
Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1193

MIRRORED VEDIC VERTICALLY AND CROSSWISE
MULTIPLICATION TECHNIQUE (MVVCMT): LONG

INTEGER MULTIPLICATION ALGORITHM

EVON M. O. ABU-TAIEH, PHD

Faculty of Information System, Jordan University-Aqaba-Jordan
E-mail: abutaieh@gmail.com

ABSTRACT

The paper presents Mirrored Vedic Vertically and Crosswise Multiplication Technique (MVVCMT) which
is an algorithm based on Vedic Vertically and Crosswise Multiplication Technique. Vedic Vertically and
Crosswise Multiplication Technique is an ancient Indian technique used to shorten the process of mental
multiplication especially for big numbers. In India, the multiplication technique is still taught to kids to
enhance their skills in mental multiplication. The proposed algorithm in this research was inspired by this
ancient yet practical, easy to understand and apply multiplication technique. Vedic Vertically and
Crosswise Multiplication Technique was rediscovered in 1965 by Swami Bharati Krishna Tirthaji in his
book Vedic Mathematics. The proposed algorithm runs with only 100 multiplications rather than n2 based
number of multiplications. In this paper, the first section explains the Vedic Vertically and Crosswise
Multiplication Technique with and example and algorithm. Then the paper presents a hands-on example to
show the simplicity of the original technique. Next, the paper presents the proposed algorithm name
"Mirrored Vedic Vertically and Crosswise Multiplication Technique" which is dubbed (MVVCMT).

Keywords: Vedic mathematics; Multiplication Technique; complex numbers; Complex multiplication.

1 INTRODUCTION

Multiplying two n-digits numbers is an open
question in computer science. Long integer
multiplication is an essential ingredient in public
key cryptography methods RSA and Diffie &
Helman, and ElGamel algorithms [1], [2], [3], and
[4] respectively. Public key cryptosystems allows
message encryption and appending unforgeable
digital signature. "The RSA public-key
cryptosystem is based on the dramatic difference
between the ease of finding large prime numbers
and the difficulty of factoring the product of two
large prime numbers"[5]. Furthermore, "In order
to achieve security with the RSA
cryptosystem, however, it is advisable to work
with integers that are several hundred bits
long, to resist possible advances in the art of
factoring" as stated by the same source. Long
Numbers that have more than 15 digits are hard to
multiply in fact computers round the numbers to
the closest digit. For example,
999,999,999,999,999,999 is rounded to
999,999,999,999,999,000 hence, when multiplied
the product of multiplication is not accurate.

Accuracy is needed especially when dealing with
numbers that pertains to ciphering applications.
Another problem with multiplying long numbers is
time; such multiplication takes a long time. A
third problem is storage space, just imaging
carrying out such a task manually. Furthermore,
many used different algorithms to overcome these
problems: Schoolbook long multiplication with
complexity O(n2) [6], Karatsuba algorithm with
complexity O(n1.585) according to [7], 3-way
Toom–Cook multiplication with complexity
O(n1.465), k-way Toom–Cook multiplication with
complexity O(nlog (2k− 1)/logk), Mixed-level Toom–
Cook with complexity O(n 2√2logn log n) according
to [8], Schönhage–Strassen algorithm with
complexity O(n*log(n)*log(log(n))) according to
[9] and [10], Fürer's algorithm with complexity
O(nlogn2O(log* n)) according to [11]. In summary
accuracy, speed and storage space are the three
problems that present themselves when dealing
with multiplying long numbers. Hence, reducing
storage space, and increasing accuracy and speed
when multiplying two large numbers is an open
question in the algorithms arena.

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1194

In this paper section 2 will discussed the
complexities of long integer multiplication
algorithms: Karatsuba, 3-way Toom–Cook, k-way
Toom–Cook, Mixed-level Toom–Cook,
Schönhage–Strassen algorithm, and Fürer's
algorithm. The paper then shows the Vedic
Vertically and Crosswise Multiplication
Technique, and will explain the technique using a
hands-on example and suggested an algorithm, in
section 3 and section 4 respectively. Then the
paper will present the suggested and inspired
algorithm named MVVCMT, with an algorithm
and example in section 5 and section 6. The
results of the research are discussed in section 7.

2 LONG INTEGERE MULTIPLICATION

ALGORITHMS

Multiplication algorithms tried to solve
the multiplication operation efficiency: Karatsuba,
3-way Toom–Cook, k-way Toom–Cook, Mixed-
level Toom–Cook, Schönhage–Strassen algorithm,
and Fürer's algorithm. In the next paragraphs
these algorithms will be discussed.

The traditional schoolboy multiplication
algorithm (classical multiplication algorithm),
shown in figure 1, has the running time of O (n2)
and needs a storage (memory) of at least nXn
matrix where n is the number of digits in the two
integers. The algorithm is carried out by
multiplying each digit of the multiplicand by each
digit of the multiplier and then adding up all the
properly shifted results.

