 2010 [21]. The algorithm mimics the echolocation behavior most prominent in bats. Bat fly randomly in the air or in the process of searching for prey by using echolocation to catch food and to avoid obstacles. This echolocation characteristic is copied in the virtual BA with the following assumptions [21, 22]:

- (1) All bats use echolocation mechanism to sense distance and they could distinguish between prey and obstacle.
- (2) Each bat randomly with velocity  $v_i$  at position  $x_i$  with a fixed frequency  $f_{min}$ , varying wavelength  $\lambda$  and loudness  $A_0$  while searching for prey. They adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission  $r \in [0, 1]$ , depending on the distance of the prey.
- (3) Although loudness may vary in many ways, it is assumed that the loudness varies from a large (positive)  $A_0$  to a minimum constant value  $A_{min}$ .

#### 3.1.1 Initialization of bat algorithm

Initialization population of bats generated randomly in between the lower and upper boundary can be achieved by the following equation [23].

$$x_{ij} = x_{\min j} + rand(0,1)(x_{\max j} - x_{\min j})$$
(10)

where  $i = 1, 2, \Lambda$ ,  $n; j = 1, 2, \Lambda$ ,  $d; x_{\min i}$  and  $x_{\max i}$  are lower and upper boundaries for dimension j, respectively.

#### 3.1.2 Movement of virtual bats

In the BA, the step size of the solution is controlled with the frequency factor. It is generated randomly in between the minimum and maximum frequency  $[f_{min}, f_{max}]$ . Velocity of a solution is proportional to frequency and new solution depends on its new velocity and it is represented as:

$$f_i = f_{\min} + (f_{\max} - f_{\min})\beta \tag{11}$$

$$v_i^t = v_i^{t-1} + (x_i^t - x_{best})f_i$$
(12)

$$x_{i}^{t} = x_{i}^{t-1} + v_{i}^{t}$$
(13)

where  $\beta \in [0, 1]$  indicates randomly generated number, *x<sub>best</sub>* represent current global best solutions. For local search part of algorithm (exploitation) one solution is selected among the selected best solutions and random walk is applied.

$$x_{new} = x_{old} + \varepsilon A^t \tag{14}$$

where  $\varepsilon \in [-1, 1]$  is a random number, while  $A = \langle A_i^t \rangle$  is the average loudness of all the bats at time step t.

#### 3.1.3 Loudness and pulse emission

As the iteration proceed, the loudness and pulse emission have to updated because when the bat gets closer to its prey then they loudness. It usually decreases and pulse emission rate also increases, the updating equation for loudness and pulse emission is given by

$$A_i^{t+1} = \alpha A_i^t \tag{15}$$

$$r_i^{t+1} = r_i^0 [1 - \exp(-\gamma t)]$$
(16)

where  $\alpha$  and  $\gamma$  are constants. Actually,  $\alpha$  is similar to the cooling factor of a cooling schedule in the simulated annealing. For simplicity, we set  $\alpha = \gamma = 0.9$  in our simulations.

The basic step of BA can be summarized as pseudo code shown in Table 1.

Table 1 Pseudo Code of BA

| Bat algorithm                                                              |
|----------------------------------------------------------------------------|
| Objective function $f(x), x = (x_1, \Lambda, x_d)^T$                       |
| Initialization the bat population $x_i$ (i=1, 2,, n)<br>and velocity $v_i$ |
| Define pulse frequency $f_i$ at $x_i$                                      |
| Initialization pulse rates $r_i$ and the loudness $A_i$                    |
| while $(t < Max number of iterations)$                                     |
| Generate new solutions by adjusting frequency,                             |
| and updating velocities and locations/solutions                            |
| (equations $(11)$ to $(13)$ )                                              |
| if $(rand > r_i)$                                                          |
| Select a solution among the best solutions                                 |
| Generate a local solution around the current                               |
| best solution                                                              |
| end if                                                                     |
| Generate a new solution by flying randomly                                 |
| if $(rand < A_i \&\& f(x_i) < f(x_{best}))$                                |
| Accept the new solutions                                                   |

