
Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2275

 AN APPROACH FOR DETECTING SYNTAX AND
SYNTACTIC AMBIGUITY IN SOFTWARE REQUIREMENT

SPECIFICATION

1 ALI OLOW JIM’ALE SABRIYE, 2*WAN MOHD NAZMEE WAN ZAINON
1Faculty of Computing, SIMAD University, Mogadishu, Somalia

2School of Computer Sciences, Universiti Sains Malaysia, Malaysia

E-mail: 1colowyare2@simad.edu.so, 2nazmee@usm.my

ABSTRACT

Software requirements are considered to be ambiguous if the requirements statement could have more than
one interpretation. The ambiguous requirements could cause the software developers to develop software
which is different from what the customer needs. The focus of this paper is to propose an approach to detect
syntax and syntactic ambiguity in software requirements specification. In this paper, Parts of speech (POS)
tagging technique has been used to detect these ambiguities. A prototype tool has been developed in order to
evaluate the proposed approach. The evaluation is done by comparing the detection capabilities of the
proposed tool against human capabilities. The overall results show that the humans do have some difficulties
in detecting ambiguity in software requirements, especially the syntactic ambiguity and software
requirements that contains both syntax and syntactic ambiguity in one sentence. The proposed tool can
definitely help the analyst in detecting ambiguity in Software requirements.

Keywords: Part of speech tagging, Syntax ambiguity, Syntactic ambiguity, Software requirements

specification.

1. INTRODUCTION

Software requirement specification (SRS)
document is an important document with a full
description about functional and non-functional
requirements of a software sys-tem to be developed
[1]. SRS helps the analyst to understand the customer
needs and it is the base document for other software
development activities [2].

 Around 87.7 % of software requirements are
documented using natural language (NL) [5]. SRS
quality has the highest contributing factor of the
success or failure for the project to be developed.
There are 9 quality measures of SRS, and one of
these quality measures is that SRS must be
unambiguous [6]. SRS document is unambiguous if
and only if the requirements contained in this
document has only one interpretation, however, most
of NL SRSs contain ambiguous requirements which

can negatively affect in all the software development
process [7].

Ambiguity in SRS can cause some big issues that
can affect the software development process because
different interpretations can turn into bugs (such as
design, functional, logical, performance,
requirement or user interface bugs) if not detected
and solved at the early phases of software
development [8]. NL SRS ambiguity can also cause
negative significances for the whole software
development, this problem can lead to a project
failure, highly maintenance costs, delayed product
releases or developing a software which does not fit
to the user requirements.

The scope of this paper is limited to detecting
syntax and syntactic ambiguity in natural language
requirement specification. This study is different
from other works where it focus on the type of
ambiguity that can be detected using POS tagging
techniques. Other works are using different detection

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2276

techniques and caters for different type of ambiguity.
Details about related works can be found in section
3 where we will discuss all relevant works related to
detecting ambiguities.

2. AMBIGUITY IN NL SRS DOCUMENT

Ambiguity can be defined as a statement which
has more than one interpretation [9]. The definition
of ambiguity in software requirements perspective is
a requirement which have more than one
interpretation despite the knowledge of the reader
about requirements engineering context. Based on a
study by Sandhu, G. & Sikka, S.[10], there are five
different types of NL SRS ambiguity;

2.1 Lexical Ambiguity

Lexical Ambiguity refers to a situation where
there is a single word that can have several
meanings. Lexical ambiguity can be subdivided into
two- homonymy lexical ambiguity and polysemy
lexical ambiguity. Homonymy is a word which has
distinct meanings and etymologies as well. For
example, the word bank means a depository
financial institution; sloping land; a flight maneuver.
Polysemy word has several interrelated meanings
but etymology i.e.: the word green may mean color
green or unripe [12]. For example, the requirements
“The users of the system are customers and
administrators. They login to the system.” The word
“They” in the second sentences is a lexical ambiguity
because of unclear reference. The reference of the
word They can be either They (the customers) login
to the system, or they (The administrators) login to
the system or both the customers and administrators’
login to the system.

