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ABSTRACT 
 

The meaning of cloud computing is the Information Technology (IT) model for computing, which is 
consist of all the IT components (software, hardware, services and, networking ) that are needed to enable 
delivery and development of cloud services through the private network or the internet. In the cloud 
computing the client put his data on the cloud, and any computations on his stored data will be 
implemented in the cloud. Intentionally the cloud service provider can access, change or even delete the 
stored data of the client. To produce the effective services, some of the cloud service providers share the 
information with third parties. The third party can access to the client private data and modifies on this data 
to make it beneficial to him. Moreover, providers, untrusted servers, and cloud operators can keep 
identifying elements of users long after users end the relationship with the services. For these reasons, the 
security has become the most important thing in cloud computing. The mechanism that protects the privacy 
of sensitive information is called the encryption. To protect the data that it’s stored on the cloud we must 
use an encryption system that can perform computations on the encrypted data. The scheme that allows to 
executing several computations on the encrypted message without decrypting this message is called 
homomorphic encryption. This paper provides encryption scheme (PKFHE) that can applied it on a cloud 
computing .The proposed scheme is based on Euler’s theorem, which proved both addition and 
multiplication operations at the same time on ciphertext without decryption. we compute the time 
complexity of the encryption and decryption function for the Elgamal, RSA cryptosystems and our 
proposed PKFHE scheme which, the order of encryption function of all the schemes is O ((log (n))3) and 
the order of decryption function of Elgamal, RSA cryptosystems is O (log (n)3), while the order of 
decryption function of PKFHE scheme is O (log (n)2) that mean the proposed PKFHE scheme is faster in 
the time complexity. Also compared the execution time among the three schemes with five sizes of the 
messages and used five lengths of a secret key, where we concluded that the execution time of the proposed 
scheme was slower than the execution time of Elgamal, RSA cryptosystems except in the case of the key 
128-bit which, the execution time of RSA was slower than the two others. Also we noticed that the length 
of the private key was effect on the execution time of the algorithms in which the execution time increased 
when the length of the private key was increase and finally the security of the schemes is analyzed. The 
proposed scheme showed a good security for the stored data on the cloud. 

Keywords: Fully Homomorphic Encryption; Public Key Cryptosystem; Homomorphism; Cloud Computing Security. 
 
1. INTRODUCTION  
 
               Cloud computing is a technology that uses 
central remote servers and the internet to share the 
applications and maintain the data. It allows client 
to use an application without installation and he can 
access to their personal files from any computer 
just verify internet connection [1]. To protect the 
data that it’s stored in the cloud we must use an 
encryption system that can perform computations    
on the encrypted data. The technique that allows to 
computation on a ciphertext without previous 
decryption is called homomorphic encryption HE 

[2]. HE scheme can be either, symmetric or 
asymmetric. An encryption scheme contains three 
algorithms: KeyGen, Encrypt, and Decrypt. In a 
symmetric (or secret key) encryption scheme, 
KeyGen utilize λ ( is a security parameter that 
determines the bit length of the keys) to produce a 
one key that is used in each of encryption and 
decryption, first transform a message to a 
ciphertext, and later transform the ciphertext back 
to the message. In an asymmetric (or public key) 
encryption scheme, KeyGen utilizes λ to generate 
two keys: a public encryption key pk, which may 
be made available to everyone, and a secret 



Journal of Theoretical and Applied Information Technology 
15th April 2018. Vol.96. No 7 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1925 

 

decryption key sk. As a physical analogy for an 
asymmetric encryption scheme, one can think of 
Alice public key as a lock, which builds and 
distributes, which can be locked without a key. 
Anyone can place a message inside a box that 
secured by Alice’s lock (encrypt) and sending it 
across the general channel to Alice, but Alice just 
has the key to open it (decrypt) [3]. An encryption 
technique is called Fully Homomorphic (FHE) if it 
performs both addition and multiplication at the 
same time, and can compute any Operation [4].  
The organization of a remainder of the paper: 
section 2, provides Related Works about HE, 
Section 3, describes categories of Homomorphic 
Encryption, Section 4, display Fermat and Euler 
Theorems. Section 5, offer the proposed scheme, 
also we illustrate an example about it. Section 6, 
describes the results and discussion. Finally, our 
conclusions are mentioned in Section 7. 
 
