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ABSTRACT 

 
Many security applications are based on Pseudo Random Number Generators (PRNGs). Random binary 
numbers constitute a major reliance in many network security algorithms. For example, common 
cryptosystems require a long dynamic key that should be generated from a short secret key and has the 
random behavior. Random or pseudorandom inputs are critical requirements in many protocols that need 
this issue at certain points. A PRNG is a deterministic algorithm generates a sequence of bits simulates the 
truly random numbers sequence behavior. Each generated number should be independent of the previous or 
the future numbers, as a result the PRNG become unpredictable.   However there are many security and 
performance tests can be applied on the PRNG sequence to evaluate it. And then measure the power of the 
PRNG. Therefore not all PRNG are good enough to be used in cryptographic applications. This depends on 
the kind of application and its data sensitivity. A PRNG that passes these tests can be considered as a 
secure PRNG. Furthermore, it can be used in many cryptographic applications. In this survey, some 
missing results are reproduced by our team in order to have the same level of assessment for presented 
algorithms under the test. Moreover, new test tools are used to evaluate the behavior of the generators and 
assess the randomness of them. Finally, details discussions of the new tools are considered in order to 
validate the security level of the proposed generators. 
 
Keywords: PRNG, Stream Cipher, RC4, Salsa20, NIST Tests 
 

1- INTRODUCTION 
 
Because randomness considered as the 
Foundation stone to the cryptographic systems, 
any adversary can see the final result of system as 
a sensitive data included in a random number 
sequence without any indication about the real 
information [1]. 

There are many mechanisms in cryptography 
science to provide solutions for various security 
cases; most of these techniques need randomness 
for many different reasons. 
Therefore, there are many conditions should be 
taken into consideration during study and analyze 
of randomness, and that is what we have tried to 
do in our survey 
 
First of all, a set of basic concepts that will help 
to provide a good description of PRNG is 

reviewed. In cryptography science, Encryption is 
the process of transform original message (Plain 
Text) to non-readable data (Cipher Text) using an 
encryption algorithm. This Cipher Text can't give 
anyone any information about the Plain Text 
except those who have the encryption key. 
 
A simple encryption example can be performed 
by replacing every character in the data with its 
next character, so the word “survey” will be 
encrypted to “tvswfz”.  There are two main types 
of encryption: Asymmetric cipher, and 
Symmetric cipher [2-4], as shown in Figure 1. 
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Figure 1. Encryption Models 

 
Asymmetric cipher, also called a public key 
encryption, an encryption technique which uses a 
pair of public key and secret key. The sender has 
the public key of the receiver while the secret key 
is not known. The receiver’s should create his 
pair of the public and secret key, publish his 
public key without considering its security. The 
secret key should be computational impossible to 
find through the public key. Asymmetric 
encryption is used in authentication and digital 
signatures. A signed message with the sender’s 
secret key proof the identity of the sender and it 
can be read by anyone who the sender’s public 
key. Thus, the receiver can ensure that the 
message has not been modified or replaced by any 
other source which is confirms the sender identity 
[5-6]. 

 
The second type of encryption is called 
Symmetric cipher [6-8]. In this type, both sender 
and receiver shared the same secret key. It uses in 
the encryption and the decryption process. In 
symmetric ciphering, the receiver and sender 
share the same secret key. Symmetric is faster 
than a symmetric one but it has a lower security 
level. 

  Figure 2 shows the general structure of 
this encryption model. 

 

 
Figure 2. Simple Symmetric model 

 
As it is shown if Figure 2, the Symmetric ciphers 
can be used as block cipher or stream cipher. 
1) Block cipher:  the plaintext is divided into 

number of blocks, the block size depends on 
the specification of the used encryption 
algorithm [9]. The divided blocks are 

encrypted as one unit and there is a 
relationship and dependency between 
encrypted blocks based on the encryption 
mode. This type of encryption has better 
security than the stream cipher against 
number of well-known attacks, moreover the 
most important properties of the secure 
cipher text which are the confusion and the 
diffusion properties are included inside block 
ciphering algorithms. . Where in terms of 
execution time it is slower than the stream 
cipher and so the encryption throughput of 
stream cipher is much higher than the block 
cipher. 

 
Stream cipher: in this type, the encryption is 
performed bit by bit, and the most important the 
encryption of each bit is independent of other bits 
and so the diffusion and confusion properties are 
not achieved in this type. The encryption operator 
is as simple as possible, and in most case is the 
XOR operation between the plaintext bits and the 
corresponding key bits. In terms of encryption 
throughput (speed of encryption) the stream 
cipher is much more than the block cipher [10]. 
 
However, the key should be randomly generated, 
in addition to it should be at least equal to plain 
text in length. Furthermore, it cannot be used 
more than once to prevent the two time pad 
attack. This technique is called the one-time pad.  
  
Random Number Generator (RNG) is a functional 
technique to generate the key stream from an 
initial seed. The RNG can be defined as a 
function that can give a random numbers 
sequence. There are two types of RNGs; the first 
is a True Random Number Generator 
(TRNG).  This kind of generator relies on a 
physical system. It generates a sequence of truly 
random numbers with no pattern, unpredictable, 
and with no dependency. Both noise and electric 
current are familiar sources of TRNG. However, 
TRNG can not be used in real live application, 
since the generated numbers at the sender part 
will be differed from that at the recipient part. The 
solution for this problem is achieved using 
deterministic function where pseudorandom, 
number generators is required [11-12]. 
 
Pseudo Random Number Generator (PRNG) 
A PRNG is a generator that simulate the random 
behavior, this generator as any function has 
number of inputs and produces a pseudorandom 
sequence of numbers. The inputs of the PRNG are 
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called seeds. This seed should be random and 
unpredictable. PRNGs are generally used in 
cryptographic applications. For example, 
generators can be used in session key generation, 
to be used during the stream cipher encryption as 
a generated dynamic keys [13]. PRNG generated 
bits should have the randomness and 
unpredictability [14-15]. 

