
Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1951

SURVEY PAPER: PSEUDO RANDOM NUMBER
GENERATORS AND SECURITY TESTS

1OMAR SALHAB, 2NOUR JWEIHAN, 3MOHAMMED ABU JODEH, 4MOHAMMED ABU TAHA,

5MOUSA FARAJALLAH

1,2,3,4,5College of Information Technology and Computer Engineering (CITCE)
Palestine Polytechnic University, Palestine

E-mail: 1131082@ppu.edu.ps, 2131035@ppu.edu.ps, 3131089@ppu.edu.ps, 4m_abutaha@ppu.edu,

5mousa_math@ppu.edu

ABSTRACT

Many security applications are based on Pseudo Random Number Generators (PRNGs). Random binary
numbers constitute a major reliance in many network security algorithms. For example, common
cryptosystems require a long dynamic key that should be generated from a short secret key and has the
random behavior. Random or pseudorandom inputs are critical requirements in many protocols that need
this issue at certain points. A PRNG is a deterministic algorithm generates a sequence of bits simulates the
truly random numbers sequence behavior. Each generated number should be independent of the previous or
the future numbers, as a result the PRNG become unpredictable. However there are many security and
performance tests can be applied on the PRNG sequence to evaluate it. And then measure the power of the
PRNG. Therefore not all PRNG are good enough to be used in cryptographic applications. This depends on
the kind of application and its data sensitivity. A PRNG that passes these tests can be considered as a
secure PRNG. Furthermore, it can be used in many cryptographic applications. In this survey, some
missing results are reproduced by our team in order to have the same level of assessment for presented
algorithms under the test. Moreover, new test tools are used to evaluate the behavior of the generators and
assess the randomness of them. Finally, details discussions of the new tools are considered in order to
validate the security level of the proposed generators.

Keywords: PRNG, Stream Cipher, RC4, Salsa20, NIST Tests

1- INTRODUCTION

Because randomness considered as the
Foundation stone to the cryptographic systems,
any adversary can see the final result of system as
a sensitive data included in a random number
sequence without any indication about the real
information [1].

There are many mechanisms in cryptography
science to provide solutions for various security
cases; most of these techniques need randomness
for many different reasons.
Therefore, there are many conditions should be
taken into consideration during study and analyze
of randomness, and that is what we have tried to
do in our survey

First of all, a set of basic concepts that will help
to provide a good description of PRNG is

reviewed. In cryptography science, Encryption is
the process of transform original message (Plain
Text) to non-readable data (Cipher Text) using an
encryption algorithm. This Cipher Text can't give
anyone any information about the Plain Text
except those who have the encryption key.

A simple encryption example can be performed
by replacing every character in the data with its
next character, so the word “survey” will be
encrypted to “tvswfz”. There are two main types
of encryption: Asymmetric cipher, and
Symmetric cipher [2-4], as shown in Figure 1.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1952

Figure 1. Encryption Models

Asymmetric cipher, also called a public key
encryption, an encryption technique which uses a
pair of public key and secret key. The sender has
the public key of the receiver while the secret key
is not known. The receiver’s should create his
pair of the public and secret key, publish his
public key without considering its security. The
secret key should be computational impossible to
find through the public key. Asymmetric
encryption is used in authentication and digital
signatures. A signed message with the sender’s
secret key proof the identity of the sender and it
can be read by anyone who the sender’s public
key. Thus, the receiver can ensure that the
message has not been modified or replaced by any
other source which is confirms the sender identity
[5-6].

The second type of encryption is called
Symmetric cipher [6-8]. In this type, both sender
and receiver shared the same secret key. It uses in
the encryption and the decryption process. In
symmetric ciphering, the receiver and sender
share the same secret key. Symmetric is faster
than a symmetric one but it has a lower security
level.

 Figure 2 shows the general structure of
this encryption model.

Figure 2. Simple Symmetric model

As it is shown if Figure 2, the Symmetric ciphers
can be used as block cipher or stream cipher.
1) Block cipher: the plaintext is divided into

number of blocks, the block size depends on
the specification of the used encryption
algorithm [9]. The divided blocks are

encrypted as one unit and there is a
relationship and dependency between
encrypted blocks based on the encryption
mode. This type of encryption has better
security than the stream cipher against
number of well-known attacks, moreover the
most important properties of the secure
cipher text which are the confusion and the
diffusion properties are included inside block
ciphering algorithms. . Where in terms of
execution time it is slower than the stream
cipher and so the encryption throughput of
stream cipher is much higher than the block
cipher.

Stream cipher: in this type, the encryption is
performed bit by bit, and the most important the
encryption of each bit is independent of other bits
and so the diffusion and confusion properties are
not achieved in this type. The encryption operator
is as simple as possible, and in most case is the
XOR operation between the plaintext bits and the
corresponding key bits. In terms of encryption
throughput (speed of encryption) the stream
cipher is much more than the block cipher [10].

However, the key should be randomly generated,
in addition to it should be at least equal to plain
text in length. Furthermore, it cannot be used
more than once to prevent the two time pad
attack. This technique is called the one-time pad.

Random Number Generator (RNG) is a functional
technique to generate the key stream from an
initial seed. The RNG can be defined as a
function that can give a random numbers
sequence. There are two types of RNGs; the first
is a True Random Number Generator
(TRNG). This kind of generator relies on a
physical system. It generates a sequence of truly
random numbers with no pattern, unpredictable,
and with no dependency. Both noise and electric
current are familiar sources of TRNG. However,
TRNG can not be used in real live application,
since the generated numbers at the sender part
will be differed from that at the recipient part. The
solution for this problem is achieved using
deterministic function where pseudorandom,
number generators is required [11-12].

Pseudo Random Number Generator (PRNG)
A PRNG is a generator that simulate the random
behavior, this generator as any function has
number of inputs and produces a pseudorandom
sequence of numbers. The inputs of the PRNG are

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1953

called seeds. This seed should be random and
unpredictable. PRNGs are generally used in
cryptographic applications. For example,
generators can be used in session key generation,
to be used during the stream cipher encryption as
a generated dynamic keys [13]. PRNG generated
bits should have the randomness and
unpredictability [14-15].

1. Randomness: Each individual random bit

has a probability of exactly 0.5 of having a
value of a “0” or a “1”. Assess and evaluate
the sequence regarding the random based on:
independence and uniform distribution of
generated bits inside the sequence. The
generated bits are independent of each other,
bit doesn’t depend on the previous or the
future ones. The bit distribution inside the
generated sequence should be followed the
uniform distribution. There exist well-defined
statistical tests to assess if the generated
sequence follow the uniform distribution or
not. However, there are no statistical tests to
“prove” the independency [16].

2. Unpredictability: Random and
pseudorandom generated bits should be
unpredictable in order to be used in
cryptographic applications. The non-
authenticate user should not be able to predict
or calculate the next or the previous bit from
current one with non-negligible guess [15-
16].

Some PRNG algorithms are more simple

and faster than others as they are based on simple
equation. However, other algorithms may contain
more complicated equations, so they cost more
space and time. There are also some weaknesses
in PRNGs, such as getting in a loop, having a
small period and high complexity. In this survey
we will review some stream cipher algorithms,
mainly RC4 and Salsa20 which are wildly used in
stream cipher. In addition, the National Institute
of Standards and Technology (NIST) tests will be
applied to the random binary sequences in order
to verify the security of the proposed generators.

