
Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1422

 CONVERTING OF AN XML SCHEMA TO AN OWL
ONTOLOGY USING A CANONICAL DATA MODEL

1ADIL JOUNAIDI, 2MOHAMED BAHAJ
1Phd, Department of Mathematics and Computer Sciences, University Hassan I Settat, Morocco

2Prof., Department of Mathematics and Computer Sciences, University Hassan I Settat, Morocco

E-mail : 1jounaidiadil@gmail.com, 2mohamedbahaj@gmail.com

ABSTRACT

The eXtensible Markup Language (XML) has known since its beginnings an undeniable success. Defined
since its origins as a meta-language facilitating the development of specialized tags Languages, nowadays,
many documents benefit from the XML frame. But even if this language is strongly used in the web as a
way of data exchange between applications, it still lacks the capacity of defining the web resources and the
system that uses them, and also the capacity of expressing the knowledge provided by XML documents. It’s
these lacks that proposes the Web Ontology Language (OWL) proposes to fill. In fact, OWL is a language
for ontologies representation in the context of Semantic Web (SW). It’s in this context that we’re obliged to
come up with a solution that allows migration to the SW in order to follow the WEB evolution.

Among the suggested solutions, our approach is based on the Canonical Data Model (CDM) through the
implementation of a set of rules allowing the transformation of an XML schema’s definition (XSD) to an
OWL ontology. This mapping will transform not only the nodes of an XML file, but also the relationships
between these nodes in order to maintain the same structure.

Keywords: eXtensible Markup Language (XML), Complex type, Web Ontology Language (OWL), XML
Schema Definition (XSD), Document Type Definition (DTD), Canonical Data Model (CDM),
Ontology, Resource Description Framework (RDF), eXtensible Style Language
Transformations (XSLT).

1. INTRODUCTION

During the last years, XML has been known as a
relevant recommendation for storing and
exchanging data on the web, in fact, from the
moment when two applications agree on a unique
data format XML, they can exchange data between
each other’s.

To ensure these transactions XML document
often follow A predefined format expressed either
in DTD (Document Type Definition) or in XSD, in
other words, these schemas contain the structure
knowledge, the data type and the relationships
between the elements in the XML document.

Before we talk about the problematic that
motivates us to propose this approach, we will start
by talking about the advantage of the XML
language:

Understandable: it uses a readable human
language, and it’s easy to understand.

Interoperability: it uses a compatible language
with other programing languages such as Java,
C++, …

Flexibility: it allows to all users describing their
contents easily, by creating their own tags, however
this freedom can cause a misunderstanding between
the author of the document and the consumer, and
consequently an XML element can be interpreted
by many vocabulary, it’s hard for the machine to
make the difference between the elements, and to
know their significance.

On the other hands, XML presents some
inconveniences, in fact, XML mainly focuses on
grammar, there is no way to describe the semantic
of a document [1]. Consequently, the problem
occurs when the software agents want to understand
and reason about these XML data.

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1423

In order to remedy to the insufficiency of the
classic web and the WEB 2.0, researchers proposed
a new vision of the web named the Semantic Web.
It is within this context our approach take part.

At the present time, many of the data circulating
on the WEB are in XML format, and the extraction
of data from a database can be in XML format,
therefore the core of WEB 1.0 and WEB 2.0 is
XML. We can conclude that to migrate from WEB
1.0 or WEB 2.0 to WEB 3.0 (Semantic Web), we
must be able to transform the XML file into an
OWL ontology.

In fact, to make a sense of the data circulating on
the web, we propose a rule-based mapping
approach to build an OWL ontology from XML
schema, indeed, the Semantic Web is based on RDF
[2] data model, which is a standard model for data
interchange on the Web.

OWL has been recommended by the W3C as the
language of choice for knowledge representation in
the so called Semantic Web. In OWL, objects of the
domain are represented as interrelated resources and
identified by Uniform Resources Identifiers (URI),
while attribute values are represented by literals (a
string, possibly characterized by a language or a
data type) [2].

