
Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1799

SOFTWARE RELIABILITY PREDICTION IN VARIOUS

SOFTWARE DEVELOPMENT STAGES
MOHAMMAD IBRAIGHEETH (ABU-AYYASH)1, SYED ABDULLAH FADZLI2

Faculty of Informatics and Computing, Universiti Sultan ZainalAbidin, 21300 Kuala Terengganu,

Malaysia1,2

E-mail: 1mayyash2010@gmail.com;2fadzlihasan@unisza.edu.my

ABSTRACT

Software reliability prediction is performed at different stages during software development process to

assess if the software meets reliability requirement and avoid any potential software failures. Reliability

prediction methods play an important role in guiding software project decision makers to recognizing

strategies that can transform project outcomes from failure to success. This paper presents a summary of

several recently published reliability prediction methods. The presented approaches are classified into either

earlier or later stage. Various techniques for reliability prediction, such as probability, metric based, fuzzy

logic, and neural networks are discussed. The theoretical bases of these approaches are explained whereas

many of their limitations are identified. General points related to software reliability prediction topics are

concluded based on this review.

Keywords Software Reliability, Software development stages, Reliability Models, failure prediction,

software metrics

1. INTRODUCTION

The development of reliable and high-quality

software projects is crucial given the extensive

effect of software on the business and public

sectors. Every individual is affected in certain ways

by the presence of software [1]. All domains, such

as medical, education, defense, transportation, and

entertainment, are directly or indirectly affected by

software. Reliability is an attribute of quality that

must be considered in most safety-critical systems

[2]. Software reliability is defined as the

probability of failure-free operation for a specified

period in a specific environment [3]. Reliability has

become the main factor of quality that establishes a

successful software project. Consequently, various

techniques have been proposed for software

reliability prediction. This prediction is important

because it can facilitate decision makers in

extracting management decisions to avoid software

failures.

According to the Standish Group (2016) which is

a projects database that consists of 50,000

projects, 71% of projects in 2015 failed or were

challenged. One of the main reasons for software

project failure is the increase in complexity

because project developers continuously integrate

different subsystems into project completion [4].

Poor consideration and estimation of design

variables, such as reliability, quality, and user

satisfaction, can result in inconsistent,

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1800

incomplete, and complex systems [5]. Software

reliability prediction helps decision makers avoid

software failure by applying early modifications

that can improve project outcomes.

Software reliability prediction is performed

through various stages of the software

development life cycle (SDLC). In this study,

software reliability models are classified into two

categories, namely, earlier and later stages. This

paper aims to review several recent reliability

prediction models in the literature.

This paper presents a review of the various

techniques that are used for reliability prediction

in different SDLC stages. We summarize eight of

the most recent reliability approaches that have

been published in the last 10 years. The main

contribution of this study is to classify the

reliability prediction approaches based on the

development stages that take place on: earlier and

later SDLC stage models.

The scope of this paper is limited to describe and

compare several reliability prediction models

which have taken place during the last 10 years.

Also, this work is tightly restricted to the

available material which we believe will serve our

purpose. The drawn results of each model are

illustrated after each description. An assessment

and limitation description for each model is

presented.

The included models in this paper are limited to

the following criteria:

 The included models are published in the

last 10 years.

 The included models focus on reliability

prediction of software systems

 The prediction in the included models is

performed through the software development

process to predict the future reliability based

on a number of expected failures/ defects.

The rest of this paper is organized as follows.

Section 2 introduces the earlier stage reliability

models. Moreover, this section describes the

following four models in this category:

component-based reliability prediction [10],

component-based software reliability prediction

with fault tolerance mechanisms [11], defect

prediction using fuzzy logic [12], and reliability

prediction using requirement and object-oriented

design metrics [15], along with their assumptions,

capabilities, and outputs. Section 3 presents the

later stage of reliability models and describes the

following four models in this category that

recently appeared in the literature: software

reliability prediction with test coverage [16],

neural network ensemble approach [17], software

reliability prediction based on the Rayleigh

function [19], and neuro-fuzzy approach [21].

Section 4 discusses the prediction techniques and

their capabilities used in the presented

approaches. Section 5 concludes the study with a

general observation related to software reliability

prediction.

2. EARLIER STAGE RELIABILITY

MODELS

The earlier stage models aim to predict reliability

early during the requirement or design phase of

SDLC. The models for the requirement phase

utilize requirement metrics as an input to the model

to forecast the expected number of failures.