30th April 2018. Vol.96. No 8 © 2005 - ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

t = t

end



Increase  $r_i$  and reduce  $A_i$ end if Ranks the bats and find current best  $x_{best}$ end while Postprocess results and visualization \_\_\_\_\_

### 3.2 Novel Bat Algorithm (NBA)

In the BA, the Doppler Effect and the idea of foraging of bats was not taken into consideration. In the original BA, each virtual bat is represented by its velocity and position, searches its prey in a Ddimensional space, and its trajectory is obtained. Also according to BA, it is considered that the virtual bats would forage only in one habitat. However, in fact, this is not always the case. In NBA [24], Doppler Effect has been included in the algorithm. Each virtual bat in the proposed algorithm can also adaptively compensate for the Doppler effects in echoes.

Meanwhile, the virtual bats are considered to have diverse foraging habitats in the NBA. Due to the mechanical behavior of the virtual bats considered in the BA, they search for their food only in one habitat. However, the bats in NBA can search for food in diverse habitats. In summary, the NBA consists of the following idealized rules for mathematical formulation purposes.

- (1) All bats can move around in different habitats.
- (2) All bats can offset for Doppler Effects in echoes. They can adapt and adjust their compensation rate depending upon the proximity of their targets.

The pseudo code of the NBA is presented in Table 2.

> Table 2 Pseudo Code of NBA \_\_\_\_\_

\_\_\_\_\_

Novel bat algorithm

Objective function  $f(x), x = (x_1, \Lambda, x_d)^T$ Initialization the bat population  $x_i$  (i=1, 2, ..., n) and  $v_i$ Define pulse frequency  $f_i$  at  $x_i$ Initialization pulse rates  $r_i$  and the loudness  $A_i$ t = 0;while (t < M)**if** (rand (0, 1) < P) Generate new solution using (17) else Generate new solution using (18) - (21)end if **if** (*rand* (0, 1) >  $r_i$ ) Generate a local solution around the selected best solution using (22) and (23)

|                                                | E-ISSN: 1817-3195   |
|------------------------------------------------|---------------------|
| end if                                         |                     |
| <b>if</b> (rand < $A_i$ && $f(x_i) < f(x_i)$   | $(x_{best}))$       |
| Accept the new solutions                       |                     |
| Increase $r_i$ and reduce $A_i$                |                     |
| end if                                         |                     |
| Rank the solutions and fi                      | nd the current best |
| Xbest                                          |                     |
| if <i>x</i> <sub>best</sub> does not improve i | n G time step,      |
| Reinitialize the loudness                      | $A_i$ and set       |
| temporary pulse rate $r_i$ w                   | hich is a uniform   |
| random number between                          | [0.85, 0.9].        |
| end if                                         |                     |
| +1;                                            |                     |
| while                                          |                     |
|                                                |                     |

*Output results and visualization* 

#### 3.2.1 **Ouantum behavior of bats**

It is assumed that the bats will behave in such a manner that as soon as one bat finds food in the habitat, other bats would immediately start feeding from them. During the process of search, according to certain probability of mutation  $p_m$ , some bats will be mutated with quantum behavior [24]; these bats are updated with the following formulas:

$$x_{ij}^{t+1} = \begin{cases} g_{j}^{t} + \theta * \left| mean_{j}^{t} - x_{ij}^{t} \right| * \ln\left(\frac{1}{u_{ij}}\right); \\ if \ rand_{j}(0,1) < 0.5 \\ g_{j}^{t} - \theta * \left| mean_{j}^{t} - x_{ij}^{t} \right| * \ln\left(\frac{1}{u_{ij}}\right); \\ otherwise \end{cases}$$
(17)

ounerwise

#### 3.2.2 Mechanical behavior of bats

If the speed of sound in the air is 340 m/s, then with this speed cannot be exceeded by the bats. Also the Doppler Effect is compensated by the bats and this compensation rate has been mathematically represented as CR. It varies among different bats. A value  $\xi$  is considered as the smallest constant in the computer to avoid the possibility of division by zero. The value of CR  $\in [0, 1]$  and the inertia weight  $w \in [0, 1]$ .

