
Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2339

SYSTEM COUPLING AND COHESION REQUIREMENTS
MODEL (SC2RM): MEASUREMENT APPROACH FOR REAL

TIME SYSTEM

KHALED ALMAKADMEH

Department of Software Engineering, the Hashemite University, P.O. Box 330136, Zarqa (13115) Jordan

E-mail: khaled.almakadmeh@hu.edu.jo

ABSTRACT

One of the main challenges for software development organizations is to build software systems with
measured complexity. Monitoring a software system complexity help software engineers in development
phases of system development life cycle, such as software system reusability and software system
maintainability. A key measure of software complexity is the degree of cohesion and coupling within and
between its components. The literature emphasizes that a key system element to measure the degree of
cohesion and coupling is the number of interactions between software components. This paper propose a
new model to measure the degree of cohesion and coupling within and between real-time system
components based on ISO19761 international standard. A case study is conducted to verify the applicability
of the proposed measurement model using structural specifications and First Class Relation. The resulting
measures are valuable indicators of a software system complexity that directly affects its reusability and
maintainability.

Keywords: Coupling; Cohesion; Software Measurement; Real-time System, ISO19761.

1. INTRODUCTION

Software development organizations face a
disturbing fact that the cost to maintain software
systems is typically much higher than the cost of
development for these systems [1]. One of the main
causes for this high cost is the high complexity
within and between system components; which
makes it more difficult to change and/or upgrade
the functionality of these system components [2]. In
other words, when the requirements of such
systems change in a continuous basis, it is then
compulsory to change system components to
accommodate such new emerging system
requirements.

Several research studies are proposed to
measure the degree of complexity in software
systems under development and even for
maintenance system projects [3-6]. On the other
hand, these research studies have measured the
degree of complexity using system's specifications
at a late phase of the system development life cycle.
For software system under development, it is
important to measure the degree of system
complexity at an early phase of the system
development life cycle, in order to use such

complexity measures to build reliable effort
estimation models.

A key measure for complexity of system
components is the degree/level of cohesion and
coupling exist within and between system
components. Several research studies in the
literature have had used the number of interactions
within and between systems' components as a
measure of cohesion and coupling exist in these
components [7].

Lethbridge and Anquetil [4] have reported that
software engineers needs to measure coupling in
order to measure the degree of cohesion. Counsell
et al. [5] emphasized that any measure of cohesion
that uses parameters of class methods or attributes
cannot avoid including a high degree of coupling to
other classes. They reported that comprehension of
class cohesion is an exercise in comprehension of
class coupling.

Cohesion can be seen from two main
perspectives. First perspective defines cohesion as
how related the elements that making up a system
module [6]. Second perspective, considers a
functional point of view, which is a crisp
abstraction of a concept or feature from the problem
domain.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2340

Marcus and Poshyvanyk [7] have experimented
several methods to express cohesion, such as
structural and semantic metrics [7], theory-based
metrics [8], and slice-based metrics [9]. They
reported that most commonly used metrics are
structural metrics. For example, class variables are
referred and are shared between different class
methods, and this reflects the degree of cohesion.
Further, this study reported that all structural
metrics capture the same aspects of cohesion data
flow between the methods of a class.

Stevens et al. [10] have defined an association-
based cohesion on an ordinal scale and categorized
several types of cohesion. Table 1 below presents
six different types of cohesion as defined in [10].

Table 1: Different types of cohesion [10]

Type of Cohesion Description

Coincidental relation Common input of two modules has
no dependence relationship, and
neither their output.

Conditional relation Output of two modules is control
dependent on a common input, or
an output holds c-control
dependence and another has i-
control dependence on the input.

Iterative relation Output of two modules is control
dependent on a common input.

Communicational
relation

Output of two modules based on
common input: first output holds
data dependence and second holds
either a control or a data
dependence.

Sequential relation Output is dependent on other
output.

Functional relation One output in a module is only
exist.

Facts for both cohesion and coupling:
 A measure of cohesion is dependent on

coupling [3, 4].
 Collaboration of objects may include one type

of class or different classes participating
together [11].

The motivation of this research paper is to help

software development organizations and in
particular software project managers and technical
leaders to build more accurate effort estimation
models, by improving one of the inputs (i.e.
measurement of cohesion and coupling) for the
effort estimation process. This improvement will
improve planning, management, and development

of software at different phases of the software
development life cycle. Further, the measurement
results of the proposed model can be used for
software benchmarking purposes conducted by
specialized groups such as the International
Software Benchmarking Group (ISBSG).

The contribution of this paper is a new
measurement model to measure the degree of
cohesion and coupling exist within and between
system components based on ISO19761
international standard. This measurement model
measures functional size of interactions exist within
and between system components independently
from development technology used to develop the
software system.

