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ABSTRACT 
 

In this paper, an efficient one-layer recurrent neural network model which is differential inclusion-based is 
proposed for solving nonsmooth pseudoconvex optimization problems subject to linear equality constraints. 
The optimal solution of the original optimization problem is proven to be equivalent with the equilibrium 
point of the proposed neural network. In addition, the stability of the proposed neural network in the 
Lyapunov sense and globally convergence to an optimal solution are proven. Some illustrative examples 
are given to show the effectiveness of the proposed neural network. In addition, an application for condition 
number optimization is discussed. 

Keywords: Differential inclusion-based method, Nonsmooth optimization, Recurrent neural network, 
Lyapunov stability. 

 
1. INTRODUCTION  
 
     Consider the following constrained nonlinear 
optimization problem: 
                               min f(x)   

                       subject to Ax=b,                     (1) 

 where 1 2( , ,..., )T n
nx x x x  ¡ , m nA  ¡  and 

mb  ¡ . The objective function f is not necessary 
to be convex or smooth on the feasible 

region { | }.nx Ax b   ¡  Constrained 

optimization problems have many applications in 
science and engineering, such as robot control, 
signal processing, manufacturing system design, 
and pattern recognition [1] and [2]. Various types 
of neural network models have been proposed for 
solving optimization problems since 1960's. The 
first neural network model is proposed by Tank and 
Hopfield [3] which was introduced to solve linear 
programming problems. Other kinds of neural 
networks for solving linear and nonlinear 
optimization problems have been inspired by this 
neural network. For instance, a neural network for 
solving nonlinear programming problems presented 
in [4]. The structure of the proposed neural network 
model is based on Newton-type descent and finite 
penalty parameters used in this model. A significant 
problem arises for such neural network, when the 
penalty parameter is very large. Lagrangian 
networks are another type of neural networks which 

are constructed to solve nonlinear programming 
problems with equality constraints [5] and [6]. 
Projection-type neural network models belong to a  
class of neural network models  which are designed 
to solve nonlinear convex programming problems 
(for example see [7]). Some projection neural 
networks which are proposed to solve general 
convex and nonlinear programming problems are 
globally convergent to an exact optimal solution [8] 
and [9]. Most existing neural network models are 
designed to solve convex optimization problems 
whereas, there are not many models to solve 
nonconvex ones, unless for problems with very 
limiting properties. In recent years, some efforts 
have been made to design models to solve 
nonsmooth nonconvex optimization problems, such 
as the model which is proposed by Liu and Wang 
[10]. This model proposed to solve a particular case 
of nonconvex problems which has a complicated 
structure and cannot be applied in engineering 
applications. Moreover, Guo et al. introduced some 
models which are applicable to solve nonsmooth 
nonconvex problems with pseudoconvex objective 
functions. The first model was designed to solve 
problems with linear equality constraints [11]. 
Then, they extended this model for solving 
problems containing linear equality and bound 
constraints [12]. The structure of all presented 
neural networks are based on a differential 
inclusion with some penalty parameters. Among 
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nonconvex optimization problems, ones with 
pseudoconvex objective functions have many 
applications, such as computer vision [13], 
production planning, financial and corporate 
planning [14], fractional programming [15] and 
[16], healthcare and hospital planning, and 
frictionless contact analysis [17]. Solving 
nonsmooth optimization problems is difficult, even 
in unconstrained cases. In recent years many 
researchers proposed recurrent neural networks 
models for solving nonsmooth convex optimization 
problems (for example see [18], [19], [20], [21], 
[22], [23] and [24]); however, there are not many 
articles for solving nonsmooth pseudoconvex 
optimization problems. Most of existing models for 
solving nonsmooth pseudoconvex optimization 
problems are based on penalty parameters or 
penalty functions, such as proposed models in [10], 
[12], [22], and [36]. In fact, the effectiveness of 
these methods depends on the exact penalty 
parameter. Obviously, calculation of the penalty 
parameters is difficult in real utilizations. In spite of 
the lower complexity of the model in some cases, 
the speed of convergence is less than usual, for 
example in the case of model in [12]. In [31], in 
order to guarantee the convergence of the model for 
differentiable pseudoconvex optimization 
problems, the initial points must be chosen from 
inside the feasible region in advance. This may be 
computationally costly depending on the problem’s 
structure. To overcome the above difficulties, we 
extend the model proposed in [11] and [31] to 
nonsmooth case which is not penalty-based, i.e. a 
one-layer recurrent neural network is presented for 
solving nonsmooth pseudoconvex optimization 
problems with linear equality constraints. The 
model is global, that is, there is no need to choose 
the initial point from inside the feasible region. We 
prove the global convergence of the proposed 
neural network and also its stability in the sense of 
Lyapunov for nonsmooth pseudoconvex 
optimization problems.  The reminder of paper is 
organized as follow. Some definitions and relevant 
preliminaries are discussed in Section 2. In Section 
3, we construct the neural network model. The 
stability and global convergence of the proposed 
neural network are analyzed and proved in Section 
4. Section 5 presents some illustrative examples 
including quadratic fractional programming 
problem and condition number optimization 
problem to show the effectiveness and performance 
of the proposed neural network. Finally, in Section 
6, some conclusions are presented. 
 