Here, if the bats do not compensate for the Doppler Effect at all, then CR is assigned 0, if they compensate fully, CR is assigned 1. Now, the following mathematical equations explain the description [24]:

$$f_{ij} = f_{\min} + (f_{\max} - f_{\min}) * rand(0,1)$$
(18)

30th April 2018. Vol.96. No 8 © 2005 - ongoing JATIT & LLS

unit

 $B_{ii} =$ 

ISSN: 1992-8645

 $x_{ii}^{t+1} = x_{ii}^t + v_{ii}^t$ 

3.2.3 Local search

loudness of all bats is  $A_{mean}^{t}$ .

 $x_{ii}^{t+1} = g_i^t * (1 + rand n(0, \sigma^2))$ 

4. SIMULATION RESULTS

Unit

1

2

3

4

5

6

If  $(rand(0,1) > r_i)$ 

 $\sigma^2 = \left| A_i^t - A_{mean}^t \right| + \xi$ 

 $f_{ij} = \frac{c + v_{ij}^{t}}{c + g_{j}^{t}} * f_{ij} * \left(1 + CR_{i} * \frac{g_{j}^{t} - x_{ij}^{t}}{\left|g_{j}^{t} - x_{ij}^{t}\right| + \xi}\right)$ 

When bats get closer to their prey, it is logical to

assume, they would decrease their loudness and

increase the pulse emission rate. But apart from whatever loudness they use, the factor of loudness

in the surrounding environment also needs to be

considered. This means the mathematical equations

are developed as follows for the new position of the

bat in the local area are given by the below-

mentioned equations, where rand  $n(0,\sigma^2)$  is a

Gaussian distribution with mean 0 and  $\sigma^2$  as

standard deviation [24]. At time step t, the mean

To verify the feasibility of the proposed

technique, two different power systems were tested:

(1) 6-unit system considering power loss, ramp rate limits and prohibited operating zones; and (2) 15-

 $P^{\min}$ 

(MW)

100

50

80

50

50

 $v_{ij}^{t+1} = w * v_{ij}^{t} + (g_j^{t} - x_{ij}^{t}) * f_{ij}$ 

www.jatit.org

(19)

(20)

(21)

(22)

(23)

(24)

-0.0002 -0.0001 -0.0006 -0.0008 -0.0002 0.0150  $B_{0i} = 1.0e^{-3} * [-0.3908 - 0.1297 \ 0.7047 \ 0.0591 \ 0.2161 - 0.6635]$  $B_{00} = 0.0056$ The obtained results for the 6-unit system using

the NBA technique are given in Table 5 and the results are compared with other methods reported in literature, including GA, PSO, NPSO and MHS [10, 12, 19]. It can be observed that NBA technique can get generation cost of 1544.0752 (\$/hr) and power losses of 12.4443 (MW), which is the best solution among all the methods. Note that the active power outputs of the generators are all within the permissible output limit. generator's The convergence characteristic of NBA technique on test case 1 is shown in Figure 1.