2. RELATED WORK 

              The first homomorphism suggested by 
Rivest, Adleman, and Dertouzos in [5]. The 
multiplicative homomorphism is given by RSA [6]. 
A partial homomorphic encryption scheme is 
suggested by Yao [7], Goldwasser and Micali [8], 
ElGamal [9] and Paillier [10]. Fontaine & 
Galand in [11] has presented a survey of 
homomorphic encryption schemes .Gentry has 
proposed fully homomorphic encryption in his   
thesis and paper [4].Many researchers proposed the 
variants of Gentry’s model with some 
improvement. Homomorphic encryption on smaller 
size cipher text is proposed by Smart and 
Vercauteren [12]. The arithmetic operations over 
integers are proposed by Dijk, Gentry, Halevi, and 
Vaikuntanathan (DGHV scheme) [13]. Faster 
improvement to Gentry’s model is proposed by 
Stehle and Steinfield [14]. Y Govinda Ramaiah 
has proposed “Efficient Public Key Homomorphic 
Encryption over Integer Plaintexts”. [15] Coron et 
al [16] was extended the work of DGHV [13] over 
the integers for the purpose of batching FHE to a 
scheme supporting encryption and homomorphic 
processing of a vector of plaintext bits as a single 
ciphertext. Emura et al [17] aimed at controlling 
that can perform the homomorphic operations, 
when and where. Because of the malleability 
property of homomorphic encryption that anyone 
can perform the operations”freely”, it becomes 
difficult to achieve adaptive chosen ciphertext 
(CCA) and homomorphic. Kim et al [18] presented 
a fully homomorphic scheme that generalizes the 
DGHV [13] scheme and modifies the third proposal 

of RSA [19] on the Chinese Remainder theorem 
and ring homomorphism. 

3.  HOMOMORPHIC ENCRYPTION 

CATEGORIES 

              There are three main categories of 
homomorphic encryption schemes: Partially 
Homomorphic Encryption PHE, Somewhat 
Homomorphic Encryption SWHE, and Fully 
Homomorphic Encryption FHE schemes. PHE 
schemes, such as RSA [6], ElGamal [9], Paillier 
[10], Etc., allow to applying either addition or 
multiplication on encrypted data. Boneh et al. [20], 
allowing unlimited additions and a single 
multiplication. Construction of scheme supporting 
both operations addition and multiplication 
simultaneously is possible in 2009 by Gentry [4] by 
using fully homomorphic encryption. 
 
3.1         Properties of Homomorphic Encryption 
 
3.1.1      Additive Homomorphic Encryption: 
              A homomorphic encryption is additive if: 
Enc (P1⊕ P2) = Enc (P1) ⊕ Enc (P2).  
 
3.1.2      Multiplicative Homomorphic 

Encryption: 
                                     A homomorphic encryption is 

multiplicative, if: 
Enc (P1⊗ P2) = Enc (P1) ⊗ Enc (P2) [21].  
 
3.2         Partially Homomorphic Encryption 

(PHE) 
              An encryption technique is called a 
Partially Homomorphic Encryption (PHE) if it 
applying only one operation on encrypted data, i.e., 
either addition or multiplication but not both [22]. 
Any encryption scheme which supports either 
addition or multiplication, but necessarily not both, 
is termed to be a partial homomorphic scheme. 
Mathematically, an encryption scheme supporting 
group operations on the ciphertexts is a partially 
homomorphic encryption system.  
 
3.2.1      Additive Homomorphic Schemes 
              A Homomorphic Encryption is additive if 
there is an algorithm that can calculate Enc(x + y) 
from Enc(x) and Enc(y) without knowing x and y 
[23].Such as Goldwasser-Micali algorithms [8] and 
Paillier [10]. 
 
3.2.2 Multiplicative Homomorphic Schemes 
              A Homomorphic Encryption is called 
multiplicative if there is an algorithm that can 
calculate Enc(x × y) from Enc (x) and Enc (y) 
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without knowing x and y [23]. Such as RSA [6] and 
ElGamal [9] Algorithms. 
 