The purpose of this article is to automate the
process of transforming any XML schema file to an
OWL ontology, to do this, we proceed in three
steps, the first is to determine all the relationships
between the complexType of XML Schema, the
The second step is to classify all complexType in a
CDM to facilitate their transformation and the last
one corresponds to the transformation of the CDM
to an OWL ontology.

This paper is organized as follows: Section 2
presents the related works where we locate our
approach in comparison with the others, Section 3
presents the classification rules of all types of
relationships between the complex Type in a CDM.
The implementation of rules of an XML schema’s
transformation to OWL ontology is presented in
section 4, while transforming the different links
between all nodes of an XML Schema, Section 5
describes the prototype algorithm suggested in
sections 3 and 4, Section 6 focuses on the
implementation of the obtained result and the
experimental study is presented on the section 7,

finally, Section 8 contains a conclusion and the
future work.

2. RELATED WORKS

Different works have suggested a mapping
of Relational Databases (RDB) to RDF or Ontology
Web Language (OWL).

In [2] the paper proposes an approach to
map the relation schema information into the
ontology as concepts, thereafter achieve the
attributes, and map them to the properties in the
ontology.

The authors of [3] propose methodologies
to store XML data into new ORDB data structures,
such as user-defined type, row type and collection
type. This methodology has preserved the
conceptual relationship structure in the XML data,
including aggregation, composition and association
for XML data retrieval.

Another paper [4] presents an approach of
RDF graph generation from relational databases.
This approach consists of structures creation of
ontology including classes, properties, hierarchy,
cardinality and instances creation.

Sedighi SM and Javidan R in [5] propose
an approach which enables semantic Web
applications to access data stored in relational
databases using a corresponding ontology. Domain
ontology can be used to formulate relational
database queries to simplify the data access of the
underlying data sources. This method involves two
main phases: the construction of a local ontology
from a relational database and a semantic query in a
relational database using relational database query
language (RDQL). In the first phase, we construct
Web ontology language ontology from data in a
relational database. In the second phase, this work
proposes a technique to automatically extract the
semantics of relational databases and transform this
information into a representation that can be
processed and understood by a machine.

Nora Yahia, Sahar A. Mokhtar and
AbdelWahab Ahmed proposed in [6] an approach
that allows the automatic generation of the OWL
from an XML data source, this solution is very
heavy since it should pass from multiple steps to
perform the OWL generation, the first step is to
transform an XML document to an XML Schema,
the second one is to analyze the XML Schema

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1424

based on the XML Schema Object Model (XSOM),
the third one is to use the Java Universal
Network/Graph (JUNG) framework on the output
of the XSOM in order to generate the XML Shema
Graph (XSG) that define the schema in the form of
graph, and finally, the fourth step is to use the Jena
API while we rely on the XSG in order to generate
the OWL entity. Despite the heaviness of this
transformation this approach doesn’t define the
transformation of different links type between the
nodes, but rather the nodes of an XSD.

Another interesting approach on
transforming XML Schema to OWL ontology is
[7], this approach allows to transform an XML to
an OWL instance in three steps, first, generate an
XSD from an XML, secondly convert the generated
XSD to an OWL model based on the eXtensible
Stylesheet Language Transformations (XSLT),
thirdly and finally, generate an OWL instance
based on the generated OWL model.

Even if this approach is very interesting in
terms of migration of a structure to another, it still
doesn’t allow defining every type of relationships
between the nodes of an XSD file that are, the
inheritance, the composition… in the contrary to
our approach.

Other approaches more interesting than [4]
are [9, 10, 11] that proposes some solutions to the
transformation of an XML Schema to an Ontology,
[9, 10] suggest some solutions of transformation
based on the XSLT language that it’s only a
language of style transformation, on the other hand
these papers aren’t interested in the conversion of
types of relationships between XSD nodes, as for
the paper [11], it proposes a solution that transform
a Document Type Definition (DTD), which is a
very poor language in terms of description of
relation types between XML file nodes.

