
Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1924

 PUBLIC KEY FULLY HOMOMORPHIC ENCRYPTION

1SARAH SHIHAB HAMAD, 2ALI MAKKI SAGHEER
1, 2 Department of Computer Science, College of Computer Science and Information Technology,

University of Anbar, Anbar, Iraq
E-mail: 1sarah.sh1985@gmail.com, 2ali_makki@uoanbar.edu.iq

ABSTRACT

The meaning of cloud computing is the Information Technology (IT) model for computing, which is
consist of all the IT components (software, hardware, services and, networking) that are needed to enable
delivery and development of cloud services through the private network or the internet. In the cloud
computing the client put his data on the cloud, and any computations on his stored data will be
implemented in the cloud. Intentionally the cloud service provider can access, change or even delete the
stored data of the client. To produce the effective services, some of the cloud service providers share the
information with third parties. The third party can access to the client private data and modifies on this data
to make it beneficial to him. Moreover, providers, untrusted servers, and cloud operators can keep
identifying elements of users long after users end the relationship with the services. For these reasons, the
security has become the most important thing in cloud computing. The mechanism that protects the privacy
of sensitive information is called the encryption. To protect the data that it’s stored on the cloud we must
use an encryption system that can perform computations on the encrypted data. The scheme that allows to
executing several computations on the encrypted message without decrypting this message is called
homomorphic encryption. This paper provides encryption scheme (PKFHE) that can applied it on a cloud
computing .The proposed scheme is based on Euler’s theorem, which proved both addition and
multiplication operations at the same time on ciphertext without decryption. we compute the time
complexity of the encryption and decryption function for the Elgamal, RSA cryptosystems and our
proposed PKFHE scheme which, the order of encryption function of all the schemes is O ((log (n))3) and
the order of decryption function of Elgamal, RSA cryptosystems is O (log (n)3), while the order of
decryption function of PKFHE scheme is O (log (n)2) that mean the proposed PKFHE scheme is faster in
the time complexity. Also compared the execution time among the three schemes with five sizes of the
messages and used five lengths of a secret key, where we concluded that the execution time of the proposed
scheme was slower than the execution time of Elgamal, RSA cryptosystems except in the case of the key
128-bit which, the execution time of RSA was slower than the two others. Also we noticed that the length
of the private key was effect on the execution time of the algorithms in which the execution time increased
when the length of the private key was increase and finally the security of the schemes is analyzed. The
proposed scheme showed a good security for the stored data on the cloud.

Keywords: Fully Homomorphic Encryption; Public Key Cryptosystem; Homomorphism; Cloud Computing Security.

1. INTRODUCTION

 Cloud computing is a technology that uses
central remote servers and the internet to share the
applications and maintain the data. It allows client
to use an application without installation and he can
access to their personal files from any computer
just verify internet connection [1]. To protect the
data that it’s stored in the cloud we must use an
encryption system that can perform computations
on the encrypted data. The technique that allows to
computation on a ciphertext without previous
decryption is called homomorphic encryption HE

[2]. HE scheme can be either, symmetric or
asymmetric. An encryption scheme contains three
algorithms: KeyGen, Encrypt, and Decrypt. In a
symmetric (or secret key) encryption scheme,
KeyGen utilize λ (is a security parameter that
determines the bit length of the keys) to produce a
one key that is used in each of encryption and
decryption, first transform a message to a
ciphertext, and later transform the ciphertext back
to the message. In an asymmetric (or public key)
encryption scheme, KeyGen utilizes λ to generate
two keys: a public encryption key pk, which may
be made available to everyone, and a secret

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1925

decryption key sk. As a physical analogy for an
asymmetric encryption scheme, one can think of
Alice public key as a lock, which builds and
distributes, which can be locked without a key.
Anyone can place a message inside a box that
secured by Alice’s lock (encrypt) and sending it
across the general channel to Alice, but Alice just
has the key to open it (decrypt) [3]. An encryption
technique is called Fully Homomorphic (FHE) if it
performs both addition and multiplication at the
same time, and can compute any Operation [4].
The organization of a remainder of the paper:
section 2, provides Related Works about HE,
Section 3, describes categories of Homomorphic
Encryption, Section 4, display Fermat and Euler
Theorems. Section 5, offer the proposed scheme,
also we illustrate an example about it. Section 6,
describes the results and discussion. Finally, our
conclusions are mentioned in Section 7.