PRNG Challenges

Some aspects should be overpassed for the PRNG
to be suitable for cryptographic applications.
These aspects considered as challenges, hereafter
we list some of them [17].

1) Correctness: if the output is random and is
not predictable.

2) Reliable: does not fall into loops often or
fail.

3) Performant: produces random behavior
numbers with a fast bitrate.

4) Efficient: the usage of power is considered.
5) Affordable: does not cost much.

In this survey paper, the most important
tests and tools used to evaluate the behavior of
random number generators are highlighted, as
well as using a new methodology for evaluation
and assessment. The intent of this paper is to
introduce the reader to the testing of random
generators. In doing so, we have discussed some
definitions of randomness, different types of
random number generators, and applications for
these numbers. In the following sections we will
introduce the reader to the various statistical tests
and provide him with the required knowledge to
be able to apply these tests himself. It is worth
mentioning that in previous researches, such as
L'Ecuyer’s paper [18], similar work has been
conducted. However, it wasn’t in the same level
of assessment as ours. Our paper comprises the
most recent and important set of statistical tests
and tools. One might ask: why are there so many
tests? Well, a bad generator can pass some tests,
so trying more than one test is essential to make
sure that a bad generator is detected as such. For
example, the non-random sequence:
101010101010101010101010101010
passes the frequency test with a perfect score (i.e.
number of zeros and ones are exactly the same),
but fails miserably in the serial test. This is why
it’s important to apply various statistical tests to
the sequence. Furthermore, we presented the
results obtained from applying the statistical tests
over sets of data obtained from various ciphers,
such as Salsa20 and RC4. However, our paper
will not include the math models for the various
generators presented. Known attacks that are not
based on statistical attacks will not be included
too as the focus of our paper will be on the
statistical analysis of generators.

 The remainder of this document is
organized as follows. Section 2 presents few
previous researches that are done in this field,
more specifically, some generators, RC4, Salsa20,
HC-128 and HC-256, and SOSEMANUK

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1954

models. The NIST test suite, visualization,
Histogram, Chi-square, Mapping, and Correlation
tests are presented and summarized in Section 3.
We did some statistical tests for some ciphers and
the results will be reviewed in Section 4. Finally,
a comparison between some stream ciphers in
terms of speed and performance is carried out as
well in Section 4.

 2. RELATED WORK

This section reviews some of the states of the art
researches that are proposed in the field of PRNG.
Section 2.1 reviews some proposed PRNGs,
while section 2.2 reviews the standard ciphers
along with the eSTREAM ciphers.

2.1 PRNGs
In this section, we reviewed four state of the art
PRNGs.
2.1.1 Cryptosystem based on an efficient
chaotic generator
Abutaha et al [19] proposed a stream cipher
cryptosystem based on an efficient chaotic
generator of finite computing precision, where
N=32. The proposed is composed of an "IV-
Setup, a Key-Setup, a non-volatile memory, an
output and an internal state function" [19]. It uses
the internal feedback mode, where the generated
keystream is used in stream cipher. The internal
state function contains two recursive filters. The
first recursive filter based on the discrete skew
tent map, while the second recursive filter based
on the discrete piecewise linear chaotic map. Each
of the two recursive filters using the perturbation
technique based on the well-known linear
feedback shift register (LFSR). The stream cipher
has two implemented versions: sequential and
parallel, and they are implemented using Pthread
library. In sequential implementation, the
generator produces 32-bits of keystream, which
will be converted to 4 bytes and stored in a buffer.
The 4 generated bytes will then be XOR-ed with
4 bytes of plaintext to produce 4 bytes of
ciphertext, and so on. In parallel implementation,
the generated produces four 32-bit samples,
which are converted to 16 bytes. The generated
16 bytes will be XOR-ed with 16 bytes of
plaintext to produce 16 bytes of ciphertext. The
parallel implementation of the proposed faster
than the eSTREAMS. Various tests such as the

NIST tests, Histogram test, Chi-square test and
correlation test were applied to the proposed
cipher. Furthermore, the security of the stream
cipher was investigated by applying software
security tools. The results obtained from the
statistical tests and cryptographic analysis
indicate the robustness of the implemented stream
cipher.

2.1.2 Francois PRNG based on two chaotic
maps
Francois et al. [20] in their paper proposed "a new
pseudo-random number generator based on two
chaotic maps" [20]. An input initial vector is
responsible for producing the chaotic maps that
will be mixed. In their paper, they develop an
algorithm that uses chaotic function which is
responsible for generating "multiple pseudo-
random sequences. The proposed algorithm uses
permutations whose positions are evaluated using
a chaotic function that is based on linear
congruences. These permutations are stored on
the initial vector to produce two chaotic maps"
[20]. The chaotic map are XORed to generate one
sequence of this generator. The generated
sequences ready to serve cryptographic
applications. Author of this proposal assume the
adaptive size of the key space, simplicity of the
implementation, and the security against various
attacks are main contribution. However, if an
opponent knows the parameters used in the linear
congruences, prediction of the subsequent
numbers is easy when the adversary knows one of
the previous generated numbers [21].

2.1.3 MIXMAX generator
Savvidy, K. G. et al. "proposed a new pseudo-
random number generator" [22], named
MIXMAX random number generator. It is a
matrix-recursive PRNG. The period of the
generator is 104682 for matrix size N=256. That
means the generator will start repeating itself after
104682 iterations. There is an enhanced version
using C code implementation of the generator that
was developed by Konstantin Savvidy. The
generator works under UNIX, Linux and MacOS
devices, it was also tested on ARM architectures.
The most usage for this algorithm for Monte
Carlo simulations which needs a PRNG for
physical complicated simulations. However, since
the MIXMAX generator uses matrix

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1955

multiplication, then we believe that it’s relatively
slow compared to other PRNGs.

2.1.4 Novel pseudo-random number generator
based on quantum random walks
Yu-Guang and Zhao in their paper [23]
investigated the idea of applying quantum
computation for constructing PRNGs, as well as
"constructing a novel PRNG based on quantum
random walks (QRWs). A QRW is a famous
quantum computation model. The proposed
PRNG is based on the equations used in the
QRW. As a result, the PRNG algorithm is
relatively simple, and the computational speed is
fast" [23]. Furthermore, they applied statistical
tests, such as NIST test suite to the proposed
PRNG and it successfully passed all tests. The
proposed QRWs-based PRNG better than PRNGs
based on quantum chaotic maps (QCM) [24]. The
advantages include better statistical complexity
and recurrence. They attempted to compare
QRWs-based PRNGs with QCM-based PRNGs
by "numerical simulations and performance in
terms of quantifiers based on information theory,
recurrence plots, and other randomness tests"
[23]. It was concluded in their paper "that the new
QRWs-based PRNG can generate a high
percentage of good pseudo-random numbers, and
these numbers can be used in various applications
and it also extends the application scope of
quantum computation" [23] [25].
However, since QRNGs are typically based on
specialized physical hardware, such as Raman
scattering or single-photon sources, we think that
the cost and power requirements can be important
limitation.
2.2 Stream Ciphers
In this section we will discuss stream cipher
algorithms including RC4, Salsa20, HC-128, HC-
256, and SOSEMANUK:

2.2.1 RC4
RC4 is a stream cipher algorithm was designed by
Ron Rivest in 1987. In the laterite review, RC4 is
considered as one of the well-known stream
cipher algorithms. RC4 is used in WEP, WPA,
and SSL. The RC4 stream cipher has two main
components: the Pseudo-Random Generator and
the key scheduling algorithm. RC4 includes a
state vector S. this vector has 256 bytes: S0, S1,…,
S255 and Si is initialized to i.