3.3   Somewhat Homomorphic Encryption 

(SWHE)  
              The scheme that supports a limited number 
of homomorphic operations known as somewhat 
homomorphic encryption [24]. An encryption 
technique is called Somewhat Homomorphic 
encryption (SWHE) if it performs a limited number 
of addition and multiplication operations on 
encrypted data [4]. 
To understand  SWHE scheme’s work,  first  thing  
that  we  have to know:  all scheme’s ciphertexts 
have a noise inside of them and this noise 
unfortunately become larger if we have performed a 
lot of homomorphic operations, there is so much 
noise (at some point) which the encryptions  
become useless (i.e. they have incorrect decrypt). 
This is the basic limitation of SWHE schemes and 
this is the reason that they can only perform a 
specific set of computations. [25] 
 
3.4         Fully Homomorphic Encryption (FHE) 

              An encryption technique is called 
Fully Homomorphic (FHE) if it performs both 
addition and multiplication at the same time, and 
can compute any operation as in Figure 1 [4]. 

 

 
Figure 1:  Fully Homomorphic Encryption (FHE) [26]. 

              Craig Gentry in 2009, presented the first 
construction of a fully homomorphic scheme [4]. 
Since then researchers have proposed variants and 
improvements to Gentry’s model. 

4. FERMAT AND EULER THEOREMS 

              Two important theorems presented the first 
by Pierre de Fermat and the second by Leonhard 
Euler. Both theorems related to powers in modular 
arithmetic. 
 
4.1         Fermat’s Little Theorem 

          Suppose that p is prime and gcd (a, p) = 1 
(or a and p are relative prime or p does not divide 
a).    

  Then: 
                   a p−1 ≡1 (mod p)                            (1) 
 
 

4.2         Euler’s Theorem 
         Euler’s Theorem is a generalize of 

Fermat’s Little Theorem. Suppose n be an arbitrary 
positive integer, ø(n)  denote the number of integers 
1 =< a <= n such that if gcd(a, n) = 1,  
 then: 

                 a ø(n) ≡ 1 (mod n)                             (2) 
Note: When (n = p) is prime, then ø (p) = p-1, we 
get Fermat’s Little Theorem. 
The following facts are true about the Euler Ø-
function. 

•        ø(p) = p−1 if p is prime. 
• ø (p.q) = (p−1)(q − 1) if p and q are 

prime. 
•       The general formula of ø (n) is: 
 

                Ø (n) = n ∏ p/n ( )                   (3) 

Where, the product is over distinct primes dividing 

n [27]. 

5. THE PROPOSED SCHEME:PUBLIC KEY 

FULLY HOMOMORPHIC 

ENCRYPTION 

            Our proposed scheme (PKFHE) is 
essentially based on Euler’s theorem that we 
explained it in Section three, which it’s an 
asymmetric (or public key) encryption scheme and 
supports both additive and multiplicative 
homomorphism property, that means its Fully 
Homomorphic Encryption scheme. The description 
of PKFHE scheme as follows: 
 
Key Gen: select two prime numbers p and q 
 Calculate:  n = p. q 
                  m = p + q  
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Then choose another prime number u such that: 
        gcd (𝑛, u) = 1, 
        S = n* u 
And Select random big integer t. 
        e = t (n – m +1) 
Where, e is big integer. 
Put (e, S) as a public key and keep (n) as a secret 
key  
Encryption: the message M will always be less 
than < n, select random big integer r.  
          c = M r * e +1 mod S 
   Where, c is a ciphertext. 
Evaluate: apply addition and multiplication on 
ciphertexts ci, and then decrypt the result of ci, we 
get integer number which  is the same as  the 
integer number that it  result of  applying  addition 
and multiplication on input Mi. 
Decryption: 
          M = c mod n  
To proof correctness of the scheme: 
 
 c = M r * e +1 mod S 
Dec = c mod 𝑛 
        = M r * e +1 mod S mod n 
        = M r * e +1 mod n mod S 

We know that: 
𝑎 r * e +1 ≡ 𝑎 (mod n),                   (Euler’s theorem)        

         = M 𝑚𝑜𝑑 S = M, M< S (proved). 
 
Additive Homomorphism: 
The two messages M1 and M2 will always be less 
than < n, also addition (M1 + M2) should be less 
than n, 
M1 + M2 = Dec [Enc (M1) + Enc (M2)], 
(Enc is Encryption function and Dec is Decryption 
function). 
 
Proof: 
Select two random big integer r1 and r2 
c1 = (M1 

r1 * e +1 mod x), 
c2 = (M2 

r2 * e +1 mod 𝑥) 
c1 + c2 = M1 

r1 * e +1 mod S + (M2 r2 (n - m +1) +1 mod S) 
 
Dec (c1 + c2) = (c1 + c2) mod n 
 
    =[(M1 

r1 * e +1 mod S) + (M2 
r2 * e +1 mod S)] mod n 

    = (M1 
r1 * e +1 mod S mod n) + (M2 

r2 * e +1 mod S    
mod n) 

    = (M1 
r1 * e +1 mod n mod S) + (M2 

r2 * e +1 mod n 
mod S) 

Now we know that 𝑎 r * e +1 ≡ 𝑎 (mod n) so 
     = M1 mod S + M2 mod S = M1 + M2. 

