
Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1138

 EXTRACTING UML MODELS AND OCL INTEGRITY CONSTRAINTS
FROM OBJECT RELATIONAL DATABASE

1TOUFIK FOUAD, 2BAHAJ MOHAMED
1 PhD, LITEN Laboratory, University Hassan I, FSTS Settat, Morocco

2 Professor, LITEN Laboratory, University Hassan I, FSTS Settat, Morocco

E-mail: 1toufik.fouad@gmail.com, 2mohamedbahaj@gmail.com

ABSTRACT

Database reverse engineering is the process of extracting and transforming database metadata to a
rich set of models. These models must be able to describe data structure at different levels of
abstraction, starting from physical to conceptual schema. The obtained schema may be used to
ease, among others, database structure update, evolution and maintenance. In the past few years,
the object oriented construct was merged into relational database. Nevertheless, a few methods of
object relational database (ORDB) reverse engineering was presented. In this sense, the main goal
of this article is to present an approach of database reverse engineering which cover the
transformation of new added object construct. At the end of transformation we obtain a conceptual
schema (CS) expressed as UML class diagram. The returned CS is extended with a set of OCL
(Object Constraint Language) clauses which represent at a higher level of abstraction, the database
integrity constraints. We provide a program that implements our approach for ORACLE 11g
database management system.

Keywords: UML, OCL, ORDB, SQL, Reverse Engineering.

1. INTRODUCTION

Reverse engineering a piece of software
consists in reconstructing its functional and
technical documentation, starting mainly from the
source text of the programs. Recovering these
specifications is generally intended to convert,
restructure, maintain or extend old applications [1].
Database reverse engineering is the process of
generating a description of database content in high
level terms that are natural for users. The process
produce a schema expressed in a conceptual
modelling notation.
The conceptual schema represent an abstract
definition of database tables and their relationships
by using a human oriented natural language,
independent of any implementation, respecting
clarity and simplicity criteria. This CS can facilitate
the comprehension of the data structure, business
rules implemented as integrity constraints and
triggers. The CS also may help for integration,
evolution, data migration and system reuse.
Vendors like Oracle, Microsoft and IBM have
moved object-oriented database features (classes,
encapsulation, inheritance …) into their relational
DBMSs to win the challenge of representing

complex data. Therefore a lot of companies use the
hybrid solution for database development which
adopt the new object constructs. To facilitate the
comprehension of the database and the enforced
rules and their evolution, we believe the database
tables and the rules must be described using an
homogeneous representation and at a higher
abstraction level. In this sense, this paper present a
new reverse engineering approach capable of
extracting a conceptual schema (CS) from a
running database where the obtained CS is
expressed as an UML class diagram. The class
diagram present database tables as classes and table
relationships as associations. Business rules
implemented in the database as integrity constraints
and triggers are transformed to OCL expressions.
Each OCL expression is a transformation at the
conceptual level of either one of the database
constraints (CHECK constraints, constraints
enforced by triggers).
Furthermore our method has been implemented in a
prototype tool for ORACLE 11g database
management system (DBMS) one of relational
DBMS that support new object oriented features.

This paper is organized as follows: section 2
presents the state of the art; section 3 presents an

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1139

overview of our approach; section 4-5 describe in
detail our approach; section 6 present
implementation and validation; section 7 conclude
this paper and discuss future work.