Another vector T is created, and it is also of size
256. A key 𝐾 is used to shuffle the permutation
found in vector S. 𝐾 is copied to T vector, and if
the T vector is not filled yet, 𝐾 will be copied to
the remaining T cells till T is filled. The steps that
are previously mentioned are for initialization
summarized as follows:

𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 255 𝒅𝒐

𝑆[𝑖] = 𝑖

𝑇[𝑖] = 𝐾[𝑖 𝑚𝑜𝑑 𝑘𝑒𝑦𝑙𝑒𝑛]
𝒆𝒏𝒅 (3)

Where (keylen) donates the length of the key. The
next step is to scramble S and produce an initial
permutation. We will first start with S[0] and
through to S[255]. For each byte in S, we will
swap its value with another byte also in S using
the T vector. The scrambling process requires two
indices, i and j which are initialized to zero. The
scrambling process is summarized as follows:

𝑗 = 0
𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 255
𝒅𝒐
𝑗 = (𝑗 + 𝑆[𝑖] + 𝑇[𝑖]) 𝑚𝑜𝑑 256
𝑆𝑤𝑎𝑝 (𝑆[𝑖]. 𝑆[𝑗])
𝒆𝒏𝒅 (4)
This process will just result in

scrambling. The vector S will still contain
numbers from 0 to 255, but the numbers will be
shuffled. That concludes the KSA.
The next step is called the PRGA or Stream
Generation. This process takes as input the key-
dependent scrambled permutation vector S that
was output from the previous step, and it
produces a pseudo-random keystream of bytes. i
and j are initialized to 0.

RC4 steps are summarized in [8]
 For encryption, the n-bit keystream k is
XOR-ed with n-bits of the plaintext to produce n-
bits of ciphertext. For decryption, the n-bits of k
will again be XOR-ed with the ciphertext to
recover the original plaintext [26]. Many studies
on the cryptanalysis of RC4 are carried out.
Moreover, partial information of the used secret
key is gained [25]. More researches are proposed
on the weaknesses of the RC4 stream cipher [27-
38]. "However, all of these exploit the initial
keystream bytes only. If some amount of initial
keystream bytes is discarded, then RC4 is
considered safe to use" [28] [39]. We can see the
statistical NIST Tests results over the set of data

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1956

produced by RC4 in Table 3.

2.2.2 Salsa20
It is a stream cipher proposed by Bernstein [40].
It is based on simple operations like addition,
XOR, basic rotation. The multiplication operation
and other time consuming operations are
minimized in order to produce a fast stream
cipher algorithm. Moreover, this stream cipher is
resistant to timing attacks. The main component
of Salsa20 is 256-bit hash function. Salsa20
divides the plaintext into 64-bits blocks, it XOR-
ing the plaintext bits with the output of the hash
where the input are the block number and the key.
Salsa20 is presented in details by [42].

Salsa20 has three versions proposed by [43-44]:
1) Salsa20/20, number of encryption rounds are

20.
2) Salsa20/12, where number of rounds are 12

instead of 20.
3) Salsa20/8 where number of rounds are 12

instead of 8.
To make a cipher picture, the Salsa20 generates a
64-byte. The 64 byte of the ciphered data is
produced by XOR-ing the 64-byte from the plain
block with the 64 byte produced by Salsa20
generator.

It generates a uniform random key and this key
never reused for different plaintext. We can notice
the statistical NIST Tests results over the set of
data produced by Salsa20 in Table 4. Finally,
Salsa20 and other versions have researches on
possible attacks and weaknesses [45-50]

2.2.3 HC-128 and HC-256
"HC-128 is one of the eSTREAM stream cipher,
which consists of two secret tables, each one with
512 32-bit elements. At each iteration they update
one element from one of the tables using a non-
linear feedback function. Every 1024 steps, all
elements in the two tables are updated. At each
step, a sample of 32-bit output is generated from
the non-linear output function. HC-256 is a new
variation that differs from HC-128 in the size of
secret tables which is 1024 32-bit elements. All of
the elements of the two tables are updated every
2048 steps. At each step, HC-256 produces one
32-bit output [53]. However, in 2010, (Kircanski
and Youssef) provide in a differential fault

analysis attack on HC-128 in their paper. The
attack is based on the fact that, some of the inner
state words of HC-128 may be exploited several
times without being updated. Consequently, the
complete internal state is recovered using about
7968 faults" [50-54] [19]. Many researches are
presented regarding security weaknesses and
randomness of HCI-128 and HCI-256 [55-60].
The statistical NIST Tests results over the set of
data produced by HC-128 are provided in Table
5.
2.2.4 SOSEMANUK
SOSEMANUK is a stream cipher where the size
of the key is ranging [128256] bits [61]. IV
size is 128 bits. SOSEMANUK consists of: a
Finite State Machine (FSM) and a Linear
Feedback Shift Register (LFSR). The FSM has
two registers, each one 32 bit: LFSR send the
output to the FSM then the FSM update the
memory to output four word at each encryption
round. In 2011 Salehani et al made a differential
attack on SOSEMANUK [62]. This attack is
based on the faults and it requires 6144 wrong
output in order to recover the partial states of the
used secret key. It has a lot of attacks and
evaluation analysis weaknesses regarding security
level [63-70]. We can notice the statistical NIST
Tests results over the set of data produced by
SOSEMANUK in Table 6.

3. STATISTICAL AND VISUALIZATION

TESTS

 In this section, some aspects of testing
PRNGs will be discussed. These generators
should satisfy harder requirements than
generators used in other applications. Therefore,
some statistical and visual security tests are used
in order to assess and evaluate the randomness of
the generated bits.

3.1 NIST Test Suite
To evaluate the statistical performance of PRNGs,
various statistical tests should be applied on the
binary sequence. The main target of these tests to
measure the relation between the PRNG and the
TRNG. The adversary should not have the ability
to distinguish between TRNG and PRNG outputs.
The National institution of Standards and
Technology (NIST) released a suite for testing
PRNGs that contains 188 tests including 15 main

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1957

tests. NIST tests try to find the non-
random behavior in the generated bits from the
proposed PRNG [71].

3.2 Information Entropy
In addition to the NIST tests, we use the entropy
test as an extra test to evaluate the proposed
generators under the test. Entropy is the average
(expected) amount of information produced by
the source. This concept was introduced by
Claude Shannon in 1948 [72-73]. Given a robust
and unpredictable PRNG, the probability of
existence any value (more than one bit) should be
exactly equal to the probability of the existence of
other values. This test can be applied using the
following equation:

𝐻(𝑆) = ෍ 𝑃𝑟𝑜(𝑠௜) × logଶ

1

𝑃𝑟𝑜(𝑠௜)

ொିଵ

௜ୀ଴

Where 𝐻(𝑆) is the entropy value for the
sequence, and 𝑃𝑟𝑜(𝑠௜) is the probability of each
value to occur.

3.3 Hamming Distance (HD)
More random behavior test are used, which is a
measurement used to measure the differences
between two generated sequences. The optimal
result of HD is achieved when a small change on
the secret key produces a 50% differences
between the two generated sequences. This test
describes the resistance of any cryptosystem to
plaintext and/or the secret key sensitivity attacks.
The HD is given by:

𝐻𝐷(𝑆ଵ. 𝑆ଶ) =
1

|𝐼𝑏|
෍(𝑆ଵ(𝐾) ⊕ 𝑆ଶ(𝐾))

|ூ௕|

௄ୀଵ

Where |𝐼𝑏| is the size of the generated bits [74].
3.4 Histogram and Chi-square Test
The generated bits of the any proposed PRNG
should have a uniform distribution and it is
measured using the well-known histogram.
However, histogram is a visual test. A numerical
test which is called chi-square test is used to
confirm the uniform distribution of the histogram.