This paper is organized as follows: section 2
present the literature review and section 3 presents
the design of the measurement model based on
international ISO standard. Section 4 presents a
verification of the applicability for the proposed
measurement model using First Class Relation.
Finally, section 5 presents conclusions and future
work directions.

2. LITERATURE REVIEW

Badri et al. [11] proposed an attribute called
"common object parameter" which is defined when
different class methods have the same attribute.
They consider that class methods are related
functionally, even if they do not share instance
variables. Badri et al. [11] have defined two
collaboration levels, first collaboration level is
defined when several objects that belong to
different classes participate to achieve certain
functionality. Whereas, second collaboration level
is defined when different methods within the same
class collaborate using objects, such instance
variables or passing arguments.

Briand et al. [12] proposed four cohesion
properties that a valid measure should have,
arguing that a cohesion measure should be
supported by some underlying theory. The
proposed properties are non-negativity,
normalization (greater than 0 and less than a fixed
value), null value and maximum value,
monotonicity and merging of unconnected classes
[13].

Marcus et al. [14] proposed an approach to
measure model type of cohesion, which represent a
single, semantically meaningful concept. They
suggested to document responsibilities associated
with classes in code using identifiers and
comments. Then, analyze semantic information in

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2341

code to measure the level of cohesion. Marcus et al.
[14] defined conceptual similarity between methods
and cohesion as the average of all values of
conceptual similarity in the methods of a class.

Byung-Kyoo and Bieman [15] used the concepts
proposed in [10] as a base to measure design and
code cohesion. They proposed to model data and
control relationship dependencies using an input-
output dependency graph. A data dependency is
defined if there exist a 'use-definition' relationship.
On the other hand, an attribute has a control
dependency on another if the value of the latter
determines if the first statement is performed or not.
Further, special types of dependencies are defined;
a design level cohesion is defined as the lowest
level of all pairs of methods.

Byung-Kyoo and Bieman [15] have defined
three measures of functional cohesion based on data
slices. A data slice of an attribute is the sequence of
data tokens that have a dependency relationship
with that attribute. Further, glue-tokens are data
tokens that are common to more than one data slice,
while super-glue tokens are data tokens that are
common to every data slice in a module. Based on
these concepts, a weak functional cohesion (WFC)
is expressed as the number of glue tokens divided
by the total number of tokens in a method.
Whereas, strong functional cohesion (SFC) is
defined as the ratio of superglue tokens on total
number of data tokens in a method.

Makela et al. [16] conducted a study to evaluate
an LCOM (lack of cohesion) metric. They defined
an external view of cohesion as how a specific class
use the features (i.e. methods) of another class. A
client class typically use a subset of methods, and
therefore methods not used by the client class are
excluded in the measure of cohesion. Further,
Makela et al. [16] have included constructors and
destructors that initialize or de-initialize essential
attributes of a class in the measurement of
cohesion. A class-member dependence graph is
built to represent four types of dependency
relationships as edges: read, write, call and flow
dependencies among nodes. A node in this graph
represent an attribute or a class method and the
degree of cohesion is measured as the average
dependency degrees of all attributes and methods.

Soares et al. [17] proposed two UML profiles to
enable software engineers to produce less coupled
system components. However, the two proposed
profiles are not experimented using a case study to
verify their applicability. Agner et al. [18] applied
black box testing in a model driven architecture

context aimed to produce more coherent model
transformations.

Madhwaraj [19] has conducted an empirical
study to compare two metrics used to predict
maintainability of packages in object-oriented
systems. Coupling of packages is calculated using
both metrics as a primary input to measure the
degree of maintainability.

Újházi et al. [20] proposed two metrics to
measure the degree of coupling and cohesion of
object classes in a large open-source software
system, using the concepts of coupling metric
(CCBO) and conceptual lack of cohesion on
methods.

Rajkumar et al. [21] proposed a set of equations
to measure the degree of coupling and cohesion
using object-oriented Java code. Further,
Maheshwari et al. [22] proposed a coupling metric
for Java classes and they did not consider the
calculation of coupling at higher levels such as
package level.

Ludwig et al. [23] proposed an open-source
plug-in to measure the architectural complexity of
software as an indicator of software product
maintainability. The proposed plug-in calculate the
architectural complexity using complexity metrics
such as Lines of Code (LOC), Weighted Method
Count (WMC) and Response for Class (RFC).

