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ABSTRACT 
 

The paper presents Mirrored Vedic Vertically and Crosswise Multiplication Technique (MVVCMT) which 
is an algorithm based on Vedic Vertically and Crosswise Multiplication Technique.  Vedic Vertically and 
Crosswise Multiplication Technique is an ancient Indian technique used to shorten the process of mental 
multiplication especially for big numbers.  In India, the multiplication technique is still taught to kids to 
enhance their skills in mental multiplication.  The proposed algorithm in this research was inspired by this 
ancient yet practical, easy to understand and apply multiplication technique.  Vedic Vertically and 
Crosswise Multiplication Technique was rediscovered in 1965 by Swami Bharati Krishna Tirthaji in his 
book Vedic Mathematics.  The proposed algorithm runs with only 100 multiplications rather than n2 based 
number of multiplications.  In this paper, the first section explains the Vedic Vertically and Crosswise 
Multiplication Technique with and example and algorithm.  Then the paper presents a hands-on example to 
show the simplicity of the original technique.  Next, the paper presents the proposed algorithm name 
"Mirrored Vedic Vertically and Crosswise Multiplication Technique" which is dubbed (MVVCMT). 

Keywords: Vedic mathematics; Multiplication Technique; complex numbers; Complex multiplication. 

1 INTRODUCTION 

Multiplying two n-digits numbers is an open 
question in computer science.  Long integer 
multiplication is an essential ingredient in public 
key cryptography methods RSA and Diffie & 
Helman, and ElGamel algorithms [1], [2], [3], and 
[4] respectively.  Public key cryptosystems allows 
message encryption and appending unforgeable 
digital signature.  "The RSA public-key 
cryptosystem is based on the dramatic difference 
between the ease of finding large prime numbers 
and the difficulty of factoring the product of two 
large prime numbers"[5].  Furthermore, "In order 
to achieve security with the RSA 
cryptosystem, however, it is advisable to work 
with integers that are several hundred bits 
long, to resist possible advances in the art of 
factoring" as stated by the same source.  Long 
Numbers that have more than 15 digits are hard to 
multiply in fact computers round the numbers to 
the closest digit.  For example, 
999,999,999,999,999,999 is rounded to 
999,999,999,999,999,000 hence, when multiplied 
the product of multiplication is not accurate.  

Accuracy is needed especially when dealing with 
numbers that pertains to ciphering applications.  
Another problem with multiplying long numbers is 
time; such multiplication takes a long time.  A 
third problem is storage space, just imaging 
carrying out such a task manually.  Furthermore, 
many used different algorithms to overcome these 
problems: Schoolbook long multiplication with 
complexity O(n2) [6], Karatsuba algorithm with 
complexity O(n1.585) according to [7], 3-way 
Toom–Cook multiplication with complexity 
O(n1.465), k-way Toom–Cook multiplication with 
complexity O(nlog (2k− 1)/logk), Mixed-level Toom–
Cook with complexity O(n 2√2logn log n) according 
to [8], Schönhage–Strassen algorithm with 
complexity O(n*log(n)*log(log(n))) according to 
[9] and [10], Fürer's algorithm with complexity 
O(nlogn2O(log* n)) according to [11].  In summary 
accuracy, speed and storage space are the three 
problems that present themselves when dealing 
with multiplying long numbers.  Hence, reducing 
storage space, and increasing accuracy and speed 
when multiplying two large numbers is an open 
question in the algorithms arena. 
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In this paper section 2 will discussed the 
complexities of long integer multiplication 
algorithms: Karatsuba, 3-way Toom–Cook, k-way 
Toom–Cook, Mixed-level Toom–Cook, 
Schönhage–Strassen algorithm, and Fürer's 
algorithm.  The paper then shows the Vedic 
Vertically and Crosswise Multiplication 
Technique, and will explain the technique using a 
hands-on example and suggested an algorithm, in 
section 3 and section 4 respectively.  Then the 
paper will present the suggested and inspired 
algorithm named MVVCMT, with an algorithm 
and example in section 5 and section 6.  The 
results of the research are discussed in section 7. 
 
2 LONG INTEGERE MULTIPLICATION 

ALGORITHMS 

Multiplication algorithms tried to solve 
the multiplication operation efficiency: Karatsuba, 
3-way Toom–Cook, k-way Toom–Cook, Mixed-
level Toom–Cook, Schönhage–Strassen algorithm, 
and Fürer's algorithm.  In the next paragraphs 
these algorithms will be discussed. 