𝜒ଶ = ෍
(𝑂௜ − 𝐸௜)ଶ

𝐸௜

ே௩

௜ୀଵ

Where 𝑁𝑣 is the number of bits/bytes under the
test, 𝑂௜ is the frequency of the bit/byte at the
position 𝑖 , 𝐸௜ is the expected frequency [74-75].
in our test each 8 bit is considered as one level, to
calculate the expected frequency which is total

numbers of 8 bits in the generated samples
divided by the total number of levels of the 8-bits
which is 256 level.

3.5 Correlation Test
Some applications like that including image have
high correlated data. A robust PRNG should
completely remove this correlation. The
mathematical models and description of all
parameters and scenario are described in details
inside the following papers [76-78].

3.6 Mapping Test
Mapping test assess the unknown prediction or
calculation of the generated PRNG bits. "One of
the characteristics of any generated sequence is
the phase space trajectory. It reflects the dynamic
behavior of the system" [19]. We plot x(n) and
x(n+1) sequences on an xy plane. The system is
considered secure, if the signature of the
generated sequences is unknown.

4. RESULTS AND ANALYSIS

In this section we will provide some results
of different statistical test like (NIST, Histogram,
Mapping). First, we applied these tests on some
of stream ciphers generators. To evaluate
ccomputing performance of the some stream
cipher models, we performed some experiments
using a two 32-bit multi-core Intel Core (TM) i5
processors running at 2.60 GHz with 16G of
memory. This hardware platform was used on top
of an Ubuntu 14.04 Trusty Linux distribution.

4.1 NIST Test Suite Results
For each cipher, we produced 100 bitstream, each
consist of 1,000,000 bits. The p-value is used to
test the robustness of each PRNG in terms of
statistical attacks. The minimum p-value is 0.01.
If the result of any test is greater than p-value the
generated sequence has passed that test.
Otherwise, it fails to pass that test. However,
running the NIST tests on one sequence is not
enough, as we might obtain different results when
running the tests on two sequences produced by
the same generator. To obtain the most accurate
results, we should generate 100 sequences using
100 different keys and run the NIST tests on all
generated sequences.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1958

Figure 3. NIST test key stream results For Chaos-based

stream cipher
Figure 3 presents the NIST result

obtained from the chaos-based stream cipher that
was proposed by Abutaha et al [19]. The figure is
the result of running the NIST tests on 100
sequences produced by the chaos-based stream
cipher. The x-axis represents the subtest number,
and the y-axis represents the number of sequences
that passed each subtest. The line shown in the
figure represents the minimum pass point of each
statistical test. It is clear that the minimum pass
rate of all statistical tests excluding one test is 96
[79]. The minimum pass rate for the random
excursion (the excluding test) test is 59. That is,
the number of sequences that need to pass each
test should be bigger than or equal to 96, given
that the total number of generated sequences is
100. Since most values lie above the minimum
pass rate line, then we conclude that the chaos-
based stream cipher has high randomness.
Tables 1, 2, 3, 4, 5 and 6 present the results of
applying the NIST test suite on the generated bits
of the mentioned PRNGs and eSTREAM stream
cipher generators. All implemented ciphers have
passed the NIST tests with good p-value results.
The eSTREAM ciphers (Salsa20, SOSEMANUK
and HC-128) have good random results in terms
of NIST test suite. The NIST results obtained
from Salsa20 were better than those produced
from RC4, as depicted in Figure 4 and Figure 5
since the number of tests close to 100% (which is
the points) in Figure 5 more than those in Figure

4.

Table 1: NIST Test Suite Results for the PRNG Based

on Two Chaotic Maps [23]

PRNG Based on Two Chaotic Maps

Test
no.

Test name
p-
value

Conclusion

1 Frequency 0.6936 PASSED

2 Block frequency 0.7740 PASSED

3 Runs 0.7489 PASSED

4 Longest run 0.1637 PASSED

5 Rank 0.7278 PASSED

6 FFT 0.6470 PASSED

7 Non-overlapping template 0.0401 PASSED

8 Overlapping template 0.1916 PASSED

9 Universal 0.3965 PASSED

10 Linear complexity 0.2187 PASSED

11 Serial (1) 0.1567 PASSED

12 Serial (2) 0.2624 PASSED

13 Approximate entropy 0.2101 PASSED

14 Cumulative sums (1) 0.4846 PASSED

15 Cumulative sums (2) 0.2366 PASSED

16 Random excursions 0.2938 PASSED

17 Random excursions
variant

0.0633
PASSED

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1959

Table 2: NIST Test Suite Results for the QRWs-based
PRNG [25]

QRWs-based PRNG

Test no. Test name p-value conclusion

1 Frequency 0.222465 PASSED

2 Block frequency (block =
128)

0.932368
PASSED

3 Runs 0.436267 PASSED

4 Longest run 0.388167 PASSED

5 Rank 0.436267 PASSED

6 Spectral DFT 0.180314 PASSED

7 Non-overlapping template
(m = 9)

0.962460
PASSED

8 Overlapping template (m =
9)

0.577368
PASSED

9 Universal (block = 7) 0.596355 PASSED

10 Linear complexity (block =
500)

0.826735
PASSED

11 Serial (1) (block = 16) 0.719705 PASSED

12 Serial (2) (block = 16) 0.580439 PASSED

13 Approximate entropy
(block = 10)

0.565844
PASSED

14 Cumulative sums (1) 0.438435 PASSED

15 Cumulative sums (2) 0.051895 PASSED

16 Random excursions (x = -1) 0.506488 PASSED

17 Random excursions variant
(x = +1)

0.527057
PASSED

Table 3: NIST Test Suite Results for RC4

RC4

Test
no.

Test name p-value conclusion

1 Frequency 0.456 PASSED

2 Block frequency 0.658 PASSED

3 Runs 0.290 PASSED

4 Longest run 0.924 PASSED

5 Rank 0.514 PASSED

6 FFT 0.304 PASSED

7 Non-overlapping template 0.498 PASSED

8 Overlapping template 0.262 PASSED

9 Universal 0.596 PASSED

10 Linear complexity 0.367 PASSED

11 Serial 0.548 PASSED

12 Approximate entropy 0.983 PASSED

13 Cumulative sums 0.414 PASSED

14 Random excursions 0.483 PASSED

15 Random excursions variant 0.636 PASSED

Table 4: NIST Test Suite Results for Salsa20

Salsa20

Test no. Test name p-value conclusion

1 Frequency 0.494 PASSED

2 Block frequency 0.319 PASSED

3 Runs 0.182 PASSED

4 Longest run 0.304 PASSED

5 Rank 0.760 PASSED

6 FFT 0.052 PASSED

7 Non-overlapping template 0.511 PASSED

8 Overlapping template 0.740 PASSED

9 Universal 0.956 PASSED

10 Linear complexity 0.475 PASSED

11 Serial 0.212 PASSED

12 Approximate entropy 0.154 PASSED

13 Cumulative sums 0.421 PASSED

14 Random excursions 0.513 PASSED

15 Random excursions variant 0.526 PASSED

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1960

Table 5: NIST Test Suite Results for HC-128

HC-128

Test
no.