Almugrin and Melton [24] conducted an
experimental study to validate three package
metrics (i.e. coupling, stability and abstractness)
built based on Martin metrics [25] for software
package responsibility to produce an early indicator
to software maintainability and testability. The
experimental study conducted using three open-
source software projects to investigate software
package responsibility based on direct dependency
and the experimental results yield an improved
prediction of software maintainability and
testability.

Faragó et al. [26] conducted an experimental
study to investigate the impact of three (3) version
control metrics such as intensity of modifications,
code ownership and aging on software
maintainability using fourteen (14) versions of four
(4) open-source software projects. The
experimental results showed a high correlation
between version control metrics and corresponding
maintainability indicators such as post-release
defects.

Shafiabady et al. [27] presented a summary of
prediction models for software maintainability:
these prediction models employ different

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2342

information from a software product including
modularity, testability, modifiability, size and
structural complexity of UML class diagrams…etc.

Gonzalez et al. [28] conducted an empirical
study that applies automated unit testing
frameworks to investigate the benefit of using
xUnit testing patterns to improve the quality of
maintainability attributes such as ease of diagnoses,
modifiability, and comprehension. This study
investigated more than eighty-two thousands open
source projects. The results reported that only
twenty-four percent of the investigated projects had
test files implemented patterns that could help in
software project maintainability. Further, the study
reported that the decision to implement test patterns
depend on developer decision rather than project
characteristics.

Jain et al. [29] proposed a genetic algorithm to
predict maintainability of two versions of four open
source software. The number of changes counted in
the source line of code of software to another in
order to calculate the maintenance effort. Prediction
models built using machine learning classifiers and
then analyzed mean absolute error (MAE) and root
mean square error (RMSE). The analysis results
compared with other machine learning techniques
such decision table, radial basis function neural
network, and Bayes-Net and sequential minimal
optimization. The analysis results showed that
prediction models built using genetic algorithms
produce improved prediction than typical machine
learning techniques.

Rongviriyapanish et al. [30] proposed a
prediction model to assess java class changeability.
The prediction model built using the multilayer
perceptron classifier (MLP) on 137 java classes
from an open-source software project. According to
the multilayer perceptron classifier, the proposed
prediction level was able to predict the
changeability of java classes on only one level
rather than three levels.

Mo et al. [31] proposed an architecture
maintainability metric called Decoupling Level
(DL) derived from Baldwin and Clark's option
theory. The proposed metric aimed to measure the
degree on which software product designed as
small and independent set of replaceable modules.
The proposed metric experimented using multiple
releases of 108 open source projects and 21
industrial projects.

Panca et al. [32] conducted a study aimed to
implement a design pattern combination that
develop maintainable mobile application services.

The design pattern combination is singleton,
memento, state, iterator, factory, builder, and
flyweight. The combination experimented using
three mobile applications from three different
domains. The experimental results showed that
design patterns such as singleton, memento, and
iterator degrade modularity of the three mobile
applications. Further, the design patterns factory
and builder can improve and/or reduce modularity
depending on the mobile application itself.

Baqais et al. [33] conducted an empirical study
to analyze the relationship between class stability
and software maintainability. A correlation
presented in this study between both concepts using
class stability metric proposed by [34] that measure
class stability based on eight class properties and
maintainability index used to measure the degree of
maintainability from source code.

3. DESIGN OF A MEASUREMENT MODEL

FOR COHESION & COUPLING
This section present the design of a

measurement model to measure the degree of
cohesion and coupling exist within and between
software systems components based on ISO19761
international standard. Four steps are recommended
by Abran [35] to design a reference measurement
model as follows:
1. Determination of measurement objectives.
2. Characterization of cohesion and coupling

terms.
3. Construction of cohesion and coupling

metamodel.
4. Identification of numerical assignment rules.

3.1 Determination of Measurement Objectives

This part presents the main objective of the
proposed measurement model for cohesion and
coupling of software system components as part of
the assessment process of software system
complexity, along with the anticipated uses of the
measurement results:
 Measurement objective: to measure the

functional size of cohesion and coupling within
and between software system components using
ISO19761: COSMIC as an intentional standard
for software functional measurement recognized
by ISO.

 Intended use of measurement results: the uses of
measurement results of cohesion and coupling
of system components span the whole software
development life cycle. These functional size
measures represent one of the primary inputs for

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2343

the effort estimation process of software
systems.

3.2 Characterization of Cohesion and Coupling
Terms

This part presents characterization of terms (i.e.
vocabulary) as defined in the IEEE-24765 standard
of systems and software engineering vocabulary
[36]. It is worth mentioning that the terms exist in
the IEEE-24765 [36] standard are aligned with the
terms and/or concepts defined by ISO standards
such as ISO-41413-1 [37]. There are key concepts
that help to define the concept of cohesion; every
measure of cohesion considers the interactions
between a class and its attributes or methods. The
concept of collaboration between objects is also
present. In addition, internal and external views of
cohesion. For the purpose of this research, the
following terms are used to help in measurement of
cohesion and coupling of software systems:
 Software design: is the process of defining

architecture, components, interfaces and other
characteristics of a component or a system. The
result of the design process must describe how
software is decomposed and is organized into
components and interfaces between such
components [6].