с

240

200

220

200

220

Table 3 Cost Coefficients and Unit Operating Limits

 $P^{\max}$ 

150

200

| 50              | 120               | 0.0075        | 12.0          | 190 |
|-----------------|-------------------|---------------|---------------|-----|
| <i>T</i> 11 ( P |                   |               |               |     |
| Table 4 Ram     | p Rate Limits and | Prohibited Op | erating Zones |     |

| Unit | $P_i^0$ (MW) | $UR_i$ (MW/h) | $DR_i$ (MW/h) | Prohibited zones (MW) |
|------|--------------|---------------|---------------|-----------------------|
| 1    | 440          | 80            | 120           | [210, 240] [350, 380] |
| 2    | 170          | 50            | 90            | [90, 110] [140, 160]  |
| 3    | 200          | 65            | 100           | [150, 170] [210, 240] |
| 4    | 150          | 50            | 90            | [80, 90] [110, 120]   |
| 5    | 190          | 50            | 90            | [90, 110] [140, 150]  |
| 6    | 110          | 50            | 90            | [75, 85] [100, 105]   |

| <sup>ax</sup> (MW) | а      | b    |
|--------------------|--------|------|
| 500                | 0.0070 | 7.0  |
| 200                | 0.0095 | 10.0 |
| 300                | 0.0090 | 8.5  |

0.0090

0.0080

11.0

10.5



and

effects

The system consists of six thermal generating units. The total load demand of the power system is

1263 MW. The parameters of all thermal units are presented in Tables 3 and 4 [10], respectively.

The coefficient of transmission losses are

0.0017 0.0012 0.0007 - 0.0001 - 0.0005 - 0.0002

0.0012 0.0014 0.0009 0.0001 - 0.0006 - 0.0001

0.0007 0.0009 0.0031 0.0000 - 0.0010 - 0.0006

-0.0001 0.0001 0.0000 0.0024 -0.0006 -0.0008

calculated by B matrix loss formula which for 6-

valve-point

with

system

unit system is given as:

transmission losses.

Test Case 1:

<u>30<sup>th</sup> April 2018. Vol.96. No 8</u> © 2005 – ongoing JATIT & LLS



ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

|                         | 1         | 5         | 5         | ( -        | /          |            |
|-------------------------|-----------|-----------|-----------|------------|------------|------------|
| Unit Output             | GA [10]   | PSO [10]  | NPSO [12] | MHS [19]   | BA         | NBA        |
| P1 (MW)                 | 474.8066  | 447.4970  | 447.4734  | 447.5039   | 448.0226   | 447.3936   |
| P2 (MW)                 | 178.6363  | 173.3221  | 173.1012  | 173.3188   | 173.7490   | 173.2371   |
| P3 (MW)                 | 262.2089  | 263.0594  | 262.6804  | 263.4629   | 262.7504   | 263.3882   |
| P4 (MW)                 | 134.2826  | 139.0594  | 139.4156  | 139.0650   | 139.4533   | 139.0040   |
| P5 (MW)                 | 151.9039  | 165.4761  | 165.3002  | 165.4739   | 164.2236   | 165.3759   |
| P6 (MW)                 | 74.1812   | 87.1280   | 87.9761   | 87.1338    | 87.5686    | 87.0455    |
| Total power output (MW) | 1276.0217 | 1275.9584 | 1275.950  | 1275.9583  | 1275.7675  | 1275.4443  |
| Generation cost (\$/hr) | 15459.00  | 15450.00  | 15450.00  | 15449.8995 | 15447.6779 | 15443.0752 |
| Power losses (MW)       | 13.0217   | 12.9584   | 12.9470   | 12.9582    | 12.7675    | 12.4443    |

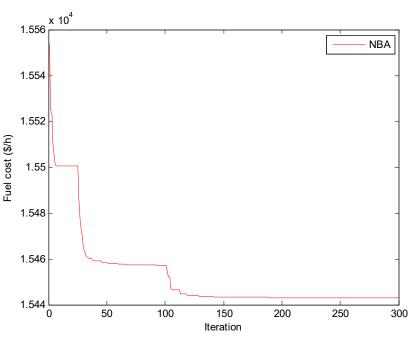



Figure 1 Convergence Characteristics of NBA on Test Case 1

### Test Case 2:

The system consists of fifteen thermal generating units and the total load demand of the system is 2630 MW. The parameters of all thermal units are presented in Table 6 [10]. The data of transmission losses (*B* matrices) are taken from [10].