Test name
p-
value

conclusion

1 Frequency 0.311 PASSED

2 Block frequency 0.310 PASSED

3 Runs 0.722 PASSED

4 Longest run 0.983 PASSED

5 Rank 0.910 PASSED

6 FFT 0.148 PASSED

7 Non-overlapping template 0.925 PASSED

8 Overlapping template 0.321 PASSED

9 Universal 0.370 PASSED

10 Linear complexity 0.569 PASSED

11 Serial 0.762 PASSED

12 Approximate entropy 0.768 PASSED

13 Cumulative sums 0.934 PASSED

14 Random excursions 0.297 PASSED

15
Random excursions
variant

0.218
PASSED

Table 6: NIST Test Suite Results for SOSEMANUK

SOSEMANUK

Test
no.

Test name
p-
value

conclusion

1 Frequency 0.679 PASSED

2 Block frequency 0.122 PASSED

3 Runs 0.276 PASSED

4 Longest run 0.384 PASSED

5 Rank 0.097 PASSED

6 FFT 0.081 PASSED

7 Non-overlapping template 0.494 PASSED

8 Overlapping template 0.319 PASSED

9 Universal 0.335 PASSED

10 Linear complexity 0.658 PASSED

11 Serial 0.927 PASSED

12 Approximate entropy 0.304 PASSED

13 Cumulative sums 0.477 PASSED

14 Random excursions 0.434 PASSED

15
Random excursions
variant

0.464
PASSED

Figure 4. NIST Test Key Stream Results for Salsa20

Figure 5. NIST Test Key Stream Results for RC4

4.2 Entropy Test Results
Table 7 represents the results obtained from
applying the entropy test on the sets of data
obtained from RC4, Salsa20 and the generator
introduced in section 2.1.1. Since the output of
Salsa20 is 64 bits, then we need to generate at
least 270 samples. However, it is very difficult to
generate 270 samples, as that would require huge
amounts of storage. As a result, we divided the
output of both Salsa20 and the chaos-based cipher
into 8-bit blocks, and we applied the entropy test

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1961

using the equation in section 3.2.
Table 7: Entropy Test Results

Generator Entropy

RC4 7.99401
Salsa20 (Divided into 8-bit
blocks)

7.99453

Chaos based cipher
(Divided into 8-bit blocks)

7.99334

The optimal entropy value for 8-bit generator
should be close to 8 and the percentage of RC4 is
0.99924 which is good result, while for Chaos
based cipher is 0.9949 which is acceptable and
less than RC4, for Salsa20 is 0.9952 which is also
acceptable and less than RC4.

4.3 Hamming Distance Test Results
Table 8 represents the results obtained from
applying the hamming distance test on the sets of
data obtained from RC4, Salsa20 and the
generator introduced in section 2.1.1. The steps
used to obtain the results are as follows: we
generated two sequences using each generator.
Each sequence consists of 1,000,000 bits.
However, the two keys used to generate each of
the two sequences only differ in one bit. After we
changed one bit in the input, we measured the
amount of change between the two generated
sequences using the equation defined in section
3.3. In this section we used a new methodology of
calculating The HD, which is from research
undergoing by master student [80]. This new
methodology is based on the local and global HD,
the global HD is the well-known HD test, while
the local HD is the HD value per block or unit
under the test, in the research of [80] is proved
that some algorithms have HD values close to the
optimal while the values is not random behavior.
As an example assumes one block has 40% as HD
value and the next block has 60% as HD value, it
is clear that theses result are very bad while the
global (normal HD value) is close to the optimal
one. In our research, we use 8, 16 and 32 bits. The
minimum local HD in Salsa20 is 25%, which
means 16 bits are zeros and 48 are ones, while the
maximum local HD is 76% which means 15.4 bits
are ones and 48.6 bits are zeros, these maximum
and minimum local HD values justifying the
global HD value of Salsa20 which is close to the
optimal (i.e. number of ones in the first local and
the second local is almost equal to the number of
zeros in the first and second locals), this is not a

positive indicator of the uniformity distribution
but also it gives an indication of acceptable
security level. In RC4, the minimum local HD
value is 0%, which means 8 bits are zeros and 0
are ones, while the maximum local HD is 100%
which means 8 bits are ones and 0 bit is zeros,
these maximum and minimum local HD values
also justifying the global HD value of RC4 which
is close to the optimal (i.e. number of ones in the
first local and the second local is almost equal to
the number of zeros in the first and second
locals), the indicator in RC4 of the uniformity
distribution is lower than Salsa20. In Chaos based
cipher, the minimum local HD value is 9.38%,
which means 3 bits are zeros and 29 bits are ones,
while the maximum local HD is 81.25% which
means 26 bits are ones and 6 bits are zeros, these
maximum and minimum local HD values also
justifying the global HD value of Chaos based
cipher which is a little bit far from the optimal
HD than Salsa20 and RC4. The indicator in
Chaos based cipher of the uniformity distribution
is lower than Salsa20. In order to verify those
indicators, the three generators under the test
(Salsa20, RC4 and Chaos based cipher) are
reevaluated and the number of sequences having
local HD more than 75% or less than 25% are
calculated and presented in the same table. Our
indicator regarding Salsa20 proves the robustness
and uniformity distribution of the generated bits
since the number of sequences are only one
sequence. In RC4, also our indicator are true since
the Percentage of local HD less than 25% is
0.034536 and almost the same for those more
than 75% which are not negligible percentages.
Regarding the Chaos-based cipher, the percentage
can be negligible in some applications and not in
other.

Table 8: HD Test Results
Generator Salsa20 RC4 Chaos-based cipher
Global HD 50.0364%

50.0474
%

49.8969%

Min Local HD 25% 0% 9.38%
Max Local HD 76.6% 100% 81.25%
Percentage of
Local HD less

than 25%

0 0.03453
6

0.001056

Percentage of
Local HD

more than 75%

0.000064 0.03519
2

0.001024

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1962

4.4 Histogram and Chi-Square Test Results
Figures 6 and 7 represent the results obtained
from applying the histogram test on the sets of
data produced by the PRNGs reviewed in Section
2.1.1 and 2.1.2. While Figures 8 and 9 represent
the results obtained from applying the histogram
test on the set of data produced by RC4 and
Salsa20 stream cipher respectively. Visually, it
appears that the data is uniform. To confirm the
obtained results the Chi-Square test is used. The
theoretical value at P-value 0.05 is 293 and at P-
value 0.1 is 287, which means the experimental
values of the proposed generator lower than 293
are passed at P-value 0.05 and which are lower
than 287 are passed the Chi-Square test at P-value
0.1. Table 9 presents the Chi-Square test for the
three presented generator. It is clear, that RC4 and
Salsa20 pass the test for both P-values, while the
Chaos based cipher is passed the test at P-value
0.05 and failed at at P-value 0.1.