The traditional schoolboy multiplication 
algorithm (classical multiplication algorithm), 
shown in figure 1, has the running time of O (n2) 
and needs a storage (memory) of at least nXn 
matrix where n is the number of digits in the two 
integers.  The algorithm is carried out by 
multiplying each digit of the multiplicand by each 
digit of the multiplier and then adding up all the 
properly shifted results. 

Karatsuba algorithm with complexity 
O(n1.585) was discovered in 1962 by Anatolii 
Alexeevitch Karatsuba [12] and [13] the idea is to 
reduce multiplication operation in a 2-digits 
numbers base-m from 4 operations to 3 operations, 
is basically the following: 
Suppose the P & Q as follows: P1*M+P2 and 
Q1*M+Q2 to calculate their multiplication: 
 

1. Compute Result1 = P1*Q1 
2. Compute Results2= P1*Q2 
3. Compute Result3 =(P1+P2) *(Q1+Q2) 
4. Compute Result4=Result3-Result1-Result2 

5. Computer Result1 * m2+Result4 * m + 
Result2 

 
The algorithm used 1 multiplication in the 

first step, and another multiplication in the second 
step.   In the third step the algorithm consumed 
one multiplication and 2 additions operations.  In 
the fourth step the algorithm consumed two 
subtraction operations.  And in the final step two 
multiplications operations and two addition 
operations but they are just to place in the right 
index.   Hence, the reduction of three 
multiplications rather than four multiplications, the 
improvement factor is 4:3.  Karatsuba Multiplication 
Algorithm later named divide and conquer 
algorithm, shown in Figure (2).  Another 
improvement is Toom-Cook algorithm which 
based on the work of Karatsuba algorithm claimed 
to a generalization of Karatsuba algorithm.  Toom-
Cook was developed by Andrei Toom and Stephen 
Cook.  The improvement factor stated is 9:5.  
Toom-Cook is composed of five steps:  Splitting, 
Evaluation, Pointwise multiplication, Interpolation 
and Recompositing as described by [14].  Bothe 
Karatsuba and Toom-Cook use Divide and 
conquer technique. Hence, preprocessing 
overheads, as explained in the following quote 
"Algorithms such as FFT and Toom-Cook have 
lower algorithm complexity. However, because of 
the preprocessing overheads such as the divide and 
conquer, evaluation, and interpolation, the 
operating cost of these algorithms is actually much 
higher, making them useful only when the integers 
are extremely large. Consequently, only classical 
and Karatsuba multiplication algorithms and their 
combination are being used in current 
cryptosystem. This is especially true after 
considering circumstances such as memory 
constraints and the practical finite field size. "[15] 

 
 
 
 
 

multiply(a[1..p], b[1..q], base)                                               // Operands containing rightmost digits at index 1 
  product = [1..p+q]                                                               //Allocate space for result 
  for b_i = 1 to q                                                                   // for all digits in b 
    carry = 0 
    for a_i = 1 to p                                        //for all digits in a 
      product[a_i + b_i - 1] += carry + a[a_i] * b[b_i] 
      carry = product[a_i + b_i - 1] / base 
      product[a_i + b_i - 1] = product[a_i + b_i - 1] mod base 
    product[b_i + p] += carry                                                // last digit comes from final carry 
  return product 

Figure 1: Schoolboy multiplication [5]. 
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"Cook showed how the actions of this 

machine could be simulated by an extremely 
complicated and long, but still polynomial, 
Boolean formula. This Boolean formula would be 
true if and only if the program which was being 
run by the Turing machine produced a “yes” 
answer for its input" [16] and [17]. 

As for the Schönhage–Strassen algorithm 
with complexity O(n*log(n)*log(log(n))) 
according to [9].  The two numbers multiplied are 
treated as two separate matrices of one column and 
2*n rows.  The two matrices are multiplied with 
FFT matrix of base 2*n using w8 and the modulo 
integer Integer, the result is two matrices that are 
multiplied by each other: element by element.  The 
result is one matrix that must go through Invers 
FFT.  Again, the result is recombined using the 
carry operation. 
Fürer's algorithm with complexity O 
(nlogn2O(log* n)) according to [11] is faster the 
Schönhage–Strassen algorithm.  Furer (2007) 
states that his algorithm run very much like 
Schönhage–Strassen algorithm with two 
exceptions:   the ring of integers modulo used, and 
FFT is divided "more evenly".  Another fact stated 
by Furer [11] is "All known methods for integer 
multiplication (except the trivial school method) 
are based on some version of the Chinese 
Remainder Theorem".  The Chinese Remainder 
Theorem states "There are certain things whose 
number is unknown. If we count them by threes, 
we have two left over; by fives, we have three left 
over; and by sevens, two are left over. How many 
things are there?" as [18] by a chines 
mathematician (Sun Zi) in the third century.  The 
Chinese remainder theorem was finally stated and 
proved in its full generality by L. Euler in 1734[5].  
The Chinese Remainder Theorem was stated 
formally as follows: let p, q be co-prime then the 

system of equations has a unique solution for x 
modulo pq.  The same thing goes if we have more 
than two equations. 
 