2.2 Syntactic or Structural Ambiguity

Syntactic or Structural Ambiguity is a type of
ambiguity that occurs if a sentence can be parsed in
several ways with a different meaning. For example:
the sentence “I saw the girl with the telescope” can
be parsed into two different ways:

1) the girl has a telescope with her.
2) I used a telescope to see the girl.

This type of ambiguity is generated when the
sentence contains vague words. adjectives or
adverbs which can be considered as vague words
[13]. The requirements “The Software must be

reusable.” and “The Software will display the map
quickly.” are example of structural ambiguities
because the words reusable (adjective) and normally
(adverb) are vague words that can have different
interpretations.

2.3 Semantic/Scope Ambiguity

Semantic/Scope ambiguity is an ambiguity that
occurs when the sentence has several interpretations
within its context without containing lexical,
structural and syntactic ambiguity. For example, the
requirement “All users enter a password code” is
scope ambiguity because when the scope of all
includes the scope of a, the meaning of the
requirements becomes all users enter the same
password code, When the scope of a includes the
scope of all, the sentence meaning is each user enters
a password code.

2.4 Pragmatic Ambiguity

Pragmatic ambiguity is an ambiguity type that
focuses on the relationship between the sentence
meaning and its context. It depends of the
requirement's context including the knowledge of
the requirement's reader. For example, two readers
that have different backgrounds can interpret a single
requirement into two different ways.

2.5 Syntax Ambiguity

Syntax ambiguity is an ambiguity occurs if the
sentence is in passive voice form which the user
element is not specified inside the sentence or the
sentence not end with a full stop/period “.”. For
example, the sentence “Student records should be
documented.” is a syntax ambiguity, because it is not
clear the user who will document the student records
[14].

3. RELATED WORK

Computer scientists have proposed different
methods and techniques can be applied to solve
ambiguity in SRS. Three main categories can be
summarized the techniques applied to solve
ambiguity, among these categories Natural
Language Processing(NLP) based techniques for
solving ambiguity [11].

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2277

An example of NLP based technique for solving
ambiguity is [16] work. They have analyzed NL SRS
document using NLP Standard POS tagger and
parser to generate activity and sequence diagrams.
Their method allows the user to reduce ambiguity.
They used POS tagging like this research, but with
different result: It reduces ambiguity by generating
activity and sequence diagrams. The drawback of
their method is lack of automatically highlighting the
ambiguous sentences in NL SRS document.

The work of [13] can be an example of automatic
ambiguity detection in NL SRS document. They
developed a tool that detects ambiguities and gives
explanation about the ambiguity source. The
researchers used regular expressions, part of speech
tagging (POS) and list of ambiguous words from
ambiguity handbook to mark ambiguous words in
NL SRS document and give explanation about the
ambiguity sources. The drawback of their method
was lack of calculating the percentage of the detected
ambiguity.

Another example of using POS tagging for
ambiguity detection is [5]. These re-searchers
developed a technique that checks the validity of the
requirements and detect only lexical ambiguity. In
this method, a dictionary was used to compare with
the words of one line in NL SRS document and store
it in a data structure. They detected lexical ambiguity
by checking the word in a single sentence that has
more than one type of part of speech. The limitation
of this approach is that it can work efficiently if the
NL SRS document contains not more than six words.

The researcher [17] illustrated many NLP tools
used for finding defects and deviations in SRS
documents. These tools aim to check the Quality of
requirements, ambiguity, uncertainty, quality of user
stories and quality of use cases. Among these tools
Dowser and HEJF that focus on ambiguity in SRS
document has been selected for further discussion.

Dowser tool is a tool designed to identify
ambiguities in SRS document using parsing
technique. Initially, Dowser parse the requirements
using constraining grammar. In addition to that,
object oriented analysis model of the system will be
developed by creating classes, methods, variables
and associations. Lastly, the model will be presented

for the reviewers to detect the ambiguity [18].
However, this technique does not consider detecting
ambiguity automatically; the human makes the final
decision of the ambiguity.