2. STATE OF THE ART

Database reverse engineering is a well-studied
subject. Much of the research conducted in this
field has focused on the relational model. Several
approach have been proposed to extract a
conceptual schema from relational database. [2]
adopts Object Modeling Technique (OMT) notation
for modeling data out of running database, [3]
propose a new methodology for extracting an
Extended Entiy-Relationship (EER) from
Relational Database (RDB), [4] for extracting a
conceptual schema from RDB, the author present a
method based on analysis of data manipulation
statements in the code of an application using a
relational database schema, [5] maps a relational
schema into an object-oriented schema by taking
into consideration various types of RDB design
optimizations. [6] presents a method for translating
a relational database to an Object Relationship
Model(ORM) ,[7] show how the notion of a
relational database view can be correctly expressed
as a derived class in UML/OCL,[8] presents a
method to define OCL as query language for UML
data models, [9] present an approach for
automatically extracting structural business rules
from legacy databases and it application on a
specific legacy system, [10] presents a database
reverse engineering approach that support
extracting an extended entity-relationship diagram
from a legacy database based on tables, the work in
[11] addresses database reverse engineering by
extracting the extended entity-relationship schema
from relational schema, [12] presents a model-
based reverse engineering approach able to extract
a Conceptual Schema (CS) expressed as an UML
class diagram extended with a set of Object
Constraint Language (OCL) from RDB. For
forward engineering of Object Relational Database

(ORDB), [13] presents a method that defines new
UML model elements to design the object relational
database, [14] describes a method of UML models
transformation, the method contains two phases; the
first one present the transformation of class diagram
(static aspect) to database schema, the second
transform state chart diagram (dynamic aspect) to
database triggers. For reverse engineering [15]
describe an approach to recover schemas from
ORDB. The main objective of this approach is to
recover conceptual schemas, represented as UML
diagrams, based on the analysis of the data
dictionary. In comparison, our approach have some
similarity in model extraction phase with [15].

3. APPROACH OVERVIEW

Our reverse engineering method has two main

phases. The main goal of the first one is model
extraction; in this step we focus on the structural
part of Object Relational Schema, we retrieve all
needed information from the database dictionary,
such as User Defined Type UDT (NAME, SUPER
TYPE, Final or not, INSTANTIABLE …), types
tables, table dependencies, we also identify
collections (NESTED TABLE, VARRAY) and
simple attributes basic types (CHAR, DATE,
VARCHAR2 …), in the next section we present in
detail the transformation steps from ORACLE
object constructs to UML models.

The second phase is constraints extraction, at the
beginning we focus on declarative integrity
constraints like (PRIMARY KEY, UNIQUE,
CHECK …). These constraints are transformed to
OCL expressions to enforce the generated UML
Class Diagram obtained in the first phase. Triggers
play very important role to define complex business
rules and to enforce integrity constraints. Therefore
it’s necessary to present all possible triggers as
OCL expressions. Since triggers merge between
SQL queries and procedural code PL/SQL, we
transform (SQL, PL/SQL) code to OCL
expressions. The above figure describes our
approach with two main phases mentioned before:

Figure 1 : Approach Overview

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1140

4. MODEL EXTRACTION

The model extraction phase transforms User
Definition Type (UDT) to an equivalent set of class
and associations in a UML class diagram. This
phase contains a list of steps and rules
transformation.

Each UDT generates a class in the CS; the
stereotypes abstract and final are added from
notInstantiable and final respectively if they are
mentioned in the creation type statement.

Primitive data type transformation: Integer, Float
and Date types are mapped to Integer, Real and
Date UML types respectively. The Number
(precision, Scale) is transformed into an Integer
data type when precision is zero and into a Real
type otherwise. Characters data type (CHAR (n),
VARCHAR2 (n), etc.) are transformed to String
type, in the case of CHAR data type, the length
attribute should be equal n, on the other hand in the
case of VARCHAR data type, the length attribute
cannot exceed n. to verify these conditions, we use
OCL constraints.

UDT Attribute transformation: UDT in ORDB can
have one of four different representations (simple
UDT, REF to simple UDT, collection of UDT,
collection of REF to UDT)

The example below represent the create object
statement for a simple UDT (person_type) with
nested UDT attribute (address_type):

Create type address_type as object(…)
Create type person_type as object(address

address_type …)

The transformation results are shown in the class
diagram below:

The transformation generate a new composition
relationship, a strong association between the two
types (address_type, person_type) with (0..1)
multiplicity in address_type entity side.