The best fuel cost result obtained from proposed method and other optimization algorithms are compared in Table 7. The generation outputs and corresponding cost obtained by the proposed method are compared with those of GA, PSO, and FA [10, 20]. The proposed algorithm provides a better solution (generation cost of 32,684.4752 \$/hr and power losses of 29.1616 (MW)) than other methods while satisfying the system constraints. The convergence characteristic of NBA technique on test case 2 is shown in Figure 2.

### The Contribution and Limitations

The significant contributions of this work not only lie in efficiently enhance the performance of BA and shows the proposed algorithm's capability for global optimization, but also depend on the following two aspects. On the one hand, this work creatively proposes a method totally based on the biological basis to improve a specific algorithm. On the other hand, this work successfully incorporates the quantum theory and Doppler effects into Bat Algorithm through further extracting the swarm intelligence from the bats' behaviors.

The major limitation of this work lies in that two parameters that are added to the algorithm may complicate the algorithm. The two parameters are Gand CR, which is the frequency of updating the loudness and pulse emission rate and compensation rate respectively.

# Journal of Theoretical and Applied Information Technology <u>30<sup>th</sup> April 2018. Vol.96. No 8</u> © 2005 – ongoing JATIT & LLS

www.jatit.org

ISSN: 1992-8645



E-ISSN: 1817-3195

|      |                | e o Generating |          | 55   | enis (15-0niis) |     |       |
|------|----------------|----------------|----------|------|-----------------|-----|-------|
| Unit | $P_{min}$ (MW) | $P_{max}(MW)$  | а        | b    | с               | e   | f     |
| 1    | 150            | 455            | 0.000299 | 10.1 | 671             | 100 | 0.084 |
| 2    | 150            | 455            | 0.000183 | 10.2 | 574             | 100 | 0.084 |
| 3    | 20             | 130            | 0.001126 | 8.8  | 374             | 100 | 0.084 |
| 4    | 20             | 130            | 0.001126 | 8.8  | 374             | 150 | 0.063 |
| 5    | 150            | 470            | 0.000205 | 10.4 | 461             | 120 | 0.077 |
| 6    | 135            | 460            | 0.000301 | 10.1 | 630             | 100 | 0.084 |
| 7    | 135            | 465            | 0.000364 | 9.8  | 548             | 200 | 0.042 |
| 8    | 60             | 300            | 0.000338 | 11.2 | 227             | 200 | 0.042 |
| 9    | 25             | 162            | 0.000807 | 11.2 | 173             | 200 | 0.042 |
| 10   | 25             | 160            | 0.001203 | 10.7 | 175             | 200 | 0.042 |
| 11   | 20             | 80             | 0.003586 | 10.2 | 186             | 200 | 0.042 |
| 12   | 20             | 80             | 0.005513 | 9.9  | 230             | 200 | 0.042 |
| 13   | 25             | 85             | 0.000371 | 13.1 | 225             | 300 | 0.035 |
| 14   | 15             | 55             | 0.001929 | 12.1 | 309             | 300 | 0.035 |
| 15   | 15             | 55             | 0.004447 | 12.4 | 323             | 300 | 0.035 |

### Table 6 Generating Units Capacity and Coefficients (15-Units)

Table 7 Best Solution of 15-Unit Systems ( $P_D = 2630 \text{ MW}$ )