Karatsuba algorithm with complexity
O(n1.585) was discovered in 1962 by Anatolii
Alexeevitch Karatsuba [12] and [13] the idea is to
reduce multiplication operation in a 2-digits
numbers base-m from 4 operations to 3 operations,
is basically the following:
Suppose the P & Q as follows: P1*M+P2 and
Q1*M+Q2 to calculate their multiplication:

1. Compute Result1 = P1*Q1
2. Compute Results2= P1*Q2
3. Compute Result3 =(P1+P2) *(Q1+Q2)
4. Compute Result4=Result3-Result1-Result2

5. Computer Result1 * m2+Result4 * m +
Result2

The algorithm used 1 multiplication in the

first step, and another multiplication in the second
step. In the third step the algorithm consumed
one multiplication and 2 additions operations. In
the fourth step the algorithm consumed two
subtraction operations. And in the final step two
multiplications operations and two addition
operations but they are just to place in the right
index. Hence, the reduction of three
multiplications rather than four multiplications, the
improvement factor is 4:3. Karatsuba Multiplication
Algorithm later named divide and conquer
algorithm, shown in Figure (2). Another
improvement is Toom-Cook algorithm which
based on the work of Karatsuba algorithm claimed
to a generalization of Karatsuba algorithm. Toom-
Cook was developed by Andrei Toom and Stephen
Cook. The improvement factor stated is 9:5.
Toom-Cook is composed of five steps: Splitting,
Evaluation, Pointwise multiplication, Interpolation
and Recompositing as described by [14]. Bothe
Karatsuba and Toom-Cook use Divide and
conquer technique. Hence, preprocessing
overheads, as explained in the following quote
"Algorithms such as FFT and Toom-Cook have
lower algorithm complexity. However, because of
the preprocessing overheads such as the divide and
conquer, evaluation, and interpolation, the
operating cost of these algorithms is actually much
higher, making them useful only when the integers
are extremely large. Consequently, only classical
and Karatsuba multiplication algorithms and their
combination are being used in current
cryptosystem. This is especially true after
considering circumstances such as memory
constraints and the practical finite field size. "[15]

multiply(a[1..p], b[1..q], base) // Operands containing rightmost digits at index 1
 product = [1..p+q] //Allocate space for result
 for b_i = 1 to q // for all digits in b
 carry = 0
 for a_i = 1 to p //for all digits in a
 product[a_i + b_i - 1] += carry + a[a_i] * b[b_i]
 carry = product[a_i + b_i - 1] / base
 product[a_i + b_i - 1] = product[a_i + b_i - 1] mod base
 product[b_i + p] += carry // last digit comes from final carry
 return product

Figure 1: Schoolboy multiplication [5].

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1195

"Cook showed how the actions of this

machine could be simulated by an extremely
complicated and long, but still polynomial,
Boolean formula. This Boolean formula would be
true if and only if the program which was being
run by the Turing machine produced a “yes”
answer for its input" [16] and [17].

As for the Schönhage–Strassen algorithm
with complexity O(n*log(n)*log(log(n)))
according to [9]. The two numbers multiplied are
treated as two separate matrices of one column and
2*n rows. The two matrices are multiplied with
FFT matrix of base 2*n using w8 and the modulo
integer Integer, the result is two matrices that are
multiplied by each other: element by element. The
result is one matrix that must go through Invers
FFT. Again, the result is recombined using the
carry operation.
Fürer's algorithm with complexity O
(nlogn2O(log* n)) according to [11] is faster the
Schönhage–Strassen algorithm. Furer (2007)
states that his algorithm run very much like
Schönhage–Strassen algorithm with two
exceptions: the ring of integers modulo used, and
FFT is divided "more evenly". Another fact stated
by Furer [11] is "All known methods for integer
multiplication (except the trivial school method)
are based on some version of the Chinese
Remainder Theorem". The Chinese Remainder
Theorem states "There are certain things whose
number is unknown. If we count them by threes,
we have two left over; by fives, we have three left
over; and by sevens, two are left over. How many
things are there?" as [18] by a chines
mathematician (Sun Zi) in the third century. The
Chinese remainder theorem was finally stated and
proved in its full generality by L. Euler in 1734[5].
The Chinese Remainder Theorem was stated
formally as follows: let p, q be co-prime then the

system of equations has a unique solution for x
modulo pq. The same thing goes if we have more
than two equations.

x ≡ a (mod p)
x ≡ b (mod q)

Looking back at Multiplication

algorithms who tried to solve the long integer
multiplication operation efficiency: Karatsuba
algorithm, 3-way Toom–Cook, k-way Toom–
Cook, Mixed-level Toom–Cook, Schönhage–
Strassen algorithm, and Fürer's algorithm; and
comparing their complexity with the traditional
schoolboy, figure (1) multiplication algorithm
O(n2) one can conclude the following: Fürer's
algorithm is the least complex, followed by
Schönhage–Strassen algorithm, then Toom-Cook
versions, then Karatsuba algorithm. The constant
quests in all the algorithms are: accuracy, speed
and storage. All quested elements are reflected in
the word algorithms complexity.
3 VERTICALLY AND CROSSWISE