In our paper, we propose a set of
management rules allowing not only transforming
an XSD file to an OWL file but also a modelling of
different links between the nodes of an XSD file to
a new modelling of these nodes in OWL form
which can be used eventually in a Semantic Web
application.

3. CDM’S DEFINITION

A canonical data model (CDM) defines the
relevant entities for a specific domain, their
attributes, their associations and their semantics. As

a reference model, the CDM defines the
associations, and the types of attributes, it is a
method to extend and exchange the schema. The
CDM is a data reference model that is designed to
allow the sharing of information and data to reuse.

Our CDM is defined as a set of complex types

CDM: = {CT | CT: = [ctn, cls, EAcdm, RLcdm,
REFcdm]}, where each ComplexType C has a
name ctn, has a classification cls, a set of elements
and attributes EAcdm (Elements|Attributs cdm), a
set of relationship RLcdm (ReLations cdm), and
finally keys and keyrefs.

3.1 Classification (cls)

We applied the approach in [12] to classify
the ComplexTypes, this approach offers five
classes:

3.1.1 Shareable and Existence-Independent

Aggregation complex type (SEIA)

If a Complex Type can be shareable with

others complex Types and its existence is
independent of all of them we can classify this
complex type as a (SEIA): “cls=SEIA”.

3.1.2 Non-Shareable and Existence-

dependent Aggregation complex type
(NSEDA)

If a Complex Type that cannot be

shareable with other Complex Types, and its
existence depends to that of the others, this
complex type is classified as “cls=NSEDA”.

3.1.3 Association 1: N complex type (A1N)

In this case, if a complex Type contains a
reference which can be implemented inside another
Complex Type, as its element with maxOccurs
“unbounded” , therefore it is classified as
“cls=A1N”.

3.1.4 Association M: M complex type (AMM)

In the XML Schema for many-to-many
association relationship, each types in the
association has maxOccurs = « unbounded ». Each
element will be linked to another element by using
the attribute name that refers to another element ID.

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1425

In this case we classify the complex type as
(AMM).

3.1.5 Inheritance complex type (INHER)

If a complex type extends an existing
complexType element, it classified as (INHER) in
the CDM.

3.2 Elements|Attributes cdm (EAcdm)

Each complexType element has a set of
attributes and EAcdm:= {a | a: = [Ele, Type,
MinO/MaxO, Use]}, where each Element|Attribute
belongs to a class that we presented at the
beginning of this paragraph Cls = {SEIA, NSEDA,
A1N, AMN, INHER}, Ele is the name of the
element or attribute, type is the type of the element,
MinO/MaxO is the minimum/maximum of
occurrence, Use is to say that this element or
attribute is mandatory or not.

3.3 Cdm’s relationships (RLcdm)

Each complexType has a set of
relationships with other complexTypes, each
relationship rl ? RLcdm between complexTypes C1
and C2 is defined in C1, and represents an
association, aggregation, composition, or
inheritance. RLcdm = {rl | rl: = [RlType, DirC]},
where RlType is the type of relationship and DirC,
is the name of the complexType C2.

3.4 Keys and Keyrefs (REFcdm)

Data dependencies are represented by keys
and KeyRefs as for each keyref tag there is a
reference to a key of a complex Type. REFcdm=
{keys:= [k, kr]}.

4. RULES OF THE MAPPING PROCESS

In this part, we will propose the rules to
map XML schema based on different types of
relationships (Composition, aggregation …) into
OWL ontology.

In order to justify all types of relationships

between the nodes of an XSD file, we will rely on
our approach [10] where we already defined these
kinds of relationships.

To deal with any type of relationship, we

will use the XML schema of the purchase order
application requisitions (see Fig. 1). This diagram
shows not only the connection between the

complex type, but also the type of relationship and
its semantic constraints.