 

 

 

Multiplicative homomorphism 
The two messages M1 and M2 will always be less 
than < n, also multiplication (M1×M2) should be 
less than n, 
M1×M2 = Dec [Enc (M1) × Enc (M2)]. 
 
Proof: 
c1 = M1 

r1 * e +1 mod S, 
c2 = M2 

r2 * e +1 mod S 
c1 × c2 = (M1 

r1 * e +1 mod S) × (M2 
r2 * e +1 mod S) 

Dec (c1 × c2) = (c1 × c2) mod 𝑛 
    = [(M1 

r1 * e +1 mod S) × (M2 
r2 * e +1 mod S)] mod n 

 = (M1 
r1 * e +1 mod S mod 𝑛) × (M2 

r2 * e +1 mod S  
mod n) 

 = (M1 
r1 * e +1 mod 𝑛 mod S) × (M2 

r2 * e +1 mod n     
mod S)     

Now we know that 𝑎 r * e +1 ≡ 𝑎 (mod n)  
    = [(M1 mod S) × (M2 mod S)] = M1 × M2. 
 

Algorithm (PKFHE)  

1- Key Generation 

1-1 generate prime big integers p and 
q 

1-2  n = p. q 

1-3 m = p +q 

1-4 choose another prime no. u , 
gcd(u, n) = 1 

1-5  S = n * u 

1-6  select random big integer t 

1-7  e = t (n – m +1) 

- Public encryption key  =  (e, S)  

- Private decryption key = (n) 

2- Encryption  

2-1 generate random big integer r 

2-2   C = M r * e + 1 mod S 

3- Decryption   

         3-1   M = C mod n                                                                        
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4- Evaluation 

                      4-1 Suppose there are two ciphertexts: 

                    C1 = M1 r1 * e + 1 mod S  

                                  C2 = M2 r2 * e + 1 mod S 

4-2      C3 = C1+C2    M3 = Dec (C3 )   
(or  M3= M1+ M2) 

4-3       C4= C1. C2    M4 = Dec (C4)     
(or   M4= M1. M2) 

                                   Let C= f (c1... ci), such as 

                                         C= [(C1. C3) + C2] .C4 

                     Let M= f (M1... Mi), such as  

                           M= [(M1. M3) + M2] .M4, 

         Where f is any function (Add or Mult) 
applied on the ciphertexts or messages. 

        4-4     C mod n ≡ M, where M <n,   
otherwise that we must take (M mod n)  

 

Example (PKFHE):- 

1- Key Generation 

  Choose two prime numbers p= 11 and q = 7, then 

   n = p * q → n = 11 * 7→ n = 77 

  m = p + q → m = 18 

  Select another prime number which, gcd (n, u) =1 

  Let u = 23, and gcd (77, 23) =1, 

  Now calculate S= n * u → S= 77* 23 → S = 1771  

 And Select random big integer t = 9. 

  e = t (n - m +1) 

  e = 9(77 – 18 +1) 

  e = 540 

  Public key (e, S) = (540, 1771)  

  Secret key (n) = (77) 

2- Encryption 

=3, 2rand =2 1ro random integer Now choose tw  

and two messages m1 = 4 and 

  m2 = 5, 

  We must ensure that (m1 + m2) & (m1 ∗ m2) < n 

  Now calculate c1: 

  c1 = m1 
r1* e +1 mod S,    

       = 4 2* 540 +1 mod 1771→ 𝑐1 = 4 1081mod 1771 

       = 1467 

  Then calculate c2: 

   c2 = m2 
r2 *e +1 mod S 

       = 5 3* 540 + 1 mod 1771→ 𝑐2 = 5 1621 mod 1771 

       =1468 

3- Decryption 

 M1 = C1 mod n    

              = 1467 mod 11 

         = 4 

   M2 = C2 mod n  

        = 1468 mod 11 

        =5  

4- Evaluation 

      c3 = c1 + c2 → c3 = 1467+ 1468 

         c3 = 2935 

      Now decrypt of c3: 

        m3= c3 mod n → m3= 2935 mod 77 

        m3= 9, this is equal to (m1 + m2) (i.e. 4+5=9) 

        c4 = c1 * c2 → c4 = 1467* 1468 

        c4 = 2153556 

       Now decrypt of c4: 

  m4 = c4 mod n → m4= 2153556 mod 77 

  m4 =20, this is equal to (m1* m2)   (i.e. 4 * 5 

= 20). 