x ≡ a (mod p) 
x ≡ b (mod q) 

 
Looking back at Multiplication 

algorithms who tried to solve the long integer 
multiplication operation efficiency: Karatsuba 
algorithm, 3-way Toom–Cook, k-way Toom–
Cook, Mixed-level Toom–Cook, Schönhage–
Strassen algorithm, and Fürer's algorithm; and 
comparing their complexity with the traditional 
schoolboy, figure (1) multiplication algorithm 
O(n2) one can conclude the following: Fürer's 
algorithm is the least complex, followed by 
Schönhage–Strassen algorithm, then Toom-Cook 
versions, then Karatsuba algorithm.  The constant 
quests in all the algorithms are: accuracy, speed 
and storage.  All quested elements are reflected in 
the word algorithms complexity. 
3 VERTICALLY AND CROSSWISE 

MULTIPLICATION TECHNIQUE 
(VCMT) 

 

Vertically and Crosswise Multiplication 
Technique is an ancient Indian technique 
popularized by Swami Bharati Krishna Tirthaji’s 
Vedic Mathematics, published posthumously in 
1965.  The book can be found on the website [19].  
Multiplying two n-digit integer numbers using 
VCMT entails the work shown in (1) 

 
 

௜ା௝ܣ ൌ ∑ ∑ ௝ା஼೔శೕశభݕ௜ݔ
௡
௝ୀଵ

௡
௜ୀଵ ……….(1) 

 

procedure karatsuba(num1, num2) 
  if (num1 < 10) or (num2 < 10) 
    return num1*num2 
  /* calculates the size of the numbers */ 
  m = max(size_base10(num1), size_base10(num2)) 
  m2 = m/2 
  /* split the digit sequences about the middle */ 
  high1, low1 = split_at(num1, m2) 
  high2, low2 = split_at(num2, m2) 
  /* 3 calls made to numbers approximately half the size */ 
  z0 = karatsuba(low1,low2) 
  z1 = karatsuba((low1+high1),(low2+high2)) 
  z2 = karatsuba(high1,high2) 
  return (z2*10^(2*m2))+((z1-z2-z0)*10^(m2))+(z0) 
Figure 2: Karatsuba Multiplication Algorithm [5]. 
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When multiplying two 4-digit numbers 
the multiplier named P and made up of digits 
P1P2P3P4 and the multiplicand Q is made up of 
four digits Q1Q2Q3Q4, where the first digit in each 
P and Q are the highest order digit. 

 

 
 
 
 
 

Table (1):  A trace table of the operations and expected results of 4-digits P and Q. 

i+j Ai+j Multiplication 
operations 

Addition 
operations 

1 C2  0 
2 P1 Q1+C3 1 1 
3 P1Q2+P2Q1+C4 2 2 
4 P1Q3+Q1P3+P2Q2+C5 3 3 
5 P1Q4+Q1P4+P2Q3+Q2P3+C6 4 4 
6 P2Q4+Q2P4+P3Q3+C7 3 3 
7 P3Q4+Q3P4+C8 2 2 
8 P4Q4 1 0 
Total Number of Operations 16 15 

Pi is the ith digit in the multiplier, i=1...n.  and Qj is 
the jth digit in the multiplicand, j=1..n.  The letter C 
is the carry from the carry operation.  The 8th digit 
of the result is product of multiplying P4Q4 which 
produces 8th digit and the carry number C8. The 7th 
digit is the result of P3Q4+Q3P4+C8and produces 
the 7th carry.  The 6th digit is the result of 
P2Q4+Q2P4+P3Q3+C7 and produces the 6th carry.  
The 5th digit is the result of 
P1Q4+Q1P4+P2Q3+Q2P3+C6 and produces the 5th 
carry.  The 4th digit is the result of 
P1Q3+Q1P3+P2Q2+C5 and produces the 4th carry.  
The 3ed digit is the result of P1Q2+P2Q1+C4and 
produces the 3ed carry.  The 2ed digit is the result 
of P1 Q1+C3 and produces the 2ed carry.  The first 
digit is the 2ed carry.  The whole operation which 
is reflected in table 1 including 16 multiplication 
operations and 15 addition operations.  The 
addition operations are: 10 addition operations and 
5 addition operations for the carry.  Therefore, 
when multiplying the two 4-digit numbers the 
following results table 1 is expected: 