Figure 1 : Purchase order XML document diagram

4.1 Complex Type transformation

Each complex type with element/Attribute
should be mapped to a class (see Figure 2):

Figure 2 : XML Schema mapping

<owl:Class rdf:ID=ʺCustomerʺ/>
<owl:Class rdf:ID= ʺCustomer Associationʺ/>
<owl:Class rdf:ID= ʺPurchase Orderʺ/>
<owl:Class rdf:ID= ʺPersonʺ/>
<owl:Class rdf:ID= ʺCompanyʺ/>
<owl:Class rdf:ID= ʺOrderlineitemʺ/>
<owl:Class rdf:ID= ʺProductsʺ/>
<owl:Class rdf:ID= ʺStockʺ/>
<owl:Class rdf:ID= ʺStoreʺ/>

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1426

4.2 Transformation of inheritance
relationship

In the XML schema there is an extension
<xsd:extension base=Ctype> to show that the
element name, that is mentioned before it, is an
inheritance with Ctype, then the elements can be
mapped to sub-class of the others.

This relationship is classified as an
(INHER) in CDM.

Figure 3 : Inheritance relationship example

<owl:Class rdf:ID=ʺPersonʺ>
 <rdfs:subClassOf rdf:resource=ʺCustomerʺ/>
</owl:class>

4.3 Transformation of composition

relationship

[13] Composition in UML is special kinds
of associations between classes.

1) An object must not be part of more than
one composition.

2) An object of a class that is part of a
composition must not exist without the class it
belongs to.

Restriction (1) can be enforced with a

FunctionalProperty or InverseFunctionalProperty
axiom. If the composition association is navigable
bi-directionally the user is free to choose.
Otherwise the following rules apply: If the
association is navigable from ‘part’ to ‘whole’ a
FunctionalProperty is required. A connection from
an individual of the 'part' class to more than one
individual of the 'whole' class would make the
ontology inconsistent. An
InverseFunctionalProperty is required if the
association is navigable from 'whole' to 'part'.

Restriction (2) impossible the individual

might be part of a composition that is simply not
listed in the ontology.

Therefore, for two types namely

Composant_Type and Composer_Type having a
composition relationship, implement one
InverseFunctionalProperty, the domain is the class
corresponding to the complexType
Composant_Type, range is the class referred
complexType Composer_Type.

According to the rule 4, we can get one

object properties:

<xsd:complexType name='Composer_Type'>
 <xsd:sequence>
 <xsd:element> ...
 <xsd:complexType name =
'Composant_Type'>
 <xsd:sequence>
 ...
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The transformation to the OWL ontology is as
follows:
<owl:InverseFunctionalProperty
rdf:ID="contain">
 <rdf:domain rdf:resource="#Composer_Type"
/>
 <rdf:range rdf:resource="# Composant_Type"
/>
</ owl:InverseFunctionalProperty>

Figure 4 : Composition relationship example

< Owl:Class ID="PurchaseOrder" />
<Owl:Class ID="ORDERLINEITEM_Type" />

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1427

<Owl:InverseFunctionalProperty ID="contain">
 < rdf:domain rdf:resource="#PurchaseOrder" />
 <rdf:range
rdf:resource="#ORDERLINEITEM_Type" />
</InverseFunctionalProperty>

This relationship, we can classify it as a

Non-Shareable and Existance-dependent
Aggregation complex type (NSEDA).

4.4 Transformation of one to many

relationship

For two types namely One_Type and
Many_Type if One_Type and Many_Type having
1:N association relationship, implement two inverse
object properties. For one object property, the
domain is the class corresponding to the
complexType One_Type; range is the class referred
complexType Many_Type.