 Qualicen (Formally known as HEJF) is a
commercial tool that detects the possible quality
defects Such as slash, ambiguous adverbs and
adjectives, negative words, non-verifiable term,
subjective language, Imprecise phrase, requirements,
comparative requirements, Vague pronouns,
Loophole, UI detail and long sentence [19]. Qualicen
detects software requirements mismatch certain
requirements engineering principles using POS
tagging, morphological analysis and dictionaries.
This tool dis-plays warning messages that contains
description of the detected smell to the user.

The authors [20] carried out systematic review
about NLP tools for resolving ambiguities in SRS
document. This review contains 8 NLP tools used to
deal with ambiguity problem in SRS document.
From these 8 identified tools, RESI, SR-Elicitor and
NL2OCL has been selected to discuss in further
since the selected tools are most related tools to the
research area.

RESI is a tool developed by [21] which was
designed to help software. It provides a dialog
system that alerts the user when the SRS document
is ambiguous, faulty, or inaccurate. It offers the
possible interpretations of each word in the SRS
document, so that the software analyst can change
the word. RESI tool detects the possible
nominalizations contained in SRS document and
suggests verbs that can be used instead of
nominalizations. Also, RESI avoids incomplete
process words, similar meanings, nouns without
reference index and wrongly used universal
quantifiers. How the RESI tool works is like this:
first, RESI imports the SRS document as a graph,
Second, each word in the SRS document is tagged
with part of speech (POS) to check either it is noun
or verb. After POS tagging done automatically, the
system user can adjust the tags manually if wanted.
Finally, RESI applies the ontologies WordNet,
ResearchCyc, ConceptNet and YAGO to detect
ambiguous, faulty, and inaccurate.

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2278

SR-Elicitor is a tool developed by [22] to
automate the requirements elicitation process, solve
ambiguous problem in SRS document and generate
a controlled representation. The researchers of SR-
Elicitor used Semantic of Business Vocabulary
(SBVR) and Rules to capture NL SRS document.
Fig. 1 Shows the approach used to translate NL
software requirements into SBR requirements. After
translating NL to SBR, SR-Elicitor parses NL SRS
document, the parsing process includes lexical
parsing using tokenization, sentence splitting, Parts-
of-Speech (POS) Tagging and Morphological
Analysis, Syntactic and Semantic Interpretation. The
next phase of SR-Elicitor tool is the process of
extracting SBVR vocabulary elements such as noun,
verb and individual concepts and object types from
the input. After that, SBVR rules are generated from
SBVR vocabulary. This phase is important to extract
SBVR requirements and apply semantic
formulation. The final step of SR-Elicitor is applying
structured English notation. In this step, object types
are underlined, verb concepts will be in italic form,
SBVR keywords will be bolded and individual
concepts will be double underlined. Fig. 2 Shows
SBVR rule representations of software requirements.

Fig. 1. Approach to translate NL SRS document into SBVR
requirements [22]

Fig. 2. SBVR rule representation of software requirements

NL2OCL is a tool designed to solve syntactic
ambiguity [23]. This project aims to translate NL
SRS document of software constraints to formal
constraints. This translation requires two inputs:
English specification of a constraint and UML class
model. The developers of the tool used Stanford POS
tagger and the Stanford Parser for syntactic analysis
of English specification. After that, the output of
syntactic analysis is passed to the semantic analyzer
to do detailed semantic analysis. The UML class
model is important to do syntactic analysis, notably
to resolve syntactic ambiguity.

4. PROPOSED APPROACH

To achieve the objectives of this research, an
ambiguity detection approach that can automatically
detect syntax ambiguity and syntactic ambiguity has
been pro-posed. Both of these ambiguities can be
detected using POS tagging technique. The proposed
approach of this research takes NL SRS document as
an input, processes the NL SRS document by using
POS tagging to detect ambiguity and highlights the
detected ambiguity as an output.

The proposed approach consists of three major
components, which are the pre-processing,
processing, and post processing components.

Pre-processing component contains NL SRS
document that will be uploaded into the proposed
approach. This component makes the raw data (NL
SRS document) to be ready to be processed in the
next phase.