 

2. PRELIMINARIES 

        In the section, some definitions and lemmas 
are presented for the convenience of later 
discussions. Note that 1l  and 2l  norms of a vector 

in n¡ are presented by 1P P and 2 ,P P respectively. 

Definition 1. [25] Suppose that X  and Y  be two 
sets. A set valued map F  from X  to Y  is a map 
that associates a subset ( )F x  of Y  to any 

point .x X  

Definition 2. [25] A set valued map F  with 
nonempty values is said to be upper semicontinuous 

(U.S.C.) at 0x X  if for any open set N  

containing 0( )F x  there exists a neighborhood M  

of 0 ,x  such that ( )F M N . Also, F  is U.S.C. 

if and only if it is U.S.C. at every 0 .x X  

Definition 3. [25] For a function : nf ¡ ¡ , if 
there exists 0   for any given 0ò , such that for 

any 1 2, ,nx x  ¡  satisfying 1 2x x  P P  

and 2 2x x  P P , we have 

1 2 1 2 2| ( ) ( ) |f x f x x x  P Pò , then f  is said to be 

Lipschitz near .nx  ¡  The function f  is said to 

be locally Lipschitz in ,n¡  if f  is Lipschitz near 

any point .nx  ¡  

Definition 4. [26] Suppose that f  is Lipschitz 

near .nx  ¡  Then 0 ( ; )f x v  is said to be the 

generalized directional derivative of f  at x  in the 

direction of any vector nv  ¡  which is defined as 

0

, 0

( ) ( )
( ; ) supl m ,i

y x t

f y tv f y
f x v

t 

 
  and we 

define the Clarke's generalized gradient of f  at x  

as 0( ) { : ( ; ) , }.n T nf x y f x v y v v     ¡ ¡  

Definition 5. [26] A function f is said to be 

regular at x  if for all :nv  ¡  

(1) there exists the usual one-sided directional 
derivative ( ; )f x v  which is given by 

0

( ) ( )
( ; ) lim ;

f y v f y
f x v






    
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(2)  0( ; ) ( ; ).f x v f x v   Clearly, any convex 

function is regular. 

Lemma 6. (Chain Rule Clarke [26]) If 

: nW ¡ ¡  is regular at ( )x t  and 

( ) : nx t ¡ ¡  is differentiable at ,t  and Lipschitz 

near ,t , then 

( ( ))
, ( ( )) 

 . . [0, ),

TdW x t
x W x t

dt
for a e t

   

 

&
 

Definition 7. [27] Let a set n  ¡  is nonempty 
closed convex set. A function :f  ¡  is said to 

be pseudoconvex on   if, for every pair of distinct 
points 1 2,x x 

1 1 1 2 1

2 1

 ( ) ( ) : ( ) ( ) 0

( ) ( ).

Tx f x x x x

f x f x

    
 

 

Definition 8. [27] Let n  ¡  is a nonempty 

closed convex set. A set valued map : mF  ¡  
is said to be pseudomonotone on   if, for every 
pair of distinct points ,x y  , 

( ) : ( ) 0

( ) : ( ) 0.

T
x x

T
y y

F x y x

F y y x

 

 

   

   
 

Assumption 9. ( )I : nf R R is pseudoconvex 

and regular on the feasible 

region { | }.nx R Ax b     

( )II  m nA R   is a full row-rank matrix, i.e. 

( ) .rank A m n   

( )III  There exists at least one optimal solution of 

problem (1) . 

Here we introduce Karush-Kuhn-Tucker (KKT) 
conditions for nonsmooth nonlinear optimization 
problem (1) as follows: 

Lemma 10. Let Assumption 9. holds, then  x   is 
an optimal solution of problem (1) if there exists 

m   ¡  such that ( , )x    satisfies the following 

equations

 

 

0 ( )

(2)0 ,

free  in sign

Tf x A

Ax b





 





  


 



 

3. NEURAL NETWORK MODEL 

        According to Lemma 10. for solving nonlinear 
programming problem (1), we propose a one-layer 
recurrent neural network model which is an 
extension of the model proposed in [11] to 
nonsmooth pseudoconvex optimization problems, 
with the following differential inclusion: 

 ( ) ( ) ( ), (3)Tdx
I P f x A h Ax b

dt
         

where 1( ) ,T TP A AA A

1 2( ( ), ( ),..., ( ))Tmh h x h x h x  and ( )ih x  is 

defined as follows 

 
i

i

i

1 if x 0,

( ) [-1,1] if x =0, (4)

1 if x 0.
ih x


 
  

 

For i {1,2, , m} L . Also, ( )f x  is the Clarke 

subdifferential of f at .x  The neural network (3) 
can be realized by a generalized circuit. To find 
more details of the generalized circuit, readers can 
refer to [24], [28], [29] and [30]. Now, a 
generalized circuit implementation of neural 
network (3) is proposed for a simple optimization 
problem as follows: 