According to the rule 4, we can get two
object properties One_Type.InMany_Type and
Many_Type.hasOne_Type :

<xsd:complexType name=ʺONE_Typeʺ>…
</xsd:complexType>
<xsd:complexType name=ʺMANY_Typeʺ>
 <xsd:attribute name=ʺONE_Keyʺ …
 maxOccurs=ʺunboundedʺ/>…
</xsd:complexType>

<key name=ʺONE_Keyʺ>
 <selector xpath=ʺONE_Typeʺ>…</key>
<keyref name=ʺONE_Key_Refʺ
refer=ʺONE_Keyʺ>
 <selector xpath=ʺMANY_Typeʺ>…
</keyref>

The transformation to the OWL ontology
is as follows:

<owl:ObjectProperty
rdf:ID="ONE_Type.inMANY_Type">
 <rdfs:domain
rdf:resource="ONE_Type"/> <rdfs:range
rdf:resource="MANY_Type"/>
</owl:ObjectProperty>
<owl:ObjectProperty
rdf:ID="MANY_Type.hasONE_Type">
 <rdfs:domain
rdf:resource="MANY_Type"/> <rdfs:range
rdf:resource="ONE_Type"/>
<owl:inverserOf
rdf:resource="ONE_Type.inMANY_Type">
</owl:ObjectProperty>

Figure 5 : One to Many association example

<owl:ObjectProperty
rdf:ID="Products.inOrderlineitem">
<rdfs:domain rdf:resource="Products"/>
<rdfs:range rdf:resource="Orderlineitem"/>
</owl:ObjectProperty>
<owl:ObjectProperty
rdf:ID="Orderlineitem.hasProducts">
<rdfs:domain rdf:resource="Orderlineitem"/>
<rdfs:range rdf:resource="Products"/>
<owl:inverserOf
rdf:resource="Products.inOrderlineitem"/>
</owl:ObjectProperty>

This relationship will be classified as a 1 :

N (A1N) Association.

4.5 Transformation of many to many

relationship

For two types, namely T1 and T2 having

association relationship with T3, implement two
object properties, the domain and range of the two
object properties is inversed.

According to the rule 5, we can get two
object properties T1.T3 and T2.T3T1:

<xsd:complexType name=”T1”>
 ...
<xsd:attribute name=“T1_ID” type=“xsd:ID"
 use="required"/>
</xsd:complexType>
<xsd:complexType name=”T2”>...
<xsd:element name=“T3”
 maxOccurs=”unbounded”>
 <xsd:complexType>
 <xsd:sequence>...
 <xsd:attribute name=“T1_ID”
 type=“xsd:IDREF"/>

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1428

 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
<xsd:attribute name=“T2_ID” type=“xsd:ID"
use="required"/>
</xsd:complexType>
<key name="T1_ID_Key">
 <selector xpath="T1"/>
<field xpath="@T1_ID"/>
</key>
<keyref name="T1_ID_T3_Ref"
refer="T1_ID_Key">
 <selector path="T2/T3"/>
 <field xpath="T2_ID"/>
</keyref>

The transformation to the OWL ontology

is as follows:

<owl:ObjectProperty rdf:ID="T1.T3">

<rdfs:domain rdf:resource="T1"/>
 <rdfs:range rdf:resource="T2"/>
 </owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="T2.T3T1">

<rdfs:domain rdf:resource="T2"/>
 <rdfs:range rdf:resource="T1"/>
 <owl:inverserOf rdf:resource="T1.T3"/>
</owl:ObjectProperty>

Figure 6 : Many to Many association example

<owl:ObjectProperty rdf:ID="Products.Stock">
 <rdfs:domain rdf:resource="Products"/>
 <rdfs:range rdf:resource="Store"/>
</owl:ObjectProperty>

<owl:ObjectProperty
rdf:ID="Store.StockProducts">
 <rdfs:domain rdf:resource="Store"/>
 <rdfs:range rdf:resource="Products"/>
 <owl:inverserOf rdf:resource="Products.Stock"/>
</owl:ObjectProperty>

This case can be classified as an M: M

(AMM) Association.

5. CDM’S GENERATION FROM AN XML
SCHEMA

After we defined all types of classification,
we took the example from [8] to generate the CDM
from the XML schema described in Table 1.