Various requirement phase metrics [12,15,22,23],

such as requirement stability, specification

regularity, function complexities, requirement

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1801

team experience, requirement defect density, and

many other metrics, are used.

The design stage models typically investigate the

effect of the architectural design components and

their usage profile on the overall system reliability

[9,10,11,24]. Certain design level approaches use

object-oriented design metrics [15,25,26], such as the

complexities of coupling, encapsulation, inheritance,

and cohesion.

The following discussions are summaries of

selected reliability prediction models performed in

the earlier stages of the software development

process. Four approaches with their corresponding

techniques are presented:

2.1 Component- Based Reliability

Prediction

This approach [10] aims to predict software

reliability early during the design stage by

proposing a framework for component reliability

prediction at the architectural level.

This approach assumes that the reliabilities of

individual components, which significantly

impact the overall system reliability, are unknown

during the architectural design level because the

component has not been implemented. Therefore,

the component operational profile is unavailable.

The approach used other available information,

such as expert intuitions, component simulation,

and other similar component logs, to produce the

component profiles and compensate the lack of

component information used for reliability

prediction.

This approach uses a discrete time Markov chain

process that consists of the following techniques:

 Set of states S = {S1, S2,..., SN}. This

approach involves two types of component

states, namely, normal and faulty behavior.

 Transition matrix P = {pij}, where pij

is the probability of transition from state Si to

state Sj.

The proposed component reliability prediction

framework comprises three phases as follows.

 Phase 1: Determining States

 In this phase, two types of states, namely,

normal and faulty behavior, are determined. The

normal behavior states B = {B1, B2,…,Bn} were

obtained directly from existing documentation on

the model under consideration. The faulty

behavior states F = {F1, F2,…,Fm} were

determined by applying a model defect analysis

technique [8], which finds and classifies

component inconsistencies in the architectural

models. The analysis result can be used to identify

these defects.

 Phase 2: Determining Transitions

This approach classifies transitions into three

types, namely, behavioral (transition from

behavioral to behavioral state), failure (transition

from behavioral to failure state), and recovery

(transition from failure to behavioral state). In

this phase, the probabilities for each transition

are determined using different processes

depending on available information. Possible

information sources include domain experts,

requirement document, simulation, and existing

similar components.

 The authors suggest using hidden Markov

models (HMMs) to obtain the probabilities of

behavioral transition; HMMs are defined as

follows:

 Set of states S = {S1, S2,..., SN} is the set

obtained from phase 1.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1802

 Transition matrix A = {Aij} represents the

state transition probabilities and can be

initialized with random values.

 Observation set O = {O1, O2,…, OM}

represents an event/action pair of the model.

 E = {Eik} is the observation probability

matrix, which denotes the probability of event

Ok that occurs in state Si. This matrix is also

initialized with random values.

 The training data that are used to train the

HMMs are generated using available information

sources, namely, expert knowledge, similar

components, and available simulation traces.

fij and rkl were defined to obtain failure and

recovery probabilities. fijis the probability of

evolving to failure state from Fj, which originates

from behavior state Bi, whereas rkl is the

probability of shifting from defect K to behavioral

state Bl after recovery. The assignment of values

for fij and rkl can be used by varying the failure

and recovery probabilities, observing their effects

on reliability, exploiting available information

sources, and then suggesting a range of values for

fij and rkl.

 Phase 3: Computing Reliability

 A component reliability obtained from this

model can be expressed as follows:

𝑹 = 𝟏 − ∑ 𝝅(𝑭𝒊)
𝑴
𝒊ୀ𝟏 ,

where𝜋(𝐹௜) is the probability that the component

is in failure state i and its value can be obtained

from domain experts.

The proposed approach addresses the problem of

predicting reliability in the component design

level by leveraging available information sources

and focuses only on reliability prediction for

individual components. Error propagation is

disregarded in the study presented in [9], which

can lead to inaccurate prediction results. The

proposed approach also assumes that each

component independently fails, thereby

indicating that the component will recover from

one failure before encountering another failure.

Therefore, this approach is unsuitable for

multi-threaded components. Furthermore, this

approach is validated by only one example,

namely, the SCRover controller component,

which may pose a limitation to the model.