Processing component contains the operations
performed to detect syntax and syntactic ambiguous
software requirements. It consists of two sub parts,
POS tagging and ambiguity detector. Both part
works together to detect syntax and syntactic
ambiguity in the document.

Part of speech (POS) tagging tags words of a
sentence to its English parts of speech equivalents,
for example: “The system can avoid errors.” is
tagged as “The/DT sys-tem/NN can/MD avoid/VB
errors/NNS.”. Also, POS gives the basic form of
every word. This form is an important for detecting
syntax ambiguity, especially passive voice. The tags
“VBZ”, “VBN”, “VBP”, “VBG”, “VBD”, “MD”,
“VB”,“JJ” and “RB” are very important to detect

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2279

syntactic and syntax ambiguity in NL SRS
document.

Ambiguity detector steps are new proposed steps
to classify the ambiguity into syntactic and syntax
ambiguities. It consists of 7 steps to detect ambiguity
using POS tagging. Each step has specific task and
role in the ambiguity detection process.

Step1: Retrieve the browsed NL SRS document line
by line.

This step implies the process of extracting and
attaching the NL SRS document to make it ready for
processing. The attached document can be a
collection of paragraphs. In this stage, the
paragraphs will be split into a list of sentences and
saved in a data structure called “Sentence_Splitter”.
Then, the sentences are counted by counting the
number sentences contained by Sentence_Splitter.
The counted sentences are stored in a data structure
called “Sentence_Counter”

Step-2: Mark each sentence with POS tagger.

This step is the process of tagging each sentence
contained in Sentence_Splitter to its equivalent
English eight parts of speech. The tagged sentences
will be kept in a data structure named
“Tagged_Sentence”. This is the core of the research
which will be used for ambiguity detection, notably
syntax and syntactic ambiguity.

Step-3: Detect syntax ambiguity and store in a data
structure called ‘syntax’ by:

(a) Checking if any sentence in the Tagged_Sentence
not contains full stop

This technique is being done by ensuring that
each sentence in Tagged_Sentence does not contain
the tag “./.” at the end. If a sentence that does not
have this tag is detected, it will be considered as
syntax ambiguity.

(b) Checking if any sentence in the Tagged_Sentence
is passive voice.

This technique is very important for detecting
passive voice sentences which causes ambiguity in
SRS, particularly syntax ambiguity. In this process,
the passive voice formulas and its POS tagging are
matched. Table 1 shows passive voice formulas and
its POS equivalent. If Tagged_Sentence contains the
tags in column 3 (POS passive voice detection
formula POS equivalent) of Table 1, it will be
considered as syntax ambiguity.

Step-4 Detect syntactic ambiguity and store in a
data structure called ‘syntactic’ by:
Checking if any sentence in the Tagged_Sentence is
an adjective or adverb. This technique can be done
by detecting any sentence in Tagged_Sentence that
contains the adjective tags “JJ” and adverb tag “RB”.

Table 1 Passive voice formulas and its POS equivalent

Tense Passive voice Formula passive voice detection
formula POS

equivalent
Simple present am, is, are + past participle VBZ +VBN

VBP+VBN
Present continuous am being, is being, are + past

participle
VBZ+VBG+VBN
VBP+VBG+VBN

Simple past was, were + past participle VBD+VBN
VBZ +VBN

Past continuous was being, were being +
past participle

VBD+ VBG+VBN

Present perfect has been, have been + past
participle

VBZ+ VBN+ VBN
VBP+ VBN+ VBN

past perfect had been + past participle VBD+ VBN+ VBN
Future will be + past participle MD+ VB+ VBN
 Future perfect will have been + past participle MD+ VB+ VBN+ VBN

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2280

Step-5 Continue step 3, and step 4 for each
sentences of NL SRS up to the end of SRS
document.