2. RELATED WORK

 The first homomorphism suggested by
Rivest, Adleman, and Dertouzos in [5]. The
multiplicative homomorphism is given by RSA [6].
A partial homomorphic encryption scheme is
suggested by Yao [7], Goldwasser and Micali [8],
ElGamal [9] and Paillier [10]. Fontaine &
Galand in [11] has presented a survey of
homomorphic encryption schemes .Gentry has
proposed fully homomorphic encryption in his
thesis and paper [4].Many researchers proposed the
variants of Gentry’s model with some
improvement. Homomorphic encryption on smaller
size cipher text is proposed by Smart and
Vercauteren [12]. The arithmetic operations over
integers are proposed by Dijk, Gentry, Halevi, and
Vaikuntanathan (DGHV scheme) [13]. Faster
improvement to Gentry’s model is proposed by
Stehle and Steinfield [14]. Y Govinda Ramaiah
has proposed “Efficient Public Key Homomorphic
Encryption over Integer Plaintexts”. [15] Coron et
al [16] was extended the work of DGHV [13] over
the integers for the purpose of batching FHE to a
scheme supporting encryption and homomorphic
processing of a vector of plaintext bits as a single
ciphertext. Emura et al [17] aimed at controlling
that can perform the homomorphic operations,
when and where. Because of the malleability
property of homomorphic encryption that anyone
can perform the operations”freely”, it becomes
difficult to achieve adaptive chosen ciphertext
(CCA) and homomorphic. Kim et al [18] presented
a fully homomorphic scheme that generalizes the
DGHV [13] scheme and modifies the third proposal

of RSA [19] on the Chinese Remainder theorem
and ring homomorphism.

3. HOMOMORPHIC ENCRYPTION

CATEGORIES

 There are three main categories of
homomorphic encryption schemes: Partially
Homomorphic Encryption PHE, Somewhat
Homomorphic Encryption SWHE, and Fully
Homomorphic Encryption FHE schemes. PHE
schemes, such as RSA [6], ElGamal [9], Paillier
[10], Etc., allow to applying either addition or
multiplication on encrypted data. Boneh et al. [20],
allowing unlimited additions and a single
multiplication. Construction of scheme supporting
both operations addition and multiplication
simultaneously is possible in 2009 by Gentry [4] by
using fully homomorphic encryption.

3.1 Properties of Homomorphic Encryption

3.1.1 Additive Homomorphic Encryption:
 A homomorphic encryption is additive if:
Enc (P1⊕ P2) = Enc (P1) ⊕ Enc (P2).

3.1.2 Multiplicative Homomorphic

Encryption:
 A homomorphic encryption is

multiplicative, if:
Enc (P1⊗ P2) = Enc (P1) ⊗ Enc (P2) [21].

3.2 Partially Homomorphic Encryption

(PHE)
 An encryption technique is called a
Partially Homomorphic Encryption (PHE) if it
applying only one operation on encrypted data, i.e.,
either addition or multiplication but not both [22].
Any encryption scheme which supports either
addition or multiplication, but necessarily not both,
is termed to be a partial homomorphic scheme.
Mathematically, an encryption scheme supporting
group operations on the ciphertexts is a partially
homomorphic encryption system.

3.2.1 Additive Homomorphic Schemes
 A Homomorphic Encryption is additive if
there is an algorithm that can calculate Enc(x + y)
from Enc(x) and Enc(y) without knowing x and y
[23].Such as Goldwasser-Micali algorithms [8] and
Paillier [10].

3.2.2 Multiplicative Homomorphic Schemes
 A Homomorphic Encryption is called
multiplicative if there is an algorithm that can
calculate Enc(x × y) from Enc (x) and Enc (y)

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1926

without knowing x and y [23]. Such as RSA [6] and
ElGamal [9] Algorithms.