 
1. Randomness: Each individual random bit 

has a probability of exactly 0.5 of having a 
value of a “0” or a “1”. Assess and evaluate 
the sequence regarding the random based on: 
independence and uniform distribution of 
generated bits inside the sequence. The 
generated bits are independent of each other,   
bit doesn’t depend on the previous or the 
future ones. The bit distribution inside the 
generated sequence should be followed the 
uniform distribution. There exist well-defined 
statistical tests to assess if the generated 
sequence follow the uniform distribution or 
not. However, there are no statistical tests to 
“prove” the independency [16]. 

2. Unpredictability: Random and 
pseudorandom generated bits should be 
unpredictable in order to be used in 
cryptographic applications. The non-
authenticate user should not be able to predict 
or calculate the next or the previous bit from 
current one with non-negligible guess [15-
16]. 

 
Some PRNG algorithms are more simple 

and faster than others as they are based on simple 
equation. However, other algorithms may contain 
more complicated equations, so they cost more 
space and time. There are also some weaknesses 
in PRNGs, such as getting in a loop, having a 
small period and high complexity. In this survey 
we will review some stream cipher algorithms, 
mainly RC4 and Salsa20 which are wildly used in 
stream cipher. In addition, the National Institute 
of Standards and Technology (NIST) tests will be 
applied to the random binary sequences in order 
to verify the security of the proposed generators. 
 
PRNG Challenges 

Some aspects should be overpassed for the PRNG 
to be suitable for cryptographic applications. 
These aspects considered as challenges, hereafter 
we list some of them [17]. 

1) Correctness: if the output is random and is 
not predictable. 

2) Reliable: does not fall into loops often or 
fail. 

3) Performant: produces random behavior 
numbers with a fast bitrate. 

4) Efficient: the usage of power is considered. 
5) Affordable: does not cost much.  

In this survey paper, the most important 
tests and tools used to evaluate the behavior of 
random number generators are highlighted, as 
well as using a new methodology for evaluation 
and assessment. The intent of this paper is to 
introduce the reader to the testing of random 
generators. In doing so, we have discussed some 
definitions of randomness, different types of 
random number generators, and applications for 
these numbers. In the following sections we will 
introduce the reader to the various statistical tests 
and provide him with the required knowledge to 
be able to apply these tests himself. It is worth 
mentioning that in previous researches, such as 
L'Ecuyer’s paper [18], similar work has been 
conducted. However, it wasn’t in the same level 
of assessment as ours. Our paper comprises the 
most recent and important set of statistical tests 
and tools. One might ask: why are there so many 
tests? Well, a bad generator can pass some tests, 
so trying more than one test is essential to make 
sure that a bad generator is detected as such. For 
example, the non-random sequence: 
101010101010101010101010101010 
passes the frequency test with a perfect score (i.e. 
number of zeros and ones are exactly the same), 
but fails miserably in the serial test. This is why 
it’s important to apply various statistical tests to 
the sequence. Furthermore, we presented the 
results obtained from applying the statistical tests 
over sets of data obtained from various ciphers, 
such as Salsa20 and RC4. However, our paper 
will not include the math models for the various 
generators presented. Known attacks that are not 
based on statistical attacks will not be included 
too as the focus of our paper will be on the 
statistical analysis of generators. 
 

 The remainder of this document is 
organized as follows. Section 2 presents few 
previous researches that are done in this field, 
more specifically, some generators, RC4, Salsa20, 
HC-128 and HC-256, and SOSEMANUK 
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models. The NIST test suite, visualization, 
Histogram, Chi-square, Mapping, and Correlation 
tests are presented and summarized in Section 3. 
We did some statistical tests for some ciphers and 
the results will be reviewed in Section 4. Finally, 
a comparison between some stream ciphers in 
terms of speed and performance is carried out as 
well in Section 4. 
 
  2. RELATED WORK 
 
This section reviews some of the states of the art 
researches that are proposed in the field of PRNG. 
Section 2.1 reviews some proposed PRNGs, 
while section 2.2 reviews the standard ciphers 
along with the eSTREAM ciphers. 
 
2.1 PRNGs 
In this section, we reviewed four state of the art 
PRNGs. 
2.1.1 Cryptosystem based on an efficient 
chaotic generator 
Abutaha et al [19] proposed a stream cipher 
cryptosystem based on an efficient chaotic 
generator of finite computing precision, where 
N=32. The proposed is composed of an "IV-
Setup, a Key-Setup, a non-volatile memory, an 
output and an internal state function" [19]. It uses 
the internal feedback mode, where the generated 
keystream is used in stream cipher. The internal 
state function contains two recursive filters. The 
first recursive filter based on the discrete skew 
tent map, while the second recursive filter based 
on the discrete piecewise linear chaotic map. Each 
of the two recursive filters using the perturbation 
technique based on the well-known linear 
feedback shift register (LFSR). The stream cipher 
has two implemented versions: sequential and 
parallel, and they are implemented using Pthread 
library. In sequential implementation, the 
generator produces 32-bits of keystream, which 
will be converted to 4 bytes and stored in a buffer. 
The 4 generated bytes will then be XOR-ed with 
4 bytes of plaintext to produce 4 bytes of 
ciphertext, and so on. In parallel implementation, 
the generated produces four 32-bit samples, 
which are converted to 16 bytes. The generated 
16 bytes will be XOR-ed with 16 bytes of 
plaintext to produce 16 bytes of ciphertext. The 
parallel implementation of the proposed faster 
than the eSTREAMS. Various tests such as the 

NIST tests, Histogram test, Chi-square test and 
correlation test were applied to the proposed 
cipher. Furthermore, the security of the stream 
cipher was investigated by applying software 
security tools. The results obtained from the 
statistical tests and cryptographic analysis 
indicate the robustness of the implemented stream 
cipher. 
 