 
1 2 1 2 1

2

min f (x , x )=|x +x |+|x |, 

subject to Ax=b,b . ( )P ¡
      

We can simulate the implementation of 
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( )f x  as the block diagram in Fig. 1, also the 

architecture of neural network (3) for the 
optimization problem (P) is shown in Fig. 2, where 

1 2 2 2( , ) ( ), [ ] ,T
ijk k h Ax b e I P     and 

1 2
1 2

( ) ( )
( , ) ( , ) .T Tf x f x
W W

x x

 


 
 

Definition 11. x   is said to be an equilibrium point 
of neural network (3) if 

0 ( ) ( ),TI P A h Ax b       i.e. there exist 

( )f x    and ( )h Ax b     such 

that ( ) 0.TI P A      

Definition 12. An absolutely continuous function 

( ) : [0, ] nx T  ¡  is said to be a solution of neural 

network (3) on an interval [0, T], which satisfies 

the initial condition 0(0)x x , and for almost 

all [0, )t T :

( )
( ) ( ( )) ( ).Tdx t
I P f x t A h Ax b

dt
      In other 

words, there exist measurable functions 
( ) ( ( ))t f x t   and ( ) ( )t h Ax b   , such 

that ( ) ( ) ( ) ( )Tx t I P t A t    & , for almost all 

[0, )t T . 

Lemma 13. For any ,nx Ax b ¡  if and only 

if 1( )T TPx A AA b , where 1( ) .T TP A AA A  

Proof. It can be easily proved. 
 
4. CONVERGENCE ANALYSIS 
 
        In this section, we analyse and prove the 
global convergence of neural network (3) . Firstly, 

we prove that the state of neural network (3) will be 
convergent to { | },nx Ax b   ¡ when the initial 

point is chosen from outside of the feasible region 
 . Then, the stability of neural network (3) in the 
sense of Lyapunov, and globally convergence to an 
optimal solution to problem (1) are proved. 
 
Theorem 14. Let Assumption 9. holds. For neural 
network (3), there exists at least a local solution 

( )x t  for any initial point 0(0) nx x  ¡ . ( )x t  is 

convergent to the feasible region  

{ | }nx Ax b   ¡  in finite time by 

1

max

(0)

( )
u T

Ax b
t

AA



P P

 when the initial point 

0(0)x x   and will remain there thereafter, 

where max  is the maximum eigenvalue of the 

matrix .TAA  Also, ( )x t   for all 0t  , 

when 0x  . 

Proof. Since the right hand side of (3) is U.S.C. and 
its values are nonempty convex compact, then for 

any initial point 0
nx  ¡ , according to Theorem 3 

on page 98 of [25], there exist at least a local 
solution x(t) of neural network (3) with 

0(0) nx x  ¡  and a positive T for [0, ).t T  

Which means that we have  

( ) ( ) ( ) ( ),   . . [0, )Tx t I P t A t for a e t T     &  

where ( ) ( ( ))t f x t   and ( ) ( ( ) )t h Ax t b    are 

measurable functions. Note that only one of the 
following cases is satisfied 

Figure 2: Schematic block diagram of neural 

Figure 1: Block diagram of ( )f x  by circuits 



Journal of Theoretical and Applied Information Technology 
15th April 2018. Vol.96. No 7 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
2003 

 

 
  lim ( )

(5)t T
T and x t

T


    


 

‖ ‖
     

Similar to the proof of Theorem 1 in [10] and [11], 
suppose that 1( )B x Ax b P P . Clearly, ( )B x  is 

regular and convex. By using the chain rule, for a.e. 
[0, ),t T  we have 

( ( )) ( ),    ( ( ) ). (6)Td
B x t Ax t h Ax t b

dt
    &        

Substituting   by ( ) ( ( ) )t h Ax t b     implies 

that 

 

2
max

( ( )) ( ) ( )

( ) ( )[ ( )] ( ) ( )

( ) ( )

( ) ( ) , (7)

T

T T T

T T

T

d
B x t t Ax t

dt

t A I P t t AA t

t AA t

AA t



   

 

 



   

 

 

&

P P

 

where max ( )TAA  is maximum eigenvalue of 
TAA .  In (7), we use the fact that 

1( ) ( ( ) ) 0T TA I P A I A AA A A A       and 

max ( )TAA  is bigger than zero since A is a full  

row-rank matrix. Suppose that ( ) ,x t   
[0, )t T  i.e. ( ) .Ax t b  Now  

Case I: ,T    so according to the definition of 

h  in (4), 2( ) 1t P P  which combining with (7) 

leads to 
 

max( ( )) ( ) 0. (8)Td
B x t AA

dt
          

Hence, by integrating from both sides of (8) from 0 
to t , we get that 

max( ( )) ( (0)) ( ) (9)TB x t B x AA t    

which means that 

               1

1 max

0 ( )

(0) ( ) .T

Ax t b

Ax b AA t

 

  

P P

P P
 

So, when 1

max

(0)

( )T

Ax b
t

AA



P P

 we have  

( ) 0Ax t b   which is clearly a contradiction. 

Case II: T    and lim ( ) .
t T

x t


 ‖ ‖  

According to the proof of case I. we have 

 
1

1 max

1

( )

(0) ( ) (10)

(0) .