3.3 Somewhat Homomorphic Encryption

(SWHE)
 The scheme that supports a limited number
of homomorphic operations known as somewhat
homomorphic encryption [24]. An encryption
technique is called Somewhat Homomorphic
encryption (SWHE) if it performs a limited number
of addition and multiplication operations on
encrypted data [4].
To understand SWHE scheme’s work, first thing
that we have to know: all scheme’s ciphertexts
have a noise inside of them and this noise
unfortunately become larger if we have performed a
lot of homomorphic operations, there is so much
noise (at some point) which the encryptions
become useless (i.e. they have incorrect decrypt).
This is the basic limitation of SWHE schemes and
this is the reason that they can only perform a
specific set of computations. [25]

3.4 Fully Homomorphic Encryption (FHE)

 An encryption technique is called
Fully Homomorphic (FHE) if it performs both
addition and multiplication at the same time, and
can compute any operation as in Figure 1 [4].

Figure 1: Fully Homomorphic Encryption (FHE) [26].

 Craig Gentry in 2009, presented the first
construction of a fully homomorphic scheme [4].
Since then researchers have proposed variants and
improvements to Gentry’s model.

4. FERMAT AND EULER THEOREMS

 Two important theorems presented the first
by Pierre de Fermat and the second by Leonhard
Euler. Both theorems related to powers in modular
arithmetic.

4.1 Fermat’s Little Theorem

 Suppose that p is prime and gcd (a, p) = 1
(or a and p are relative prime or p does not divide
a).

 Then:
 a p−1 ≡1 (mod p) (1)

4.2 Euler’s Theorem
 Euler’s Theorem is a generalize of

Fermat’s Little Theorem. Suppose n be an arbitrary
positive integer, ø(n) denote the number of integers
1 =< a <= n such that if gcd(a, n) = 1,
 then:

 a ø(n) ≡ 1 (mod n) (2)
Note: When (n = p) is prime, then ø (p) = p-1, we
get Fermat’s Little Theorem.
The following facts are true about the Euler Ø-
function.

• ø(p) = p−1 if p is prime.
• ø (p.q) = (p−1)(q − 1) if p and q are

prime.
• The general formula of ø (n) is:

 Ø (n) = n ∏ p/n () (3)

Where, the product is over distinct primes dividing

n [27].

5. THE PROPOSED SCHEME:PUBLIC KEY

FULLY HOMOMORPHIC

ENCRYPTION

 Our proposed scheme (PKFHE) is
essentially based on Euler’s theorem that we
explained it in Section three, which it’s an
asymmetric (or public key) encryption scheme and
supports both additive and multiplicative
homomorphism property, that means its Fully
Homomorphic Encryption scheme. The description
of PKFHE scheme as follows:

Key Gen: select two prime numbers p and q
 Calculate: n = p. q
 m = p + q

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1927

Then choose another prime number u such that:
 gcd (𝑛, u) = 1,
 S = n* u
And Select random big integer t.
 e = t (n – m +1)
Where, e is big integer.
Put (e, S) as a public key and keep (n) as a secret
key
Encryption: the message M will always be less
than < n, select random big integer r.
 c = M r * e +1 mod S
 Where, c is a ciphertext.
Evaluate: apply addition and multiplication on
ciphertexts ci, and then decrypt the result of ci, we
get integer number which is the same as the
integer number that it result of applying addition
and multiplication on input Mi.
Decryption:
 M = c mod n
To proof correctness of the scheme:

 c = M r * e +1 mod S
Dec = c mod 𝑛
 = M r * e +1 mod S mod n
 = M r * e +1 mod n mod S

We know that:
𝑎 r * e +1 ≡ 𝑎 (mod n), (Euler’s theorem)

 = M 𝑚𝑜𝑑 S = M, M< S (proved).

Additive Homomorphism:
The two messages M1 and M2 will always be less
than < n, also addition (M1 + M2) should be less
than n,
M1 + M2 = Dec [Enc (M1) + Enc (M2)],
(Enc is Encryption function and Dec is Decryption
function).

Proof:
Select two random big integer r1 and r2
c1 = (M1

r1 * e +1 mod x),
c2 = (M2

r2 * e +1 mod 𝑥)
c1 + c2 = M1

r1 * e +1 mod S + (M2 r2 (n - m +1) +1 mod S)

Dec (c1 + c2) = (c1 + c2) mod n

 =[(M1

r1 * e +1 mod S) + (M2
r2 * e +1 mod S)] mod n

 = (M1
r1 * e +1 mod S mod n) + (M2

r2 * e +1 mod S
mod n)

 = (M1
r1 * e +1 mod n mod S) + (M2

r2 * e +1 mod n
mod S)

Now we know that 𝑎 r * e +1 ≡ 𝑎 (mod n) so
 = M1 mod S + M2 mod S = M1 + M2.