| Unit power output       | GA [10]   | PSO [10]  | FA [20]    | BA         | NBA        |
|-------------------------|-----------|-----------|------------|------------|------------|
| P1 (MW)                 | 415.3108  | 439.1162  | 455        | 410.8874   | 454.8696   |
| P2 (MW)                 | 359.7206  | 407.9729  | 380        | 455.0000   | 444.0594   |
| P3 (MW)                 | 104.4250  | 407.9729  | 130        | 130.0000   | 130.0000   |
| P4 (MW)                 | 74.9853   | 129.9925  | 130        | 130.0000   | 130.0000   |
| P5 (MW)                 | 380.2844  | 151.0681  | 170        | 246.9576   | 150.1601   |
| P6 (MW)                 | 426.7902  | 459.9978  | 460        | 458.5244   | 460.0000   |
| P7 (MW)                 | 341.3164  | 425.5601  | 430        | 328.9262   | 465.0000   |
| P8 (MW)                 | 124.7876  | 98.5699   | 71.7450    | 60.0801    | 60.0194    |
| P9 (MW)                 | 133.1445  | 113.4936  | 58.9164    | 25.0086    | 162.0000   |
| P10 (MW)                | 89.2567   | 101.1142  | 160        | 160.0000   | 25.0045    |
| P11 (MW)                | 60.0572   | 33.9116   | 80         | 80.0000    | 55.7529    |
| P12 (MW)                | 49.9998   | 79.9583   | 80         | 80.0000    | 67.1821    |
| P13 (MW)                | 38.7713   | 25.0042   | 25         | 25.0396    | 25.0005    |
| P14 (MW)                | 41.4140   | 41.4140   | 15         | 55.0000    | 15.0632    |
| P15 (MW)                | 22.6445   | 36.6140   | 15         | 15.0167    | 15.0499    |
| Total power output (MW) | 2668.2782 | 2662.4306 | 2660.6614  | 2660.4407  | 2659.1616  |
| Generation cost (\$/h)  | 33113     | 32858     | 32704.4501 | 32774.0331 | 32684.4752 |
| Power losses (MW)       | 38.2782   | 32.4306   | 30.6614    | 30.4407    | 29.1616    |

<u>30<sup>th</sup> April 2018. Vol.96. No 8</u> © 2005 – ongoing JATIT & LLS

www.jatit.org



E-ISSN: 1817-3195

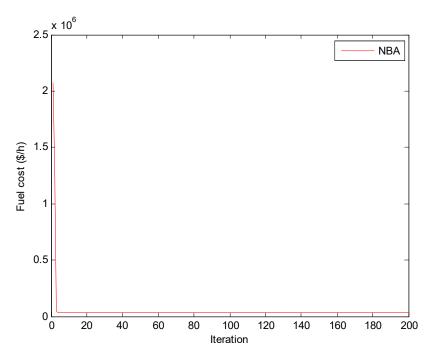



Figure 2 Convergence Characteristics of NBA on Test Case 2

### 5. CONCLUSION

ISSN: 1992-8645

In this paper, a novel bat algorithm (NBA) technique has been applied to solve the non-convex ELD problem of generating units considering the valve-point effects, prohibited operation zones, ramp rate limits and transmission losses. The proposed technique has provided the global solution in the 6-unit and 15-unit test systems and the better solution than the previous studies reported in literature. The NBA technique has superior features including quality of solution, and stable convergence characteristics for large power systems. Hence, these results suggest that the proposed method is a promising technique for solving complicated problems in power systems. The future work will be explored to incorporate multi-fueling options constraints into the objective function formulation by using the proposed NBA technique.

### REFERENCES

 B. H. Chowdhury and S. Rahman, "A Review of Recent Advances in Economic Dispatch", *IEEE Transactions on Power Systems*, vol. 5, no. 4, pp. 1248-1259, Nov. 1990.