Same thing happens when multiply two 
5-digits integer numbers P and Q as shown in 
digits' form P is P1P2P3P4P5 and Q is Q1Q2Q3Q4Q5.  
, where the first digit in each P and Q are the 
highest order digit.  Pi is the ith digit in the 
multiplier, i=1...n.  And Qj is the jth digit in the 
multiplicand, j=1..n.  The letter C is the carry from 
the carry operation.  The 10th digit of the result is 
product of multiplying P5Q5 which produces 10th 
digit and the carry number C10.  The 9th digit of the 
result is product of multiplying P4Q5+Q4P5+C10 

which produces 9th digit and the carry number C9.  

The 8th digit of the result is product of multiplying 
P3Q5+Q3P5+P4Q4+C9 which produces 8th digit and 
the carry number C8.  The 7th digit of the result is 
product of multiplying P2Q5+Q2P5+P3Q4+P4Q3+C8 
which produces 7th digit and the carry number C7.  
The 6th digit of the result is product of multiplying 
P1Q5+Q1P5+P2Q4+Q2P4+P3Q3+C7which produces 
6th digit and the carry number C6.  The 5th digit of 
the result is product of multiplying 
P1Q4+Q1P4+P2Q3+Q2P3+C6 which produces 5th 
digit and the carry number C5.  The 4th digit of the 
result is product of multiplying 
P1Q3+Q1P3+P2Q2+C5 which produces 4th digit and 
the carry number C4.  The 3th digit of the result is 
product of multiplying P1Q2+P2Q1+C4 which 
produces 3ed digit and the carry number C3.  The 
2ed digit of the result is product of multiplying P1 
Q1+C3which produces 2ed digit and the carry 
number C2.  The first digit is the 2ed carry.  The 
results are summarized in the following tracing 
table 2:  
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Table (2):  A trace table of the operations and expected results of 5-digits P and Q. 
I+J Ai+j Multiplication 

operations 
Addition 
operations 

1  C2   
2 P1 Q1+C3 1 1 
3 P1Q2+P2Q1+C4 2 2 
4 P1Q3+Q1P3+P2Q2+C5 3 3 

5 P1Q4+Q1P4+P2Q3+Q2P3+C6 4 4 
6  P1Q5+Q1P5+P2Q4+Q2P4+P3Q3+C7 5 5 
7 P2Q5+Q2P5+P3Q4+P4Q3+C8 4 4 
8 P3Q5+Q3P5+P4Q4+C9 3 3 
9 P4Q5+Q4P5+C10 2 2 
10 P5Q5 1 0 

Total Number of operations 25 24 

 
In the following algorithm, Figure 3, a 

proposed algorithm for the VCMT.  Each step, in 
the algorithm, is counted to calculate the 
complexity of the algorithm which is based on the 
VCMT.  The running time of the algorithm is 
n*n+2n hence the running time is almost n2.   

 
Algorithm Running 

time 
For i=n down to 1 

For j=n down to 1 
Product [j + i ]=(Pi*Qj)+ 
Product [j + i] 

Next j 
Next i 
For i=2n down to 1 

Result[i]=rightmost 
digit(product[i]) 
Carry[i]=left (digits of product[i]) 
Product[i-1] = product[i-1] + 
carry[i] 

Next i 

n 
n2 
 
 
 
 
2n 

Figure 3:  A suggested algorithm for VCMT with 
number of operations. 

 
4 VEDIC MULTIPLICATION EXAMPLE 

To visually enhance the understanding of 
Vertically and Crosswise Multiplication Technique 
(VCMT) the following example is given shown in 
the figures below.  Multiplying a 4-digit number 
(5432) by 4-digit multiplicand (3124).  The 4-digit 
multiplier named P is composed of 4 digits 
P1P2P3P4, the multiplicand Q is respectively made 
of 4-digits Q1Q2Q3Q4.  P1 is the highest digit in P 

The first step is set the window to 1 
which entails taking the highest first digit from 
multiplier and multiplicand in this case (5, 3) and 
multiply them to produce 15.  The 15 is stored in 
the answer line as shown in the Figure 4 below. 

 
 
 
 

 

 
Figure 4: Step #1 of VCMT vertical multiplication. 
 