2.2 Component-based Software Reliability

Prediction with Fault Tolerance

Mechanisms (FTMs)

This approach [11] aims to predict reliability in

the architectural-design level with FTMs to

improve component reliability and obtain

accurate reliability prediction. This approach also

aims to predict and improve reliability using the

following six steps:

Step1: Creating Specification for Component

Reliability

In this step, the component developer creates

modeling elements, such as components, services,

and service implementation. Each component

provides multiple service implementations,

whereas the model supports four types of service

implementation structures, namely, sequential,

branching, looping, and parallel. Each

implementation provides various activities, such

as internal or calling from other components.

The developer then introduces failure models and

fault tolerance structures (FTS). Failure models refer

to failure types and the probabilities of their

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1803

occurrence. FTS consists of activities that handle

specific failure types. This approach introduces

different FTSs, such as RetryStructure and

MultiTryCatchStructures. RetryStructure uses

service re-execution to handle failures, whereas

MultiTryCatchStructures is similar to exception

handling in object-oriented programming and is

composed of two or more parts. For example,

MultiTryCatchStructures uses one part to model the

normal execution and another part to handle specific

failures.

Step2: Creating System Reliability Model

This step includes system architecture and usage

profile modeling. System architecture modeling

includes creating instances for each component

and connecting them to obtain the required

functionality. Usage profile comprises

component services, their sequences,

probabilities of transitions between them, and

collection of different use cases probabilities.

Step3: Transforming Model

The created component reliability specification

and reliability model are transferred into the

Markov models.

The success probability sp(ia) for internal activity

(ia) can be calculated as follows:

sp(ia) = 𝟏 −෍ 𝐟𝒑𝒋
𝒎

𝒋ୀ𝟏
(𝒊𝒂),

 where m is the number of failure types, and

f𝑝௝(𝑖𝑎) is the probability of different failure

types to occur. sp and f𝑝௝ are calculated

differently and varies based on the type of service

structure (sequential, branching, looping, or

parallel)

Step4: Reliability Conclusion

In this step, reliability prediction is deduced,

whereas sensitivity analysis is performed by

analyzing the Markov models.

This approach defines reliability as follows:

𝑹 = 𝟏 − 𝑷𝑶𝑭𝑶𝑫,

where POFOD is the probability of failure on

demand, which denotes that reliability is

equivalent to the probability of service success.

Therefore, service is provided for users as

indicated in the usage profile.

Step5: Applying Possible Modifications

If the prediction does not meet the reliability

requirement, then the developer may apply

different modifications, such as revising the

components and usage profiles and reconfiguring

the FTSs. Otherwise, perform Step 6.

Step6: Component Implementation

This step includes implementing real system

components, following the applied architectural

model.

This approach is validated using only two case

studies. Similar to the previously described

approach of Cheung et al. [10], the proposed

approach assumes that failure for each component

independently occurs. Furthermore, this approach

neglects the effect of component propagation

error. One of the main limitations of this approach

is that it assumes that the transition of control

among the components follows the Markov

property. This assumption indicates that this

approach is inapplicable to different domains.

This approach has not defined the specific

methodology for estimating failure probability,

usage profile, and FTS metrics. This approach

assumes that these estimations could be obtained

from available system document and

specifications.

2.3 Defect Prediction using Fuzzy Logic

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1804

This approach [12] presents a fuzzy logic-based

model for reliability prediction using software

size (KLOC) and three requirement phase metrics

to predict residual defects that could be found

during the testing phase. The authors selected the

three requirement metrics based on the study

presented in [13], which specifies twelve metrics

that are available during the requirement phase.

The three selected metrics are as follows:

 ERT: Experience of Requirement Team.

This metric measures the project team relevant

skills and experiences through the SDLC

requirement phase analysis.

 RDD: Requirement Defect Density. This

metric measures defective requirement rates,

which are obtained by reviewing requirement

specifications.

 RS: Requirement Stability. This metric is a

measure of client requests for changing during the

requirement phase. A high level of changing

requests leads to low requirement stability.

The abovementioned metrics are used as inputs to

the implemented fuzzy model. The length of

program measure (KLOC) is used as an indication of

software complexity that directly affects the

software residual defects and is used in model

development. The model output is the predicted

number of residual defects before the testing phase

that could help in selecting the strategy for testing

during the SDLC testing phase.

Fuzzy rules are designed with the following general

form after assigning membership functions (to

represent linguistic states: low (L), medium (M), and

high (H)) for the three inputs and outputs.

IF ERT is L/M/H, RDD is L/M/H, AND RS is

L/M/H, THEN the number of defects is L/M/H.