Step-6 Calculate the total number of syntactic and
syntax ambiguities by using the following
formulas:

Syntactic Ambiguity =

Syntax ambiguity =

where SC=
Sentence_Counter for all of the three formulas

Step-7 Calculate the percentage of ambiguities
detected and non-ambiguous sentences by using
the following formulas: -

Percentage of detected syntactic ambiguity

= * 100

Percentage of detected syntax ambiguity

= *100

None ambiguity

= 100 - (

 Post processing component is the result
generation component. The detected syntax
ambiguity will be colored as red, syntactic as blue
and both syntax and syntactic as yellow. Also, a
percentage of detected ambiguity will be displayed
in a chart.

5. EVALUATION

The evaluation method used in this research is
adopted from a study by Nigam et al. [8]. A
repository that consists of 20 English software
requirements sentences was created in order to
evaluate the proposed approach in this research.
These sentences consist of 5 syntax ambiguous
software requirements, 5 syntactic ambiguous soft-

ware requirements, 5 sentences that contain both
syntax and syntactic ambiguity and 5 sentences that
do not contain neither syntax ambiguity nor syntactic
ambiguity-ty. These sentences are not created by our
own but the sentences were taken from real software
requirements in SRS documents from scribd.com
website. Two experiments have been conducted in
order to evaluate the proposed approach. These
experiments are human detection experiment and
automatic ambiguity detection experiment.

 5.1 Human Detection Experiment

 Human detection experiment was conducted to
test and check if the human has difficulties in
detecting syntax and syntactic ambiguities in SRS
document. 63 participants from the School of
Computer Sciences at Universiti Sains Malaysia
(USM) were taking part in this experiment. The
participants come from 3 main groups of students:

1. 35 undergraduates second year full time
requirements engineering students whom
are currently taking CPT243-Requirements
analysis and modeling course.

2. 18 Computer Science Master Students
3. 10 PhD Computer Science Students

 Evaluation forms were given to all the
participants. The evaluation form contains 20
sentences in the Dataset selection. Also, the
evaluation form contains the explanation and
examples of syntax ambiguity and syntactic
ambiguity that can be found in SRS document. The
participants were asked to detect and mark syntax
and syntactic ambiguities in the form. The subjects
were given instructions to mark the ambiguity.

5.2 Automatic Ambiguity Detection
Experiment

 The aim of this experiment is to evaluate the
performance of ambiguity detecting tools that has
been developed based on the proposed approach. It
consists of three min windows: editor window,
graphical window and textual result window. Editor
window is the window which allows the users to
browse and process SRS document for detecting
ambiguity. Also the users can directly write the
requirements inside the editor window.
 Textual result window displays detected
ambiguous word in colored form. The syntax
ambiguity will be colored as red, syntactic as yellow

Syntactic Ambiguity

Sentence_Counter

Syntax Ambiguity

Sentence_Counter

syntax Ambiguity

Sentence_Counter
+

Syntactic Ambiguity

Sentence_Counter
)

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2281

and lexical as blue. Graphical result window shows
the detected ambiguity percentage in a graphical
representation. The tool works as followings: first,
the user uploads NL SRS document as a plain text
format. This browsed document can contain
ambiguity or not. Once the user browsed NL SRS
document into the system, the user clicks on check
ambiguity button. Then, the system generates the
result by syntax ambiguity as red, syntactic as blue
and both syntax and both syntax and syntactic
ambiguity in one sentence as yellow. Also, a
percentage of detected ambiguity will be displayed
as a pie chart in this phase.
 This pie chart displays the graphical
representation of the processed text such detected
syntax and syntactic ambiguity in NL SRS document
and non-ambiguous requirements. It contains four
sections: none ambiguity section, syntax ambiguity
section, syntactic ambiguity section and both syntax
and syntactic ambiguity section. Each section
represents the percentage of the processed data. Fig.
3 shows an example of the results with ambiguities
highlighted in different colors and Fig. 2 display the
charts.