Next, set the window to 2, choose the 
highest two digits and crisscross multiplication, 
see Figure 5.  Multiply 4 by 3 and 5 by 1 and add 
the result: 5*1+4*3=17.  The result is divided to 
two parts: a lowest digit is put in the answer line 
while the upper digit(s) are added to the answer 
line.  In this example 7 is put on the answer line 
and the 1 is added to 15 to become 16. 

 
Figure 5: Step #2 of VCMT crisscross operation. 
 

The third step:  the window is increased 
by 1 to become 3.  A crisscross operation is carried 
out by multiplying P1*Q3 (5*2) and multiplying 
P3*Q1 (3*3) and a vertical operation is carried out 
by multiplying P2*Q2 (4*1). And add all the results 
(10+9+4) which results 23.  The 23 is again split 
where the lowest digit is put in the answer line and 
the carry=2 is added to previously mentioned (7) 
in the answer line to become 9, see Figure 6. 

 

 
Figure 6: Step #3 of VCMT crisscross operation. 
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The fourth step, the window is increased 
by 1 to become 4.  A crisscross operation is carried 
out by: multiply P1*Q4 (5*4), P2*Q3 (4*4), 
P3*Q2(3*1), and P4*Q1 (2*3) which results to 
(20+8+3+6) which equals 37.  The 37 is again split 
to answer and carry.  The lowest digit (7) is put on 
the answer line and the 3 is added to previously 
produced 3 to become 6, Figure 7. 

 

 
Figure 7: Step #4 of VCMT crisscross operation with 
window size 4. 

In the fifth step and since the window 
reached the limit 4, the window is decreased by 1 
to 3.  A crisscross operation is carried out between 
P2*Q4 (4*4) and P4*Q2 (2*1). A vertical operation 
is carried out between P3*Q3 (3*2).  The result 
(16+6+2) is 24.  The lowest digit 4 is put on the 
answer line and the highest digit 2 is added to the 
previously produced 7 to become 9, Figure 8. 

 

 
Figure 8: Step #5 of VCMT crisscross operation with 
window size 3. 
 

The sixth step, the window is reduced by 1 to 
become two and a crisscross operation is carried out: 
P3*Q4 (3*4) and P4*Q3 (2*2).  The rest is (12+4) which 
is 16, again the result is spilt to answer and carry.  The 
lowest digit 6 is put on the answer line and the carry (1) 
is added to the previously produced 4 to become 5, see 
Figure 9. 

 

 
Figure 9: Step #6 of VCMT crisscross operation with 
window size 2. 
 

The seventh step, the window is reduced 
by 1 to become 1.  And vertical operation is 
carried out P4*Q4 which is (2*4) the result is 8 and 
is put on the answer line, figure 10.  By reading 

what is on the answer line 16969568 is the answer 
of the multiplication operation. 

 

 
Figure 10: Step #7 of VCMT crisscross operation with 
window size 1. 
 

The example above intended to visually 
enhance the understanding of Vertically and 
Crosswise Multiplication Technique (VCMT).  
The example explained each step and the variation 
of the window size and the uses of the window.  
Figures 3 to figure 10 reflected visually the steps 
to explain the process of the Vertically and 
Crosswise Multiplication Technique (VCMT). 

Looking back at the example above and 
counting the number of multiplications and 
additions we fine the following: In the first step 
there was one multiplication operation.  In the 
second step there were two multiplication 
operations and one addition operation.  In the third 
step there were three multiplication operations and 
two addition operations.  In the fourth step, there 
were four multiplication operations and three 
addition operations.  In the fifth step there were 
three multiplication operations and two addition 
operations.  In the sixth step there were two 
multiplication operations and one addition 
operation.  In the seventh step there was only one 
multiplication operation.  One can conclude that 
the number of multiplication operations is 16 and 
the addition operations is 9 while there is an 
addition operation for the carry which is 7 addition 
operations which makes the total of the addition 
operation also 16.  The summery of all operations 
in a 4-digit number multiplied by 4-digit number is 
in table1. 

By using the lookup table, suggested for 
the algorithm MVVCMT explained in section 6 of 
this research paper, the number of multiplication 
operations will be reduced to 0.  Since all 
multiplication operations are of simple 
multiplication operation.  Hence, looking up each 
result from the multiplication table provided in 
figure 14 section 6.1 of this paper. 
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5 SUGGESTED ALGORITHM: 
MIRRORED VEDIC VERTICALLY 
AND CROSSWISE MULTIPLICATION 
TECHNIQUE (MVVCMT) 

Mirrored Vedic Vertically and Crosswise 
Multiplication Technique (MVVCMT) is an 
algorithm that reduces the number of 
multiplications operation in long integer 
multiplication to 100 simple multiplication 
operations.  The algorithm works as follows: 

 Scan both P & Q (multiplier and 
multiplicand) and produce the frequency 
of each digit and the index of each digit.  
The result is shown like in figure 12 and 
figure 13. 