2.1.2 Francois PRNG based on two chaotic 
maps 
Francois et al. [20] in their paper proposed "a new 
pseudo-random number generator based on two 
chaotic maps" [20]. An input initial vector is 
responsible for producing the chaotic maps that 
will be mixed. In their paper, they develop an 
algorithm that uses chaotic function which is 
responsible for generating "multiple pseudo-
random sequences. The proposed algorithm uses 
permutations whose positions are evaluated using 
a chaotic function that is based on linear 
congruences. These permutations are stored on 
the initial vector to produce two chaotic maps" 
[20]. The chaotic map are XORed to generate one 
sequence of this generator. The generated 
sequences ready to serve cryptographic 
applications. Author of this proposal assume the 
adaptive size of the key space, simplicity of the 
implementation, and the security against various 
attacks are main contribution. However, if an 
opponent knows the parameters used in the linear 
congruences, prediction of the subsequent 
numbers is easy when the adversary knows one of 
the previous generated numbers [21]. 
 
2.1.3 MIXMAX generator 
Savvidy, K. G. et al. "proposed a new pseudo-
random number generator" [22], named 
MIXMAX random number generator. It is a 
matrix-recursive PRNG. The period of the 
generator is 104682 for matrix size N=256. That 
means the generator will start repeating itself after 
104682 iterations. There is an enhanced version 
using C code implementation of the generator that 
was developed by Konstantin Savvidy. The 
generator works under UNIX, Linux and MacOS 
devices, it was also tested on ARM architectures. 
The most usage for this algorithm for Monte 
Carlo simulations which needs a PRNG for 
physical complicated simulations. However, since 
the MIXMAX generator uses matrix 
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multiplication, then we believe that it’s relatively 
slow compared to other PRNGs. 
 
2.1.4 Novel pseudo-random number generator 
based on quantum random walks 
Yu-Guang and Zhao in their paper [23] 
investigated the idea of applying quantum 
computation for constructing PRNGs, as well as 
"constructing a novel PRNG based on quantum 
random walks (QRWs). A QRW is a famous 
quantum computation model. The proposed 
PRNG is based on the equations used in the 
QRW. As a result, the PRNG algorithm is 
relatively simple, and the computational speed is 
fast" [23]. Furthermore, they applied statistical 
tests, such as NIST test suite to the proposed 
PRNG and it successfully passed all tests. The 
proposed QRWs-based PRNG better than PRNGs 
based on quantum chaotic maps (QCM) [24]. The 
advantages include better statistical complexity 
and recurrence. They attempted to compare 
QRWs-based PRNGs with QCM-based PRNGs 
by "numerical simulations and performance in 
terms of quantifiers based on information theory, 
recurrence plots, and other randomness tests" 
[23]. It was concluded in their paper "that the new 
QRWs-based PRNG can generate a high 
percentage of good pseudo-random numbers, and 
these numbers can be used in various applications 
and it also extends the application scope of 
quantum computation" [23] [25]. 
However, since QRNGs are typically based on 
specialized physical hardware, such as Raman 
scattering or single-photon sources, we think that 
the cost and power requirements can be important 
limitation. 
2.2 Stream Ciphers 
In this section we will discuss stream cipher 
algorithms including RC4, Salsa20, HC-128, HC-
256, and SOSEMANUK:  
 
2.2.1 RC4 
RC4 is a stream cipher algorithm was designed by 
Ron Rivest in 1987.  In the laterite review, RC4 is 
considered as one of the well-known stream 
cipher algorithms. RC4 is used in WEP, WPA, 
and SSL. The RC4 stream cipher has two main 
components: the Pseudo-Random Generator and 
the key scheduling algorithm. RC4 includes a 
state vector S. this vector has 256 bytes: S0, S1,…, 
S255 and Si  is initialized to i. 

Another vector T is created, and it is also of size 
256. A key 𝐾 is used to shuffle the permutation 
found in vector S. 𝐾 is copied to T vector, and if 
the T vector is not filled yet, 𝐾 will be copied to 
the remaining T cells till T is filled. The steps that 
are previously mentioned are for initialization 
summarized as follows: 

𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 255 𝒅𝒐 

𝑆[𝑖] = 𝑖 

𝑇[𝑖] = 𝐾[𝑖 𝑚𝑜𝑑 𝑘𝑒𝑦𝑙𝑒𝑛] 
𝒆𝒏𝒅                                                      (3) 

Where (keylen) donates the length of the key. The 
next step is to scramble S and produce an initial 
permutation. We will first start with S[0] and 
through to S[255]. For each byte in S, we will 
swap its value with another byte also in S using 
the T vector. The scrambling process requires two 
indices, i and j which are initialized to zero. The 
scrambling process is summarized as follows: 

𝑗 = 0 
𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 255 
𝒅𝒐 
𝑗 = (𝑗 + 𝑆[𝑖] + 𝑇[𝑖]) 𝑚𝑜𝑑 256 
𝑆𝑤𝑎𝑝 (𝑆[𝑖]. 𝑆[𝑗]) 
𝒆𝒏𝒅                                                      (4) 
This process will just result in 

scrambling. The vector S will still contain 
numbers from 0 to 255, but the numbers will be 
shuffled. That concludes the KSA. 
The next step is called the PRGA or Stream 
Generation. This process takes as input the key-
dependent scrambled permutation vector S that 
was output from the previous step, and it 
produces a pseudo-random keystream of bytes. i 
and j are initialized to 0. 
 