MULTIPLICATION TECHNIQUE
(VCMT)

Vertically and Crosswise Multiplication
Technique is an ancient Indian technique
popularized by Swami Bharati Krishna Tirthaji’s
Vedic Mathematics, published posthumously in
1965. The book can be found on the website [19].
Multiplying two n-digit integer numbers using
VCMT entails the work shown in (1)

௜ା௝ܣ ൌ ∑ ∑ ௝ା஼೔శೕశభݕ௜ݔ
௡
௝ୀଵ

௡
௜ୀଵ ……….(1)

procedure karatsuba(num1, num2)
 if (num1 < 10) or (num2 < 10)
 return num1*num2
 /* calculates the size of the numbers */
 m = max(size_base10(num1), size_base10(num2))
 m2 = m/2
 /* split the digit sequences about the middle */
 high1, low1 = split_at(num1, m2)
 high2, low2 = split_at(num2, m2)
 /* 3 calls made to numbers approximately half the size */
 z0 = karatsuba(low1,low2)
 z1 = karatsuba((low1+high1),(low2+high2))
 z2 = karatsuba(high1,high2)
 return (z2*10^(2*m2))+((z1-z2-z0)*10^(m2))+(z0)
Figure 2: Karatsuba Multiplication Algorithm [5].

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1196

When multiplying two 4-digit numbers
the multiplier named P and made up of digits
P1P2P3P4 and the multiplicand Q is made up of
four digits Q1Q2Q3Q4, where the first digit in each
P and Q are the highest order digit.

Table (1): A trace table of the operations and expected results of 4-digits P and Q.

i+j Ai+j Multiplication
operations

Addition
operations

1 C2 0
2 P1 Q1+C3 1 1
3 P1Q2+P2Q1+C4 2 2
4 P1Q3+Q1P3+P2Q2+C5 3 3
5 P1Q4+Q1P4+P2Q3+Q2P3+C6 4 4
6 P2Q4+Q2P4+P3Q3+C7 3 3
7 P3Q4+Q3P4+C8 2 2
8 P4Q4 1 0
Total Number of Operations 16 15

Pi is the ith digit in the multiplier, i=1...n. and Qj is
the jth digit in the multiplicand, j=1..n. The letter C
is the carry from the carry operation. The 8th digit
of the result is product of multiplying P4Q4 which
produces 8th digit and the carry number C8. The 7th
digit is the result of P3Q4+Q3P4+C8and produces
the 7th carry. The 6th digit is the result of
P2Q4+Q2P4+P3Q3+C7 and produces the 6th carry.
The 5th digit is the result of
P1Q4+Q1P4+P2Q3+Q2P3+C6 and produces the 5th
carry. The 4th digit is the result of
P1Q3+Q1P3+P2Q2+C5 and produces the 4th carry.
The 3ed digit is the result of P1Q2+P2Q1+C4and
produces the 3ed carry. The 2ed digit is the result
of P1 Q1+C3 and produces the 2ed carry. The first
digit is the 2ed carry. The whole operation which
is reflected in table 1 including 16 multiplication
operations and 15 addition operations. The
addition operations are: 10 addition operations and
5 addition operations for the carry. Therefore,
when multiplying the two 4-digit numbers the
following results table 1 is expected:

Same thing happens when multiply two
5-digits integer numbers P and Q as shown in
digits' form P is P1P2P3P4P5 and Q is Q1Q2Q3Q4Q5.
, where the first digit in each P and Q are the
highest order digit. Pi is the ith digit in the
multiplier, i=1...n. And Qj is the jth digit in the
multiplicand, j=1..n. The letter C is the carry from
the carry operation. The 10th digit of the result is
product of multiplying P5Q5 which produces 10th
digit and the carry number C10. The 9th digit of the
result is product of multiplying P4Q5+Q4P5+C10

which produces 9th digit and the carry number C9.

The 8th digit of the result is product of multiplying
P3Q5+Q3P5+P4Q4+C9 which produces 8th digit and
the carry number C8. The 7th digit of the result is
product of multiplying P2Q5+Q2P5+P3Q4+P4Q3+C8
which produces 7th digit and the carry number C7.
The 6th digit of the result is product of multiplying
P1Q5+Q1P5+P2Q4+Q2P4+P3Q3+C7which produces
6th digit and the carry number C6. The 5th digit of
the result is product of multiplying
P1Q4+Q1P4+P2Q3+Q2P3+C6 which produces 5th
digit and the carry number C5. The 4th digit of the
result is product of multiplying
P1Q3+Q1P3+P2Q2+C5 which produces 4th digit and
the carry number C4. The 3th digit of the result is
product of multiplying P1Q2+P2Q1+C4 which
produces 3ed digit and the carry number C3. The
2ed digit of the result is product of multiplying P1
Q1+C3which produces 2ed digit and the carry
number C2. The first digit is the 2ed carry. The
results are summarized in the following tracing
table 2:

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1197

Table (2): A trace table of the operations and expected results of 5-digits P and Q.
I+J Ai+j Multiplication

operations
Addition
operations

1 C2
2 P1 Q1+C3 1 1
3 P1Q2+P2Q1+C4 2 2
4 P1Q3+Q1P3+P2Q2+C5 3 3

5 P1Q4+Q1P4+P2Q3+Q2P3+C6 4 4
6 P1Q5+Q1P5+P2Q4+Q2P4+P3Q3+C7 5 5
7 P2Q5+Q2P5+P3Q4+P4Q3+C8 4 4
8 P3Q5+Q3P5+P4Q4+C9 3 3
9 P4Q5+Q4P5+C10 2 2
10 P5Q5 1 0

Total Number of operations 25 24

In the following algorithm, Figure 3, a

proposed algorithm for the VCMT. Each step, in
the algorithm, is counted to calculate the
complexity of the algorithm which is based on the
VCMT. The running time of the algorithm is
n*n+2n hence the running time is almost n2.

Algorithm Running

time
For i=n down to 1

For j=n down to 1
Product [j + i]=(Pi*Qj)+
Product [j + i]

Next j
Next i
For i=2n down to 1

Result[i]=rightmost
digit(product[i])
Carry[i]=left (digits of product[i])
Product[i-1] = product[i-1] +
carry[i]

Next i

n
n2

2n

Figure 3: A suggested algorithm for VCMT with
number of operations.

4 VEDIC MULTIPLICATION EXAMPLE

To visually enhance the understanding of
Vertically and Crosswise Multiplication Technique
(VCMT) the following example is given shown in
the figures below. Multiplying a 4-digit number
(5432) by 4-digit multiplicand (3124). The 4-digit
multiplier named P is composed of 4 digits
P1P2P3P4, the multiplicand Q is respectively made
of 4-digits Q1Q2Q3Q4. P1 is the highest digit in P

The first step is set the window to 1
which entails taking the highest first digit from
multiplier and multiplicand in this case (5, 3) and
multiply them to produce 15. The 15 is stored in
the answer line as shown in the Figure 4 below.

Figure 4: Step #1 of VCMT vertical multiplication.

Next, set the window to 2, choose the
highest two digits and crisscross multiplication,
see Figure 5. Multiply 4 by 3 and 5 by 1 and add
the result: 5*1+4*3=17. The result is divided to
two parts: a lowest digit is put in the answer line
while the upper digit(s) are added to the answer
line. In this example 7 is put on the answer line
and the 1 is added to 15 to become 16.

Figure 5: Step #2 of VCMT crisscross operation.

The third step: the window is increased
by 1 to become 3. A crisscross operation is carried
out by multiplying P1*Q3 (5*2) and multiplying
P3*Q1 (3*3) and a vertical operation is carried out
by multiplying P2*Q2 (4*1). And add all the results
(10+9+4) which results 23. The 23 is again split
where the lowest digit is put in the answer line and
the carry=2 is added to previously mentioned (7)
in the answer line to become 9, see Figure 6.

Figure 6: Step #3 of VCMT crisscross operation.

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1198

The fourth step, the window is increased
by 1 to become 4. A crisscross operation is carried
out by: multiply P1*Q4 (5*4), P2*Q3 (4*4),
P3*Q2(3*1), and P4*Q1 (2*3) which results to
(20+8+3+6) which equals 37. The 37 is again split
to answer and carry. The lowest digit (7) is put on
the answer line and the 3 is added to previously
produced 3 to become 6, Figure 7.

Figure 7: Step #4 of VCMT crisscross operation with
window size 4.

In the fifth step and since the window
reached the limit 4, the window is decreased by 1
to 3. A crisscross operation is carried out between
P2*Q4 (4*4) and P4*Q2 (2*1). A vertical operation
is carried out between P3*Q3 (3*2). The result
(16+6+2) is 24. The lowest digit 4 is put on the
answer line and the highest digit 2 is added to the
previously produced 7 to become 9, Figure 8.

Figure 8: Step #5 of VCMT crisscross operation with
window size 3.

The sixth step, the window is reduced by 1 to
become two and a crisscross operation is carried out:
P3*Q4 (3*4) and P4*Q3 (2*2). The rest is (12+4) which
is 16, again the result is spilt to answer and carry. The
lowest digit 6 is put on the answer line and the carry (1)
is added to the previously produced 4 to become 5, see
Figure 9.

Figure 9: Step #6 of VCMT crisscross operation with
window size 2.

The seventh step, the window is reduced
by 1 to become 1. And vertical operation is
carried out P4*Q4 which is (2*4) the result is 8 and
is put on the answer line, figure 10. By reading

what is on the answer line 16969568 is the answer
of the multiplication operation.

Figure 10: Step #7 of VCMT crisscross operation with
window size 1.

The example above intended to visually
enhance the understanding of Vertically and
Crosswise Multiplication Technique (VCMT).
The example explained each step and the variation
of the window size and the uses of the window.
Figures 3 to figure 10 reflected visually the steps
to explain the process of the Vertically and
Crosswise Multiplication Technique (VCMT).