T

Ax t b

Ax b AA t

Ax b





  

 

P P

P P

‖ ‖
   

Therefore,  

 
2
1 1 1

2 2
1 1

( ) ( ) 2 ( )

( ) (0) ,(11)

T T T
max AA x t b A x t b b

Ax t b Ax b

  

     

‖ ‖ ‖ ‖ ‖ ‖
‖ ‖ ‖ ‖

  

By taking limit on both sides of (11) when t T   
we have  

2
1 1lim [ ( ) ( ) 2 ( ) ]

,

T T T
max

t T
AA x t b A x t b b


   

 

‖ ‖ ‖ ‖ ‖ ‖  

which is clearly a contradiction.  Then for any 
(0)x   the state ( )x t  will reach 

{ | 0}nx Ax b    ¡  in finite time and 

1

max

(0)

( )
u T

Ax b
t

AA



P P

 is an upper bound for the hit 

time. Now we prove that the state ( )x t  will be 

stayed inside the feasible region  , if ( )x t  leaves 

  at 1 ut t , there must exists 2 1t t  such that 

( )x t   for all 1 2( , )t t t  and 1 1( ) 0Ax t b P P . 

Therefore, according to (7), we have
 

2 1

1 1 max 2 1

max 2 1

( )

( ) ( )( ) (12)

( )( ) 0,

T

T

Ax t b

Ax t b AA t t

AA t t







   

   

P P

P P  

which is clearly contradiction. Hence, ( )x t  will 

reach   in finite time and will remain there 
thereafter.  If 0x  , then 0( ) 0B x  . So, 

( ( )) 0B x t   for 0t   by (9). Therefore, when 

0x  , ( )x t   for 0t  .   

Theorem 15. If x   is an equilibrium point of 

differential inclusion (3), then x  is an optimal 
solution of the optimization problem (1) and vice 
versa. 
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Proof. 
Let x   be an equilibrium point of differential 
inclusion (3) then we have 

  0 ( ) ( ) ( ),TI P f x A h Ax b       

according to Lemma 10, we have .Ax b   By 
choosing 1( ) ( ( )) ( ),TAA A f x h Ax b         we have 

   0 ( ) ( ) ( )

( ) . (13)

T

T

I P f x A h Ax b

f x A 

 

 

    

  
   

Therefore, according to Lemma 10, x  is an  
optimal solution of problem (1). To prove the rever

se side suppose that x  is an optimal solution 
of the optimization problem (1). Therefore, 

according to Lemma 10, there exist m   ¡  such 
that the equalities in (1) hold. Therefore, 

 0 ( ) ( ) ( )[ ( )].TI P f x A I P f x          

Moreover, since 0 ( )h Ax b  , we have 

  0 ( ) ( ) ( ).TI P f x A h Ax b       

By combining with the equality in (2), clearly x   
is an equilibrium point of differential inclusion (3). 
 
Theorem 16. Let Assumption 9. holds. For any 

initial point 0
nx  ¡ , the solution ( )x t  of neural 

network (3) is stable in the sense of Lyapunov and 
convergent to an optimal solution of neural network 
(3). 
Proof. Consider x  as an equilibrium point of 
neural network (3). With regards to Theorem 15, 
x  is also an optimal solution of problem (1). Thus,  

{ | 0}nx x Ax b    ¡ . Since x  is an 

equilibrium point of neural network (3), there exist 
measurable functions ( )f x   and  

( )h Ax b   such that   

          ( ) 0. (14)TA I P                       

Since, { | 0}nx x R Ax b      without loss 

of generality we can choose ( ) 0h Ax b  , then 

(14) leads to          
( ) 0. (15)I P    
Substituting (15) into (3) leads  

( ) ( )( ( ) ). (16)Tdx
A h Ax b I P f x

dt
       

According to Theorem 14. we have the 
convergence of any ( )x t  to the feasible region   
in finite time and remaining there thereafter. So it is 
sufficient to show the stability of the system with 

( )x t  . Since x   and x x , according to 

Lemma 13. by multiplying ( )I P  on both sides 

of (16), we have 1( )T TPx A AA b . Thus, 
0.Px &  Then, we have ( )x I P x & & since we can 

write ( ) .x Px I P x    Combining with 

( ) 0TI P A   and this fact that 2( ) ( ),I P I P   we 

Have ( )( ( ) ),
dx

I P f x
dt

     i.e. there exists a 

measurable function ( )f x   such that 

 ( )( ), (17)
dx

I P
dt

              

Consider the following Lyapunov function:

 
2
2

( ) exp( ( ) ( ) ( )

1
) 1. (18)

2

TV x f x f x x x

x x

   

  P P
 

We have ( ) 0V x   and for x x , ( ) 0V x   and 

2
2

( ) [ ( ) ]exp( ( ) ( )

1
( ) ).