RC4 steps are summarized in [8] 
       For encryption, the n-bit keystream k is 
XOR-ed with n-bits of the plaintext to produce n-
bits of ciphertext. For decryption, the n-bits of k 
will again be XOR-ed with the ciphertext to 
recover the original plaintext [26]. Many studies 
on the cryptanalysis of RC4 are carried out. 
Moreover, partial information of the used secret 
key is gained [25]. More researches are proposed 
on the weaknesses of the RC4 stream cipher [27-
38]. "However, all of these exploit the initial 
keystream bytes only. If some amount of initial 
keystream bytes is discarded, then RC4 is 
considered safe to use" [28] [39]. We can see the 
statistical NIST Tests results over the set of data 
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produced by RC4 in Table 3.  
 
2.2.2 Salsa20 
It is a stream cipher proposed by Bernstein [40]. 
It is based on simple operations like addition, 
XOR, basic rotation. The multiplication operation 
and other time consuming operations are 
minimized in order to produce a fast stream 
cipher algorithm. Moreover, this stream cipher is 
resistant to timing attacks. The main component 
of Salsa20 is 256-bit hash function. Salsa20 
divides the plaintext into 64-bits blocks, it XOR-
ing the plaintext bits with the output of the hash 
where the input are the block number and the key.  
Salsa20 is presented in details by [42]. 
 
Salsa20 has three versions proposed by [43-44]: 
1) Salsa20/20, number of encryption rounds are 

20. 
2) Salsa20/12, where number of rounds are 12 

instead of 20.  
3) Salsa20/8 where number of rounds are 12 

instead of 8.  
To make a cipher picture, the Salsa20 generates a 
64-byte. The 64 byte of the ciphered data is 
produced by XOR-ing the 64-byte from the plain 
block with the 64 byte produced by Salsa20 
generator. 
 
It generates a uniform random key and this key 
never reused for different plaintext. We can notice 
the statistical NIST Tests results over the set of 
data produced by Salsa20 in Table 4. Finally, 
Salsa20 and other versions have researches on 
possible attacks and weaknesses [45-50] 
 
2.2.3 HC-128 and HC-256 
"HC-128 is one of the eSTREAM stream cipher, 
which consists of two secret tables, each one with 
512 32-bit elements. At each iteration they update 
one element from one of the tables using a non-
linear feedback function. Every 1024 steps, all 
elements in the two tables are updated. At each 
step, a sample of 32-bit output is generated from 
the non-linear output function. HC-256 is a new 
variation that differs from HC-128 in the size of 
secret tables which is 1024 32-bit elements. All of 
the elements of the two tables are updated every 
2048 steps. At each step, HC-256 produces one 
32-bit output [53]. However, in 2010, (Kircanski 
and Youssef) provide in a differential fault 

analysis attack on HC-128 in their paper. The 
attack is based on the fact that, some of the inner 
state words of HC-128 may be exploited several 
times without being updated. Consequently, the 
complete internal state is recovered using about 
7968 faults" [50-54] [19]. Many researches are 
presented regarding security weaknesses and 
randomness of HCI-128 and HCI-256 [55-60]. 
The statistical NIST Tests results over the set of 
data produced by HC-128 are provided in Table 
5. 
2.2.4 SOSEMANUK 
SOSEMANUK is a stream cipher where the size 
of the key is ranging [128256] bits [61]. IV 
size is 128 bits. SOSEMANUK consists of: a 
Finite State Machine (FSM) and a Linear 
Feedback Shift Register (LFSR). The FSM has 
two registers, each one 32 bit: LFSR send the 
output to the FSM then the FSM update the 
memory to output four word at each encryption 
round. In 2011 Salehani et al made a differential 
attack on SOSEMANUK [62]. This attack is 
based on the faults and it requires 6144 wrong 
output in order to recover the partial states of the 
used secret key. It has a lot of attacks and 
evaluation analysis weaknesses regarding security 
level [63-70]. We can notice the statistical NIST 
Tests results over the set of data produced by 
SOSEMANUK in Table 6. 
  
3. STATISTICAL AND VISUALIZATION 

TESTS 
 

 In this section, some aspects of testing 
PRNGs will be discussed. These generators 
should satisfy harder requirements than 
generators used in other applications. Therefore, 
some statistical and visual security tests are used 
in order to assess and evaluate the randomness of 
the generated bits. 
 
3.1 NIST Test Suite 
To evaluate the statistical performance of PRNGs, 
various statistical tests should be applied on the 
binary sequence. The main target of these tests to 
measure the relation between the PRNG and the 
TRNG. The adversary should not have the ability 
to distinguish between TRNG and PRNG outputs. 
The National institution of Standards and 
Technology (NIST) released a suite for testing 
PRNGs that contains 188 tests including 15 main 
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tests. NIST tests try to find the non-
random behavior in the generated bits from the 
proposed PRNG [71].  
 
3.2 Information Entropy 
In addition to the NIST tests, we use the entropy 
test as an extra test to evaluate the proposed 
generators under the test. Entropy is the average 
(expected) amount of information produced by 
the source. This concept was introduced by 
Claude Shannon in 1948 [72-73]. Given a robust 
and unpredictable PRNG, the probability of 
existence any value (more than one bit) should be 
exactly equal to the probability of the existence of 
other values. This test can be applied using the 
following equation: 

𝐻(𝑆) = ෍ 𝑃𝑟𝑜(𝑠௜) × logଶ

1

𝑃𝑟𝑜(𝑠௜)

ொିଵ

௜ୀ଴

 

Where 𝐻(𝑆)  is the entropy value for the 
sequence, and 𝑃𝑟𝑜(𝑠௜) is the probability of each 
value to occur. 
 