By using references to different types in the
database, another representation of UDT is possible
in ORDB. References permit to create complex
object and retrieving data easily without using
JOINs between tables. References also allow
creating weak relationship between two types

The example shown before present a strong
relationship between person_type and address_type,
by declaring the attribute address as reference to
address_type, the transformation generate an
aggregation relationship with the same properties
mentioned before.

Create type address_type as object(…)
Create type person_type as object(address REF

 address_type …)

The transformation results are shown in the class
diagram below:

Oracle supports varray and nested table collection
data types. Varray is an ordered set of data
elements, all elements of a given varray are the
same data type or a subtype of the declared one,
varray is a limited collection, the maximum number
of items is specified in the creation statement.
Nested table is an unordered set of data elements,
all of the same datatype, nested table is an unlimited
collection.

Attributes defined as collection (nested table,
varray) of primitive types (integer, float, varchar
…), are transformed to list attribute in the CS. Its
minimum length is zero and its size equals the
length of the varray, in the case of nested table the
size is unlimited. The example above show the
transformation of an UDT which contains tow
collection attribute of primitive type.

 Case 1

create type address_type as varray(3) of
 varchar2
create type person_type as object(address_list
 address_type,…)

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1141

 Case 2

create type address_type as table of varchar2
create type person_type as object(address_list
 address_type,…)

The attribute address_list defined in person_type is
a collection of varchar2, the mapping process of the
target attribute generate a String collection inside
person_type class in the CS, limited in the case of
varray(3) (case 1) where 3 is the maximum length
of the collection and unlimited in the case of nested
table (case 2).

When attribute is a collection of UDT, the
transformation gives a rise to a new composition,
the example above show the strong relationship
between the two types:

 Case 1

create type address_type as object(city
 varchar,..)
create type address_type_varray as varray(n) of
 address_type
create type person_type as object(address_list
 address_type_varray,…)

 Case 2

create type address_type as object(city
 varchar,..)
create type address_type_nested as table of
 address_type
create type person_type as object(address_list
 address_type_nested,…)

The attribute address_list defined in person_type is
a collection of address_type, the transformation
generate a composition relationship between
person_type and address_type with (0..*)
multiplicity in address_type side and address_list as
role name in case of nested table, in the case of
varray we change the multiplicity to (0..n) where n
is the maximum length of the collection.

When attribute is a collection of REF to UDT, we
keep all properties and result of the previous
transformation and we change the association
between the two types to weak relationship and
change composition association to aggregation.

Create type address_ref as object(addr_r REF
 address_type)
Create address_varray as varray(n) of address_ref;
Create address_nestes as table of of address_ref;
create type person_type as object(address_list1

address_varray, address_list2 REF
address_nested,…)

 Inheritance Transformation

Oracle offers the mechanism of inheritance which
connects subtypes in a hierarchy to their supertypes.
Subtypes automatically inherit attributes and
methods of their parent type. Any attributes or
methods updated in a supertype are updated in
subtypes as well. The example above show the
inheritance between two types, person_type and
employee_type.

create type person_type as object(…) not final;
create type employee_type under person_type

Employee_type is a subtype of person_type, the
transformation generate a generalization
relationship between these classes in the CS.

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1142

 Methods Transformation

Database tables contains only data, objects can
include the ability to perform operations on that
data. Objects methods are functions or procedures
declared in an object definition type to implement
behavior wanted from objects of that type to
perform. There are three general kinds of methods
that can be declared in a type definition (member
methods, static methods and constructor methods).

After retrieving information about method’s
(parameters and returned result), the transformation
process map all kind of UDT’s methods and add the
same signature to the targeted class in the CS.

5. CONSTRAINT EXTRACTION

5.1. Declarative Integrity Constraints
Transformation

Constraints are the rules enforced on data

columns on table. If there is any violation between
the constraint and the data action, the action (insert,
update, delete) is aborted by the constraint.
Constraints are used to ensure the accuracy and
consistency of data stored in a typed table in object
relational database.