2
T

V x f x x x f x f x

x x x x





      

   P P
 

According to the Chain rule, ( ( ))V x t  is 

differentiable for almost all 0t  . Hence, 

( ( )) ( ) ( ),   ( ) ( ( )).Td
V x t t x t t V x t

dt
   &  From  

 (3), ( ) ( ( ))t f x t  , hence by choosing  

2
2

( ) ( ( ) ( ) )exp( ( ) ( ) ( )

1
) ( ( ))

2

Tt t x t x f x f x x x

x x V x t

         

  P P

 and according to (17) we have 
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( )

2
2

( )

2
2

( ( ))

sup [ ] [ ( )( )]

1
exp( ( ) ( ) ( ) )

2

sup [ ( ) ( )( )

( ) ( ) ( ) ( )]

exp( ( ) ( ) ( )

1
). (19)

2

T

f x

T

T

f x

T T

T

d
V x t

dt

x x I P

f x f x x x x x

I P

x x x x P

f x f x x x

x x





   



   

   







      

    

    

     

  

 

P P

P P

  

For any x  , we have 

 
1

1

( )

[( ) ]( )

[( ) ]( )

0. (20)

T

T T T

T T

x x P

x x A AA A

Ax Ax AA A







 

 


 

    Hence, 

       

( )

[( ) ( ) ( )]

( ) ( )

0. (21)

T

T T

T

x x

x x P x x I P

x x I P









    

  


 

From pseudoconvexity of ( )f x  on the feasible 

region , ( )f x  is pseudomonotone on . Thus, 

according to the Definition 7. we have 

 ( ) 0, (22)Tx x    

for any ( ).f x   So, from  (21) and (22) we find 

that 

          ( ) ( ) 0. (23)Tx x      

Consequently, combining (20) and (23) with (19) 
leads to

 

( )

2
2

2
2

( )

2
2

( ( ))

sup [ ( ) ( )( )]exp( ( )

1
( ) ( ) )

2

sup [ ( )( ) ]exp( ( )

1
( ) ( ) ) (24)

2

T

f x

T

f x

T

d
V x t

dt

I P f x

f x x x x x

I P f x

f x x x x x





   



 







    

    

   

    

P P

P P

P P

 

By substituting (15) into (24) we have 

 

2
2

( )

2
2

2
2

( )

2
2

( ( ))

sup [ ( ) ]exp( ( )

1
( ) ( ) )

2

inf [ ( ) ]exp( ( )

1
( ) ( ) )

2
0. (25)

f x

T

f x

T

d
V x t

dt

I P f x

f x x x x x

I P f x

f x x x x x

















  

    

  

    



P P

P P

P P

P P

 

By the last inequality, the global stability of the 
neural network (3), in the sense of Lyapunov is 
proved. Similar to the proof of Theorem 3. in [19] 
and Theorem 4. in [18] we take 

2
2

( ( ))

2
2

( ) inf ( ) exp( ( ) ( )

1
( ) )

2

f x t

T

x I P f x f x

x x x x







   

   

P P

P P
 

Then it is easy to verify that ( ) 0x    and x   

if and only if x  is an equilibrium point of neural 

network (3). Moreover, according to the 

construction of ( )V x , ( )V x  is radially unbounded 

since 2
2

1
( ) ( )

2
V x x t x  P P , also, by taking 

integral on both sides of 0
dV

dt
 , we have the 

following inequality   

 0 ( ( )) ( (0)) ,   (26)V x t V x     
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clearly, we can conclude that ( )x t  is bounded. We 

have the boundedness of 2
2( )x t&P P  according to (3), 

and we choose a sufficiently large constant M as 
an upper bound. However, a convergent 
subsequence exists as follow  

 1 2{ ( ) | 0 },     

 lim ,      (27)
k

k
k

x t t t and

t


  
   

such that lim ( ) .k
k

x t x


  Clearly, x  . To 

show that x  is an equilibrium point of neural 

network (3), we prove ( ) 0x  . Suppose that 

( ) 0x  , that is ( ) 0x  . By Theorem 5 on page 

52 in [25], we have the lower semicontinuity of 
( )x  i.e. there exists 0   for any 0ò  such 

that ( )x  ò  for all ( , ),x B x   where 

2( , ) { | }nB x x R x x    P P  is the  neighborhood of 
x  as follows  

2

( ) , 

 ( , ) { | }. (28)n

x

x B x x R x x 

 

     P P

ò  

Since lim ( ) ,k
k

x t x


  a positive integer N exists, 

such that 2( ) / 2kx t x  P P  for all .k N  When 

[ , ]
4 4k kt t t

M M

 
    and ,k N  we have 

 
2

2 2

( )

( ) ( ) ( )

,    (29)
2

k k

k

x t x

x t x t x t x

M t t





   

   

P P

P P P P  

combining (29) with (28) leads to ( ( ))x t  ò  for 

all  [ , ]
4 4k kt t t

M M

 
    and .k N  Therefore, 

by choosing [ , ]
4 4k N k kt t

M M

 
     and this 

fact that the Lebesgue measure of the set   is 
infinite we have  

 
0

( ( ))

( ( ))

        (30)

x t dt

x t dt







 

 



  

On the other hand, according to (25) and (26), 
( ( ))V x t  is monotonically decreasing and bounded 

on  . Then, a constant 0V  exists such that 

0lim ( ( )) .
t

V x t V


  Therefore, 

 