3.3 Hamming Distance (HD) 
More random behavior test are used, which is a 
measurement used to measure the differences 
between two generated sequences. The optimal 
result of HD is achieved when a small change on 
the secret key produces a 50% differences 
between the two generated sequences. This test 
describes the resistance of any cryptosystem to 
plaintext and/or the secret key sensitivity attacks. 
The HD is given by: 

𝐻𝐷(𝑆ଵ. 𝑆ଶ) =
1

|𝐼𝑏|
෍(𝑆ଵ(𝐾) ⊕ 𝑆ଶ(𝐾))

|ூ௕|

௄ୀଵ

 

Where |𝐼𝑏| is the size of the generated bits [74]. 
3.4 Histogram and Chi-square Test 
The generated bits of the any proposed PRNG 
should have a uniform distribution and it is 
measured using the well-known histogram. 
However, histogram is a visual test. A numerical 
test which is called chi-square test is used to 
confirm the uniform distribution of the histogram. 

𝜒ଶ = ෍
(𝑂௜ − 𝐸௜)ଶ

𝐸௜

ே௩

௜ୀଵ

 

Where 𝑁𝑣  is the number of bits/bytes under the 
test, 𝑂௜  is the frequency of the bit/byte at the 
position 𝑖 , 𝐸௜  is the expected frequency [74-75]. 
in our test each 8 bit is considered as one level, to 
calculate the expected frequency which is total 

numbers of 8 bits in the generated samples 
divided by the total number of levels of the 8-bits 
which is 256 level.  
 
3.5 Correlation Test 
Some applications like that including image have 
high correlated data. A robust PRNG should 
completely remove this correlation. The 
mathematical models and description of all 
parameters and scenario are described in details 
inside the following papers [76-78]. 
 
3.6 Mapping Test 
Mapping test assess the unknown prediction or 
calculation of the generated PRNG bits. "One of 
the characteristics of any generated sequence is 
the phase space trajectory. It reflects the dynamic 
behavior of the system" [19]. We plot x(n) and 
x(n+1) sequences on an xy plane. The system is 
considered secure, if the signature of the 
generated sequences is unknown. 
 
4. RESULTS AND ANALYSIS 
 

In this section we will provide some results 
of different statistical test like (NIST, Histogram, 
Mapping). First, we applied these tests on some 
of stream ciphers generators. To evaluate 
ccomputing performance of the some stream 
cipher models, we performed some experiments 
using a two 32-bit multi-core Intel Core (TM) i5 
processors running at 2.60 GHz with 16G of 
memory. This hardware platform was used on top 
of an Ubuntu 14.04 Trusty Linux distribution.  
 
4.1 NIST Test Suite Results 
For each cipher, we produced 100 bitstream, each 
consist of 1,000,000 bits.  The p-value is used to 
test the robustness of each PRNG in terms of 
statistical attacks. The minimum p-value is 0.01. 
If the result of any test is greater than p-value the 
generated sequence has passed that test.  
Otherwise, it fails to pass that test. However, 
running the NIST tests on one sequence is not 
enough, as we might obtain different results when 
running the tests on two sequences produced by 
the same generator. To obtain the most accurate 
results, we should generate 100 sequences using 
100 different keys and run the NIST tests on all 
generated sequences. 
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Figure 3. NIST test key stream results For Chaos-based 

stream cipher 
Figure 3 presents the NIST result 

obtained from the chaos-based stream cipher that 
was proposed by Abutaha et al [19]. The figure is 
the result of running the NIST tests on 100 
sequences produced by the chaos-based stream 
cipher. The x-axis represents the subtest number, 
and the y-axis represents the number of sequences 
that passed each subtest. The line shown in the 
figure represents the minimum pass point of each 
statistical test. It is clear that the minimum pass 
rate of all statistical tests excluding one test is 96 
[79]. The minimum pass rate for the random 
excursion (the excluding test) test is 59. That is, 
the number of sequences that need to pass each 
test should be bigger than or equal to 96, given 
that the total number of generated sequences is 
100. Since most values lie above the minimum 
pass rate line, then we conclude that the chaos-
based stream cipher has high randomness. 
Tables 1, 2, 3, 4, 5 and 6 present the results of 
applying the NIST test suite on the generated bits 
of the mentioned PRNGs and eSTREAM stream 
cipher generators. All implemented ciphers have 
passed the NIST tests with good p-value results. 
The eSTREAM ciphers (Salsa20, SOSEMANUK 
and HC-128) have good random results in terms 
of NIST test suite. The NIST results obtained 
from Salsa20 were better than those produced 
from RC4, as depicted in Figure 4 and Figure 5 
since the number of tests close to 100% (which is 
the points) in Figure 5 more than those in Figure 

4. 

 
Table 1: NIST Test Suite Results for the PRNG Based 

on Two Chaotic Maps [23] 

PRNG Based on Two Chaotic Maps 

Test 
no. 

Test name 
p-
value 

Conclusion 

1 Frequency 0.6936 PASSED 

2 Block frequency 0.7740 PASSED 

3 Runs 0.7489 PASSED 

4 Longest run 0.1637 PASSED 

5 Rank 0.7278 PASSED 

6 FFT 0.6470 PASSED 

7 Non-overlapping template 0.0401 PASSED 

8 Overlapping template 0.1916 PASSED 

9 Universal 0.3965 PASSED 

10 Linear complexity 0.2187 PASSED 

11 Serial (1) 0.1567 PASSED 

12 Serial (2) 0.2624 PASSED 

13 Approximate entropy 0.2101 PASSED 

14 Cumulative sums (1) 0.4846 PASSED 

15 Cumulative sums (2) 0.2366 PASSED 

16 Random excursions 0.2938 PASSED 

17 Random excursions 
variant 

0.0633 
PASSED 
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Table 2: NIST Test Suite Results for the QRWs-based 
PRNG [25] 