The maximum value for all input metrics is 1

whereas the maximum value for output metric is

evaluated based on historical information of similar

software projects or using the following equation

based on the study presented in [14].

𝑫 = 𝟒. 𝟐 + 𝟎. 𝟎𝟎𝟏𝟓(𝑳)
𝟒

𝟑,

where D is the total number of defects, and L is the

number of line of code (LOC).

All rule consequent parts are aggregated to one

fuzzy set, and this set is defuzzified to obtain a final

crisp value, which represents the predicted number

of defects before testing. This predicted number is

considered an indicator of software reliability.

One of the main limitations of this approach is that

only four metrics were considered to predict

reliability, where other possible factors could be

used to obtain an accurate model.

2.4 Reliability Prediction using

Requirement and Object-oriented Design

Metrics

This model [15] uses metrics from the requirement

and design levels to predict software reliability

through the fuzzy interference system. This

approach selects the following measures from the

requirement stage and input requirement phase

fuzzy model.

 Requirement Stability (RS): High RS leads to

high reliability.

 Regularity of Specification and Documentation

Reviews (RIW): High RIW leads to a reliable

system.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1805

 Requirement Defect Density (RFD): High

RFD leads to low reliability.

 Complexity of New Functionality (RC): High

RC leads to low reliability

Moreover, additional four metrics from the

“object-oriented” design phase are used as inputs to

the design stage fuzzy model.

 Complexity of inheritance metric (IMc): This

metric is the number of methods inherited by a

class. Reliability decreases with the increase in

IMc..

 Complexity of coupling metric (CMc):

coupling metric measures class dependencies.

Reliability decreases with the increase in CMc.

 Complexity of encapsulation metric (EMc):

Encapsulation conceals the internal programming

of an entity and can be observed only by its

interface. Encapsulation simplifies the program

modifications. Therefore, reliability increases

with the increase in EMc.

 Complexity of cohesion metric (CoMc):

Cohesion metric measures the relationship among

the elements in each class. Reliability increases

with the increase in CoMc.

The abovementioned eight metrics are used as inputs

to the model. Two outputs, namely,

requirement-level reliability (RLR) and design-level

reliability (DLR), are selected. RLR is the output of

the requirement stage fuzzy model and is used as an

input to the next design stage fuzzy model. DLR is

the output of the design stage model. The

membership functions of the model are developed

based on domain experts and are categorized into

very low, low, medium, high, and very high after

selecting the inputs and outputs of the model. Then,

fuzzy rules are defined for models in each stage in an

IF–THEN form. Presently, fuzzification is

performed by combining all rules from the THEN

parts for each model to obtain the final output sets.

Furthermore, defuzzification is performed to obtain

crisp values for RLR and DLR.

This approach considers only four requirement- and

four design-level object-oriented metrics. Other

possible metrics for increasing reliability prediction

accuracy may be considered. In this approach,

reliability has no specific definition, thus, a specific

reliability measure does not exist. Reliability can be

increased or decreased depending on the changes in

the eight input metrics.

3. LATER STAGE RELIABILITY MODELS

Many of the later stage reliability models predict

reliability during the SDLC testing phase or even

during system usage [16,17,19,21,27].

The times for software testing and between failures

or any parameter that is related to testing data are

used as the model input. The expected number of

failures is a common model output. Software

reliability growth models (SGRMs) are known as

major reliability prediction and estimation models.

SGRMs consider testing failure data or other metrics

if data are unavailable in reliability prediction.

SGRMs are mathematical models, which show that

reliability is improved while faults are predicted and

corrected. SGRMs relate the test (failure) data to

popular mathematical functions, such as exponential

and logarithmic.

3.1 Software Reliability Prediction with Test

Coverage

This approach [16] proposes a software reliability

model that integrates two factors to predicting

reliability: time between failures (failure intensity)

and software testing coverage. Therefore, the

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1806

number of failures detected during testing is related

to execution time and test coverage. The following

failure intensity function, which is related to time

and coverage, is derived.

𝝀(𝒕, 𝒄) = 𝜶𝟏𝜸𝟏𝒆
ି𝜸𝟏𝒄𝝀𝟏(𝒕) + 𝜶𝟐𝜸𝟐𝒆

ି𝜸𝟐𝒕𝝀𝟐(𝒄),

whereλଵ(t) is the time failure intensity function, and

λଶ(c) is the coverage failure intensity function.