 Component: is one of the parts that make up a
software system. A component may be
hardware or software and subdivided into other
components [19]. Note: the terms “module”
“component” and “unit” often used
interchangeably or defined to be sub-elements
of one another in different ways depending
upon the context.

 Interface: is “hardware or software component
that connects two or more other components for
the purpose of passing information from each
other [19]. An interface can be classified into
the following types:
o Interface components: components that

allow high-level interaction between
interface functions.

o Interface specifications: specifications that
describe level of interaction required for
interface component functions.

 Message: are information exchanged on an
interface. Messages have two levels: functional
and services levels. Messages consist of three
types of data architecture movements as
follows:
o Messages exchange at functional level.
o Message of intermediary services at system

level.
o Data exchanges between system

components: direct exchange of data
movements and indirect exchange of data
movements.

 Attribute: is a characteristic of an item [36].
 Cohesion: is defined as how the elements that

make up a module are related [6].
 Coupling: is defined as the strength of

relationships between modules [6]. Coupling is
the manner and degree of interdependence
between software modules; a measure of how
closely two routines or modules are connected
is the strength of relationships between
modules. Coupling refers to interdependencies
between modules, while cohesion describes how
functions within a module are related.

Figure 1 presents an example of coupling and

cohesion relationship over its components in a
software system. In this example, three modules are
interconnected with each other in manner that allow
them to accomplish their functionality. Cohesion
within a certain software module is represented
using bold-connected line. Whereas, coupling
between software modules is represented using
bold-dotted lines.

Fig. 1 A generic view of cohesion and coupling

within and between software modules

3.3 Construction of Cohesion and Coupling

Metamodel
The decomposition of a software system

normally yields components and sub-components:
layers, modules, classes and functions (or methods)
are examples of components in the software
engineering domain [36]. On the other hand, when
such components and sub-components are defined
at a higher level of abstraction; a component

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2344

becomes more of a boundary than a concrete
component. Certain software components may
exhibits properties but boundaries do not have
attributes (i.e. properties), but they are exist only to
regroup other software components. Normally, the
functionality of a software system is distributed
among different components making up such
system.

Figure 2 presents an instance metamodel that
represent the main concepts that are required for the
measurement of cohesion in a software component.
In this figure, a software system consists of
software layers, certain layer typically consists of
one or more software components, and such
software components consist of one or more
software sub-components. Normally, software sub-
components exchange messages between each other
within the same software component or with other
software sub-components in different software
component. A sub-component shall access certain
attributes using a software/hardware interface in
order to accomplish its functionality.

Fig 2 An instance metamodel for a sample software

layer and its attributes
It is worth mentioning that – to date – it is still

not standardized that the measure of the degree of
cohesion depends on the distribution of the
interactions or the number of interactions within a
certain software component. For the purpose of this
research, the number of interactions within a
software component is adopted as a measure the
degree of cohesion in that software component.
Therefore, an attribute can be used proportionally
more than other attributes and the whole software

component is still cohesive. On the other hand,
when considering cohesion for a whole set of
collaborating objects, the number of interactions
becomes more relevant than its distribution as a
measure of the degree of cohesion. To count the
number of interactions in a standardized way, the
concept of data groups that is defined in the
international standard for software functional size
measurement ISO19761 [38] is adopted. For
example, attributes of a software component
represent one data group, and therefore, cohesion in
a software component is measured as number of
data movements between its attributes and its
subcomponents.

3.4 Identification of Numerical Assignment

Rules
Numerical assignments rules can be described

using a descriptive text (i.e. a practitioner’s
description) or using mathematical expressions (i.e.
formal theoretical viewpoint). According to the
international standard for software functional size
measurement – ISO19761 [38], a functional process
is defined as an elementary component of a set of
functional user requirements. It includes a unique
cohesive and independently executable set of data
movement types. Four data movement types are
identified by ISO19761: an 'Entry' moves a data
group into software from a functional user and an
'eXit' moves a data group out. Further, 'Write' and
'Read' move a data group to and from persistent
storage, respectively. One (1) CFP (i.e. COSMIC
Function Point) represent a functional size
measurement of each counted data movement type
[38].