QRWs-based PRNG 

Test no. Test name p-value conclusion 

1 Frequency 0.222465 PASSED 

2 Block frequency (block = 
128) 

0.932368 
PASSED 

3 Runs 0.436267 PASSED 

4 Longest run 0.388167 PASSED 

5 Rank 0.436267 PASSED 

6 Spectral DFT 0.180314 PASSED 

7 Non-overlapping template 
(m = 9) 

0.962460 
PASSED 

8 Overlapping template (m = 
9) 

0.577368 
PASSED 

9 Universal (block = 7) 0.596355 PASSED 

10 Linear complexity (block = 
500) 

0.826735 
PASSED 

11 Serial (1) (block = 16) 0.719705 PASSED 

12 Serial (2) (block = 16) 0.580439 PASSED 

13 Approximate entropy 
(block = 10) 

0.565844 
PASSED 

14 Cumulative sums (1) 0.438435 PASSED 

15 Cumulative sums (2) 0.051895 PASSED 

16 Random excursions (x = -1) 0.506488 PASSED 

17 Random excursions variant 
(x = +1) 

0.527057 
PASSED 

 
Table 3: NIST Test Suite Results for RC4 

RC4 

Test 
no. 

Test name p-value conclusion 

1 Frequency 0.456 PASSED 

2 Block frequency 0.658 PASSED 

3 Runs 0.290 PASSED 

4 Longest run 0.924 PASSED 

5 Rank 0.514 PASSED 

6 FFT 0.304 PASSED 

7 Non-overlapping template 0.498 PASSED 

8 Overlapping template 0.262 PASSED 

9 Universal 0.596 PASSED 

10 Linear complexity 0.367 PASSED 

11 Serial 0.548 PASSED 

12 Approximate entropy 0.983 PASSED 

13 Cumulative sums 0.414 PASSED 

14 Random excursions 0.483 PASSED 

15 Random excursions variant 0.636 PASSED 

 
Table 4: NIST Test Suite Results for Salsa20 

Salsa20 

Test no. Test name p-value conclusion 

1 Frequency 0.494 PASSED 

2 Block frequency 0.319 PASSED 

3 Runs 0.182 PASSED 

4 Longest run 0.304 PASSED 

5 Rank 0.760 PASSED 

6 FFT 0.052 PASSED 

7 Non-overlapping template 0.511 PASSED 

8 Overlapping template 0.740 PASSED 

9 Universal 0.956 PASSED 

10 Linear complexity 0.475 PASSED 

11 Serial 0.212 PASSED 

12 Approximate entropy 0.154 PASSED 

13 Cumulative sums 0.421 PASSED 

14 Random excursions 0.513 PASSED 

15 Random excursions variant 0.526 PASSED 
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Table 5: NIST Test Suite Results for HC-128 

HC-128 

Test 
no. 

Test name 
p-
value 

conclusion 

1 Frequency 0.311 PASSED 

2 Block frequency 0.310 PASSED 

3 Runs 0.722 PASSED 

4 Longest run 0.983 PASSED 

5 Rank 0.910 PASSED 

6 FFT 0.148 PASSED 

7 Non-overlapping template 0.925 PASSED 

8 Overlapping template 0.321 PASSED 

9 Universal 0.370 PASSED 

10 Linear complexity 0.569 PASSED 

11 Serial 0.762 PASSED 

12 Approximate entropy 0.768 PASSED 

13 Cumulative sums 0.934 PASSED 

14 Random excursions 0.297 PASSED 

15 
Random excursions 
variant 

0.218 
PASSED 

 
Table 6: NIST Test Suite Results for SOSEMANUK 

SOSEMANUK 

Test 
no. 

Test name 
p-
value 

conclusion 

1 Frequency 0.679 PASSED 

2 Block frequency 0.122 PASSED 

3 Runs 0.276 PASSED 

4 Longest run 0.384 PASSED 

5 Rank 0.097 PASSED 

6 FFT 0.081 PASSED 

7 Non-overlapping template 0.494 PASSED 

8 Overlapping template 0.319 PASSED 

9 Universal 0.335 PASSED 

10 Linear complexity 0.658 PASSED 

11 Serial 0.927 PASSED 

12 Approximate entropy 0.304 PASSED 

13 Cumulative sums 0.477 PASSED 

14 Random excursions 0.434 PASSED 

15 
Random excursions 
variant 

0.464 
PASSED 

 

 
Figure 4. NIST Test Key Stream Results for Salsa20 

 
Figure 5. NIST Test Key Stream Results for RC4 

 
4.2 Entropy Test Results 
Table 7 represents the results obtained from 
applying the entropy test on the sets of data 
obtained from RC4, Salsa20 and the generator 
introduced in section 2.1.1. Since the output of 
Salsa20 is 64 bits, then we need to generate at 
least 270 samples. However, it is very difficult to 
generate 270 samples, as that would require huge 
amounts of storage. As a result, we divided the 
output of both Salsa20 and the chaos-based cipher 
into 8-bit blocks, and we applied the entropy test 
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using the equation in section 3.2. 
Table 7: Entropy Test Results 

Generator Entropy 

RC4 7.99401 
Salsa20 (Divided into 8-bit 
blocks) 

7.99453 

Chaos based cipher 
(Divided into 8-bit blocks) 

7.99334 

 
The optimal entropy value for 8-bit generator 
should be close to 8 and the percentage of RC4 is 
0.99924 which is good result, while for Chaos 
based cipher is 0.9949 which is acceptable and 
less than RC4, for Salsa20 is 0.9952 which is also 
acceptable and less than RC4. 
 