Looking back at the example above and
counting the number of multiplications and
additions we fine the following: In the first step
there was one multiplication operation. In the
second step there were two multiplication
operations and one addition operation. In the third
step there were three multiplication operations and
two addition operations. In the fourth step, there
were four multiplication operations and three
addition operations. In the fifth step there were
three multiplication operations and two addition
operations. In the sixth step there were two
multiplication operations and one addition
operation. In the seventh step there was only one
multiplication operation. One can conclude that
the number of multiplication operations is 16 and
the addition operations is 9 while there is an
addition operation for the carry which is 7 addition
operations which makes the total of the addition
operation also 16. The summery of all operations
in a 4-digit number multiplied by 4-digit number is
in table1.

By using the lookup table, suggested for
the algorithm MVVCMT explained in section 6 of
this research paper, the number of multiplication
operations will be reduced to 0. Since all
multiplication operations are of simple
multiplication operation. Hence, looking up each
result from the multiplication table provided in
figure 14 section 6.1 of this paper.

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1199

5 SUGGESTED ALGORITHM:
MIRRORED VEDIC VERTICALLY
AND CROSSWISE MULTIPLICATION
TECHNIQUE (MVVCMT)

Mirrored Vedic Vertically and Crosswise
Multiplication Technique (MVVCMT) is an
algorithm that reduces the number of
multiplications operation in long integer
multiplication to 100 simple multiplication
operations. The algorithm works as follows:

 Scan both P & Q (multiplier and
multiplicand) and produce the frequency
of each digit and the index of each digit.
The result is shown like in figure 12 and
figure 13.

 Produce the result, carries and answer.
The following section will explain the algorithm
with the two major steps in sections 6.1 and
section 6.2.
6 MVVCMT

MVVCMT assumes that both multiplier
and multiplicand are equal in number of digits and

treats both multiplier and multiplicand as an array
of digits rather than decimal number. The most
significant digit is stored in an array with index 1
and the least significant digit is stored in the array
with index n. Hence, the multiplier is a one-
dimensional array of digits with size n. The
multiplicand is one-dimensional array of digits
with size n. The product of both multiplier and
multiplicand are stored as individual digits in one-
dimensional array with the size of 2n.
MVVCMT has two parts: the first part named
Scan part, the second part is the multiplication
lookup part. The Scan part has an input of both
multiplier (P) and multiplicand (Q). The Scan part
will produce two matrices: a matrix for P and a
Matrix for Q. The matrices include each digit in
the P or Q with the frequency of each digit and
indices of each digit. The second part of
MVVCMT is the multiplication lookup part which
will carry out the multiplication process. Both
parts are explained in the next two sections.

Frequencey_index(P,Q) Time
Q_Frequencey=0
P_Frequencey=0
For i  1 to length[P] ' (or Q)

P_Frequencey (P[i])= P_Frequencey (P[i])+1
Q_Frequencey (P[i])= Q_Frequencey (Q[i])+1
P_Index(P_Frequencey (P[i]))=i
Q_Index(Q_Frequencey (Q[i]))=i

 Next i

1
1
 n
n-1
n-1
n-1
n-1

Figure 11: The first part of MVVCMT is called Frequencey_index(P,Q).

6.1. Scan Part: Frequencey_index(P,Q)

The scan part of the algorithm, named
Frequencey_index(P,Q), produces two matrices:
the first matrix is a one dimensional array that
holds the frequency of each digit in P and Q. The
suggested scan algorithm Frequencey_index(P,Q)
is shown in Figure 11.

The Frequencey_index(P,Q) produces the

matrix shown in Figure 12. The first part of the
matrix reflects the frequency of each digit in P.
The second part shows the index /location/order of
the digit in P. To further explain assume that P is
the following 70-digit number:
62642001874012850961516549482644422193020
37178623509019111660653946049. As can be
seen in the matrix (Figure 12) there are 10 zeros
and 10 ones and 8 twos in P. The second matrix is
the one that keeps the location/position/index of
the digit. The positions 38,42,49,64 in P are held

by digit value "Three" as can be Figure 12. Hence,
producing the Figure 10 and Figure 11:

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1200

P digits
P

Frequency

P digits Indices of each digit in P
0 10 0 6 7 12 17 39 41 51 53 61 68
1 10 1 8 13 20 22 36 44 54 56 57 58
2 8 2 2 5 14 29 34 35 40 48
3 4 3 38 42 49 64
4 9 4 4 11 25 27 31 32 33 66 69
5 5 5 16 21 24 50 63
6 10 6 1 3 19 23 30 47 59 60 62 67
7 3 7 10 43 45
8 4 8 9 15 28 46
9 7 9 18 26 37 52 55 65 70

Figure 12: A matrix that shows each digit in P with the frequency of each digit and the indices of digit.

Assume Q is the following 70 digits'

number:3398717423028438554530123627613875835633986495969597423490929302771479. The
second matrix is for Q, the digit, 0, has frequency of 4 and the digit 0 is located in index 11,22,58,63.