Figure 6. HISTROGRAM Test Results for Chaos-based

stream cipher

Figure 7. HISTROGRAM Test Results for PRNG Based

on Two Chaotic Maps

Figure 8. HISTOGRAM Test Results for RC4

Figure 9. HISTOGRAM Test Results for Salsa20

 Table 9: Chi-Square Test Results

PRNG/ Stream Cipher
Experimen

tal value

RC4 259

Salsa20 (Divided into 8-bit blocks) 238

Chaos based cipher (Divided into 8-bit
blocks)

289

4.5 Mapping Test Results
The mapping test point out of the dynamic
behavior of the system. The obtained result in
general with some exceptions, confirm the
randomness of the proposed PRNGs and
eSTREAM ciphers. Figures 10 and 11 represent
the results obtained from applying the mapping
test on the sets of data obtained produced by the

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1963

PRNGs reviewed in Section 2.1.1 and 2.1.2.
While Figures 12 and 13 represent the results
obtained from applying the mapping test on the
set of data produced by RC4 and Salsa20 stream
cipher respectively. The mapping result reflects
the dynamic behavior of the system.

Figure 10. MAPPING Test Results for Chaos-based

stream cipher

Figure 11. MAPPING Test Results for PRNG Based on

Two Chaotic Maps

Figure 12. MAPPING Test Results for RC4

Figure 13. MAPPING Test Results for Salsa20

4.6 Correlation Test Results
Figures 14 and 15 show the correlation test on the
set of data obtained from RC4 and Salsa20 stream
ciphers respectively. The generated sequences are
not correlated nor repeated.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1964

Figure 14. Correlation Test Results for RC4

Figure 15. Correlation Test Results for Salsa20

RC4 has passed approximate entropy test with the

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1965

highest p-value compared with the other
generators, as shown in table 3. It also passed the
longest run test with a very high p-value.
However, it passed the runs test but with a
relatively small p-value. While Salsa20 passed
some tests with very high p-values, including the
overlapping template test and the serial test, it
passed other test with relatively small p-values.
As shown in table 4, Salsa20 has passed the runs
test and the FFT test with p-values of 0.182 and
0.052 respectively. These values are the lowest
compared to other tested generators.
The HC-128 stream cipher has passed many tests
with the highest p-values. It has the highest p-
value for the runs test, the longest run test, the
rank test and the cumulative sums test. It also
passed other tests with a very good p-value.
However, it passed a few tests with smaller p-
values, including the FFT test and the frequency
test, as shown in table 5.
The results obtained from SOSEMANUK were
average as shown in table 6. None of the p-values
were relatively high. Moreover, it passed some
tests with the lowest p-value such as the rank test
and the block frequency test.

4.7 Time and Performance Test Results

In this section we analyzed the performances of
different stream cipher models. For each stream
cipher algorithm, we measured the time of
encryption/ decryption in (μs), Bitrate in (MBit/s)
and Number of Cycles to generate one Byte [68]
(NCpB). (see Equations 12 and 13).

BR =
஽௔௧௔ ௌ௜௭௘(ಾ್೔೟)

ீ்(ಔೞ)
 (12)

NCpB =
஼௉௎ ௌ௣௘௘ௗ(ಹ೐ೝ೟೥)

஻ோ(ಾ್೔೟ / ೞ)
 (13)

Tables 10 and 11 show the computed
performance results for the implemented stream
cipher algorithms. We applied this comparison
over a set of data produced by each model. Each
set of data has an equal size of 3MBs. The results
provided in Tables 10 and 11 indicate that the
eSTREAM project ciphers have very good results
in term of computing performance. The NCpB is
between 9 to 14 cycles in encryption /decryption
using eSTREAM project ciphers, while it is too
high using the RC4. The NCpB for the RC4
cipher is approximately four times of eSTREAM
ciphers’ NCpB. This result reflects the admirable
performances that the eSTREAM ciphers have
over the standard RC4 stream cipher.

Table 10: Time and Performance Results for Encryption Operation

Encryption

Model
Size
(B)

Time for 1000 Encrypt.
(us)

Time
(ns / B)

Bit Rate
(Mbps)

Number of Cycle for 1 Byte
(Cycles / B)

RC4 3145728 26946708 8.60 533.24 56.3

Salsa20 3145728 13483978 4.29 1866.35 9.9

HC-128 3145728 19647606 6.25 1280.86 14.4

SOSEMANUK 3145728 14134923 4.49 1780.40 10.4

Table 11: Time and Performance Results for Decryption Operation

Decryption

Model
Size
(B)

Time for 1000 Decrypt.
 (us)

Time
(ns / B)

Byte Rate
 (Mbps)

Number of Cycle for 1 Byte
 (Cycles / B)

RC4 3145728 29843025 10.20 448.81 55.1

Salsa20 3145728 16020572 5.09 1570.84 11.7

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1966

HC-128 3145728 22671643 7.21 1110.01 16.7

SOSEMANUK 3145728 16841003 5.35 1494.32 12.4

5. CONCLUSION
In this survey, some of the states of the art
researches that were proposed in the field of PRNG
are highlighted. We started by a short introduction
in the vast domain of randomness and types of
random number generators. Then, we reviewed
standard stream ciphers and some of the researches
that were proposed in the field of PRNG. We gave
an introduction to encryption and reviewed the two
main types of encryption. The process of testing
random numbers using statistical and visualization
tests was discussed in the following section. We
gave a description for NIST test suite, visualization
test, histogram test, chi-square test, correlation test
and mapping test. As an example, we presented the
results obtained from the application of some
statistical tests over sets of data obtained from
various ciphers, such as Salsa20 and RC4. In
section 4.3, a new methodology of Hamming
Distance is presented which is proved that some
algorithms and generators can pass the HD while
the local HD is not good random behavior. All
tested generators successfully passed the NIST test
suite with good p-value numbers. The results of
applying histogram, correlation and mapping tests
were also presented in various figures. Finally, we
compared between various generators in terms of
encryption and decryption speed. The results of this
comparison were summarized in two tables.

We have seen that some of the previously used
generators fail severely in the histogram test. Does
that mean that we shouldn’t use these generators at
all? Well, it depends on the target application. For
example, in cryptology, we require generators
which are unpredictable in a specific sense. Such
generators should pass all statistical tests, but their
current limitation is that they are not fast enough
for real-time applications. Research is still under
way. It’s also worth noting that we faced some
challenges whilst performing some of the statistical
tests. One of the limitations of current technology is
the storage. Some tests require generating huge
amounts of data when applied to 32-bit generators
or higher. This data cannot be stored on any hard
disk drive. As a solution, we divided the output of

such generators into 8-bit chunks that require
significantly less storage. It is hoped that the reader
has developed an appreciation of this subject and
has recognized the importance of testing generators
using various tests and tools.

6. FUTURE WORK

Based on our study and analysis of

PRNGs, the need of a generator that passes all
statistical tests in both local and global is required.
We are looking to design and implement a new
PRNG that passes all local and global statistical
tests with high throughput.

REFERENCES:

[1]. Schulz, Marc-André, et al. "Analysing
humanly generated random number
sequences: a pattern-based
approach." PloS one 7.7 (2012): e41531

[2]. Elminaam DS, Abdual-Kader HM,
Hadhoud MM. Evaluating the performance
of symmetric encryption algorithms. IJ
Network Security. 2010 May 1;10(3):216-
22.

[3]. Chen G, Mao Y, Chui CK. A symmetric
image encryption scheme based on 3D
chaotic cat maps. Chaos, Solitons &
Fractals. 2004 Jul 31;21(3):749-61.

[4]. Zhu Sh. Algorithm Design Of Secure Data
Message Transmission Based On Openssl
And Vpn. Journal Of Theoretical &
Applied Information Technology. 2013
Feb 10;48(1).

[5]. Bellare M, Rogaway P. Optimal
asymmetric encryption. In Workshop on
the Theory and Application of of
Cryptographic Techniques 1994 May 9
(pp. 92-111). Springer, Berlin, Heidelberg.