αଵ,γଵ,αଶ, γଶare constants.

For the time failure intensity function λଵ(t), one of

the popular SGRMs can be used because SGRMs

depend on execution time during testing to predict

the number of failures.

For the coverage failure intensity function λଶ(c),

two models, namely, hyper-exponential and beta,

are proposed. In the hyper-exponential model, the

authors assume that the fault and test coverage

follow the G–O reliability growth model. In the Beta

model, the authors assume that the fault and test

coverage follow the nonhomogeneous Poisson

process model.

The failure detection in this approach is related not

only to the software testing execution time but also

to the volume of code that has been executed during

testing. One of the main limitations of this approach

is the requirement for collecting coverage

measurements during the testing time, which could

be unavailable.

3.2 Neural Network Ensemble Approach

This approach [17] uses neural network ensembles

(PNNEs) to predict software reliability. The

proposed model uses software execution time as an

input, whereas the output of this system is the

expected number of failures. The ensemble of the

neural networks consists of the number of neural

network components. Each component contains a

three-layer feed-forward neural network, whereas all

components have an identical architecture as

follows: input, hidden, and output layers. Each

component is trained with the initial weight. Then,

the weights are adjusted by using training data based

on the Levenberg–Marquardt learning algorithm

[18]. The neural network component outputs are

then combined to produce the final output. The

output can be the average, median, or weighted rule

of all component outputs.

In this model, a part of failure data is used as training

data. The trained model is then used to check the

remaining data. The predicted number of failures

based on the remaining training data for a certain

execution time is compared with the actual number

of failures to measure the model performance. Two

real-time datasets are used to measure the model

performance. Among the three output combinations,

the median rule provides the best performance,

whereas the average rule is the worst. The

performance of this model will improve if the

number of neural network components in the PNNE

increases.

This approach is non-parametric and does not have

the difficulties of parametric models because

creating many assumptions and deriving complex

mathematical formulas are unnecessary. This model

is applied to two datasets, and its performance is

compared with the single neural network model and

certain traditional SGRMs. The prediction results

show that this model has a low prediction error. The

main limitation of this model is the requirement to

obtain statistical data to train the neural network

components for each new software project.

3.3 Software Reliability Prediction based on the

Rayleigh Function

This approach [19] is based on the Rayleigh function

for predicting the number of defects throughout the

testing process. Figure.1 illustrates the Rayleigh

curve. In this model, the Rayleigh function

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1807

represents the number of defects present at a certain

period (that is, the Rayleigh functionrepresents the

rate of defects present).

Figure.1. Rayleigh Curve

The proposed prediction model is based on the

assumption that the same organization releases of a

given product behave similarly to that of the same

defect rate. Furthermore, defect density is related to

values, such as the number of code lines and number

of errors in previous testing stages. Therefore, the

number of defects can be predicted for the second

release of a given product based on the Rayleigh

function and these values.

This study uses the second version of a product as an

application, thus indicating that the testing starts

from a stable product version. Defect data are

collected from previous releases, whereas the

expected total number of defects is calculated using

linear regression. Defect prediction starts by

obtaining the testing starting date and project

duration. The maximum point of the Rayleigh curve

(tmax) is determined given the two points. According

to [20], approximately 40% of defects at tmaxisfound.

The expected total number of defects and defect rate

is calculated based on this observation.

The total number of obtained defects could be

different every release, depending on the features

implemented for each release, their complexity, and

other product variables that are hard to determine at

the beginning of the testing phase. The prediction

accuracy of this approach depends on the

correctness of estimating the Rayleigh function

parameters.

3.4 Neuro-Fuzzy Approach

This approach [21] uses fuzzy logic with neural

networks in software reliability prediction. The

fuzzy min–max algorithm, which is one of the

neuro-fuzzy algorithms is used to optimize the

recurrent neural network by selecting the optimal

number of nodes in its hidden layer. Failure data are

used as the input to the model. Then, the fuzzy

min–max algorithm is used to determine the initial

number of hidden layer neurons of the neural

network. The network is initially framed with the

basic number of hidden layer neurons and is

dynamically reconfigured to predict the next failure.

The cumulative execution time is used as the input to

the recurrent neural network, whereas its output is

the number of failures.