The extract of the proposed algorithm

defines The CDM’s transformation and all the rules
cited before in order to perform the translation of a
CDM to the OWL file is described in figure 9.

6. IMPLEMENTATION

During the implementation of our
algorithm, we used JAVA language and the DOM
API that allows parsing all the nodes of the XSD
file and translate it to OWL ontology.

Below an extract of the source code

implemented:

Figure 7 : An extract source code

7. EXPERIMENTAL STUDY

To demonstrate the validity of our
approach, a prototype has been developed by
making the algorithm above. The algorithm was
implemented using Java and JENA API in order to
generate the OWL ontology in a first step.

In a second step, we have examined the

differences between the XML schema source and
the OWL ontology generated by the prototype,
through the query results provided by SPARQL in
the JENA API and the ones provided by XQUERY
in the stylus studios. The queries have returned the
same results. The XML source database is
transformed to the OWL target ontology without
data loss.

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1429

Figure 8 : An extract of the generated OWL file

For the validation of our work, we made
several queries on the XML document and the
generated ontology: all the answers are identical.
We are presenting, some queries that are applied on
the XML schema indicated in [8] and their
equivalent in the SPARQL generated by the
prototype. The table 2 represents the description
and the result of each query.

8. CONCLUSION

Our paper proposed an automatic solution
to convert an XML schema to an OWL ontology
based on a Canonical Data Model CDM. This
method will help storing web documents scattered
in an OWL ontology so that the users will be able
to manage them more easily. Our method is to
create a CDM from an XML schema and we used it
as an input to a java program, and this last will
generate an OWL ontology. The java program was
coded in order to respect all the content of the XML
schema and the different relationships. In the end,
we applied some queries on the XML schema and
the ontology generated by the program, the tests
proved what we mentioned earlier, and we also
noticed a resemblance between the data in the OWL
ontology and the CDM, and of course the XML
schema.

In the future, we intend to propose a
solution allowing the optimization of SPARQL
queries, especially in the case of a large ontology.

REFRENCES:

[1] Yutao Ren, Lihong Jiang, Fenglin Bu,

Hongming Cai “Rules and Implementation for
Generating Ontology from Relational Database”
in Second International Conference on Cloud
and Green Computing, 2012.

[2] Graham Klyne, Jeremy J. Carroll, Resource
Description Framework (RDF): Concepts and
Abstract Syntax (W3C Recommendation 10
February 2004) [EB/OL].
http://www.w3.org/TR/rdf-concepts/, (last
modified on 10 February 2004).

[3] Eric Pardede, J. Wenny Rahayu, David Taniar,
“Object-relational complex structures for XML
storage” in Information and Software
Technology 48 :6, 2006, pages.370-384.

[4] H.Ling, S.Zhou, “Mapping Relational Databases
into OWL Ontology”, In International Journal
of Engineering and Technology, Volume 5,
Issue 6, 2013, Pages 4735-4740.

[5] Sedighi SM, Javidan R. “Semantic query in a
relational database using a local ontology
construction”. S Afr J Sci. 2012;108(11/12),
Art. #1107, 10 pages.
http://dx.doi.org/10.4102/sajs. v108i11/12.1107.

 [6] Nora Yahia, Sahar A. Mokhtar, AbdelWahab
Ahmed, “Automatic Generation of OWL
Ontology from XML Data Source”,
International Journal of Computer Science
Issues, Volume 9, Issue 2, March 2012.

[7] Hannes Bohring, Sören Auer, “Mapping XML
to OWL Ontologies”, Leipziger Informatik-
Tage, volume 72 of LNI, 2005, pages 147-156,
GI.

[8] Adil JOUNAIDI, Doha MALKI, Mohamed
BAHAJ, Ilias CHERTI. “Conversion of an
XML schema to object relational databases
using a canonical data model”, Vol 93
November 2016 Issue of Journal of Theoretical
and Applied Information Technology.