4.3 Hamming Distance Test Results 
Table 8 represents the results obtained from 
applying the hamming distance test on the sets of 
data obtained from RC4, Salsa20 and the 
generator introduced in section 2.1.1. The steps 
used to obtain the results are as follows: we 
generated two sequences using each generator. 
Each sequence consists of 1,000,000 bits. 
However, the two keys used to generate each of 
the two sequences only differ in one bit. After we 
changed one bit in the input, we measured the 
amount of change between the two generated 
sequences using the equation defined in section 
3.3. In this section we used a new methodology of 
calculating The HD, which is from research 
undergoing by master student [80]. This new 
methodology is based on the local and global HD, 
the global HD is the well-known HD test, while 
the local HD is the HD value per block or unit 
under the test, in the research of [80] is proved 
that some algorithms have HD values close to the 
optimal while the values is not random behavior. 
As an example assumes one block has 40% as HD 
value and the next block has 60%  as HD value, it 
is clear that theses result are very bad while the 
global (normal HD value) is close to the optimal 
one. In our research, we use 8, 16 and 32 bits. The 
minimum local HD in Salsa20 is 25%, which 
means 16 bits are zeros and 48 are ones, while the 
maximum local HD is 76% which means 15.4 bits 
are ones and 48.6 bits are zeros, these maximum 
and minimum local HD values justifying the 
global HD value of Salsa20 which is close to the 
optimal (i.e. number of ones in the first local and 
the second local is almost equal to the number of 
zeros in the first and second locals), this is not a 

positive indicator of the uniformity distribution 
but also it gives an indication of acceptable 
security level. In RC4, the minimum local HD 
value is 0%, which means 8 bits are zeros and 0 
are ones, while the maximum local HD is 100% 
which means 8 bits are ones and 0 bit is  zeros, 
these maximum and minimum local HD values 
also justifying the global HD value of RC4 which 
is close to the optimal (i.e. number of ones in the 
first local and the second local is almost equal to 
the number of zeros in the first and second 
locals), the indicator in RC4 of the uniformity 
distribution is lower than Salsa20. In Chaos based 
cipher, the minimum local HD value is 9.38%, 
which means 3 bits are zeros and 29 bits are ones, 
while the maximum local HD is 81.25% which 
means 26 bits are ones and 6 bits are zeros, these 
maximum and minimum local HD values also 
justifying the global HD value of Chaos based 
cipher which is a little bit far from the optimal 
HD than Salsa20 and RC4. The indicator in 
Chaos based cipher of the uniformity distribution 
is lower than Salsa20. In order to verify those 
indicators, the three generators under the test 
(Salsa20, RC4 and Chaos based cipher) are 
reevaluated and the number of sequences having 
local HD more than 75% or less than 25% are 
calculated and presented in the same table. Our 
indicator regarding Salsa20 proves the robustness 
and uniformity distribution of the generated bits 
since the number of sequences are only one 
sequence. In RC4, also our indicator are true since 
the Percentage of local HD less than 25% is 
0.034536 and almost the same for those more 
than 75% which are not negligible percentages. 
Regarding the Chaos-based cipher, the percentage 
can be negligible in some applications and not in 
other. 
 

Table 8: HD Test Results 
Generator Salsa20 RC4 Chaos-based cipher 
Global HD 50.0364% 

50.0474
% 

49.8969% 

Min Local HD 25% 0% 9.38% 
Max Local HD 76.6% 100% 81.25% 
Percentage of 
Local HD less 

than 25% 

0 0.03453
6 

0.001056 

Percentage of 
Local HD 

more than 75% 

0.000064 0.03519
2 

0.001024 
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4.4 Histogram and Chi-Square Test Results 
Figures 6 and 7 represent the results obtained 
from applying the histogram test on the sets of 
data produced by the PRNGs reviewed in Section 
2.1.1 and 2.1.2. While Figures 8 and 9 represent 
the results obtained from applying the histogram 
test on the set of data produced by RC4 and 
Salsa20 stream cipher respectively. Visually, it 
appears that the data is uniform. To confirm the 
obtained results the Chi-Square test is used.  The 
theoretical value at P-value 0.05 is 293 and at P-
value 0.1 is 287, which means the experimental 
values of the proposed generator lower than 293 
are passed at P-value 0.05 and which are lower 
than 287 are passed the Chi-Square test at P-value 
0.1. Table 9 presents the Chi-Square test for the 
three presented generator. It is clear, that RC4 and 
Salsa20 pass the test for both P-values, while the 
Chaos based cipher is passed the test at P-value 
0.05 and failed at at P-value 0.1. 

 
Figure 6. HISTROGRAM Test Results for Chaos-based 

stream cipher 

 
Figure 7. HISTROGRAM Test Results for PRNG Based 

on Two Chaotic Maps 

 
Figure 8. HISTOGRAM Test Results for RC4 

 

 
Figure 9. HISTOGRAM Test Results for Salsa20 

 Table 9: Chi-Square Test Results 

PRNG/ Stream Cipher 
Experimen

tal value 

RC4 259 

Salsa20 (Divided into 8-bit blocks) 238 

Chaos based cipher (Divided into 8-bit 
blocks) 

289 

 
4.5 Mapping Test Results 
The mapping test point out of the dynamic 
behavior of the system. The obtained result in 
general with some exceptions, confirm the 
randomness of the proposed PRNGs and 
eSTREAM ciphers. Figures 10 and 11 represent 
the results obtained from applying the mapping 
test on the sets of data obtained produced by the 
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PRNGs reviewed in Section 2.1.1 and 2.1.2. 
While Figures 12 and 13 represent the results 
obtained from applying the mapping test on the 
set of data produced by RC4 and Salsa20 stream 
cipher respectively. The mapping result reflects 
the dynamic behavior of the system. 
 