The interactions within a software component
describe its internal data movements. The first set
of data movements is the set of interactions
between the component and its attributes. For
instance, a component can query (i.e. Read) or
change (i.e. Write) one or more of its attributes.
The second set of data movements represents
interactions between a component and its
subcomponents (i.e. Entry and eXit). A component
can use some of its subcomponents to realize the
functionality of software. Internal component
interactions in COSMIC Function Points (CFP)
equal to the arithmetic summation of data
movements between its attributes and the data
movements between its components.

Interactions of subcomponents are also
considered, total number of interactions within a
component are internal interactions added to the

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2345

interactions occurring inside all of the
subcomponents. Because of a subcomponent is also
a component; such definitions applied recursively.
The number of component interactions in CFPs
equal to the arithmetic summation of the number of
internal component interactions and the number of
sub-components interactions.

Software sub-components can be classified as
related or unrelated sub-components. Related sub-
components are those participating in internal
component interactions. For instance, if a
subcomponent use or depend-on attribute or
another subcomponent, the subcomponent relates to
its parent component or considered as unrelated.
Once software sub-components are classified, it is
possible to count component interactions and they
added together. On the other hand, when counting
interactions of related components, only subset of
related subcomponents is considered. All of the
sub-components interactions can also be counted,
whether they are related or not. The total number of
interactions for a set of components is equal to
arithmetic summation of all components
interactions calculated previously.

The measure of a cohesion on a ratio scale can
take any value between zero and one. The cohesion
ratio of a software component is the proportion of
its related functionality (See Eq. 1). If a software
component does not interact between its attributes
and its sub-components, then cohesion ratio is zero.
The cohesion ratio is undefined if there are no sub-
components and no interactions between its
attributes. When a component has no sub-
components, cohesion ratio is set to a value of one,
since the component forms a self-contained entity
that is entirely independent. In addition, if all the
interactions between components are related, then
cohesion ratio raises up to a value of one. It is
worth mentioning that software components should
be located within the same software layer since
different layers could have been developed using
different types of technologies and therefore all
functional size measurements should be calculated
at the same level of granularity.

4. CASE STUDY: FIRST CLASS RELATION

4.1 Scope and Objective

This section presents an applicability
verification of the proposed measurement model

using structured specifications that adopt the
concept of First Class Relation [39]. The proposed
measurement model is used to measure the
functional size of the first class relation exist
between to two object-oriented class objects.
Software engineers use class diagrams to represent
the structure of object-oriented classes using
attributes, methods and relationships; they use first
class relations to represent the dependency (i.e.
coupling between components) that might exist
between such object-oriented classes. Figure 3
presents an example of between two object-oriented
classes that interact with each other. The assigned
objects are preserved references to instances of
each other. If an object event added or deleted both
references are updated accordingly. Class objects
are required to specify the internal implementation
details of the other object and which method of the
other object to use in order to prevent an infinite
loop.

Fig 3 An example of two related object-oriented
classes

4.2 Characterization of Measured Concepts

Figure 4 present coupling relationship between
two object-oriented classes using the first class
relation. Using first class relation, references to
other class objects are not essential, and therefore
this relationship certainly is no longer preserved
inside class objects themselves.

Fig 4 Coupling represented using first class
relationship

For the purpose of this case study, the term
"class object" is used to refer to the type of a
specific object, and the term "instance object" is

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2346

used to refer to an instance of a specific class type.
In addition, the term "relationship" is used to refer
to an instance of a relation, in which a relationship
typically consists of a set of tuples that include
instance objects in a relation that are linked
together or group of interacting instance objects
[40].

4.3 Construction of Metamodel

Figure 5 presents the construction of the

metamodel for first class relation divided into three
sub-elements: state, preservation methods and
cardinality. Construction is the bottle for object
instances that participate in the relationship. The
instance objects are part of the relationship at a
given time and define the state of the relationship.
Access to structure provided by preservation
methods. Cardinality limits the number of instance
objects on each side of the relationship.

Fig 5 Construction of metamodel for first class relation

Another element to explain in the construction

model is behavior (see figure 5). There are two
types of behavior: active and reactive. Reactive
behavior is activated by object instances that take
part in the relation and producing additional
instance objects in the relationships to react. This
kind of behavior is typically implemented with the
Spectator design pattern. Active behavior is
initiated by third object (i.e. a client object). Roles
are also part of behavior: roles describe the public
interface of the objects that are used by relation
once an object contributes in a relationship.

4.4 Numerical Assignment Rules

This part present the metamodel of first class
relation mapped in accordance to the rules and
concepts of the international standard for software
functional size measurement ISO19761 [38].