[9] Chrisa Tsinaraki, Stavros Christodoulakis:
XS2OWL: A Formal Model and a System for
Enabling XML Schema Applications to
Interoperate with OWL-DL Domain
Knowledge and SW Tools, DELOS,pages. 137-
146 (2007).

[10] Chrisa Tsinaraki and Stavros
Christodoulakis, “Interoperability of XML

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1430

Schema Applications with OWL Domain
Knowledge and Semantic Web Tools”, pages.
850–869, OTM Conference, Springer-Verlag,
2007.

[11] Bernd Amann, Catriel Beeri, Irini Fundulaki,
Michel Scholl: Ontology-Based Integration of
XML Web Resources. 1st Int. Semantic Web
Conf, pages. 117-131, Springer, 2002.

 [12] Eric Pardede, J.Wenny Rahayu, David
Taniar “On Using Collection for Aggregation
and Association Relationships in XML Object-
Relational Storage”, 2004 ACM Symposium on
Applied Computing, 2004.

[13] ZEDLITZ, Jesper; JÖRKE, Jan;
LUTTENBERGER, Norbert. From UML to
OWL 2. In: Knowledge Technology. Springer
Berlin Heidelberg, 2012. S. 154-163.

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1431

Table 1 : CDM generated from the XML Schema to be converted to OWL Ontology

cn cls eacdm rlcdm k/kr

ele typ mino/maxo use rltype dirc key keyr

customer

seia customerid xsd:id required k

customername xsd:string

orderid xsd:integer unbounded Asso purchase_or
der

 kr

customer_ass
ociation

 identification xsd:string

description xsd:string

purchase_ord
er

a1n orderid xsd:id required k

shipping xsd:string

orderlineitem

nseda line xsd:integer comp purchase_or
der

k

productid xsd:integer comp purchase_or
der

quantity xsd:integer comp purchase_or
der

products

 productid xsd:id required k

description xsd:string

price xsd:decimal

store
 location xsd:id required k

capacity xsd:integer

stock
amn productid xsd:integer asso store kr

quantity xsd:integer asso store

person
inher personid xsd:id required inherby customer k

discount xsd:integer inherby customer

company
inher type xsd:string inherby customer

taxes xsd:integer inherby customer

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1432

BuildOWL

For (Cdm c:cdm)
 Evalaute (c.cls)
 Case ‘INHER’:
 ComplexTypeTransformation
 InheritanceTransformation
 Case ‘NSEDA’:
 ComplexTypeTransformation
 CompositionTransformation
 Case ‘A1N’:
 ComplexTypeTransformation
 OneToMayTransformation
 Case ‘AMM’:
 Implement the third rule ComplexTypeTransformation
 Implement the fifth rule ManyToManyTransformation
 End Evaluate
End For

ComplexTypeTransformation
Iterate on the list of nodes from XSD
For each (XSD e)
 If (e is a complexType)
 Create an OWL Class
 End if
 If (e is a simpleType)
 Create an OWL Property
 End if
 If (e is an attribute)
 Create an OWL Property
 End if
 If (e is a type)
 Create an OWL Datatype
 End if
End for each

InheritanceTransformation
Iterate on list of nodes from XSD
For each (XSD e)
 If (e is a complexType)
 If (e has an extension node)
 Create e an OWL subClassOf
 End if
 End if
End for each

CompositionTransformation
Iterate on the list of nodes from XSD
For each (XSD e)
 If (e has an element that contents an XSD complexType
 Create an OWL InverseFunctionalProperty
 End if
End for each

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1433

OneToMayTransformation
Iterate on the list of nodes from XSD
For each (XSD e1)
 If ‘e1’ has an element key ‘k’ and ‘k’ has a
 keyRef that refers another element ‘e2’
 Implement two inverse object properties.
 For one object property, the domain is the class
 Corresponding to e1; range is the class referred e2.
 End if
End for each