[6]. Simmons GJ. Symmetric and asymmetric
encryption. ACM Computing Surveys
(CSUR). 1979 Dec 1;11(4):305-30.

[7]. Elminaam DS, Abdual-Kader HM,
Hadhoud MM. Evaluating the performance
of symmetric encryption algorithms. IJ

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1967

Network Security. 2010 May 1;10(3):216-
22.

[8]. Agrawal M, Mishra P. A comparative
survey on symmetric key encryption
techniques. International Journal on
Computer Science and Engineering. 2012
May 1;4(5):877.

[9]. Blumenthal, Uri, Fabio Maino, and Keith
McCloghrie. The advanced encryption
standard (AES) cipher algorithm in the
SNMP user-based security model. No.
RFC 3826. 2004.

[10]. Zeng K, Yang CH, Wei DY, Rao TR.
Pseudorandom bit generators in stream-
cipher cryptography. Computer. 1991
Feb;24(2):8-17.

[11]. Stipčević M, Koç ÇK. True random
number generators. In Open Problems in
Mathematics and Computational Science
2014 (pp. 275-315). Springer International
Publishing.

[12]. Haahr, Mads. "Introduction to randomness
and random numbers." Random. org,
June (1999).]

[13]. Hamidouche, Wassim, et al. "Selective
video encryption using chaotic system in
the SHVC extension." Acoustics, Speech
and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE,
2015.

[14]. O'toole JE, Tuttle JR, Tuttle ME, Lowrey
T, Devereaux KM, Pax GE, Higgins BP,
Ovard DK, Yu SS, Rotzoll RR, inventors;
Micron Technology, Inc., assignee. Pseudo
random number generator. United States
patent US 6,314,440. 2001 Nov 6.

[15]. Kelsey J, Schneier B, Wagner D, Hall C.
Cryptanalytic attacks on pseudorandom
number generators. In Fast Software
Encryption 1998 (pp. 168-188). Springer
Berlin/Heidelberg.

[16]. James F. A review of pseudorandom
number generators. Computer Physics
Communications. 1990 Oct 1;60(3):329-
44.

[17]. Rukhin A, Soto J, Nechvatal J, Smid M,
Barker E. A statistical test suite for random
and pseudorandom number generators for
cryptographic applications. Booz-Allen
and Hamilton Inc Mclean Va; 2001 May

15.

[18]. Gaeini, Ahmad, Abdolrasoul Mirghadri,
and Gholamreza Jandaghi. "A General
Evaluation Pattern for Pseudo Random
Number Generators." Trends in Applied
Sciences Research10.5 (2015): 231

[19]. Taha, Mohammed Abu, et al. "Design and
efficient implementation of a chaos-based
stream cipher." International Journal of
Internet Technology and Secured
Transactions 7.2 (2017): 89-114.

[20]. Francois M, Grosges T, Barchiesi D, Erra
R. A new pseudo-random number
generator based on two chaotic maps.
Informatica. 2013 Jan 1;24(2):181-97.

[21]. Protopopescu, Vladimir A., Robert T.
Santoro, and Johnny S. Tolliver. "Fast and
secure encryption-decryption method
based on chaotic dynamics." U.S. Patent
No. 5,479,513. 26 Dec. 1995.].

[22]. Savvidy KG. The MIXMAX random
number generator. Computer Physics
Communications. 2015 Nov 30;196:161-
165

[23]. Yang YG, Zhao QQ. Novel pseudo-
random number generator based on
quantum random walks. Scientific reports.
2016;6

[24]. Akhshani, A., et al. "Pseudo random
number generator based on quantum
chaotic map." Communications in
Nonlinear Science and Numerical
Simulation 19.1 (2014): 101-111

[25]. Rivest R. RSA Security response to
weaknesses in key scheduling algorithm of
RC4. Technical note, RSA Data Security,
Inc. 2001 Aug.

[26]. Stallings W. The RC4 Stream Encryption
Algorithm. Cryptography and network
security. 2005.

[27]. Chowdhury, Dipanwita Roy, Vincent
Rijmen, and Abhijit Das. "Progress in
Cryptology-INDOCRYPT 2008." 9th
international conference on cryptology in
India, Kharagpur, India. 2008.

[28]. Maitra S, Paul G. Analysis of RC4 and
Proposal of Additional Layers for Better
Security Margin. In INDOCRYPT 2008
Dec 14 (Vol. 5365, pp. 27-39).

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1968

[29]. Roos A. A class of weak keys in the RC4
stream cipher.

[30]. Biham E, Granboulan L, Nguyên PQ.
Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In FSE
2005 Jan 1 (Vol. 2005, pp. 359-367).

[31]. Mister S, Tavares SE. Cryptanalysis of
RC4-like Ciphers. In Selected areas in
cryptography 1998 Aug 17 (Vol. 1556, pp.
131-143).

[32]. AlFardan NJ, Bernstein DJ, Paterson KG,
Poettering B, Schuldt JC. On the Security
of RC4 in TLS. In USENIX Security
Symposium 2013 Aug 14 (pp. 305-320).

[33]. Paul S, Preneel B. A New Weakness in the
RC4 Keystream Generator and an
Approach to Improve the Security of the
Cipher. In Fast Software Encryption 2004
(pp. 245-259). Springer Berlin/Heidelberg.

[34]. Klein A. Attacks on the RC4 stream
cipher. Designs, Codes and Cryptography.
2008 Sep 1;48(3):269-86.

[35]. Golic JD. Linear statistical weakness of
alleged RC4 keystream generator.
InEurocrypt 1997 May 11 (Vol. 1233, pp.
226-238).

[36]. Fluhrer SR, McGrew DA. Statistical
analysis of the alleged RC4 keystream
generator. In FSE 2000 Apr 10 (Vol. 1978,
pp. 19-30).

[37]. Mantin I, Shamir A. A practical attack on
broadcast RC4. In International Workshop
on Fast Software Encryption 2001 Apr 2
(pp. 152-164). Springer, Berlin,
Heidelberg.

[38]. Fluhrer S, Mantin I, Shamir A.
Weaknesses in the key scheduling
algorithm of RC4. In Selected areas in
cryptography 2001 Aug 16 (Vol. 2259, pp.
1-24).

[39]. Maitra S, Paul G. Analysis of RC4 and
Proposal of Additional Layers for Better
Security Margin. In INDOCRYPT 2008
Dec 14 (Vol. 5365, pp. 27-39).

[40]. Robshaw M, Billet O, editors. New stream
cipher designs: the eSTREAM finalists.
Springer; 2008 Jun 19.

[41]. Bernstein DJ. Salsa20 design.

[42]. Bernstein DJ. Salsa20 specification.
eSTREAM Project algorithm description.

[43]. Bernstein DJ. ChaCha, a variant of
Salsa20. In Workshop Record of SASC
2008 Jan (Vol. 8, pp. 3-5).

[44]. Bernstein DJ. Salsa20/8 and Salsa20/12.
eSTREAM, ECRYPT Stream Cipher
Project, Report. 2006;7.

[45]. Tsunoo Y, Saito T, Kubo H, Suzaki T,
Nakashima H. Differential cryptanalysis of
Salsa20/8. InWorkshop Record of SASC
2007 (p. 12).

[46]. Crowley P. Truncated differential
cryptanalysis of five rounds of Salsa20.
The State of the Art of Stream Ciphers
SASC. 2006 Feb 2;2006:198-202.