Again the digit 1 has frequency of 4 and is located in 6, 23, 30 and 67. The scan part of the

suggested algorithm has running time of n, where n is the length of P or Q.

Q
digits Q Frequency

 Q
digits Indices of each digit in Q

0 4 0 11 22 58 63
1 4 1 6 23 30 67

2 7 2 9 12 24 27 54 60 64
3 12 3 1 2 10 15 21 25 31 36 39 40 55 62

4 7 4 8 14 19 44 53 56 68
5 7 5 17 18 20 34 37 46 50

6 5 6 26 29 38 43 48
7 8 7 5 7 28 33 52 65 66 69

8 6 8 4 13 16 32 35 42
9 10 9 3 41 45 47 49 51 57 59 61 70

Figure 13: A matrix that shows each digit in P with the frequency of each digit and the indices of digit.

Create multiplication table like (figure

14), the purpose of the multiplication table is to be
used as a lookup table. The use of the lookup table
will reduce the multiplication operations from n2 in

schoolboy multiplication to a constant number 100
multiplication in the worst-case scenario. The use
of such table is shown in the figure 15 of the
suggested algorithm.

Index 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 21 24 27
4 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
8 0 8 16 24 32 40 48 56 64 72
9 0 9 18 27 36 45 54 63 72 81

Figure 14: A standard multiplication table.

6.2. The Multiplication Process Part

The second step is to go through the
multiplication process. The algorithm uses the
previously shown matrices (frequency and indices
matrices). The algorithm has 4 nested loops, see
Figure 15. The first loop goes through digits of Q
(0-9). The second loop goes through the
frequency of each digit. The third loop is like the
first loop, but works on the digits of P. The fourth
loop is like the second loop works on the
frequency of each digit in P. Line 4 of the
algorithm looks up the product of two digits in P
and Q, thus saving the redundancy of

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1201

multiplication. In the same token, reducing the
number of multiplication to only 100
multiplications. Hence, reducing the look to n
rather than n2. The second part of the algorithm
merely present the answer by calculating the carry
and do the carry addition.

Algorithm steps Time
For Q_digits=0 to 9

For JQ=1 to Q_frequencey(Q_digits)
For P_digits=0 to 9

 temp=multiplication_table(Q_digits,P_Digits)
(hence reducing the number of multiplications to 100)

For JP=1 to P_frequencey(P_digits)
 Result(JQ+JP+1) = temp+ Result(JQ+JP+1)

 Next JP
 Next P_digits

Next JQ
Next Q_digits

For w=2*length[P]+1 step -1 ' from lowest order digit

Answer(w)=RightMostDigit(Results(w))
Carry=LeftDigits(Results(w))
Results(w-1)=Results(w-1)+Carry

Next W

10
Digit Frequency
10

Digit Frequency

2n+1
2n
2n
2n

Figure 15: The second part of MVVCMT.

As can be seen in the previous the

number of multiplication operations is reduced to
100 multiplications. The lookup operations of the
multiplication operations are 100*P_ Digit
Frequency* Q_Digit Frequency. The frequency of
any particular digit is worth discussing here: P and
Q are made of digits from 0 to 9. The frequency
of any digit in P or Q must always be equal or less
than n. If the frequency of certain digit is n this
implies that the other 9 digits have frequency equal
to 0. Hence, using the frequency & the index of
each digit to look the multiplication result reduces
the number of multiplication operation to only
100. The number of additions is reduced to 2n
where n is length of P or Q. The carry operation is
also 2n where n is number of digits in P or Q.
Furthermore, one can state the following regarding
the three basic operations:

Number of multiplication operation =100
Number of carry operations =2*n+1
Number of additions =2*n +10*digit frequency
multiplier*10*digit frequency multiplicand.

Again, digit frequency is n in worst case
which means the other 9 digits will have 0
frequencies. Regarding the storage problem
(memory) the suggested algorithm needs for
storage is matrix 10X10 to hold the multiplication
table. Frequency matrix with 10 rows and n

columns (worst case). Two arrays with each one
row and length 2n+1 to store the answer and carry
results. Hence, the storage needs are minimal, and
any basic computer handles such requirements.

Regarding accuracy, the algorithm never
round results as was shown previously in the
introduction section. Where computers round
numbers more than 15 digits long, this algorithm
can handle numbers up to 200 digits using
Microsoft Excel. Furthermore, numbers being
added or multiplied are kept to basic digits 0-9 and
additions with carry are used on small numbers.

7 RESULTS AND DISCUSSION

The suggested algorithm MVVCMT is
made of two parts. The two parts explained in
section 6.1 and section 6.2 respectively. The
algorithm succeeded in reducing the number of the
simple multiplication operations to a constant
which is 100 simple multiplication operations in
the multiplication table. The algorithm also
succeeded in reducing the need of storage to 2n+1
for the answer storage and to 2n+1 for the carry
operations. Although the time complexity of the
algorithm is n2 still, the operation entailed are all
simple lookup operations from the multiplication
table and addition operations for the carry
operations. The suggested algorithm MVVCMT,

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1202

unlike Karatsuba's algorithm, Schönhage–Strassen
algorithm, Toom-Cook, and schoolboy algorithm.