The recurrent neural network is trained using the

back-propagation algorithm. The number of failures

and cumulative execution time in the failure dataset

is used as input to the network to predict the next

step failure. The input dataset is structured as pairs

of failure sequence number and time and is used to

predict the next step failure. For validation of the

model output, 80% of the dataset is used as the

training data to train the network whereas 20% of the

dataset is used as the test data. The average, root

mean square, and mean absolute errors are used as

parameters for checking the prediction accuracy.

These parameters obtain the difference between the

predicted and the actual values.

In this approach, a combination of fuzzy logic and

neural network is used to handle reliability

prediction. One limitation of this system is the

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1808

arbitrary partitioning of the dataset into training and

testing data. In addition, the weights are selected as

random values in the neural network training

process, whereas the result values are different, even

for the same dataset and learning rule.

4. Software Reliability Prediction Techniques

and Their Capabilities

Table 1 summarizes the eight reliability prediction

techniques that are presented in this study. These

techniques are classified based on their SDLC stage.

The table describes the prediction techniques used in

each approach and their capabilities.

5. ANALYSIS AND DISCUSSION

In the previous sections, a description of various

software reliability prediction approaches has

been presented. Each of described approaches

could be accurate in certain cases and their

performance cannot be exactly compared.

Therefore, we cannot determine which approach

is better than the other. Each approach is

categorized based on development stage in which

it takes place. Table 1 presents the techniques

used and the capabilities of each approach. Some

techniques use design stage metrics and hence can

be applied in this stage. For example the approach

used by [10] addresses the problem of reliability

prediction in the component design level by using

available information sources, and it focuses only

on the reliability prediction for individual

components. Also it assumes that each

component independently fails, therefore, this

approach cannot be applied for multi-threaded

components. Other models depend on statistical

metrics such as LOC for reliability estimation.

These models can be applied once the metrics are

available (LOC metric is available after

implementation stage).

Fuzzy Logic and neural network techniques have

the ability to predict reliability early in SDLC,

even if the software metrics are not available. For

example, in requirement and design phases, LOC

metric is not available. These approaches also

need similar or historical data from similar

software projects to train the predictive model

[17].

In this paper, many limitations are identified for

the presented approaches. For example, the

proposed approach in [11] which is component

based reliability prediction model, neglects the

effect of component propagation error, also it

assumes that the components follow the Markov

property which make this approach not applicable

to different domains. In [12 and 13], a limited

number of metrics were considered to predict the

reliability. However, other possible metrics could

be used to obtain more accurate model. The

approach presented in [16] depends on collecting

measurement about the volume of executed code

during testing time which could be unavailable.

Another example of performance limitations

identified in [19], is that the prediction accuracy

depends on the correctness of estimating the

Rayleigh function parameters. Also the Neuro-

Fuzzy approach proposed in [21] has limitations

such as: an arbitrary partitioning of the dataset

into training and testing data is performed, and the

weights for neural network training process are

selected randomly.

6. CHALLENGES FOR RELIABILITY

PREDICTION AND RESEARCH

DIRECTIONS

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1809

Even though there are many reliability prediction

models are proposed in the literature, the applying

of those models in practice has many challenges:

 Most models are verified using certain cases.

However, the prediction model could not be

applicable for other software projects. Finding a

general reliability prediction approaches are

required.

 The metrics used in reliability prediction

models could not ensure an accurate

prediction. As a new software projects appear,

many other metrics can be extracted and

investigated.

 Many software project datasets are not

shared by the software companies because of

privacy issues [28]. Thus, the prediction

models may be very limited to some of

publically available datasets and open source

software projects. Increasing the available

datasets will improve the prediction model

evaluation process.

 Usually, the publically available datasets are

extracted from different domains and contain

different metrics types. Usingthe

cross-analysis to identify a common reliability

metrics (factors) will be helpful for producing

general prediction approaches.

7. CONCLUSION

Software reliability prediction is important topic

in software system engineering. Reliability

prediction can improve the quality of software

systems and convert their overcome from failure

to success. This paper describes eight reliability

prediction models which have taken place during

the last 10 years, and it is limited to describe and

compare the techniques used in those models.

Software reliability prediction and analysis are

performed during different SDLC stages. The

prediction results can be used as indicators of

quality and provide feedback to the software

project decision makers in improving project

performance and avoiding expected failures.

Most models were verified using certain case

studies, and were implemented based on specific

failure metrics. Consequently, those models could

not be applicable for other projects. Therefore, it

is a necessity to develop prediction models to be

generally applied on any software project.