 Produce the result, carries and answer. 
The following section will explain the algorithm 
with the two major steps in sections 6.1 and 
section 6.2. 
6 MVVCMT 

MVVCMT assumes that both multiplier 
and multiplicand are equal in number of digits and 

treats both multiplier and multiplicand as an array 
of digits rather than decimal number.  The most 
significant digit is stored in an array with index 1 
and the least significant digit is stored in the array 
with index n.  Hence, the multiplier is a one- 
dimensional array of digits with size n.  The 
multiplicand is one-dimensional array of digits 
with size n.  The product of both multiplier and 
multiplicand are stored as individual digits in one-
dimensional array with the size of 2n. 
MVVCMT has two parts: the first part named 
Scan part, the second part is the multiplication 
lookup part.  The Scan part has an input of both 
multiplier (P) and multiplicand (Q).  The Scan part 
will produce two matrices: a matrix for P and a 
Matrix for Q.  The matrices include each digit in 
the P or Q with the frequency of each digit and 
indices of each digit.  The second part of 
MVVCMT is the multiplication lookup part which 
will carry out the multiplication process.  Both 
parts are explained in the next two sections. 

Frequencey_index(P,Q) Time 
Q_Frequencey=0 
P_Frequencey=0 
For i  1 to length[P]   ' (or Q) 

P_Frequencey (P[i])= P_Frequencey (P[i])+1 
Q_Frequencey (P[i])= Q_Frequencey (Q[i])+1 
P_Index(P_Frequencey (P[i]))=i 
Q_Index(Q_Frequencey (Q[i]))=i 

 Next i 
 

1 
1 
 n 
n-1 
n-1 
n-1 
n-1 

 

Figure 11:  The first part of MVVCMT is called Frequencey_index(P,Q). 
 

6.1. Scan Part: Frequencey_index(P,Q) 

The scan part of the algorithm, named 
Frequencey_index(P,Q), produces two matrices:  
the first matrix is a one dimensional array that 
holds the frequency of each digit in P and Q.  The 
suggested scan algorithm Frequencey_index(P,Q) 
is shown in Figure 11. 

 
The Frequencey_index(P,Q) produces the 

matrix shown in Figure 12.  The first part of the 
matrix reflects the frequency of each digit in P.  
The second part shows the index /location/order of 
the digit in P.  To further explain assume that P is 
the following 70-digit number: 
62642001874012850961516549482644422193020
37178623509019111660653946049.  As can be 
seen in the matrix (Figure 12) there are 10 zeros 
and 10 ones and 8 twos in P.  The second matrix is 
the one that keeps the location/position/index of 
the digit.  The positions 38,42,49,64 in P are held 

by digit value "Three" as can be Figure 12.  Hence, 
producing the Figure 10 and Figure 11: 
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P digits 
P 

Frequency 
 

P digits Indices of each digit in P 
0 10  0 6 7 12 17 39 41 51 53 61 68 
1 10  1 8 13 20 22 36 44 54 56 57 58 
2 8  2 2 5 14 29 34 35 40 48     
3 4  3 38 42 49 64             
4 9  4 4 11 25 27 31 32 33 66 69   
5 5  5 16 21 24 50 63           
6 10  6 1 3 19 23 30 47 59 60 62 67 
7 3  7 10 43 45               
8 4  8 9 15 28 46             
9 7  9 18 26 37 52 55 65 70       

Figure 12:  A matrix that shows each digit in P with the frequency of each digit and the indices of digit. 
 
Assume Q is the following 70 digits' 

number:3398717423028438554530123627613875835633986495969597423490929302771479.  The 
second matrix is for Q, the digit, 0, has frequency of 4 and the digit 0 is located in index 11,22,58,63.   

 
Again the digit 1 has frequency of 4 and is located in 6, 23, 30 and 67.  The scan part of the 

suggested algorithm has running time of n, where n is the length of P or Q. 
 