 
Figure 10. MAPPING Test Results for Chaos-based 

stream cipher 

 
Figure 11. MAPPING Test Results for PRNG Based on 

Two Chaotic Maps 

 
Figure 12. MAPPING Test Results for RC4 

 
Figure 13. MAPPING Test Results for Salsa20 

4.6 Correlation Test Results 
Figures 14 and 15 show the correlation test on the 
set of data obtained from RC4 and Salsa20 stream 
ciphers respectively. The generated sequences are 
not correlated nor repeated. 
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Figure 14. Correlation Test Results for RC4  

 

 

 

 
Figure 15. Correlation Test Results for Salsa20 

 
RC4 has passed approximate entropy test with the 
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highest p-value compared with the other 
generators, as shown in table 3. It also passed the 
longest run test with a very high p-value. 
However, it passed the runs test but with a 
relatively small p-value. While Salsa20 passed 
some tests with very high p-values, including the 
overlapping template test and the serial test, it 
passed other test with relatively small p-values. 
As shown in table 4, Salsa20 has passed the runs 
test and the FFT test with p-values of 0.182 and 
0.052 respectively. These values are the lowest 
compared to other tested generators. 
The HC-128 stream cipher has passed many tests 
with the highest p-values. It has the highest p-
value for the runs test, the longest run test, the 
rank test and the cumulative sums test. It also 
passed other tests with a very good p-value. 
However, it passed a few tests with smaller p-
values, including the FFT test and the frequency 
test, as shown in table 5. 
The results obtained from SOSEMANUK were 
average as shown in table 6. None of the p-values 
were relatively high. Moreover, it passed some 
tests with the lowest p-value such as the rank test 
and the block frequency test. 
 
4.7 Time and Performance Test Results   

In this section we analyzed the performances of 
different stream cipher models.  For each stream 
cipher algorithm, we measured the time of 
encryption/ decryption in (μs), Bitrate in (MBit/s) 
and Number of Cycles to generate one Byte [68] 
(NCpB). (see Equations 12 and 13). 
 

BR =  
஽௔௧௔ ௌ௜௭௘(ಾ್೔೟) 

ீ்(ಔೞ)
                    (12) 

 

NCpB =  
஼௉௎ ௌ௣௘௘ௗ(ಹ೐ೝ೟೥)

஻ோ(ಾ್೔೟ / ೞ)
             (13) 

 
Tables 10 and 11 show the computed 
performance results for the implemented stream 
cipher algorithms. We applied this comparison 
over a set of data produced by each model. Each 
set of data has an equal size of 3MBs. The results 
provided in Tables 10 and 11 indicate that the 
eSTREAM project ciphers have very good results 
in term of computing performance. The NCpB is 
between 9 to 14 cycles in encryption /decryption 
using eSTREAM project ciphers, while it is too 
high using the RC4. The NCpB for the RC4 
cipher is approximately four times of eSTREAM 
ciphers’ NCpB. This result reflects the admirable 
performances that the eSTREAM ciphers have 
over the standard RC4 stream cipher. 

 
 

Table 10: Time and Performance Results for Encryption Operation 

Encryption 

Model 
Size 
(B) 

Time for 1000 Encrypt. 
(us) 

Time 
(ns / B) 

Bit Rate 
(Mbps) 

Number of Cycle for 1 Byte 
(Cycles / B) 

RC4 3145728 26946708 8.60 533.24 56.3 

Salsa20 3145728 13483978 4.29 1866.35 9.9 

HC-128 3145728 19647606 6.25 1280.86 14.4 

SOSEMANUK 3145728 14134923 4.49 1780.40 10.4 

 
Table 11: Time and Performance Results for Decryption Operation 

Decryption 

Model 
Size  
( B ) 

Time for 1000 Decrypt. 
 (us) 

Time  
( ns / B) 

Byte Rate 
 (Mbps) 

Number of Cycle for 1 Byte 
 (Cycles / B) 

RC4 3145728 29843025 10.20 448.81 55.1 

Salsa20 3145728 16020572 5.09 1570.84 11.7 
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HC-128 3145728 22671643 7.21 1110.01 16.7 

SOSEMANUK 3145728 16841003 5.35 1494.32 12.4 

 
5. CONCLUSION 
In this survey, some of the states of the art 
researches that were proposed in the field of PRNG 
are highlighted. We started by a short introduction 
in the vast domain of randomness and types of 
random number generators. Then, we reviewed 
standard stream ciphers and some of the researches 
that were proposed in the field of PRNG. We gave 
an introduction to encryption and reviewed the two 
main types of encryption. The process of testing 
random numbers using statistical and visualization 
tests was discussed in the following section. We 
gave a description for NIST test suite, visualization 
test, histogram test, chi-square test, correlation test 
and mapping test. As an example, we presented the 
results obtained from the application of some 
statistical tests over sets of data obtained from 
various ciphers, such as Salsa20 and RC4. In 
section 4.3, a new methodology of Hamming 
Distance is presented which is proved that some 
algorithms and generators can pass the HD while 
the local HD is not good random behavior. All 
tested generators successfully passed the NIST test 
suite with good p-value numbers. The results of 
applying histogram, correlation and mapping tests 
were also presented in various figures. Finally, we 
compared between various generators in terms of 
encryption and decryption speed. The results of this 
comparison were summarized in two tables.  
 
We have seen that some of the previously used 
generators fail severely in the histogram test. Does 
that mean that we shouldn’t use these generators at 
all? Well, it depends on the target application. For 
example, in cryptology, we require generators 
which are unpredictable in a specific sense. Such 
generators should pass all statistical tests, but their 
current limitation is that they are not fast enough 
for real-time applications. Research is still under 
way. It’s also worth noting that we faced some 
challenges whilst performing some of the statistical 
tests. One of the limitations of current technology is 
the storage. Some tests require generating huge 
amounts of data when applied to 32-bit generators 
or higher. This data cannot be stored on any hard 
disk drive. As a solution, we divided the output of 

such generators into 8-bit chunks that require 
significantly less storage. It is hoped that the reader 
has developed an appreciation of this subject and 
has recognized the importance of testing generators 
using various tests and tools. 
 
6. FUTURE WORK 

 
Based on our study and analysis of 

PRNGs, the need of a generator that passes all 
statistical tests in both local and global is required. 
We are looking to design and implement a new 
PRNG that passes all local and global statistical 
tests with high throughput.  
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