This standardized method measures the
functional size of a software product independently
of the technology used to develop such a product,
and based on the identified functional user
requirements. The ISO19761 construct a generic
model of software functional user requirements in
order to clarify the boundary between hardware and
software. In this model, software is typically

bounded by hardware and it is used either by a
human user or by an engineered device. The human
user interacts with software using a variety of
input/output devices. Furthermore, software is
bounded by storage hardware such as RAM
memory. The functionality of software is enclosed
within the data groups of functional flows. In order
to specify these functional flows, four data
movement types are identified by ISO19761 as
follows:
 Two data movement types (i.e. Entry and eXit)

are identified to specify the functional flows
between the human users and engineered
devices from one side, and software from the
other side.

 Two data movement types (i.e. Read and Write)
are identified to specify the functional flows
between storage and software.
Figure 6 presents the measurement metamodel

of first class relation mapped in accordance to the
rules and concepts of the international standard for
software functional size measurement ISO19761.
The specification of cohesion and coupling in
software functional user requirements of a software
development project is an instantiation of the
proposed metamodel as presented in such figure.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2347

Fig 6 An Instance Measurement Metamodel Of First Class Relation

At an early phase of the software development

life cycle, software engineers need to write the
requirements specification document to specify the
functional user requirements at a granularity level
of movements of data groups. Then, cohesion and
coupling requirements are directly measured using
the proposed measurement model.

Table 2 presents functional size measurement of
first class relation using the proposed measurement
model. Four functional processes are identified (i.e.
relational structure, roles, object A and B, and
FUR), these functional processes are presented in
column #1. On the other hand, column #2 presents
data movement descriptions that moves data groups
across the boundary. The corresponding type and

number of data movements exist in each functional
process is presented in column #3. For example, for
a software relation structure, function 'a' relation
structure sends a data group from 'a' state function
to object A and B. Further, software role structure
function 'Read' a data group from a preservation
function and Write a data group to Object A and B.
This corresponds to one Entry data movement type
and one Exit data movement type, for a total
functional size of two COSMIC Function Points
(i.e. 2 CFPs). Therefore, the total functional size for
the four identified functional processes yields
twelve COSMIC Function Points.

Table 2: Functional Size Measurement Of The First Class Relation Using The Proposed Measurement Model

Functional
Process

Data Movement Description
Data

Movement Type
Relational Structure Role A and B read from preservation method to give

instructions to object A and B
Role A and B write the instructional roles form
preservation method to object A and B

2 Entry

2 eXit

Roles Role A and B read from preservation method to give
instructions to object A and B.
Role A and B write instructional roles form preservation
method to object A and B

2 Read

2 Write

Object A and B Object A and B send a data movements to FUR 2 Entry

FUR FUR receives data movements from object A and B 2 eXit

Total functional size measurement 12 CFP

4.5 Threats to Validity
An internal validity threat is associated with any

changes in the design of this case study such as lack
of description for the concepts to be evaluated in

the case study. To mitigate the risk of this threat to
validity, the principal researcher who proposed the
measurement model has conducted experiment
three weeks after completing the whole design of

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2348

the mentioned model.
An external validity threat is expressed as the

extent that the experimental results can be
generalized beyond the experimental settings. The
proposed measurement model of cohesion and
coupling is experimented using only the structural
specifications of the first class relation. To mitigate
the risk of this threat to validity, further studies
should be conducted in the future using the
requirements specifications of different software
products of different types.

5. CONCLUSION

This paper proposed a new measurement model
to measure the degree of cohesion and coupling
exist within and between system components based
on international ISO19761 international standard.
The proposed measurement model measures the
functional size interactions exist between
components of software systems using the
measurement concepts of ISO19761, and
independently from development technology used
to develop the software product. Four steps are
conducted to build the measurement model;
determination of measurement objective, followed
by a characterization of cohesion and coupling
terms. After that, cohesion and coupling metamodel
is constructed, and finally an identification of
numerical assignment rules is conducted for
cohesion and coupling. The results of the case study
shows that the proposed measurement model is
capable of measuring the degree of cohesion and
coupling exist between different components, in
which coupling is using the First Class Relation in
object-oriented structured specifications.

This measurement will help to improve the
planning, management, and development of
software at different phases of software life cycle.
Further, the measurement results of the proposed
model can be used for software benchmarking
purposes conducted by specialized groups such as
the International Software Benchmarking Group
(ISBSG). Future work will be directed to conduct
more case studies using requirements specifications
of different software systems of different types, in
order to generalize the results reported in this paper.
In addition, future work will be directed to
automate the measurement process to build an
automated measurement tool.

REFERENCES

[1] J. Alghamdi, "Measuring software coupling",
Proceedings of the 6th international conference
on software engineering, parallel and
distributed systems, Corfu Island, Greece,
2007, pp. 6-12.