Q 
digits Q Frequency 

 Q 
digits Indices of each digit in Q 

0 4  0 11 22 58 63               
1 4  1 6 23 30 67               

2 7  2 9 12 24 27 54 60 64         
3 12  3 1 2 10 15 21 25 31 36 39 40 55 62 

4 7  4 8 14 19 44 53 56 68         
5 7  5 17 18 20 34 37 46 50         

6 5  6 26 29 38 43 48             
7 8  7 5 7 28 33 52 65 66 69       

8 6  8 4 13 16 32 35 42           
9 10  9 3 41 45 47 49 51 57 59 61 70   

Figure 13:  A matrix that shows each digit in P with the frequency of each digit and the indices of digit. 

 
Create multiplication table like (figure 

14), the purpose of the multiplication table is to be 
used as a lookup table.  The use of the lookup table 
will reduce the multiplication operations from n2 in  

 

 
schoolboy multiplication to a constant number 100 
multiplication in the worst-case scenario.  The use 
of such table is shown in the figure 15 of the 
suggested algorithm. 

 
 

Index 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
8 0 8 16 24 32 40 48 56 64 72
9 0 9 18 27 36 45 54 63 72 81

 

Figure 14: A standard multiplication table.  
 

6.2. The Multiplication Process Part 

The second step is to go through the 
multiplication process.  The algorithm uses the 
previously shown matrices (frequency and indices 
matrices).  The algorithm has 4 nested loops, see 
Figure 15.  The first loop goes through digits of Q 
(0-9).  The second loop goes through the 
frequency of each digit.  The third loop is like the 
first loop, but works on the digits of P.  The fourth 
loop is like the second loop works on the 
frequency of each digit in P.  Line 4 of the 
algorithm looks up the product of two digits in P 
and Q, thus saving the redundancy of 



Journal of Theoretical and Applied Information Technology 
52018. Vol.96. No  March th15 

  ongoing  JATIT & LLS –© 2005   

 

 3195-1817ISSN: -E                                                        www.jatit.org                                                         8645-1992ISSN:  

 
1201 

 

multiplication.  In the same token, reducing the 
number of multiplication to only 100 
multiplications.  Hence, reducing the look to n 
rather than n2.  The second part of the algorithm 
merely present the answer by calculating the carry 
and do the carry addition. 

 
 
 
 

 
Algorithm steps Time 
For Q_digits=0 to 9 

For JQ=1 to Q_frequencey(Q_digits) 
For P_digits=0 to 9 

 temp=multiplication_table(Q_digits,P_Digits)  
(hence reducing the number of multiplications to 100) 

For JP=1 to P_frequencey(P_digits) 
 Result(JQ+JP+1) = temp+ Result(JQ+JP+1) 

  Next JP 
 Next P_digits 

Next JQ 
Next Q_digits 
 
For w=2*length[P]+1 step -1 ' from lowest order digit 

Answer(w)=RightMostDigit(Results(w)) 
Carry=LeftDigits(Results(w)) 
Results(w-1)=Results(w-1)+Carry 

Next W 

10 
Digit Frequency 
10 
 
 
Digit Frequency 
 
 
 
 
 
2n+1 
2n 
2n 
2n 

Figure 15:  The second part of MVVCMT.  
 
As can be seen in the previous the 

number of multiplication operations is reduced to 
100 multiplications.  The lookup operations of the 
multiplication operations are 100*P_ Digit 
Frequency* Q_Digit Frequency.  The frequency of 
any particular digit is worth discussing here: P and 
Q are made of digits from 0 to 9.  The frequency 
of any digit in P or Q must always be equal or less 
than n.  If the frequency of certain digit is n this 
implies that the other 9 digits have frequency equal 
to 0.  Hence, using the frequency & the index of 
each digit to look the multiplication result reduces 
the number of multiplication operation to only 
100.   The number of additions is reduced to 2n 
where n is length of P or Q.  The carry operation is 
also 2n where n is number of digits in P or Q.  
Furthermore, one can state the following regarding 
the three basic operations: 

Number of multiplication operation =100 
Number of carry operations =2*n+1 
Number of additions =2*n +10*digit frequency 
multiplier*10*digit frequency multiplicand. 
 

Again, digit frequency is n in worst case 
which means the other 9 digits will have 0 
frequencies.  Regarding the storage problem 
(memory) the suggested algorithm needs for 
storage is matrix 10X10 to hold the multiplication 
table.  Frequency matrix with 10 rows and n 

columns (worst case).  Two arrays with each one 
row and length 2n+1 to store the answer and carry 
results.  Hence, the storage needs are minimal, and 
any basic computer handles such requirements. 