To enrich the conceptual schema and make it
complete and comprehensible, all these constraints
must be included in the CS, in order to transform
and present these constraints we use OCL (Object
Constraint Language). The Object Constraint
Language [15] is a textual specification language,
designed especially for the use in the context of
diagrammatic specification languages such as
UML. OCL was always used to add
well-formedness rules on both the model and the
metamodel levels within UML. OCL is strongly
connected to UML diagrams, as it is used as textual
constraints within diagrams. OCL uses the elements
defined in the UML diagrams, such as classes,
methods and attributes. The language is based on

types. Each OCL expression evaluates to a type
either predefined by the language or defined by the
model on which the expression is built.

To present all possible transformations of
declarative integrity constraints applied to a specific
object relational table we focus on the example
below.

create type person_type as object(person_id int,
passport_id int, name varchar(20), age int,
city varchar(20));

create table person_table of person_type(person_id
primary key,passport_id unique, name not
null, city default ‘casa’, check (age<100) ;

The DEFAULT constraint is used to insert a default
value into a column. The default value will be
added to all new records, if no other value is
specified. After transforming the targeted UDT to a
class, now we have the possibility to use object
concepts like constructors. Constructor is a special
non-static member function of a class that is used to
initialize objects of its class type. Constructors are
invoked when initialization takes place, and are
selected according to the rules of initialization.
Constructors can assign values to any accessible
fields or properties of an object at creation time.
The example below present an initialization
constructor which can assign default values to more
than one attribute.

Public person_type (String city) {
 this.city=city;
}
Person_type person=new person(“Casablanca”);

The NOT NULL constraint enforces a field to
always contain a value. This means that the insert or
update of records not authorized without adding a
value to this field. To present this constraint as an
OCL condition in the CS we create an invariant that
use the method ocllsUndefined() which return true
if the value equal invalid or null. The invariant
context is the class transformed from an UDT in
model extraction phase.
The OCL instructions are:

Context person_type inv:

Not self.name.ocllsUndefined()

The UNIQUE and PRIMARY KEY constraints both
provide a guarantee for uniqueness for a column or
a set of columns. A PRIMARY KEY constraint
automatically has a UNIQUE constraint defined on

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1143

it. A primary key column cannot contain NULL
values.
The transformation of UNIQUE constraint is:

Context person_type inv:
 Person_type.allInstance()->
 forAll(person1,person2 | person1 <> person2
 Implies person1.passport_id <>
 person2.passport_id)

allInstances() is a feature associated with any type
that returns the set of all instances of the given type.
forAll() operation in OCL allows specifying a
Boolean expression, which must hold for all objects
in a collection.
As PRIMARY KEY constraint has a UNIQUE
constraint we take the same transformation result of
UNIQUE constraint and we add ocllsUndefined()
method for each object in the returned collection
retrieved by allInstances() to prevent the storage of
null values

Context person_type inv:
 Person_type.allInstance()->
 forAll(person1,person2 | person1 <> person2
 Implies person1.person_id <> person2.person_id
 And not person1.person_id.ocllsUndefined())

CHECK constraints allow specifying a condition in
each row in a table. Every CHECK constraint
generate an OCL invariant with the same
expression presented in the constraint body, the
example below show the transformation of CHECK
constraint:

Context class_name inv:
 Self.attribute_name.<condition SQL-TO-OCL Mappnig>

Context person_type inv:

Self.age<100

In classical relational database RDB we use foreign
keys to manage relationships between tables. To
extract data we use multiple JOINs in queries to get
the adequate result. In Object Relational Database
ORDB, new concepts have been implemented to
manage relationships like nested objects and
references to row objects by using REFs and OIDs.
(OID) Object Identifier uniquely identifies row
objects in object tables. A REF is a logical pointer
or reference to a row object that we can construct
from an object identifier. We can use the REF to
obtain, examine or update the object and also we
can change a REF so that it points to a different
object of the same object type hierarchy or assign it

a null value. REFs are Oracle database built-in
types. REFs and collection of REFs model
associations among object, particularly many-to-
one relationships, thus reducing the need for foreign
keys. REFs provide an easy mechanism for
navigation between objects. The example below
presents a relationship between two objects
command_type and client_type using REF:

create type client_type as object(client_id int,name
 varchar(20),…);
create type command_type as object(command_id

int,command_date, client_ref REF
client_type);