Multiplicative homomorphism
The two messages M1 and M2 will always be less
than < n, also multiplication (M1×M2) should be
less than n,
M1×M2 = Dec [Enc (M1) × Enc (M2)].

Proof:
c1 = M1

r1 * e +1 mod S,
c2 = M2

r2 * e +1 mod S
c1 × c2 = (M1

r1 * e +1 mod S) × (M2
r2 * e +1 mod S)

Dec (c1 × c2) = (c1 × c2) mod 𝑛
 = [(M1

r1 * e +1 mod S) × (M2
r2 * e +1 mod S)] mod n

 = (M1
r1 * e +1 mod S mod 𝑛) × (M2

r2 * e +1 mod S
mod n)

 = (M1
r1 * e +1 mod 𝑛 mod S) × (M2

r2 * e +1 mod n
mod S)

Now we know that 𝑎 r * e +1 ≡ 𝑎 (mod n)
 = [(M1 mod S) × (M2 mod S)] = M1 × M2.

Algorithm (PKFHE)

1- Key Generation

1-1 generate prime big integers p and
q

1-2 n = p. q

1-3 m = p +q

1-4 choose another prime no. u ,
gcd(u, n) = 1

1-5 S = n * u

1-6 select random big integer t

1-7 e = t (n – m +1)

- Public encryption key = (e, S)

- Private decryption key = (n)

2- Encryption

2-1 generate random big integer r

2-2 C = M r * e + 1 mod S

3- Decryption

 3-1 M = C mod n

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1928

4- Evaluation

 4-1 Suppose there are two ciphertexts:

 C1 = M1 r1 * e + 1 mod S

 C2 = M2 r2 * e + 1 mod S

4-2 C3 = C1+C2 M3 = Dec (C3)
(or M3= M1+ M2)

4-3 C4= C1. C2 M4 = Dec (C4)
(or M4= M1. M2)

 Let C= f (c1... ci), such as

 C= [(C1. C3) + C2] .C4

 Let M= f (M1... Mi), such as

 M= [(M1. M3) + M2] .M4,

 Where f is any function (Add or Mult)
applied on the ciphertexts or messages.

 4-4 C mod n ≡ M, where M <n,
otherwise that we must take (M mod n)

Example (PKFHE):-

1- Key Generation

 Choose two prime numbers p= 11 and q = 7, then

 n = p * q → n = 11 * 7→ n = 77

 m = p + q → m = 18

 Select another prime number which, gcd (n, u) =1

 Let u = 23, and gcd (77, 23) =1,

 Now calculate S= n * u → S= 77* 23 → S = 1771

 And Select random big integer t = 9.

 e = t (n - m +1)

 e = 9(77 – 18 +1)

 e = 540

 Public key (e, S) = (540, 1771)

 Secret key (n) = (77)

2- Encryption

=3, 2rand =2 1ro random integer Now choose tw

and two messages m1 = 4 and

 m2 = 5,

 We must ensure that (m1 + m2) & (m1 ∗ m2) < n

 Now calculate c1:

 c1 = m1
r1* e +1 mod S,

 = 4 2* 540 +1 mod 1771→ 𝑐1 = 4 1081mod 1771

 = 1467

 Then calculate c2:

 c2 = m2
r2 *e +1 mod S

 = 5 3* 540 + 1 mod 1771→ 𝑐2 = 5 1621 mod 1771

 =1468

3- Decryption

 M1 = C1 mod n

 = 1467 mod 11

 = 4

 M2 = C2 mod n

 = 1468 mod 11

 =5

4- Evaluation

 c3 = c1 + c2 → c3 = 1467+ 1468

 c3 = 2935

 Now decrypt of c3:

 m3= c3 mod n → m3= 2935 mod 77

 m3= 9, this is equal to (m1 + m2) (i.e. 4+5=9)

 c4 = c1 * c2 → c4 = 1467* 1468

 c4 = 2153556

 Now decrypt of c4:

 m4 = c4 mod n → m4= 2153556 mod 77

 m4 =20, this is equal to (m1* m2) (i.e. 4 * 5

= 20).