[2] M. Kiewkanya, P. Muenchaisri, "Measuring
maintainability in early phase using aesthetic
metrics", Proceedings of 4th international
conference on software engineering, parallel
and distributed systems, Salzburg, Austria,
2005, pp. 1-6.

[3] D. Kushwaha, A. Misra, "A complexity measure
based on information contained in the
software", Proceedings of 5th international
conference on software engineering, parallel
and distributed systems, Madrid, Spain, 2006,
pp. 187-195.

[4] T. Lethbridge, N. Anquetil, Experiments with
coupling and cohesion metrics. University of
Ottawa, Ottawa, Canada.
http://www.site.uottawa.
ca/~tcl/papers/metrics/expwithCouplingCohesi
on.html (Accessed on February 3, 2018)

[5] S. Counsell, S. E. Mendes, S. Swift,
"Comprehension of object-oriented software
cohesion: the empirical quagmire",
Proceedings of the 10th international workshop
on program comprehension, Paris, France,
2002, pp. 33-42.

[6] P. Bourque, R.E. Fairley, "Guide to the software
engineering body of knowledge (SWEBOK)",
IEEE Computer Society Press, 2014, USA.

[7] A. Marcus, D. Poshyvanyk, "The conceptual
cohesion of classes", Proceedings of the 21st
IEEE international conference on software
maintenance, Budapest, Hungary, 2005, pp.
133-142.

[8] E. B. Allen and T. M. Khoshgoftaar,
"Measuring coupling and cohesion: an
information-theory approach", Proceedings of
the 6th International Software Metrics
Symposium, Boca Raton, FL, USA, 1999, pp.
119-127.

[9] T. M. Meyers, D. Binkley, "An empirical study
of slice-based cohesion and coupling metrics",
ACM Transactions on Software Engineering
and Methodology, Vol. 17, No. 1, 2017, pp. 1-
27.

[10] W. Stevens, G. Myers and L. Constantine,
"Structured design", IBM Systems Journal,
Vol. 2, 1974, pp. 115-139.

[11] L. Badri, M. Badri and G. A. Badara,

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2349

"Revisiting class cohesion: an empirical
investigation on several systems", Journal of
Object Technology, Vol. 7, No. 6, 2008, pp.
55-75.

[12] L. C. Briand, S. Morasca and V. R. Basili,
"Property-based software engineering
measurement", IEEE transactions on software
engineering, Vol. 22, No. 1, 1996, pp. 68-86.

[13] C. Zhenqiang, Y. Zhou, B. Xu, J. Zhao and H.
Yang, "A novel approach to measuring class
cohesion based dependence analysis",
Proceedings of the international conference on
software maintenance, Montréal, Canada,
2002, pp. 377-384.

[14] A. Marcus, D. Poshyvanyk, "The conceptual
cohesion of classes", Proceedings of the 21st
IEEE international conference on software
maintenance, Budapest, Hungary, 2005, pp.
133-142.

[15] K. Byung-Kyoo, J. M. Bieman, 1996, "Design-
level cohesion measures: derivation,
comparison, and applications", Proceedings of
20th international computer software and
applications conference, Seoul, Korea, 1996,
pp. 92-97.

[16] S. Makela, V. Leppanen, 2007. "Client based
object-oriented cohesion metrics", 31st annual
international computer software and
applications conference, Beijing, China, 2007,
pp. 743-748.

[17] I. W. Soares, L. Agner, P. Cézar Stadzisz, J.
M. Simão, "Application of platform models in
model driven engineering of embedded
software", Journal of Computer Science, Vol.
11, No. 12, 2015, pp. 1075-1081.

[18] L. Agner, I. Soares, J. M. Simão, P. Cézar
Stadzisz. 2014, "Applying black box testing to
model transformations in the model driven
architecture context", Journal of Computer
Science, Vol. 10, No. 8, 2014, pp. 1423-1427.

[19] K.G. Madhwaraj, "Empirical comparison of
two metrics suites for maintainability
prediction in packages of object-oriented
systems: a case study of open source software",
Journal of Computer Science, Vo. 10, No. 8,
2014, pp. 1423-1427.

[20] B. Újházi, R. Ferenc, D. Poshyvanyk, T.
Gyimóthy, "New conceptual coupling and
cohesion metrics for object-oriented systems",
Proceedings of the 10th IEEE working
conference on source code analysis and
manipulation, Timisoara, Romania, 2010, pp.
33-42.

[21] N. Rajkumar, C. Viji, S. Duraisamy,
"Measuring cohesion and coupling in object
oriented system using java reflection", ARPN
Journal of Engineering and Applied Sciences,
Vol. 10, No. 7, 2015, pp. 3096-3101.