0 0

0

0

( ( )) lim ( ( ))

lim ( ( ))

lim [ ( ( )) ( (0))]

( (0)) ,      (31)

s

s

s

s

s

x t dt x t dt

V x t dt

V x t V x

V V x









  

 

  

    

 
 &  

which contradicts (30). Therefore, ( ) 0,x   which 

means that x  is an equilibrium point of neural 
network (3) and by Theorem 15. we have x  as the 

optimality solution problem (1). At the end, we 

want to prove the convergence of the state vector of 
neural network (3) to an equilibrium point i.e. 
lim ( ) .

t
x t x


 % We define another Lyapunov 

function 

   
2
2

( ) exp( ( ) ( ) ( )

1
) 1.       (32)

2

TW x f x f x x x

x x

   

  

%% %

%P P
 

Obviously, ( ) 0.W x %  Similar to the previous 

proof, we can prove that  

 
2
2

( ( ))
0     

1
 ( ( )) ( ) .      (33)

2

dW x t
and

dt

W x t x t x



  %P P

 

Since the function ( )W x  is continuous, there 
exists 0   such that for any 0ò  we have  

          ( ) | ( ) ( ) | (34)W x W x W x  % ò  



Journal of Theoretical and Applied Information Technology 
15th April 2018. Vol.96. No 7 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
2007 

 

 for any ,nx  ¡  when 2
2 .x x  %P P  Moreover, 

since lim ( )
k

k
t

x t x


 %there exists Nt  such that for 

all ,Nt t  we have 

       2
2( ) .     (35)Nx t x  %P P  

Clearly, by (33), (34) and (35) we conclude that 

     
2
2( )

2 ( ( )) 2 ( ( )) 2 .     (36)N

x t x

W x t W x t


  

%P P

ò
 

Which means that lim ( )
t

x t x


 %. This completes 

the proof. 

Remark 1.  In comparison with the proposed 
neural network in [31], the neural network (3) in 
this paper has some benefits. For instance, the 
initial point can be chosen from inside or outside 
the feasible region, while in [31] the initial point 
must be chosen from inside the feasible region. 
Also, the objective function may be nonsmooth in 
this paper, which extends the domain of the 
pseudoconvex optimization problem (1) in [31]. In 
addition, the Lyapunov stability and the global 
convergence to an optimal solution of the neural 
network (3) in this paper are proved, by Theorem 

16. with any initial point 0
nx  ¡ , while these 

properties are proved in [31] just when the initial 
point is chosen from inside the feasible region. 

5. NUMEAICAL EXAMPLES  

In this section, two examples are presented to 
illustrate the effectiveness of the proposed neural 
network (3) for solving the nonsmooth 
pseudoconvex optimization problem (1). We know 
that pseudoconvexity is a weaker condition than 
convexity. If we use neural network (3) for solving 
pseudoconvex optimization problem, we can solve 
the convex problem as a special case; Therefore, 
Example 1. is a convex optimization problem 
solved by neural network (3). In all examples, the 
differential inclusion defined by (3) is solved using 
MATLAB R2015b, on a 2.4 GHZ Intel Core(TM) 
i5 Qrad PC running Windows 7 Ultimate with 4.00 
GB main memory. 

Example 1.  Consider the following nonsmooth 
convex optimization problem with one linear 

equality constraint. 

 
2

1 2

1 2

  ( ) | | 2  

  1 0      (37)

min f x x x

subject to x x

  
  

 

This problem was discussed and solved in [32]. The 

only optimal solution of this problem is 

(0.5, 0.5)x   . We solve this problem by using 

the proposed neural network (3). The subgradient 
of ( )f x  at point x  is given by 

 
2 1

2 1

2 1

(1, 2 ) , 0

( ) ([ 1,1], 2 ) , 0 (38)

( 1, 2 ) , 0

T

T

T

x x

f x x x

x x

 
   
  

 

Figure 3: Transient behaviors of the neural network (3) 
with 10 random initial points in Example 1. 

Fig.3 shows that the trajectories of neural network 
(3) with 10 random initial points, will converge to 
the optimal solution (0.5,0.5).x    Comparing to 

[32], we do not use any penalty parameter in the 
structure of the model, but in [32] to solve the 
problem we need to choose penalty parameters 
which may lead to wrong solution or degeneracy. 

5.1. NONSMOOTH NONCONVEX 
OPTIMIZATION PROBLEMS 

Example 2. Consider the following pseudoconvex 
optimization problem with linear equality 
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constraints:
2 2

1 2 2 3

2 2
3 4 4 5

 min  ( ) ( ) ( )

( ) ( ) ,

   ,

1 2 3 0 0 6

  0 1 2 3 0 ,  6 .