6. RESULTS AND DISCUSSION

In Automatic Detection Experiment the results
of the tested tool show that the tool able to detect
syntax ambiguity and syntactic ambiguity
accordingly. It classified the tested data into syntax
ambiguity, syntactic ambiguity, both syntax and

syntactic ambiguity and none ambiguity. This
classification is done by highlighting the processed
SRS document in the tool. It can be observed that the
tool has generated a proper statistical pie chart which
divided the analyzed SRS document results into 4
slices. Moreover, the results of the experiment show
that the tool can display the percentage of detected
ambiguity in the tested data. This feature is
important for the analyst to know the percentage of
ambiguities in the document. Automatic Detection
Experiment result indicates that that the proposed
approach is able to detect syntax and syntactic
ambiguity automatically. Moreover, this result has
confirmed that POS tagging technique can be used
to detect syntax and syntactic ambiguity in SRS
document. It indicates that the tool managed to
detect and identify the overall syntax and syntactic
ambiguities in the Dataset sentences.

In Human detection experiment, the participants

are requested to classify 20 given sentences into four
groups namely: none-ambiguous group, syntax
ambiguity group, syntactic ambiguity group and
both syntax and syntactic ambiguity group. This
result also confirmed that detecting syntactic

Fig. 3. Example of the results with the Ambiguities Highlighted

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2282

ambiguity and both syntax and syntactic ambiguity
groups are harder than detecting none ambiguous
requirements and syntax ambiguity groups. It is not
easy to know that a sentence can be parsed into more
than 1 meaning. It requires a lot of knowledge. That
is what made syntactic ambiguity detection harder
than syntax ambiguity.

Moreover, Bot syntax and syntactic ambiguity

group detection is not easy because it contains two
types of ambiguities.

7 CONCLUSION

If the software requirements specified in SRS
document are not properly understood by the
software developers, the outcome will be
ambiguous. Ambiguity in SRS document can lead to
a project failure, highly maintenance costs, delayed
product releases or developing software which is not
fit to the user requirements. In order to solve this
problem, a NLP technique called parts of speech
tagging have been proposed to automatically detect
syntax ambiguity and syntactic ambiguity. A
prototype tool called Ambiguity detector in software
requirements has been developed to check the
effectiveness of the proposed approach. The tool

able to mark the ambiguous sentences and none
ambiguous sentence with a different highlighting
colors. This work gave us the chance to investigate
and explore the detection of ambiguous software
requirements in detail. The overall work has been
completed successfully.

As currently implemented, the tool has several
limitations; these limitations can be further
improved in the future work.

1. Now, the automatic ambiguity detection is

carried out only using txt format. The wok can
be further improved to allow the other standard
document formats such as DOC format and PDF
format.

2. The ambiguity detector tool can detect two
types of ambiguity only. It does not take into
account the other types of ambiguity such as
lexical ambiguity, scope ambiguity and
programmatic ambiguity. In the future, these
fragments can be added to the tool.

3. Currently, the tool does not support to save the
processed document. it just displays the
detected ambiguity without offering any saving
option. In the future, this should be considered

Fig. 4. Ambiguity detector chart

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2283

to improve the quality of ambiguity detector
tool.

The results and achievements of this research
hopefully will help the software analysts to improve
ambiguity detection in their SRS document.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Higher
Education of Malaysia, under the Fundamental
Research Grant Scheme (FRGS:
203/PKOMP/6711533).

REFRENCES:

[1]. Anuar, U., S. Ahmad, and N.A. Emran. A

Simplified Systematic Literature Review:
Improving Software Requirements
Specification Quality With Boilerplates. 9th
Malaysian Software Engineering Conference
(MySEC), 2015. 2015. IEEE.

[2]. Soares, H.A. and R.S. Moura. A methodology
to guide writing Software Requirements
Specification document. in Computing
Conference (CLEI), 2015 Latin American.
2015. IEEE.

[3]. Wanless, D., Securing our future health: taking
a long-term view. 2002, HM Treasury London.

[4]. Fockel, M. and J. Holtmann. ReqPat: Efficient
documentation of high-quality requirements
using controlled natural language. in 2015
IEEE 23rd International Requirements
Engineering Conference (RE). 2015. IEEE.

[5]. Beg, R., Q. Abbas, and A. Joshi. A method to
deal with the type of lexical ambiguity in a
software requirement specification document.
in Emerging Trends in Engineering and
Technology, 2008. ICETET'08. First
International Conference on. 2008. IEEE.