[22] A. Maheshwari, A. Tripathi, D. S. Kushwaha,
"A new design based software coupling
metric", 14th International conference on
information technology, Odisha, India, 2014,
pp. 351-355.

[23] J. Ludwig, S. Xu, F Webber, "Compiling static
software metrics for reliability and
maintainability from GitHub repositories",
IEEE International Conference on Systems,
Man, and Cybernetics, Banff, Canada, 2017,
pp. 5-9.

[24] S. Almugrin, A. Melton, "Estimation of
responsibility metrics to determine package
maintainability and testability", 2nd
international conference on trustworthy
systems and their applications, Hualien,
Taiwan, 2015, pp. 100-109.

[25] S. Almugrin, W. Albattah, O. Alaql, M.
Alzahrani, A. Melton, "Instability and
abstractness metrics based on responsibility",
IEEE 38th annual computer software and
applications conference, Vasteras, Sweden,
2014, pp.364-373.

[26] C. Faragó, P. Hegedűs, G. Ladányi, R. Ferenc,
"Impact of version history metrics on
maintainability", 8th international conference
on advanced software engineering and its
applications, Jeju Island, Korea, 2015, pp. 30-
35.

[27] A. Shafiabady, M. Mahrin, M. Samadi,
"Investigation of software maintainability
prediction models", 18th International
Conference on advanced communication
technology, Pyeongchang, South Korea, 2016,
pp. 783-786.

[28] D. Gonzalez, J. Santos, A. Popovich, M.
Mirakhorli, M. Nagappan, "A large-scale study
on the usage of testing patterns that address
maintainability attributes: patterns for ease of
modification, diagnoses, and comprehension",
Proceedings of the 14th International
conference on mining software repositories,
Buenos Aires, Argentina, 2017, pp. 391-401.

[29] A. Jain, S. Tarwani, A. Chug, "An empirical
investigation of evolutionary algorithm for
software maintainability prediction", IEEE
students conference on electrical, electronics
and computer science, Bhopal, India, 2016, pp.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2350

1-6.
[30] S. Rongviriyapanish, T. Wisuttikul, B.

Charoendouysil, P. Pitakket, P.
Anancharoenpakorn, and P. Meananeatra,
"Changeability prediction model for Java class
based on multiple layer perceptron neural
network", 13th International Conference on
Electrical Engineering/Electronics, Computer,
Telecommunications and Information
Technology, Chiang Mai, Thailand, 2016, pp.
1-6.

[31] R. Mo, Y. Cai, R. Kazman, L. Xiao, Q. Feng,
"Decoupling Level: A new metric for
architectural maintenance complexity",
IEEE/ACM 38th IEEE International
Conference on Software Engineering, Austin,
USA, 2016, pp. 499-510.

[32] B. S. Panca, S. Mardiyanto, B. Hendradjaya,
"Evaluation of software design pattern on
mobile application based service development
related to the value of maintainability and
modularity", International Conference on Data
and Software Engineering, Denpasar,
Indonesia, 2016, pp. 1-5.

[33] A. Baqais, M. Amro, M. Alshayeb, "Analysis
of the correlation between class stability and
maintainability", 7th International Conference
on Computer Science and Information
Technology, Amman, Jordan, 2016, pp. 1-4.

[34] M. Alshayeb, M. Naji, M. O. Elish, "Towards
measuring object-oriented class stability", IET
Software Journal, Vol. 5, No. 4, 2011, pp. 415-
424.

[35] A. Abran, "Software metrics and software
metrology", IEEE Computer Society Press.
ISBN: 04705972089780470597200, 2010.

[36] Institute of Electrical & Electronics Engineers,
"IEEE systems and software engineering
vocabulary", IEEE Computer Society Press,
New York, USA, 2010.

[37] International Organization for Standardization,
"Information Technology - software
measurement - functional size measurement
Part 1: definition of concepts (ISO/IEC-14143-
1)", International Organization for
Standardization, Geneva, Switzerland, 2007.

[38] International organization for standardization,
"ISO19761: a functional size measurement
method: COSMIC", International
Organization for Standardization, Geneva,
Switzerland, 2013.

[39] G. Bierman, A. Wren, "First-class
relationships in an object-oriented language –

Technical Report UCAM-CL-TR-642",
Computer Laboratory, University of
Cambridge, ISSN: 1476-2986, United
Kingdom, 2005.

[40] S. Balzer, T.R. Gross, P. Eugster, "A relational
model of object collaborations and its use in
reasoning about relationships", The 21st
European conference object oriented
programming. Berlin, Germany, 2007, pp. 323-
346.