The MVVCMT algorithm needs NOT to
preprocess the numbers like Karatsuba's algorithm
there are no: Splitting, Evaluation, Pointwise
multiplication, Interpolation and Recompositing as
in Toom-Cook. Further, MVVCMT needs no two
separate matrices like in Schönhage–Strassen
algorithm. Nor does MVCCMT needs a nXn
Matrix like the traditional schoolboy
multiplication algorithm.
8 CONCLUSION

Long integer multiplication has many
applications and uses. Long integer multiplication
is an essential ingredient in public key
cryptosystems. Many public key crypto systems
require such long integer multiplication algorithms
that are fast, precise and require less memory.
"Multiplying polynomials with real or complex
coefficients is a major area where long integer
multiplication is very useful. Long integer
multiplication is used extensively for finding large
prime numbers. Another application is the
computation of billions of digits of π to study
patterns. A very practical application is the testing
computational hardware" stated by[11].
This paper suggested an algorithm Mirrored Vedic
Vertically and Crosswise Multiplication Technique
(MVVCMT) which inspired by Vedic Vertically
and Crosswise Multiplication Technique. The
algorithm is to deal with multiplying long integers
with digits count 2 to 200 digits. The 200 digit
integer multiplication is recommended by [1] as
they stated in their paper " We recommend that n
be about 200 digits long. Longer or shorter lengths
can be used depending on the relative importance
of encryption speed and security in the application
at hand. An 80-digit n provides moderate security
against an attack using current technology; using
200 digits provides a margin of safety against
future developments" which was reflected in in the
work [20]. The basic requirements for such
algorithm are speed, accuracy and storage space
(memory). The paper discussed the complexities
of Karatsuba, 3-way Toom–Cook, k-way Toom–
Cook, Mixed-level Toom–Cook, Schönhage–
Strassen algorithm, and Fürer's algorithm. The
paper showed the Vedic Vertically and Crosswise
Multiplication Technique, and explained the
technique using a hands-on example and suggested
an algorithm. Then the paper presented
(MVVCMT), with an algorithm and example.
MVVCMT has advantage over other algorithms
since it reduces the number of digit multiplication
to only 100 operations regardless of the number of

the digits of P & Q. MVVCMT also has the
running time of n2 yet the number of
multiplications and additions are reduced: the
number of carry operations is reduced to 2n and
the number of additions is 2*n +10*digit
frequency multiplier*10*digit frequency
multiplicand. Furthermore, the storage needed
(memory) is 10X10 matrix, 2*n to store the
multiplier and multiplicand and a 2*n array to hold
the result. Each element in the previously
mentioned matrices is of size one digit (0-9) hence
storage space is minimal. MVVCMT is inspired
by a Technique taught to children to improve their
mental multiplication, where children can enjoy
multiplying long integer. Hence, the algorithm is
simple, easy to use, needs minimum storage and
utilizes only 100 multiplication operations.
MVVCMT algorithm is unlike: Karatsuba's
algorithm, Schönhage–Strassen algorithm, Toom-
Cook algorithm and schoolboy algorithm. While
such algorithms needed: preprocessing, Splitting,
evaluation, pointwise multiplication, Interpolation,
recompositing, nXn matrices. The MVVCMT
algorithm reduced the number of multiplication
operations and reduced the need for memory.

REFERENCES

[1] Rivest, Ronald L., Shami,r Adi, and Adleman,
Leonard M. 1978. A method for obtaining
digital signatures and public-key
cryptosystems. Communications of the ACM,
21(2):120–126, 1978. See also U.S. Patent
4,405,829. Retrieved 20 Jun 2017 from:
https://people.csail.mit.edu/rivest/Rsapaper.pdf

[2] Diffie, W. and Hellman, M. E., 1976. New
directions in cryptography, Institute of
Electrical and Electronics Engineers, vol. 22,
no. 6, pp. 644–654, 1976. Retrieved 20 Jun
2017 From: https://www-
ee.stanford.edu/~hellman/publications/24.pdf

[3] ElGamal, T. 1985. A public key cryptosystem
and a signature scheme based on discrete
logarithm, in Advances in Cryptology, vol.
196 of Lecture Notes in Computer Science, pp.
10–18, 1985. Retrieved 20 Jun 2017 From:
http://people.csail.mit.edu/alinush/6.857-
spring-2015/papers/elgamal.pdf

[4] Pollard, J.M. Theorems on factorization and
primality testing. Proc. Camb. Phil. Soc. 76
(1974), 521-528. Retrieved 20 Jun 2017 from:
http://maths-
people.anu.edu.au/~brent/pd/rpb120.pdf

[5] Cormen, Thomas H.; Leiserson, Charles E.;
Rivest, Ronald L.; Stein, Clifford. 2001.
Introduction to Algorithms (2nd ed.). MIT

Journal of Theoretical and Applied Information Technology
52018. Vol.96. No March th15

 ongoing JATIT & LLS –© 2005

 3195-1817ISSN: -E www.jatit.org 8645-1992ISSN:

1203

Press and McGraw-Hill. pp. 55–56. ISBN 0-
262-03293-7. Retrieved 20 Jun 2017 From:
http://is.ptithcm.edu.vn/~tdhuy/Programming/I
ntroduction.to.Algorithms.pdf

[6] Aboud S. J. ,Abu-Taieh E. M, A. 2006. New
Deterministic RSA-Factoring Algorithm,
Jordan Journal of Applied Science, Volume 8,
No. 1, pp. 54-66, Amman-Jordan, 2006.