0 0 1 2 3 6

f x x x x x

x x x x

subject to Ax b

where A b

   

   



   
       
      

 

This example was solved in [31], but in that paper 
the initial points must be chosen from inside the 
feasible region , while by the proposed neural 

network (3) no needs the initial points to be chosen 
from inside the feasible region. The only optimal 

solution of this problem is (1, 1, 1, 1 , 1)x   . We 

solve this problem by using the proposed neural 
network (3). Fig. 4 shows that the trajectories of the 
neural network (3) with 10 random initial points 

will converge to the optimal solution .x   

Figure 4: Transient behavior of the neural network (3) 
with 10 random initial points in Example 2. 

 
Example 3. Consider the following nonsmooth 
nonconvex optimization problem  

2
1 3

2 1 2
2

3

2
1

min ( ) | 2 | | 1 |

1
1, .

5i
i

x x
f x x x x

x

subject to x x



     

 
  

The objective function is nonsmooth and 
pseudoconvex on the feasible region and the neural 
network (3) is capable of solving the problem. The 
optimal solution of this problem is x*= (0.1727, 
0.6547, 0.1727)T and the optimal value of the 
objective function is 4.7913. Fig. 5 shows that all 

trajectories with 10 random initial points are 
convergent to the optimal solution x* in finite time.  
 

 
Figure 5: Transient behavior of the neural network (3) 
with 10 random initial points for solving Example 3. 

 
Figure 6: Transient behavior of the neural network (3) to 
solve Example 4, with 4 random initial points of the 
Table A-1. State trajectories converge to (1.0865, 0.0865, 
1.1327, -0.8673)T where state trajectory coordinate is 
limited to [-1, 4]. 

 
Example 4. Consider the following quadratic 
fractional programming problem   

0

0

min ( )

. .

T T

T

x Qx a x a
f x

c x c

s t Ax b

 






 

With  
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0

 5 -1 2 0 1

-1 5 -1 3 2
Q= , , 2,

 2 -1 3 0 2

 0 3  0 5 1

a a

   
        
   
  

   

   

  02 1 1 0 , 4

1 1 0 0 1
,

0 0 1 1 2

T
c c

A b

 

   
       

 

It is clear to show that the objective function f is 

pseudoconvex on 4
0{ : 0 },Tx c x c    as Q is 

symmetric and positive definite. We use three 
methods for solving the problem. Our new 
proposed model in this paper, a penalty-based 
method [12] and the interior-point method [33] 
("fmincon" Matlab code) are used for solving the 
problem. We choose four random initial points 
from outside of the feasible region. Two penalty 
values ( = 0.5, 52) are used for the penalty-based 
method. Note that finding exact penalty values for 
the model in [12] is not easy. The optimal solution 
and optimal value of the problem are x*= (1.0865,  

 
Figure 7: Transient behavior of a penalty-based model 
[12] with the penalty value = 0.5 to solve Example 4, 
with 4 random initial points of the Table A-1. State 
trajectories converge to a non-optimal and infeasible 
solution. 
 
0.0865, 1.1327, -0.8673)T and 1.8153 respectively. 
The state behavior of the presented method is 
shown in Fig. 6. The quality of convergence of 
aforementioned methods is shown in Table A-1 in 
Appendix A. Comparing to other two methods our 
proposed method has the following benefits:  

1-Non-penalty based structure: As it can be clearly 
observed from the Table. A-1, the solution accuracy 

and convergence of the penalty based method is 
completely dependent on choosing the appropriate 
penalty values. In the problem, with the penalty 
value = 0.5 all trajectory solutions are convergent 
to (-0.4275, 0.3277, 0.6257, -0.3172)T which is not 
an optimal or equilibrium point of the problem. It 
can be seen that all corresponding solutions are 
infeasible and all state trajectories converge to a 
wrong solution (see Fig. 7) whereas the trajectory 
solutions of the problem with penalty value  = 52 
are convergent to the optimal solution. The merit of 
our new proposed model is that it does not need to 
use any penalty parameter or penalty function in its 
structure prior to solving the problem.                     

2- Running time: In the penalty methods, the 
convergence of trajectories to the optimal solution 
depends on the penalty parameter value or the value 
of the penalty function. However, our new 
proposed model is not depend on such values and 
the method is very simple. At first, the trajectories 
will converge to the feasible region and then they 
will converge to the optimal solution. From Table. 
A-1, it is inferred that our method has better 
performance in running time in comparison with 
penalty based method and interior point method. 

Figure 8: Error function values for a penalty-based 
model [12] with the penalty value = 0.5 to solve 
Example 4, with 4 random initial points of the Table A-1. 
   
Although the penalty based method is convergent to 
optimal solution for penalty value  = 52 but 
running time is considerably high and the use of 
this method is not cost-effective. 
 
3- Accuracy: From Table. A-1, it can be clearly 
seen that the interior point method is divergent for 
all random initial points in the Table and the 
penalty based method with penalty value  = 0.5 
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converges to an infeasible point which is not 
optimal (see the corresponding error |f-f*| in Fig. 
8). While the penalty method with  =52 
converges to the optimal and feasible solution, the 
CPU run time is much higher than our proposed 
model. It is obvious from Table. A-1, that the 
convergence of our proposed method is faster than 
the convergence of other methods. The 
corresponding error |f-f*| of our method is shown in 
Fig. 9.  Also, Fig. 10 shows the objective value       
f(x(t)) along the solution of neural network (3) with 
four different random initial points of the Table A-
1, which are convergent to the optimal value of the 
objective function f (x*) =1.8153. From the above 
explanations, it can be inferred that choosing 
inappropriate penalty parameter may lead to wrong 
solution or degeneracy. As it is mentioned above, 
our new model shows better performance and 
effectiveness in comparison with some other NN 
models and a traditional method (interior point 
method). 