       Let C= f (c1... ci), such as: 

             C= [((C1. C3) + C2).C4] mod n 

     = [((1467* 2935) + 1468). 2153556] mod 

77 

                = 9275609043828 mod 77 

                =50 

       Let m= f (m1... mi), such as: 

             m= [((m1. m3) + m2). m4] mod p 

                = [4. 9 + 5]. 20 mod 77 

                = 820 mod 77 

                = 50 ≡ C (proved). 
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6. RESULTS AND DISCUSSION 

            In this section we’ll calculate the bit 
complexity of the encryption and decryption 
function for the Elgamal, RSA Cryptosystems and 
our proposed PKFHE scheme and also we’ll 
compute the execution time of them. 
 

6.1         Big O Notation (Time Complexity)  

               The O-notation is very useful in guiding 
the designers of the algorithms in search for the 
“best” algorithms for important problem.  
 The goal of the study of the time complexity of an 
algorithm is to indicate that its running time is O 
(f(N)) for some function f[27]. Before performing 
calculations of the time complexity, we must first 
analyze the input numbers of the encryption and 
decryption algorithm, which are either binary 
integers or decimal digits, where: 

            The time complexity of a binary integers 
is O(n), while the time complexity of a decimal 
digits is O(log(n)),except the constant number, 
which the time complexity to its O(1), where n is 
the size of input numbers. 

            The complexity of the basic arithmetic 
operations in Zn is shown in Table 1: 

 
Table 1: Time complexity of the basic arithmetic 

operations. 

 

Operation 

Time 
complexity of 

binary integers 
of size n 

Time 
complexity of 
decimal digits 

of size n 

Addition  x + y O (n) O (log (n)) 

Subtraction x – y O (n) O (log (n)) 

Multiplication x × y O (n2) O((log (n))2) 

Division &Modular O (n2) O((log (n))2) 

Inverse x-1 O (n2 log (n)) O((log (n))3) 

Modular 
exponentiation xn 

O (n2 log (n)) O((log (n))3) 

 

6.1.1      Time Complexity of Elgamal 
Cryptosystem 

              Let n is the size of input message that in 
the type of decimal digits. 
 
Encryption function: 

(mod p) rK = Y 
(mod p) r= g1C 

=M. K (mod p)2C 
Then 
T (K)   = O ((log (n))3),                                 
(Modular exponentiation)  
T (C1) = O ((log (n))3) 
T (C2) = O (2(log (n))2) = O ((log (n))2) 
Where, (log2 n) is the number of bits of n. 
T (Encryption) = O ((log (n))3) bit operation, 
according the most costly operation. 
Also,  
T (Encryption) = O (log (n)) arithmetic operation. 
 
 Decryption function: 
 
 K= C1

x (mod p)  
 M= K-1. C2 (mod p) 
Then:  
 T (K) = O ((log (n))3)     
 T (M) = O (2(log (n))2) +T (K-1) 

extend Euclid’s (by  ),3O ((log (n)))= 1-KT ( 
method)    

  )3O ((log (n)) + )2O (2(log (n)) T (M) =  
) bit operation3((log (n)) O=  T (M) 

 
T (Decryption) = O ((log (n))3) bit operation, 
according the most costly operation. 
Also,  
T (Decryption) = O (log (n)) arithmetic operation. 
 
 
 
6.1.2      Time Complexity of RSA Cryptosystem   

            Let n is the size of input message that in 
the type of decimal digits. 

 Encryption function: 
 

mod (n)   eC = M       

Then:  
T (C) = O ((log (n))3) bit operation. 
T (Encryption) = O ((log (n))3) bit operation, 
according the most costly operation. 
Also,  
T (Encryption) = O (log (n)) arithmetic operation. 

 
Decryption function: 
 

mod (n)    dM =C       
Then:  
    T (M) = O ((log (n))3) bit operation. 
 