Cross-analysis approach could be used to figure

out the common failure factors of the different

projects in order to develop new prediction

models. Also, most of those models are

implemented to predict the reliability during

specific phase of SDLC. There is a need to

develop predictive tool that can be used during

any phase of SDLC.

The following points comprise the conclusion of our

study:

a. Software reliability is a function of the

expected number of failures in the considered

software.

b. In general, reliability prediction depends

on available failure data or/and software metrics

collected during various stages of the software

implementation process.

c.The selection of the model structure is one of

the main issues in the reliability prediction

process. Several models are probability-based,

whereas other models use additional techniques,

such as soft computing techniques.

d. The Markov model is an example of

probability-based models, whereas fuzzy logic

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1810

and neural network approaches are examples of

soft computing reliability models.

e. Soft computing approaches are useful in

cases, where the relationship between model

input and predictive output is nonlinear or

deviates from a regular form.

f. Model parameter estimation is typically

performed using available failure data or by

analyzing software requirement and

specifications.

g. The validation of prediction approaches

is typically performed using software project

case studies and by comparison with other

model implementations.

h. Several models are suitable for certain cases.

However, they are not the best option for other

cases.

i. The evaluation of prediction model accuracy

is determined based on measures, such as average

and root mean square errors that find the

difference between the actual and predicted

values.

REFERENCES

[1]Dalal SR, Lyu MR, Mallows CL. Software

Reliability. Encyclopedia of Biostatistics.

2005. (book)

[2]Pandey AK, Goyal NK. Early Software

Reliability Prediction.Springer, India; 2015.

[3]Radatz J, Geraci A, Katki F. IEEE standard

glossary of software engineering terminology.

IEEE Std. 1990 Sep;610121990(121990):3.

[4]Ryan J, Sarkani S, Mazzuchi T. Leveraging

variability modeling techniques for architecture

trade studies and analysis. Systems

Engineering. 2014 Mar 1;17(1):10-25.

[5]Eisner H. Managing complex systems: thinking

outside the box. John Wiley & Sons; 2011 Jan

6.

[6]Cai X, Lyu MR. Software reliability modeling

with test coverage: Experimentation and

measurement with a fault-tolerant software

project. InSoftware Reliability,

2007.ISSRE'07. The 18th IEEE International

Symposium on 2007 Nov 5 (pp. 17-26). IEEE.

[7] Pham, H, System Software Reliability:

Reliability Engineering Series, Springer; 2006.

[8] Roshandel R, Schmerl B, Medvidovic N, Garlan

D, Zhang D. Understanding tradeoffs among

different architectural modeling approaches.

InSoftware Architecture, 2004. WICSA

2004.Proceedings. Fourth Working IEEE/IFIP

Conference on 2004 Jun 12 (pp. 47-56). IEEE.

[9] Cortellessa V, Grassi V. A modeling approach to

analyze the impact of error propagation on

reliability of component-based

systems.Component-Based Software

Engineering. 2007:140-56.

[10] Cheung L, Roshandel R, Medvidovic N,

Golubchik L. Early prediction of software

component reliability.InProceedings of the 30th

international conference on Software

engineering 2008 May 15 (pp. 111-120).ACM.

[11] T.-T. Pham and X. Defago, “Reliability

prediction for component-based software

systems with architecturallevel fault tolerance

mechanisms,” in Proc. of the 8th International

Conference on Availability, Reliability and

Security (ARES’13), Regensburg, Germany.

IEEE, September 2013, pp. 11–20.

[12] Yadav DK, Charurvedi SK, Mishra RB. Early

software defects prediction using fuzzy logic.

International Journal of Performability

Engineering. 2012 Jul 1;8(4):399-408.

[13] Li M, Smidts CS. A ranking of software

engineering measures based on expert opinion.

IEEE Transactions on Software Engineering.

2003 Sep;29(9):811-24.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1811

[14] Gaffney JE. Estimating the number of faults in

code.IEEE Transactions on Software

Engineering. 1984 Jul(4):459-64.

[15] Rizvi SW, Khan RA, Singh VK. Early Stage

Software Reliability Modeling using

Requirements and Object-Oriented Design

Metrics: Fuzzy Logic Perspective.

International Journal of Computer

Applications. 2017;162(2).

[16] Cai X, Lyu MR. Software reliability modeling

with test coverage: Experimentation and

measurement with a fault-tolerant software

project. InSoftware Reliability, 2007.ISSRE'07.