- [2] A. J Wood, and B. F. Wollenberg, Power Generation, Operation, and Control, 2<sup>nd</sup> ed., John Wiley and Sons, New York, 1996.
- [3] Z. X. Liang, and J. D. Glover, "A Zoom Feature for a Dynamic Programming Solution to Economic Dispatch Including Transmission Losses", *IEEE Transactions* on Power Systems, vol. 7, no. 2, pp. 544-550, May 1992.
- [4] C. L. Chiang, "Improved Genetic Algorithm for Power Economic Dispatch of Units with Valve-Point Effects and Multiple Fuels", *IEEE Transactions on Power Systems*, vol. 20, no. 4, pp. 1690-1699, 2005.
- [5] Jukkrit Kluabwang, "Modified Adaptive Tabu Search Algorithm for Economic Load Dispatch", *The Journal of Industrial Technology*, vol. 8, no. 1, pp. 59-67, 2012.
- [6] K. P. Wong, and C. C. Fung, "Simulated Annealing Based Economic Dispatch Algorithm", *Proc. Inst. Elect. Eng.* C, vol. 140, no. 6, pp. 509-515, 1993.
- K. Y. Lee, A. Sode-Yome, and J. H. Park, "Adaptive Hopfield Neural Network for Economic Load Dispatch", *IEEE Transactions on Power Systems*, vol. 13, no. 2, pp. 519-526, 1998.
- [8] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, "Evolutionary Programming Techniques for Economic Load Dispatch",