Regarding accuracy, the algorithm never 
round results as was shown previously in the 
introduction section.  Where computers round 
numbers more than 15 digits long, this algorithm 
can handle numbers up to 200 digits using 
Microsoft Excel.  Furthermore, numbers being 
added or multiplied are kept to basic digits 0-9 and 
additions with carry are used on small numbers. 

  
7 RESULTS AND DISCUSSION 

The suggested algorithm MVVCMT is 
made of two parts.  The two parts explained in 
section 6.1 and section 6.2 respectively.  The 
algorithm succeeded in reducing the number of the 
simple multiplication operations to a constant 
which is 100 simple multiplication operations in 
the multiplication table.  The algorithm also 
succeeded in reducing the need of storage to 2n+1 
for the answer storage and to 2n+1 for the carry 
operations.  Although the time complexity of the 
algorithm is n2 still, the operation entailed are all 
simple lookup operations from the multiplication 
table and addition operations for the carry 
operations.  The suggested algorithm MVVCMT, 
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unlike Karatsuba's algorithm, Schönhage–Strassen 
algorithm, Toom-Cook, and schoolboy algorithm.   

The MVVCMT algorithm needs NOT to 
preprocess the numbers like Karatsuba's algorithm 
there are no: Splitting, Evaluation, Pointwise 
multiplication, Interpolation and Recompositing as 
in Toom-Cook.  Further, MVVCMT needs no two 
separate matrices like in Schönhage–Strassen 
algorithm.  Nor does MVCCMT needs a nXn 
Matrix like the traditional schoolboy 
multiplication algorithm. 
8 CONCLUSION 

Long integer multiplication has many 
applications and uses.  Long integer multiplication 
is an essential ingredient in public key 
cryptosystems.  Many public key crypto systems 
require such long integer multiplication algorithms 
that are fast, precise and require less memory.  
"Multiplying polynomials with real or complex 
coefficients is a major area where long integer 
multiplication is very useful.  Long integer 
multiplication is used extensively for finding large 
prime numbers.  Another application is the 
computation of billions of digits of π to study 
patterns.  A very practical application is the testing 
computational hardware" stated by[11]. 
This paper suggested an algorithm Mirrored Vedic 
Vertically and Crosswise Multiplication Technique 
(MVVCMT) which inspired by Vedic Vertically 
and Crosswise Multiplication Technique.  The 
algorithm is to deal with multiplying long integers 
with digits count 2 to 200 digits.  The 200 digit 
integer multiplication is recommended by [1] as 
they stated in their paper " We recommend that n 
be about 200 digits long. Longer or shorter lengths 
can be used depending on the relative importance 
of encryption speed and security in the application 
at hand. An 80-digit n provides moderate security 
against an attack using current technology; using 
200 digits provides a margin of safety against 
future developments" which was reflected in in the 
work [20].  The basic requirements for such 
algorithm are speed, accuracy and storage space 
(memory).  The paper discussed the complexities 
of Karatsuba, 3-way Toom–Cook, k-way Toom–
Cook, Mixed-level Toom–Cook, Schönhage–
Strassen algorithm, and Fürer's algorithm.  The 
paper showed the Vedic Vertically and Crosswise 
Multiplication Technique, and explained the 
technique using a hands-on example and suggested 
an algorithm.  Then the paper presented 
(MVVCMT), with an algorithm and example. 
MVVCMT has advantage over other algorithms 
since it reduces the number of digit multiplication 
to only 100 operations regardless of the number of 

the digits of P & Q.  MVVCMT also has the 
running time of n2 yet the number of 
multiplications and additions are reduced: the 
number of carry operations is reduced to 2n and 
the number of additions is 2*n +10*digit 
frequency multiplier*10*digit frequency 
multiplicand.  Furthermore, the storage needed 
(memory) is 10X10 matrix, 2*n to store the 
multiplier and multiplicand and a 2*n array to hold 
the result.  Each element in the previously 
mentioned matrices is of size one digit (0-9) hence 
storage space is minimal.  MVVCMT is inspired 
by a Technique taught to children to improve their 
mental multiplication, where children can enjoy 
multiplying long integer.  Hence, the algorithm is 
simple, easy to use, needs minimum storage and 
utilizes only 100 multiplication operations.  
MVVCMT algorithm is unlike: Karatsuba's 
algorithm, Schönhage–Strassen algorithm, Toom-
Cook algorithm and schoolboy algorithm.  While 
such algorithms needed: preprocessing, Splitting, 
evaluation, pointwise multiplication, Interpolation, 
recompositing, nXn matrices.  The MVVCMT 
algorithm reduced the number of multiplication 
operations and reduced the need for memory. 
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