ManyToManyTransformation
Iterate on the list of nodes from XSD
For each (XSD e1)
 If ‘e1’ has an element key ‘k’ and ‘k’ has a
 keyRef that refers another sub element ‘e2/e3’
 Implement two object properties,
 The domain and range of the two
 object properties are inversed
 End if
End for each

Figure 9 : Algorithm to convert the XML Schema to an OWL ontology

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1434

TABLE 2 : EXPERIMENTAL STUDY

Description SPARQL Xquery Result

Find the name of all
Customers of the
customer_association
Identified by “ASS1”
Ordered by name of
customer

PREFIX foaf:
<http://xmlnx.com/foaf/0.1/>
PREFIX foo:
<http://example.com/resources/>

SELECT ?customerId
?customerName
WHERE {
 ?customerId foaf:name
?customerName .
 ?customerId foo:identification
 "ASS1" .
}
ORDER BY ASC(?customerName)

 for $ca in
doc('customer.xml')/NewDataSet/Cu
stomerassociation ,
 $id in $ca/identification ,
 $c in $ca/Customer
 where
$ca/identification='ASS1'
 order by $c/customerName
 return
 <customer>
 {$c}
 </customer>

12
Dupont
10
Scott
11
Smith

The first customer name
of the
customer_association
identified by “ASS1”

PREFIX foaf:
<http://xmlnx.com/foaf/0.1/>
PREFIX foo:
<http://example.com/resources/>

SELECT *
WHERE {
 ?customerId foaf:name
?customerName .
 ?customerId foo:identification
 "ASS1" .
}
LIMIT 1

 for $ca in
doc('customer.xml')/NewDataSet/Cu
stomerassociation,
 $id in $ca/identification ,
 $c in $ca/Customer[1]
 where
$ca/identification='ASS1'
 return
 <customer>
 {$c}
 </customer>

10
Scott
123456789

Compute the number of all
Customer of
customer_association

PREFIX foo:
<http://example.com/resources/>

SELECT ?customerIdentification
COUNT(*) AS ?count
WHERE {
 ?customerId foo:identification
 ?customerIdentification .
}
GROUP BY ?customerIdentification

for $x in
doc('customer.xml')/NewDataSet/Cu
stomerassociation
return
{$x/identification }
 {number=count($x/Customer)}

ASS1 3
ASS2 2
ASS3 1

Find the orders made by
the customer named
« Dupont »

PREFIX foaf:
<http://xmlnx.com/foaf/0.1/>
PREFIX foo:
<http://example.com/resources/>
SELECT
?customerName ?productName
WHERE {
 ?purchaseOrder
foo:shippingName ?customerName .
 ?purchaseOrder
foo:item ?productName .
 ?customerName

 for $po in
doc('customer.xml')/NewDataSet/
PurchaseOrder,
 $name in
 $po/Address/Name,
 $i in $po/Items/Item
 where $name='Dupont'
 return
 {$name}
 {$i/ProductName}

Dupont
Computer
Keyboard
Dupont
Wireless
Mouse

Journal of Theoretical and Applied Information Technology
15th March 2018. Vol.96. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1435

foaf:name "Dupont" .
}

Find the name of all
Customers that starts with
« S »
Identified by “ASS1”
Ordered by name of
customer

PREFIX foaf:
<http://xmlnx.com/foaf/0.1/>
PREFIX foo:
<http://example.com/resources/>

SELECT ?customerId
?customerName
WHERE {
 ?customerId foaf:name
?customerName .
 ?customerId foo:identification
 "ASS1" .
 FILTER regex(?customerName,
"^S")
}
ORDER BY ASC(?customerName)

 for $ca in
doc('customer.xml')/NewDataSet/Cu
stomerassociation ,
 $id in $ca/identification ,
 $c in $ca/Customer
 where
$ca/identification='ASS1'
 satisfies starts-
with($c/customerName, 'S')
 order by $c/customerName
 return
 <customer>
 {$c}
 </customer>

10
Scott
11
Smith