The 18th IEEE International Symposium on

2007 Nov 5 (pp. 17-26). IEEE.

[17] Zheng J. Predicting software reliability with

neural network ensembles.Expert systems

with applications. 2009 Mar

31;36(2):2116-22.

[18]Haykin SS. Neural networks: a comprehensive

foundation. Tsinghua University Press; 2001.

[19] Vladu AM. Software reliability prediction

model using rayleigh function. Politehnica

University Scientific Bulletin. 2011;73(4).

[20] Laird L. In Praise of Defects Stevens Institute

of Technology.Retrieved September 20, 2013.

[21] Bhuyan MK, Mohapatra DP, Sethi S.

Software Reliability Prediction using Fuzzy

Min-Max Algorithm and Recurrent Neural

Network Approach. International Journal of

Electrical and Computer Engineering. 2016

Aug 1;6(4):1929.

[22] Radjenović D, Heričko M, Torkar R,

Živkovič A. Software fault prediction metrics:

A systematic literature review. Information

and Software Technology. 2013 Aug

31;55(8):1397-418.

[23] Li M, Smidts CS. A ranking of software

engineering measures based on expert

opinion. IEEE Transactions on Software

Engineering. 2003 Sep;29(9):811-24.

[24] Gokhale SS, Trivedi KS. Reliability

prediction and sensitivity analysis based on

software architecture. InSoftware Reliability

Engineering, 2002.ISSRE 2003.Proceedings.

13th International Symposium on 2002 (pp.

64-75). IEEE. (conference)

[25] Anil K, Namrata D. Reliability Estimation of

Object-oriented Software: Design Phase

Perspective. International Journal of

Advanced Research in Computer and

Communication Engineering.

2015;4(3):573-7.

[26] Yadav A, Khan RA. Reliability Quantification

of an OO Design-Complexity

Perspective.InAdvances in Computer Science,

Engineering & Applications 2012 (pp.

577-585). Springer, Berlin, Heidelberg.

[27] Okamura H, Dohi T. A novel framework of

software reliability evaluation with software

reliability growth models and software

metrics.InHigh-Assurance Systems

Engineering (HASE), 2014 IEEE 15th

International Symposium on 2014 Jan 9 (pp.

97-104).IEEE.

[28] Peters F, Menzies T. Privacy and utility for

defect prediction: Experiments with morph.

InProceedings of the 34th International

Conference on Software Engineering 2012

Jun 2 (pp. 189-199). IEEE Press.

Table 1: Software Reliability Prediction Techniques and Their Capabilities

Section SDLC Techniques Used Capabilities

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1812

stage

2.1

Earlier

 Uses available information, such as expert knowledge and component simulation to

produce the component usage profiles.

 Uses the Markov chain process to compute component failure probability.

Reliability prediction for

design-level individual

components

2.2

 Defines failure types and probabilities of their occurrences.

 Provides FTS activities to handle specific failure types.

 Uses the Markov process for reliability and sensitivity analyses.

 Component-based

architectural design-level

reliability prediction

 Presents FTM to improve

prediction accuracy

2.3

Uses the fuzzy logic system for reliability prediction through KLOC and three

requirement phase metrics.

Predicts residual defects

that may occur during the

testing phase

2.4
Uses four metrics from the requirement phase and four from the design phase to

predict software reliability through the fuzzy interference system.

Provides two outputs,

namely, RLR and DLR.

3.1

Later

 Relates software execution time and testing coverage to find failure-intensity

function

 Uses SGRMs to predict the number of failures based on the testing execution time.

 Two models for finding coverage failure intensity have been proposed.

Predicts reliability during

the testing time based on

two factors, namely, the

time between failures and

software testing coverage.

3.2

 Uses PNNE to predict software reliability.

 Uses software execution time as the input.

 Trains the network using failure datasets.

The output of this system is

the expected number of

failures.

3.3

 The prediction of the number of defects throughout the testing process is based on

the Rayleigh function.

 Assumes that the same organization releases of a given product behave similarly to

that with the same defect rate.

 Relates to defect density to values, such as the number of code lines and number of

errors in the previous testing stages.

Predicts the number of

defects for the second and

later releases of a given

product.

3.4

 Uses fuzzy logic and neural networks.

 Uses fuzzy min–max algorithm to optimize the recurrent neural network.

 Uses cumulative execution time as the input to the recurrent neural network.

 Uses failure data as the input to the model.

Predicts the next-step

failure based on pairs of

failure sequence number

and time.