 Let C= f (c1... ci), such as:

 C= [((C1. C3) + C2).C4] mod n

 = [((1467* 2935) + 1468). 2153556] mod

77

 = 9275609043828 mod 77

 =50

 Let m= f (m1... mi), such as:

 m= [((m1. m3) + m2). m4] mod p

 = [4. 9 + 5]. 20 mod 77

 = 820 mod 77

 = 50 ≡ C (proved).

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1929

6. RESULTS AND DISCUSSION

 In this section we’ll calculate the bit
complexity of the encryption and decryption
function for the Elgamal, RSA Cryptosystems and
our proposed PKFHE scheme and also we’ll
compute the execution time of them.

6.1 Big O Notation (Time Complexity)

 The O-notation is very useful in guiding
the designers of the algorithms in search for the
“best” algorithms for important problem.
 The goal of the study of the time complexity of an
algorithm is to indicate that its running time is O
(f(N)) for some function f[27]. Before performing
calculations of the time complexity, we must first
analyze the input numbers of the encryption and
decryption algorithm, which are either binary
integers or decimal digits, where:

 The time complexity of a binary integers
is O(n), while the time complexity of a decimal
digits is O(log(n)),except the constant number,
which the time complexity to its O(1), where n is
the size of input numbers.

 The complexity of the basic arithmetic
operations in Zn is shown in Table 1:

Table 1: Time complexity of the basic arithmetic

operations.

Operation

Time
complexity of

binary integers
of size n

Time
complexity of
decimal digits

of size n

Addition x + y O (n) O (log (n))

Subtraction x – y O (n) O (log (n))

Multiplication x × y O (n2) O((log (n))2)

Division &Modular O (n2) O((log (n))2)

Inverse x-1 O (n2 log (n)) O((log (n))3)

Modular
exponentiation xn

O (n2 log (n)) O((log (n))3)

6.1.1 Time Complexity of Elgamal
Cryptosystem

 Let n is the size of input message that in
the type of decimal digits.

Encryption function:

(mod p) rK = Y
(mod p) r= g1C

=M. K (mod p)2C
Then
T (K) = O ((log (n))3),
(Modular exponentiation)
T (C1) = O ((log (n))3)
T (C2) = O (2(log (n))2) = O ((log (n))2)
Where, (log2 n) is the number of bits of n.
T (Encryption) = O ((log (n))3) bit operation,
according the most costly operation.
Also,
T (Encryption) = O (log (n)) arithmetic operation.

 Decryption function:

 K= C1

x (mod p)
 M= K-1. C2 (mod p)
Then:
 T (K) = O ((log (n))3)
 T (M) = O (2(log (n))2) +T (K-1)

extend Euclid’s (by),3O ((log (n)))= 1-KT (
method)

)3O ((log (n)) +)2O (2(log (n)) T (M) =
) bit operation3((log (n)) O= T (M)

T (Decryption) = O ((log (n))3) bit operation,
according the most costly operation.
Also,
T (Decryption) = O (log (n)) arithmetic operation.

6.1.2 Time Complexity of RSA Cryptosystem

 Let n is the size of input message that in
the type of decimal digits.

 Encryption function:

mod (n) eC = M

Then:
T (C) = O ((log (n))3) bit operation.
T (Encryption) = O ((log (n))3) bit operation,
according the most costly operation.
Also,
T (Encryption) = O (log (n)) arithmetic operation.

Decryption function:

mod (n) dM =C
Then:
 T (M) = O ((log (n))3) bit operation.

T (Decryption) = O ((log (n))3) bit operation,
according the most costly operation.
Also,
T (Decryption) = O (log (n)) arithmetic operation.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1930

6.1.3 Time Complexity of PKFHE scheme
 Let n is the size of input message that in
the type of decimal digits.
 Encryption function:

C = M r * e +1 mod S
Then:
T (C) = O ((log (n))3).
Where, (log2 n) is the number of bits of n.
T (Encryption) = O ((log (n))3) bit operation,
according the most costly operation.
Also,
T (Encryption) = O (log (n)) arithmetic operation.