We can constrain a column type, collection
element, or object type attribute to reference a
specified object table by using the SQL constraint
subclause SCOPE IS when declaring REF. Scoped
REF types require less storage space and allow
more efficient access than unscoped REF types.
A REF can be scoped to an object table or of any
subtype of the declared type. If a REF is scoped to
an object table of a subtype, the REF column is
effectively constrained to hold only references to
instances of the subtype and its subtypes if existed
in the table (mechanism of inheritance in ORDB).

create table client_table of client_type;
create table command_table(client_ref REF
 client_type SCOPE IS client_table);

The OCL instructions are:

Context command_type inv:
 Self.allInstances()->forAll(Command_type cmd |
 Client_type.allInstances()->collect(clt.getOID)
 ->exist(cmd.getClientRef))

As shown in the result above, the main context is
the class Command_Type. We take each element in
allInstances collection using forAll() function, to
verify each instance of command_type. The next
step is checking the existence of command client
REF in the client dataset.

5.2. Sql To Ocl Transformation

This section presents the transformation steps

from SQL SELECT statements to OCL expressions.
In particular we describe the mapping for SQL
projections, selections, methods, order by, group by
and having clauses. This transformation is needed
to extract constraints implemented as part of trigger

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1144

definition.in the following we present examples of
SQL statements transformation.

SELECT {DISTINCT | UNIQUE} colName,
methodName()
FROM tableName
WHERE ({coleName, methodName} condition)
ORDER BY colName

The OCL instruction are:

Context className inv
 self.allInstances() ->
 select({colName | mehodName} condition)->
 collect(colName,methodName) ->
 asSet()->asSequence()
OR
 asOrderedSet()

The transformation starts by the FROM clause.
tableName is the targeted class which transformed
in Model Extraction phase to className. The
context of the OCL expression is className which
specifies the entity in the UML model for which the
expression is defined. allInstances() method return
the set of all instances of the given class.
The WHERE clause is transformed to an OCL select
iterator which return a collection of all elements
that validate the condition. The colNames in the
WHERE clause are mapped to the corresponding
attribute and association names. SQL functions are
translated into their OCL counterparts (if existing
otherwise new OCL operations must be previously
defined [16]).
The SELECT clause is transformed to OCL collect
iterator that creates a collection of objects according
to the structure defined in the tuple definition. Each
attribute present in the OCL expression corresponds
to a column in the SELECT statement.
To retrieve different and unique data from a given
table we use DISTINCT. This clause is mapped by
adding asSet() method after transforming the
SELECT clause.
ORDER BY is used to sort the result-set by one or
more columns. To order data in OCL we use
asSequence() which return an ordered collection.
This collection may contain duplicates elements.
If DISTINCT and ORDER BY clauses are both
present we can use the method asOrederedSet() to
get an ordered collection with unique elements.

Inheritance is the mechanism that connects subtypes
in a hierarchy to their supertypes. Subtypes
automatically inherit the attributes and methods of
their parent type. A subtype can be derived from a

supertype either directly or indirectly through
intervening levels of other subtypes. A supertype
can have multiple sibling subtypes, but a subtype
can have at most one direct parent supertype (single
inheritance).
With object types in a type hierarchy, we can model
an entity such as a person_type, and also define
different specializing subtypes of person_type like
professor_type and student_type. The example
below show the creation statements of types
mentioned before:

create type person_type as object(person_id,
 person_name varchar(20),…) not final;
Create type professor_type under person_type(…);
Create type student_type under person_type(…);
Create table person_table of person_type;

Person_type is declared NOT FINAL to create
subtypes. Object relational table person_table is
created to hold data of the three types.
The example below show the use of the function
value() which help to select professor_type rows
from person_table. Value() takes as its argument a
correlation variable (table alias) associated with a
row of an object table and returns object instances
stored in the object table. The type of the object
instances (include subtypes) is the same type as the
object table.