 
5.2. MINIMIZING CONDITION NUMBER 

          In this section, the proposed neural network 
is applied to minimize the condition number. 
Consider the following optimization problem 

Figure 9: Error function values for neural network (3) 
with the penalty value = 0.5 to solve Example 4, with 
four random initial points of the Table A-1. 

min     ( )  

  , (39)

S

subject to S




 

where  is a compact convex subset of ,nS   the 

cone of symmetric positive semidefinite n n  
matrices, and indicated to condition number of S. 
If the eigenvalues of S denote, in decreasing order 

by 1( ),..., ( ),nS S   then the condition number 

function ( ) S  is defined by 

1 n

n 1

( ) / ( ), if (S) 0,

( ) , if (S)=0 and (S) 0,

0, if S=0.

nS S

S

  
  


  



  

Obviously, the condition number ( ) S reaches the 

global solution at S=0. To avoid this trivial 
situation, we consider that  does not contain the 

null matrix. The condition number function    is 

proved to be strongly pseudoconvex on the cone f 

symmetric positive definite n n matrices [34] and 
[35]. 

Example 5. Consider the following condition 
number optimization problem of a nonzero matrix 

 min  ( ) 

  , (40)

A

subject to A




 

where A is a symmetric matrix defined by 

 

Figure 10: f(x(t)) along the solution of the neural network 
(3) with 4 random initial points of the Table A-1 to solve 
Example 4. 

0

0

0
,

0

T

T

a x a
A

c x c

 
 
  

 

Where 
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Clearly,   is a compact convex set. If we denote 
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     Figure 11: Transient behavior of the neural network 
(3) with 10 random initial points in Example 5. 

We solve this problem by using the neural network 
(3). Fig. 11 shows the transient states of the neural 
network (3) with 10 random initial points, Fig. 12, 
shows the convergence of the condition number to 
optimal solution ( ) 1A   with 10 random initial 

points. The authors in [22] proposed a model for 
solving the optimization problems similar to the 
optimization problem (1). In their model, there 
exists a penalty parameter  and it needs Lipchitz 

constant of objective function .f  Comparing to the 
proposed model in [22], our model does not need 
neither any penalty parameter   in its structure nor 
any Lipchitz constant. It is clear that choosing 
inappropriate penalty parameter may lead to wrong 
solution or degeneracy.  

Figure 12: Transient and convergence behaviors of the 
optimal condition number evaluated by the neural 
network (3) with 10 random initial points in Example 5. 

6. CONCLUSIONS         
        In this paper, a new one layer recurrent neural 
network for solving nonsmooth pseudoconvex 
optimization problems subject to linear constraints 
was proposed. By using Lyapunov theory and 
differential inclusion analysis, the convergence of 
the neural network to the optimal solution of the 
nonsmooth pseudoconvex optimization problems is 
guaranteed. We have shown the effectiveness and 
performance of the proposed neural network by 
some illustrative examples. Moreover, the proposed 
neural network is shown to be useful for condition 
number optimization problem. We will extend the 
proposed model for solving nonsmooth 
pseudoconvex optimization problems with general 
constraints in the future. 
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Appendix A: 

Table A-1: Comparison of solutions of Example 4. with our proposed model, an interior point method [33] and a 
penalty based model [12].   

Method Initial point Running 
time(second) 

Penalty 
value 

f Feasibility 

Herein  2.52,  4.03,  1.06,  4.81
T   0.400532 - 1.8153 feasible 

Interior point ditto 4.642466 - -3.5792e+20 infeasible 
Penalty 
method 

ditto 0.144208 0.5 -0.8166 infeasible 

Penalty 
method 

ditto 1458.963847 52 1.8153 feasible 

Herein (7.26, 18.03, -3.73, 0.997)T  0.400096 - 1.8153 feasible 

Interior point ditto 2.170202 - 3.3845e+11 infeasible 
Penalty 
method 

ditto 0.692933 0.5 -0.8166 infeasible 

Penalty 
method 

ditto 1206.057870 52 1.8153 feasible 

Herein (-1.13, 10.13, 3.92, -1.07)T  0.482393 - 1.8153 feasible 

Interior point ditto 2.188825 - -2.0930e+12 infeasible 
Penalty 
method 

ditto 3.835418 0.5 -0.8166 infeasible 

Penalty 
method 

ditto 1557.441025 52 1.8153 feasible 

Herein (-12.95, 5.82, -3.40, 14.81)T  0.463285 - 1.8153 feasible 

Interior point ditto 2.104498 - -8.3806e+18 infeasible 
Penalty 
method 

ditto 0.424831 0.5 -0.8166 infeasible 

Penalty 
method 

ditto 10047.428608 52 1.8153 feasible 

 