Decryption function:

M = C mod 𝑛
Then:
T (M) = O ((log (n))2)
T (Decryption) = O ((log (n))2) bit operation,
according the most costly operation.
Also,
T (Decryption) = O (1) arithmetic operation.

6.2 ExecutionTime
 We compute the execution time of the
Elgamal, RSA Cryptosystems and our proposed
PKFHE scheme with five sizes of the message and
five lengths of private key as following:
 In Table 2: notes that we take five size of
the messages begin whith (12 byte) and end with
(2.5 K Byte) and we use a secret key with length of
32-bit that equivalent (10 digit) to calculate of the
execution time of Elgamal, RSA Cryptosystems
and our proposed PKFHE scheme as shown in
Figure 2.

Table 2:Execution time with Size of Secret key 32- bit

Figure 2: Execution time with length of Secret key 32-bit.

 In Table 3: notes that we take also five
size of the messages begin whith (12 byte) and end
with (2.5 K Byte) and we use a secret key with
length of 64-bit that equivalent (20 digit) to
calculate of the execution time of Elgamal, RSA
Cryptosystems and our proposed PKFHE scheme
as shown in Figure 3.

Table 3:Execution time with length of Secret key 64- bit

Size of the
message

ElGamal
(m.s)

RSA
(m.s)

PKFHE
(m.s)

12 Byte 15 17 19

 1 K Byte 15137 15625 19750

1.5 K Byte 33456 34589 40543

 2 K Byte 58738 61477 78730

2.5 K Byte 100048 105859 126001

Figure 3: Execution time with length of Secret key 64- bit

 In Table 4: notes that we take also five
size of the messages begin whith (12 byte) and end
with (2.5 K Byte) and we use a secret key with
length of 128-bit that equivalent (39 digit) to
calculate of the execution time of Elgamal, RSA
Cryptosystems and our proposed PKFHE scheme
as shown in Figure 4.

Size of the
message

ElGamal
(m.s)

RSA
(m.s)

PKFHE
(m.s)

12 Byte 15 16 18

 1 K Byte 9491 11377 11372

1.5 K Byte 21497 25149 26461

 2 K Byte 37816 45866 46286

2.5 K Byte 58699 72900 75600

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1931

Table 4: Execution time with length of Secret key 128- bit

Size of the
message

ElGamal
(m.s)

RSA
(m.s)

PKFHE
(m.s)

12 Byte 21 22 27

 1 K Byte 30751 36431 34783

1.5 K Byte 72440 90424 77504

2 K Byte 140054 163767 151828

2.5 K Byte 217615 263558 238704

Figure 4:Execution time with length of Secret key 128-bit

 In Table 5: notes that we take also five
size of the messages begin whith (12 byte) and end
with (2.5 K Byte) and we use a secret key with
length of 256-bit that equivalent (78 digit) to
calculate of the execution time of Elgamal, RSA
Cryptosystems and our proposed PKFHE scheme
as shown in Figure 5.

Table 5:Execution time with length of Secret key 256- bit

Size of the
message

ElGamal
(m.s)

RSA
(m.s)

PKFHE
(m.s)

12 Byte 22 24 46

 1 K Byte 34541 39965 75258

1.5 K Byte 82953 96749 165610

 2 K Byte 155187 172906 308932

2.5 K Byte 241098 276159 487468

Figure 5:Execution time with length of Secret key 256-bit

 In Table 6: notes that we take also five
size of the messages begin whith (12 byte) and end
with (2.5 K Byte) and we use a secret key with
length of 512-bit that equivalent (155 digit) to
calculate of the execution time of Elgamal, RSA
Cryptosystems and our proposed PKFHE scheme
as shown in Figure 6.

Table 6:Execution time with length of Secret key 512- bit

Size of the
message

ElGamal
(m.s)

RSA
(m.s)

PKFHE
(m.s)

12 Byte 35 23 58

 1 K Byte 93711 37787 128837

1.5 K Byte 212789 93554 298497

 2 K Byte 394844 178951 540880

2.5 K Byte 658823 287563 853183

Figure 6:Execution time with length of Secret key 512-bit

 As a result, noticed that the length of the
key was effect on the execution time of the
algorithms in which the execution time increased
when the length of the key was increase.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1932