Select value(p) from person_table p

Where value(p) IS OF (professor_type);

The transformation of the inheritance query
generate the OCL invariant as described below:

Context person_type inv:

Self.allInstances()->select(p : Person_type
 | p.ocllsTypeOf(professor_type))

The OCL function ocllsTypeOf() check the type of
each instance and return the desired object based on
the parameter passed to function. In this example
we select all instances of type professor_type.

5.3. Triggers To OCL

As declarative integrity constraints, triggers can
constrain data input and enforce any type of
integrity rule. A trigger always applies to new data
only. For example, a trigger can prevent a DML
(Data Manipulation Language) statement from
inserting a NULL value into a database column, but
the column might contain NULL values that were

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1145

inserted into the column before the trigger was
defined or while the trigger was disabled.
Constraints are easier to write and less error-prone
than triggers that enforce the same rules. However,
triggers can enforce complex business or referential
integrity rules that we cannot define with
constraints.

Triggers are similar to stored procedures. A trigger
stored in the database can include SQL and PL/SQL
statements to run as a unit and can be invoked
repeatedly. Unlike a stored procedure, we can
enable and disable a trigger, but we cannot
explicitly invoke it. It is composed by triggering
event or statement, trigger restriction and finally
trigger action. The triggering event is a SQL
statement, database event, or user event that causes
a trigger to fire. The trigger restriction is a Boolean
expression that must be true for the trigger to fire.
The trigger action is a PL/SQL block that contains
SQL and procedural code to be run when the
triggering event occurs and the restriction condition
is true.
To identify triggers enforcing a complex business
rules defined by the user, we use the proposition
defined in [12]: all triggers embedding in their
action section PL/SQL statement raising an
exception are classified as constraint-enforcing-
triggers .
The transformation of such triggers begins with the
context of the OCL invariant, which is the UML
class corresponding to the table where the trigger is
defined (the targeted class is already retrieved from
first phase), the body of the OCL invariant

is composed by the trigger restriction condition, if
defined, and the OCL instructions generated from
the PL/SQL block defined in the trigger body. The
(figure 2) present the generic and basic
transformation for a simple trigger to OCL.
The trigger is fired when the condition in WHEN
clause is true. To transform a conditional trigger,
and execute the OCL instructions after verifying the
condition, we use precondition. In OCL Pre- and
postconditions are constraints that define a contract
that an implementation of the operation has to
fulfill. A precondition must hold when an operation
is called, a postcondition must be true when the
operation returns. As mentioned before, triggers are
similar to stored procedures in some characteristic,
for that, triggers play the role of operation in object
oriented world. The context of the OCL invariant is
the operation (trigger_name) of the class already
generated from table (table_name) on which the
trigger is created. FOR EACH ROW clause is
transformed to allInstance() OCL operation, the
condition which handle the exception is
transformed to forAll() function, this function show
the error message for each instance if the Boolean
expression is true.

Figure 2 : Basic Trigger Transformation

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1146

In figure 3, we show an example of the
transformation of transaction_check constraint. The
trigger is executed when the new inserted value
amount is greater or equal 100. This trigger raises
an exception when the amount withdrawn of the
new transaction is greater than the account balance.
The account balance is stored in Account table.
This variable is retrieved using Account_balance
variable by means of a SELECT INTO clause. The
transformation of the declared variable in
transaction_check trigger, gives a rise to an object
of an Account type, defined by let expression.
The desired Account object is retrieved by
searching the account_id using the select() function.