[47]. Fischer S, Meier W, Berbain C, Biasse JF,
Robshaw MJ. Non-randomness in
eSTREAM Candidates Salsa20 and TSC-
4. In Indocrypt 2006 Nov 27 (Vol. 4329,
pp. 2-16).

[48]. Shi Z, Zhang B, Feng D, Wu W. Improved
key recovery attacks on reduced-round
salsa20 and chacha. In International
Conference on Information Security and
Cryptology 2012 Nov 28 (pp. 337-351).
Springer, Berlin, Heidelberg.

[49]. Bernstein DJ. Extending the Salsa20
nonce. In Workshop record of Symmetric
Key Encryption Workshop 2011 Feb (Vol.
2011).

[50]. Gierlichs B, Batina L, Clavier C,
Eisenbarth T, Gouget A, Handschuh H,
Kasper T, Lemke-Rust K, Mangard S,
Moradi A, Oswald E. Susceptibility of
eSTREAM candidates towards side
channel analysis.

[51]. Wu H. The stream cipher HC-128. Lecture
Notes in Computer Science. 2008 Jan
1;4986:39-47.

[52]. Salehani YE, Kircanski A, Youssef A.
Differential fault analysis of sosemanuk. In
International Conference on Cryptology in
Africa 2011 Jul 5 (pp. 316-331). Springer,
Berlin, Heidelberg.

[53]. Wu, Hongjun. "A new stream cipher HC-
256." International Workshop on Fast
Software Encryption. Springer, Berlin,
Heidelberg, 2004

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1969

[54]. Kircanski A, Youssef AM. Differential
Fault Analysis of HC-128. In Africacrypt
2010 May 3 (pp. 261-278).

[55]. Maitra S, Paul G, Raizada S, Seb S,
Sengupta R. Some observations on HC-
128. Design, codes and Cryptography.
2011 Apr 1 ; 59(1):231-45

[56]. Sekar G, Preneel B. Improved
Distinguishing Attacks on HC-256.
IWSEC. 2009 Oct 5;5824:38-52.

[57]. Paul G, Maitra S, Raizada S. A Theoretical
Analysis of the Structure of HC-128. In
International Workshop on Security 2011
Nov 8 (pp. 161-177). Springer, Berlin,
Heidelberg.

[58]. Gierlichs B, Batina L, Clavier C,
Eisenbarth T, Gouget A, Handschuh H,
Kasper T, Lemke-Rust K, Mangard S,
Moradi A, Oswald E. Susceptibility of
eSTREAM candidates towards side
channel analysis.

[59]. Hell M, Johansson T, Brynielsson L. An
overview of distinguishing attacks on
stream ciphers. Cryptography and
Communications. 2009 Apr 1;1(1):71-94.

[60]. Banegas G. Attacks in Stream Ciphers: A
Survey. IACR Cryptology ePrint Archive.
2014 Aug 26;2014:677.

[61]. Berbain C, Billet O, Canteaut A, Courtois
N, Gilbert H, Goubin L, Gouget A,
Granboulan L, Lauradoux C, Minier M,
Pornin T. Sosemanuk, a fast software-
oriented stream cipher. eSTREAM report
2005/027 (2005). URL: http://www.
ecrypt. eu. org/stream/papers. html.
Citations in this document.;3.

[62]. Salehani YE, Kircanski A, Youssef A.
Differential fault analysis of sosemanuk. In
International Conference on Cryptology in
Africa 2011 Jul 5 (pp. 316-331). Springer,
Berlin, Heidelberg.

[63]. Feng X, Liu J, Zhou Z, Wu C, Feng D. A
Byte-Based Guess and Determine Attack
on SOSEMANUK. InASIACRYPT 2010
Dec 2 (pp. 146-157).

[64]. Ahmadi H, Eghlidos T, Khazaei S.
Improved guess and determine attack on
SOSEMANUK. ECRYPT Stream Cipher
Project, Report. 2005;85:2005.

[65]. Lee JK, Lee DH, Park S. Cryptanalysis of
Sosemanuk and SNOW 2.0 Using Linear
Masks. In ASIACRYPT 2008 Dec 7 (Vol.
5350, pp. 524-538).

[66]. Lin D, Jie G. Guess and determine attack
on sosemanuk. In Information Assurance
and Security, 2009. IAS'09. Fifth
International Conference on 2009 Aug 18
(Vol. 1, pp. 658-661). IEEE.

[67]. Ma Z, Gu D. Improved differential fault
analysis of SOSEMANUK. In
Computational Intelligence and Security
(CIS), 2012 Eighth International
Conference on 2012 Nov 17 (pp. 487-491).
IEEE.

[68]. Leander G, Zenner E, Hawkes P. Cache
Timing Analysis of LFSR-Based Stream
Ciphers. In IMA Int. Conf. 2009 Dec 2
(pp. 433-445).

[69]. Lee, Jung-Keun, Dong Hoon Lee, and
Sangwoo Park. "Cryptanalysis of
SOSEMANUK and SNOW 2.0 using
linear masks." International Conference on
the Theory and Application of Cryptology
and Information Security. Springer, Berlin,
Heidelberg, 2008

[70]. Chen H, Wang T, Guo S, Zhao X, Zhang
F, Liu J. Improved Differential Fault
Analysis of SOSEMANUK with Algebraic
Techniques. IEICE Transactions on
Fundamentals of Electronics,
Communications and Computer Sciences.
2017 Mar 1;100(3):811-21.

[71]. Rukhin A, Soto J, Nechvatal J, Smid M,
Barker E. A statistical test suite for random
and pseudorandom number generators for
cryptographic applications. Booz-Allen
and Hamilton Inc Mclean Va; 2001 May
15.

[72]. Shannon CE. A mathematical theory of
communication. ACM SIGMOBILE
Mobile Computing and Communications
Review. 2001 Jan 1;5(1):3-55.

[73]. http://vikimy.com/l-
en/Entropy_(information_theory) , last
visited 4.3.2018

[74]. Farajallah M, El Assad S, Chetto M.
Dynamic adjustment of the chaos-based
security in real-time energy harvesting

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1970

sensors. In Green Computing and
Communications (GreenCom), 2013 IEEE
and Internet of Things (iThings/CPSCom),
IEEE International Conference on and
IEEE Cyber, Physical and Social
Computing 2013 Aug 20 (pp. 282-289).
IEEE.

[75]. Jolfaei A, Mirghadri A. An image
encryption approach using chaos and
stream cipher. Journal of Theoretical and
Applied Information Technology. 2010
Sep;19(2):117-25.

[76]. Li, Ming, Zhongxian Peng, and Hai Nan.
"A modified reversible data hiding in
encrypted images using random diffusion
and accurate prediction." Etri Journal 36.2
(2014): 325-328.

[77]. Farajallah, Mousa, et al. "ROI encryption
for the HEVC coded video
contents." Image Processing (ICIP), 2015
IEEE International Conference on. IEEE,
2015.

[78]. Farajallah, Mousa. Chaos-based crypto and
joint crypto-compression systems for
images and videos. Diss. UNIVERSITE
DE NANTES, 2015.

[79]. Rukhin, Andrew, et al. A statistical test
suite for random and pseudorandom
number generators for cryptographic
applications. Booz-Allen and Hamilton Inc
Mclean Va, 2001.

[80]. Zaher Amro, Master of Informatics,
Palestine Polytechnic University, Derive a
standard mathematical tools to evaluate
Image encryption algorithms, 2016,
supervised by Dr. Mousa Farajallah.