6.3 Security

 The RSA security depends on truth that it
is easy to multiply two large primes to construct a
modulus, the inverse operation of factoring the
modulus into its prime factors can be very difficult,
the difficult until solve the integer factorization
problem for the sizes of the numbers involved.
Attempt to break RSA by developing an integer
factorization solution for the moduli involved is
known as a mathematical attack. That is, a
mathematical attack on RSA consists of discover
the prime factors p and q of the modulus n. Clearly,
that knowing p and q, the attacker will be able to
discover the private exponent d for decryption.
Another way of stating the same as above would be
that the attacker would try to discover the totient
φ(n) of the modulus n. But as stated earlier,
knowing φ(n) is equivalent to knowing the factors p
and q. If an attacker can somehow figure out φ(n),
the attacker will be able to set up the equation
(p−1)(q−1) = φ(n), that, along with the equation p ×
q = n, will allow the attacker to determine the
values for p and q. Over the years, various
mathematical techniques have been developed for
solving the integer factorization problem involving
large numbers such as Trial Division, Fermat’s
Factorization Method, Sieve Based Methods, and
Pollard-ρ Method etc.

 The security of ElGamal is based on the
discrete logarithm problem. To encrypt and decrypt
a message, a discrete power is executed. This
operation is efficient to compute. An attacker that
wants to decrypt an intercepted message may try to
recover the private key. To this end a logarithm
needs to be computed. No actual method exists for
this, given certain requirements on the initial group
are met. Under these circumstances, the encryption
is secure. ElGamal has the disadvantage that the
ciphertext is twice as long as the plaintext. It has
the advantage the same plaintext gives a different
ciphertext each time it is encrypted. Today the
ElGamal algorithm is used in many cryptographic
products.

In brief, the security of the Elgamal and RSA
depend on:

A. The security of RSA depends on the difficulty
of factoring large integers.

B. The security of ElGamal algorithm depends on
the difficulty of computing discrete logs in a large
prime modulus.

 The proposed PKFHE, since it is a public
key FHE and based on Euler’s theorem, we treat
the security of it as the security of RSA
cryptosystem, which depends on the difficulty of
factoring large integers as shown in above.

7. CONCLUTION

 In this paper, we have a Public Key Fully
Homomorphic Encryption scheme (PKFHE)
essentially based on Euler’s theorem and it proved
his correctness of supporting additive and
multiplicative homomorphism and we offered an
example explains the steps of how it works. As a
result, we compute the time complexity of the
encryption and decryption function for the Elgamal,
RSA cryptosystems and our proposed PKFHE
scheme which, the order of encryption function of
all the schemes is O ((log (n))3) and the order of
decryption function of Elgamal, RSA
cryptosystems is O (log (n)3), while the order of
decryption function of PKFHE scheme is O (log
(n)2) that mean the proposed PKFHE scheme is
faster in the time complexity. Also compared the
execution time among the three schemes with five
sizes of the messages and used five lengths of a
secret key, Where we concluded that the execution
time of the proposed scheme was slower than the
execution time of Elgamal, RSA cryptosystems
except in the case of the key 128-bit which, the
execution time of RSA was slower than the two
others. Also we noticed that the length of the
private key was effect on the execution time of the
algorithms in which the execution time increased
when the length of the private key was increase.
Finally the security of the schemes is analyzed. We
applied the proposed scheme PKFHE on a cloud
computing and it performed both addition and
multiplication operations at the same time on
ciphertext without decryption.

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1933

REFERENCES

[1] Srinivasan, S., and R. Bala Krishnan. "Data
property analyzer for information storage in
cloud." Pattern Recognition, Informatics and
Mobile Engineering (PRIME), 2013
International Conference on. IEEE, 2013.

[2] Yang, Jing, et al. "Simulation Study Based on
Somewhat Homomorphic Encryption." Journal
of Computer and Communications 2.02 (2014):
109.

 [3] Gentry, Craig. "Computing arbitrary functions
of encrypted data." Communications of the
ACM 53.3 (2010): 97-105.

 [4] Gentry, Craig. "Fully homomorphic encryption
using ideal lattices." STOC. Vol. 9. No. 2009.
2009.

 [5] Rivest, Ronald L., Len Adleman, and Michael

L. Dertouzos."On data banks and privacy
homomorphisms." Foundations of secure
computation 4.11 (1978): 169-180.

[6] Rivest, Ronald L., Adi Shamir, and Leonard
Adleman. "A method for obtaining digital
signatures and public-key
cryptosystems." Communications of the
ACM 21.2 (1978): 120-126.