T (Decryption) = O ((log (n))3) bit operation, 
according the most costly operation. 
Also,  
T (Decryption) = O (log (n)) arithmetic operation. 
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6.1.3      Time Complexity of PKFHE scheme 
               Let n is the size of input message that in 
the type of decimal digits. 
 Encryption function: 
 
C = M r * e +1 mod S 
Then:  
T (C) = O ((log (n))3). 
Where, (log2 n) is the number of bits of n. 
T (Encryption) = O ((log (n))3) bit operation, 
according the most costly operation. 
Also,  
T (Encryption) = O (log (n)) arithmetic operation. 

    
Decryption function: 
 
M = C mod 𝑛  
Then:  
T (M) = O ((log (n))2) 
T (Decryption) = O ((log (n))2) bit operation, 
according the most costly operation. 
Also,  
T (Decryption) = O (1) arithmetic operation. 
 
6.2         ExecutionTime 
            We compute the execution time of the 
Elgamal, RSA Cryptosystems and our proposed 
PKFHE scheme with five sizes of the message and 
five lengths of private key as following: 
                In Table 2: notes that we take five size of 
the messages begin whith (12 byte) and end with 
(2.5 K Byte) and we use a secret key with length of 
32-bit that equivalent (10 digit) to calculate of the 
execution time of Elgamal, RSA Cryptosystems 
and our proposed PKFHE scheme as shown in 
Figure 2.  
 

Table 2:Execution time with Size of Secret key 32- bit 

 

 
Figure 2: Execution time with length of Secret key 32-bit. 

               In Table 3: notes that we take also five 
size of the messages begin whith (12 byte) and end 
with (2.5 K Byte) and we use a secret key with 
length of 64-bit that equivalent (20 digit) to 
calculate of the execution time of Elgamal, RSA 
Cryptosystems and our proposed PKFHE scheme 
as shown in Figure 3.  
 
Table 3:Execution time with length of Secret key 64- bit 

Size of the 
message 

ElGamal 
(m.s) 

RSA 
(m.s) 

PKFHE 
(m.s) 

12 Byte 15 17 19 

  1  K Byte 15137 15625 19750 

1.5 K Byte 33456 34589 40543 

  2  K Byte 58738 61477 78730 

2.5 K Byte 100048 105859 126001 

 

 
Figure 3: Execution time with length of Secret key 64- bit 

               In Table 4: notes that we take also five 
size of the messages begin whith (12 byte) and end 
with (2.5 K Byte) and we use a secret key with 
length of 128-bit that equivalent (39 digit) to 
calculate of the execution time of Elgamal, RSA 
Cryptosystems and our proposed PKFHE scheme 
as shown in Figure 4.  

 

Size of the 
message 

ElGamal 
(m.s) 

RSA 
(m.s) 

PKFHE 
(m.s) 

12 Byte 15 16 18 

   1  K Byte 9491 11377 11372 

1.5  K Byte 21497 25149 26461 

   2  K Byte 37816 45866 46286 

2.5  K Byte 58699 72900 75600 
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Table 4: Execution time with length of Secret key 128- bit 

Size of the 
message 

ElGamal 
(m.s) 

RSA 
(m.s) 

PKFHE 
(m.s) 

12 Byte 21 22 27 

 1  K Byte 30751 36431 34783 

1.5 K Byte 72440 90424 77504 

2   K Byte 140054 163767 151828 

2.5 K Byte 217615 263558 238704 

 

Figure 4:Execution time with length of Secret key 128-bit 

 
               In Table 5: notes that we take also five 
size of the messages begin whith (12 byte) and end 
with (2.5 K Byte) and we use a secret key with 
length of 256-bit that equivalent (78 digit) to 
calculate of the execution time of Elgamal, RSA 
Cryptosystems and our proposed PKFHE scheme 
as shown in Figure 5.  
 
Table 5:Execution time with length of Secret key 256- bit 

Size of the 
message  

ElGamal 
(m.s) 

RSA 
(m.s) 

PKFHE 
(m.s) 

12 Byte 22 24 46 

   1 K Byte 34541 39965 75258 

1.5 K Byte 82953 96749 165610 

  2  K Byte 155187 172906 308932 

2.5 K Byte 241098 276159 487468 

Figure 5:Execution time with length of Secret key 256-bit 

 
                In Table 6: notes that we take also five 
size of the messages begin whith (12 byte) and end 
with (2.5 K Byte) and we use a secret key with 
length of 512-bit that equivalent (155 digit) to 
calculate of the execution time of Elgamal, RSA 
Cryptosystems and our proposed PKFHE scheme 
as shown in Figure 6.  
 