| SSN: | 1992-8645 <u>www.ja</u>                                                                          | tit.org | E-ISSN: 1817-319                                                               |
|------|--------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------|
|      |                                                                                                  |         |                                                                                |
|      | <i>IEEE Transactions on Evolutionary</i><br><i>Computation</i> , vol. 7, no. 1, pp. 83-94, 2003. |         | <i>Computer Engineering</i> , vol. 1, no. 1, pp. 21 26, 2011.                  |
| ]    | H. T. Yang, P. C. Yang, and C. L. Huang,                                                         | [18]    | Ganga Reddy Tankasala, "Artificial Be                                          |
| ]    | "Evolutionary Programming Based                                                                  | [10]    | Colony Optimisation for Economic Loa                                           |
|      | Economic Dispatch for Units with Non-                                                            |         | Dispatch of a Modern Power System                                              |
|      | Smooth Fuel Cost Functions", IEEE                                                                |         | International Journal of Scientific                                            |
|      | Transactions on Power Systems, vol. 11, no.                                                      |         | Engineering Research, vol. 3, no. 1, pp. 1-0                                   |
|      | 1, pp. 112-118, 1996.                                                                            |         | 2012.                                                                          |
| 0]   | Z. L. Gaing, "Particle Swarm Optimization                                                        | [19]    | D. C. SECUI, G. BENDEA, S. DZITAC, G                                           |
|      | to Solving the Economic Dispatch                                                                 |         | BENDEA, and C. HORA, "A Modifie                                                |
|      | Considering the Generator Constraints",                                                          |         | Harmony Search Algorithm for th                                                |
|      | IEEE Transactions on Power Systems, vol.                                                         |         | Economic Dispatch Problem", Studies                                            |
|      | 18, no. 3, pp. 1187-1195, 2003.                                                                  |         | Informatics and Control, vol. 23, No. 2, p                                     |
| 11]  | J. B. Park, K. S. Lee, J. R. Shin, and K. Y.                                                     | [20]    | 143-152, June 2014.                                                            |
|      | Lee, "A Particle Swarm Optimization for                                                          | [20]    | X. S. Yang, S. S. Sadat Hosseini, and A. H                                     |
|      | Economic Dispatch with Non-Smooth Cost<br>Functions", <i>IEEE Transactions on Power</i>          |         | Gandomi, "Firefly Algorithm for Solvin<br>Non-convex Economic Dispatch Problem |
|      | <i>Systems</i> , vol. 20, no. 1, pp. 34-42, 2005.                                                |         | with Valve Loading Effect", Applied Sc                                         |
| 2]   | A. I. Selvakumar, and K. Thanushkodi, "A                                                         |         | <i>Computing</i> , vol. 12, pp. 1180-1186, 2012.                               |
| -    | New Particle Swarm Optimization Solution                                                         | [21]    | X. S. Yang, "A New Metaheuristic Ba                                            |
|      | to Nonconvex Economic Dispatch                                                                   | [=1]    | Inspired Algorithm, in: Nature Inspire                                         |
|      | Problems", IEEE Transactions on Power                                                            |         | Cooperative Strategies for Optimization                                        |
|      | Systems, vol. 22, no. 1, pp. 42-51, Feb.                                                         |         | (NISCO 2010) (Eds. Cruz, C.; Gonz'alez,                                        |
|      | 2007.                                                                                            |         | R.; Pelta, D. A.; Terrazas, G)", Studies                                       |
| 3]   | G. Shabib, A.G. Mesalam, and A.M.                                                                |         | Computational Intelligence, vol. 28                                            |
|      | Rashwan, "Modified Particle Swarm                                                                |         | Springer Berlin, pp. 65–74, 2010.                                              |
|      | Optimization for Economic Load Dispatch                                                          | [22]    | X. S. Yang, "Bat Algorithm f                                                   |
|      | with Valve-Point Effects and Transmission                                                        |         | Multiobjective Optimization", Int. J. Bi                                       |
|      | Losses", Current Development in Artificial                                                       |         | Inspired Computation, vol. 3, no. 5, pp. 26                                    |
| 41   | Intelligence, vol. 2, no. 1, pp. 39-49, 2011.                                                    | [22]    | 274, 2011.<br>X S Vana "Dat Algorithm. Literatu                                |
| [4]  | M. Vanita, and K. Thanushkodi, "An Efficient Technique for Solving the                           | [23]    | X. S. Yang, "Bat Algorithm: Literatu<br>review and Applications", Int. J. Bi   |
|      | Economic Dispatch Problem using                                                                  |         | Inspired Computation, vol. 5, no. 3, pp. 14                                    |
|      | Biogeography Algorithm", European                                                                |         | 149, 2013.                                                                     |
|      | Journal of Scientific Research, vol. 50, no.                                                     | [24]    | Xian-Bing Meng, X. Z. Gao, Yu Liu ar                                           |
|      | 2, pp. 165-172, 2011.                                                                            | []      | Hengzhen Zhang, "A Novel Bat Algorith                                          |
| 5]   | Ali Nazari, Amin Safari, and Hossein                                                             |         | with Habitat Selection and Doppler Effect                                      |
| -    | Shayeghi, "A Novel Heuristic Optimization                                                        |         | Echoes for Optimization", Expert System                                        |
|      | Methodology for Solving of Economic                                                              |         | with Applications, vol. 42, pp. 6350-636                                       |
|      | Dispatch Problems", Journal of Artificial                                                        |         | 2015.                                                                          |
|      | Intelligence in Electrical Engineering, Vol.                                                     |         |                                                                                |
|      | 1, No. 1, June 2012.                                                                             |         |                                                                                |
| 6]   | J. P. Chiou, "A Variable Scaling Hybrid                                                          |         |                                                                                |
|      | Differential Evolution for Solving Large-                                                        |         |                                                                                |
|      | Scale Power Dispatch Problems", <i>IEE</i>                                                       |         |                                                                                |
|      | Proceedings – Generation, Transmission,<br>and Distribution vol 3 no 2 np 154-163                |         |                                                                                |
|      | <i>and Distribution</i> , vol. 3, no. 2, pp. 154-163, 2009.                                      |         |                                                                                |
| 7]   | M. Vanita, and K. Thanushkodi, "Solution                                                         |         |                                                                                |
| 1    | to Economic Dispatch Problem by                                                                  |         |                                                                                |
|      | Differential Evolution Algorithm                                                                 |         |                                                                                |
|      | Considering Linear Equality and Inequality                                                       |         |                                                                                |
|      | Constraints", International Journal of                                                           |         |                                                                                |
|      | Research and Reviews in Electrical and                                                           |         |                                                                                |