[6]. Takoshima, A. and M. Aoyama. Assessing the
Quality of Software Requirements
Specifications for Automotive Software
Systems. in Software Engineering Conference
(APSEC), 2015 Asia-Pacific. 2015. IEEE.

[7]. Umber, A. and I.S. Bajwa. Minimizing
ambiguity in natural language software
requirements specification. 2011 Sixth
International Conference on Digital
Information Management (ICDIM),. 2011.
IEEE.

[8]. Nigam, A., Nigam, B., Bhaisare, C., & Arya,
N. Classifying The Bugs Using Multi-Class

Semi Supervised Support Vector Machine.
2012 International Conference on Pattern
Recognition, Informatics and Medical
Engineering (PRIME),. 2012. IEEE.

[9]. Gill, K.D., Raza, A., Zaidi, A.M., & Kiani,
M.M. Semi-Automation For Ambiguity
Resolution, 27th Canadian Conference on
Open Source Software requirements. in
Electrical and Computer Engineering
(CCECE). 2014. IEEE.

[10]. Kamsties, E., D.M. Berry, and B. Paech.
Detecting ambiguities in requirements
documents using inspections. in Proceedings
of the first workshop on inspection in software
engineering (WISE’01). 2001.

[11]. Sandhu, G. and S. Sikka. State-of-art
practices to detect inconsistencies and
ambiguities from software requirements. 2015
International Conference on. Computing,
Communication & Automation (ICCCA),
2015. IEEE.

[12]. de Bruijn, F. and H.L. Dekkers.
Ambiguity in natural language software
requirements: A case study. International
Working Conference on Requirements
Engineering: Foundation for Software Quality.
2010. Springer.

[13]. Gleich, B., O. Creighton, and L. Kof.
Ambiguity detection: Towards a tool
explaining ambiguity sources. International
Working Conference on Requirements
Engineering: Foundation for Software Quality.
2010. Springer.

[14]. Nigam, A., Arya, N., Nigam, B., & Jain, D.,
Tool for automatic discovery of ambiguity in
requirements. International Journal of
Computer Science Vol. 9, 5,.

[15]. Bano, M. Addressing the challenges of
requirements ambiguity: A review of empirical
literature. in 2015 IEEE Fifth International
Workshop on Empirical Requirements
Engineering (EmpiRE). 2015. IEEE.

[16]. Gulia, S. and T. Choudhury. An efficient
automated design to generate UML diagram
from Natural Language Specifications. 2016
6th International Conference Cloud System
and Big Data Engineering (Confluence),. 2016.
IEEE.

[17]. Arendse, B., A thorough comparison of
NLP tools for requirements quality
improvement. 2016.

[18]. Popescu, D., Rugaber, S., Medvidovic N.,
& Berry, D.M. Reducing ambiguities in
requirements specifications via automatically
created object-oriented models. LNCS 5320,

Journal of Theoretical and Applied Information Technology
30th April 2018. Vol.96. No 8

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2284

2007. Springer.
[19]. Femmer, H., Fernandez, D.M., & Juergens,

E., Rapid requirements checks with
requirements smells: two case studies. in
Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering.
2014. ACM.

[20]. Shah, U.S. and D.C. Jinwala, Resolving
ambiguities in natural language software
requirements: a comprehensive survey. ACM
SIGSOFT Software Engineering Notes, 2015.
40(5): p. 1-7.

[21]. Korner, S.J. and T. Brumm. Resi-a natural
language specification improver. in Semantic
Computing, 2009. ICSC'09. IEEE
International Conference on. 2009. IEEE.

[22]. Umber, A., I.S. Bajwa, and M.A. Naeem.
NL-based automated software requirements
elicitation and specification. in International
Conference on Advances in Computing and
Communications. 2011. Springer.

[23]. Bajwa, I., M. Lee, and B. Bordbar,
Resolving syntactic ambiguities in natural
language specification of constraints.
Computational Linguistics and Intelligent Text
Processing, 2012: p. 178-187.