[7] Karatsuba A. 1995. The Complexity of
Computations. Proceedings of the Steklov
Institute of Mathematics. 211: 169–183.
Translation from Trudy Mat. Inst. Steklova,
211, 186–202. Accessed 21/1/2017 from
http://www.ccas.ru/personal/karatsuba/divcen.p
df

 [8] Knuth, D. 1997. The Art of Computer
Programming, Volume 2. Third Edition,
Addison-Wesley. Section 4.3.3.A: Digital
methods, pg.294. Retrieved 20 Jun 2017 from:
http://broiler.astrometry.net/~kilian/The_Art_o
f_Computer_Programming%20-
%20Vol%201.pdf

[9] Schönhage A., Strassen V., 1971. Schnelle
Multiplikation großer Zahlen", Computing 7
(1971), pp. 281–292.

[10] Aho, Alfred V., Hopcroft, John E., and
Ullman, Jeffrey D. 1974. The design and
analysis of computer algorithms, Addison-
Wesley, Reading, Massachusetts, 1974.
Retrieved 20 Jun 2017, from:
https://doc.lagout.org/science/0_Computer%20
Science/2_Algorithms/The%20Design%20and
%20Analysis%20of%20Computer%20Algorith
ms%20%5BAho%2C%20Hopcroft%20%26%
20Ullman%201974-01-11%5D.pdf

[11] Fürer, M. 2007. Faster Integer
Multiplication. Proceedings of the 39th Annual
ACM Symposium on Theory of Computing,
San Diego, California, USA, June 11–13, 2007,
pp. 55–67. Retrieved 20 Jun 2017 from:
https://web.archive.org/web/20130425232048/
http://www.cse.psu.edu/~furer/Papers/mult.pdf

[12] Karatsuba A. and Ofman Y. 1962.
Multiplication of Many-Digital Numbers by
Automatic Computers. Proceedings of the
USSR Academy of Sciences. 145: 293–294.
Translation in the academic journal Physics-
Doklady, 7 (1963), pp. 595–596

[13] Warren Jr., Henry S. (2013). Hacker's
Delight (2 ed.). Addison Wesley - Pearson
Education, Inc. ISBN 978-0-321-84268-8.
Retrieved 20 Jun 2017 From:
https://doc.lagout.org/security/Hackers%20Del
ight.pdf

[14] Bodrato M. 2007. Towards Optimal Toom–
Cook Multiplication for Univariate and
Multivariate Polynomials in Characteristic 2
and 0. In WAIFI'07 proceedings, volume 4547
of LNCS, pages 116–133. June 21–22, 2007.
Retrieved 20 Jun 2017 From:
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.76.790&rep=rep1&type=pdf

[15] Jahani, S., Samsudin, A., Subramanian,K.G.
2014. Efficient Big Integer Multiplication and
Squaring Algorithms for Cryptographic
Applications, Journal of Applied Mathematics,
vol. 2014, Article ID 107109, 9 pages, 2014.
doi:10.1155/2014/107109

[16] Weiss, M. 2014. Data Structures and
algorithms analysis in C++, fourth edition,
Pearson, USA. Retrieved 20 Jun 2017 from:
http://iips.icci.edu.iq/images/exam/DataStructu
resAndAlgorithmAnalysisInCpp_2014.pdf

 [17] Cook, S. 1971. The Complexity of
Theorem Proving Procedures, Proceedings of
the Third Annual ACM Symposium on Theory
of Computing (1971), 151–158. Retrieved 20
Jun 2017 From:
https://www.cs.toronto.edu/~sacook/homepage
/1971.pdf

[18] Dence, Joseph B., Dence ,Thomas P. 1999.
Elements of the Theory of Numbers .
Retrieved 20 Jun 2017 From:
https://books.google.jo/books?id=YiYHw7evhj
kC&pg=PA156&redir_esc=y#v=onepage&q&f
=false

[19] Swami Bharati Krishna Tirthaji. 1965. Vedic
Mathematics. Retrieved 20 Jun 2017 from:
http://www.indiadivine.org/content/files/file/40
-vedic-mathematics-by-shankaracharya-
bharati-krishna-tirtha-pdf/

 [20] Abu-Taieh, E. M. 1994. A genetic factoring
algorithm for RSA's N= P* Q and performance
comparison to factorization algorithm of
Fermat, Pollard's rho, and Eratosthenes' Sieve.
Master thesis, Pacific Lutheran University,
Tacoma, WA, USA.