Table 6:Execution time with length of Secret key 512- bit 

Size of the 
message 

ElGamal 
(m.s) 

RSA 
(m.s) 

PKFHE 
(m.s) 

12 Byte 35 23 58 

  1  K Byte 93711 37787 128837 

1.5 K Byte 212789 93554 298497 

  2  K Byte 394844 178951 540880 

2.5 K Byte 658823 287563 853183 

 

Figure 6:Execution time with length of Secret key 512-bit 
 
              As a result, noticed that the length of the 
key was effect on the execution time of the 
algorithms in which the execution time increased 
when the length of the key was increase. 
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6.3         Security 

              The RSA security depends on truth that it 
is easy to multiply two large primes to construct a 
modulus, the inverse operation of factoring the 
modulus into its prime factors can be very difficult, 
the difficult until solve the integer factorization 
problem for the sizes of the numbers involved. 
Attempt to break RSA by developing an integer 
factorization solution for the moduli involved is 
known as a mathematical attack. That is, a 
mathematical attack on RSA consists of discover 
the prime factors p and q of the modulus n. Clearly, 
that knowing p and q, the attacker will be able to 
discover the private exponent d for decryption. 
Another way of stating the same as above would be 
that the attacker would try to discover the totient 
φ(n) of the modulus n. But as stated earlier, 
knowing φ(n) is equivalent to knowing the factors p 
and q. If an attacker can somehow figure out φ(n), 
the attacker will be able to set up the equation 
(p−1)(q−1) = φ(n), that, along with the equation p × 
q = n, will allow the attacker to determine the 
values for p and q. Over the years, various 
mathematical techniques have been developed for 
solving the integer factorization problem involving 
large numbers such as Trial Division, Fermat’s 
Factorization Method, Sieve Based Methods, and 
Pollard-ρ Method etc.  

             The security of ElGamal is based on the 
discrete logarithm problem. To encrypt and decrypt 
a message, a discrete power is executed. This 
operation is efficient to compute. An attacker that 
wants to decrypt an intercepted message may try to 
recover the private key. To this end a logarithm 
needs to be computed. No actual method exists for 
this, given certain requirements on the initial group 
are met. Under these circumstances, the encryption 
is secure. ElGamal has the disadvantage that the 
ciphertext is twice as long as the plaintext. It has 
the advantage the same plaintext gives a different 
ciphertext each time it is encrypted. Today the 
ElGamal algorithm is used in many cryptographic 
products.  

In brief, the security of the Elgamal and RSA 
depend on: 

A.   The security of RSA depends on the difficulty 
of factoring large integers. 

B.    The security of ElGamal algorithm depends on 
the difficulty of computing discrete logs in a large 
prime modulus. 

              The proposed PKFHE, since it is a public 
key FHE and based on Euler’s theorem, we treat 
the security of it as the security of RSA 
cryptosystem, which depends on the difficulty of 
factoring large integers as shown in above. 

7. CONCLUTION 

               In this paper, we have a Public Key Fully 
Homomorphic Encryption scheme (PKFHE) 
essentially based on Euler’s theorem and it proved 
his correctness of supporting additive and 
multiplicative homomorphism and we offered an 
example explains the steps of how it works. As a 
result, we compute the time complexity of the 
encryption and decryption function for the Elgamal, 
RSA cryptosystems and our proposed PKFHE 
scheme which, the order of encryption function of 
all the schemes is O ((log (n))3) and the order of 
decryption function of Elgamal, RSA 
cryptosystems is O (log (n)3), while the order of 
decryption function of PKFHE scheme is O (log 
(n)2) that mean the proposed PKFHE scheme is 
faster in the time complexity. Also compared the 
execution time among the three schemes with five 
sizes of the messages and used five lengths of a 
secret key, Where we concluded that the execution 
time of the proposed scheme was slower than the 
execution time of Elgamal, RSA cryptosystems 
except in the case of the key 128-bit which, the 
execution time of RSA was slower than the two 
others. Also we noticed that the length of the 
private key was effect on the execution time of the 
algorithms in which the execution time increased 
when the length of the private key was increase. 
Finally the security of the schemes is analyzed. We 
applied the proposed scheme PKFHE on a cloud 
computing and it performed both addition and 
multiplication operations at the same time on 
ciphertext without decryption. 
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