 [7] Yao, Andrew C. "Protocols for secure
computations." Foundations of Computer
Science, 1982. SFCS'08. 23rd Annual
Symposium on. IEEE, 1982.

[8] Goldwasser, Shafi, and Silvio Micali.
"Probabilistic encryption." Journal of
computer and system sciences 28.2 (1984):
270-299.

[9] ElGamal, Taher. "A public key cryptosystem
and a signature scheme based on discrete
logarithms." IEEE transactions on
information theory 31.4 (1985): 469-472.

[10] Paillier, Pascal. "Public-key cryptosystems
based on composite degree residuosity
classes." Eurocrypt. Vol. 99. 1999.

[11] Fontaine, Caroline, and Fabien Galand. "A
survey of homomorphic encryption for
nonspecialists." EURASIP Journal on
Information Security 1 (2009): 41-50.

 [12] Smart, Nigel P., and Frederik Vercauteren.
"Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext
Sizes." Public Key Cryptography. Vol. 6056.
2010.

 [13] Van Dijk, Marten, et al. "Fully homomorphic
encryption over the integers." Annual
International Conference on the Theory and

Applications of Cryptographic Techniques.
Springer Berlin Heidelberg, 2010.

[14] Stehlé, Damien, and Ron Steinfeld. "Faster
fully homomorphic encryption." Advances in
Cryptology-ASIACRYPT 2010 (2010): 377-
394.

 [15] Ramaiah, Y. Govinda, and G. Vijaya Kumari.
"Efficient public key homomorphic encryption
over integer plaintexts." Information Security
and Intelligence Control (ISIC), 2012
International Conference on. IEEE, 2012.

[16] Cheon, Jung Hee, et al. "Batch fully
homomorphic encryption over the
integers." Annual International Conference on
the Theory and Applications of Cryptographic
Techniques. Springer, Berlin, Heidelberg,
2013.

[17] Emura, Keita, et al. "Chosen Ciphertext Secure
Keyed-Homomorphic Public-Key
Encryption." Public Key Cryptography. 2013.

[18] Cheon, Jung Hee, et al. "CRT-based fully
homomorphic encryption over the
integers." Information Sciences 310 (2015):
149-162.

[19] Diffie, Whitfield, and Martin Hellman. "New
directions in cryptography." IEEE
transactions on Information Theory 22.6
(1976): 644-654.

 [20] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim.
"Evaluating 2-DNF formulas on ciphertexts."
In Theory of Cryptography Conference,
TCC'2005, volume 3378 of Lecture Notes in
Computer Science, pages 325-341. Springer,
2005.

 [21] Tebaa, Maha, Saïd El Hajji, and Abdellatif El
Ghazi. "Homomorphic encryption applied to
the cloud computing security." Proceedings of
the World Congress on Engineering. Vol. 1.
2012.

[22] Ogburn, Monique, Claude Turner, and Pushkar
Dahal. "Homomorphic encryption." Procedia
Computer Science 20 (2013): 502-509.

[23] Guang-Li, Xiang, et al. "A method of
homomorphic encryption." Wuhan
University Journal of Natural Sciences 11.1
(2006): 181-184.

[24] Pallavi. Homomorphic encryption schemes:
steps to improve the proficiency, International
Journal of Science Technology and
Management, Vol. No.5, Issue No. 02, 2016.

[25] Benzekki, Kamal, A. E. Fergougui, and A. E.

B. E. Alaoui. "A secure cloud computing
architecture using homomorphic
encryption." International Journal of

Journal of Theoretical and Applied Information Technology
15th April 2018. Vol.96. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1934

Advanced Computer Science and
Applications (IJACSA) 7.2 (2016): 293-298.

 [26] Potey, Manish M., C. A. Dhote, and Deepak
H. Sharma. "Homomorphic Encryption for
Security of Cloud Data." Procedia
Computer Science 79 (2016): 175-181.

 [27] Ali M. Sagheer, “Enhancement of Elliptic
Curves Cryptography Methods”, MSc Thesis,
Computer Science Department, University of
Technology,Iraq,2004.