6. IMPLEMENTATION AND VALIDATION

To demonstrate the validity of our approach, a tool
have been developed (Figure 4) to present the
reverse engineering method proposed in this paper.
To develop our prototype, we use java as a
programming language, and to create UML class
diagram we use graphviz. Graphviz is open source
graph visualization software initiated by AT&T
Labs Research for drawing graphs specified in DOT
(DOT is a plain text graph description language).
This tool takes a set of parameters as input to
establish connection with oracle instance,
specifically the user schema. The input parameters
are: ip address of the server hosting the Oracle
database, port, schema, username and password.
After establishing connection, a set of SQL queries
are executed on the data dictionary to get
information about types, attributes, methods,
associations and other components.

Select() returns a collection with all elements of
class that validate the OCL condition. In PL/SQL
SELECT INTO statement can only return one single
row, as select() function return collection of object,
we use first() function to get the first element. The
account balance is compared according to a
Boolean expression that map the negation of the
PL/SQL if-statement condition. Finally we use
OCL post-condition (balancePost) to verify the new
value of account balance. The new value should
equal the previous value of account balance minus
amount. We use @pre modifier to get the value of
account balance in OCL precondition.

The obtained conceptual schema CS is expressed as
UML class diagram as show in figure 5. The
example below present a set of SQL create
statements of types with attributes and methods.
This case study presents a simple scenario to
demonstrate the transformation process from an
object relational database ORDB to UML class
diagram.

Figure 3 : Trigger Transformation Example

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1147

CREATE TYPE address AS OBJECT(
int address_id, city varchar(20), country
varchar(20));

CREATE TYPE job AS OBJECT (int job_id, title
 varchar(20), double minSal, double
 maxSal);

CREATE TYPE job_ref AS OBJECT(job_r REF
JOB);

CREATE TYPE job_list AS VARRAY(3) of job_ref;
CREATE TYPE transaction AS OBJECT
 (transaction_id int,

transaction_date date, transaction_amount
double,
MEMBER FUNCTION get_last_trans_id
RETURN VARCHAR2)

CREATE TYPE transaction_ref AS
 OBJECT(transaction_r REF transaction);

CREATE TYPE transaction_list AS TABLE OF
 transaction_ref;

CREATE TYPE account AS OBJECT(account_id

int, account_balance double,
transaction_lst transaction_list);

CREATE TYPE account_list AS VARRAY(5) of
account;

CREATE TYPE person AS OBJECT(person_id int,
 first_name varchar(20),

 last_name varchar(20), birth_date date,
addr address,
MEMBER FUNCTION get_age RETURN
 INT,
MEMBER PROCEDURE
show_information)
NOT INSTANTIABLE NOT FINAL;

CREATE TYPE client UNDER person(category
 varchar(20), inscription_date date,

Account_lst account_list,
MEMBER PROCEDURE get_client_info);

CREATE TYPE employee UNDER person(salary
 double, hire_date date, job_lst job_list,

MEMBER FUNCTION
calcul_salary(worked_houres int,
price_per_hour double)
RETURN double);

Figure 4 : ORDB Reverse Engineering Program

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1148

7. CONCLUSION

In this paper, we have proposed a new reverse
engineering method to obtain a Conceptual Schema
(CS) extended with a set of OCL integrity
constraint out of running Object Relational
Database (ORDB), by executing a set of queries on
database dictionary. This CS facilitate the
comprehension of the integrity constraints and can
help for database migration, maintenance and
evolution for systems using ORDB.
Our method is based on two main phases, model
extraction and constraints extraction; each phase
contains a set of transformation rules and steps.
As further work, we would like to extend our
reverse engineering method to address object
methods (member function and member procedure)
and add triggers transformation to our prototype
tool.

REFRENCES:

[1] Hainaut, J-L, Database Reverse Engineering,

Models, Techniques and Strategies, in Preproc.
of the 10th Conf. on Entity-Relationship
Approach, San Mate0 (CA), 1991

[2] Premerlani, W.J., Blaha, M.R: An approach for
reverse engineering of relational databases. In
Working Conference on Reverse Engineering.
(May 1993) pages 151-160.

[3] Roger H. L. Chiang, Terence M.Barron, Veda
C. Storey: Reverse Engineering of relational
databases: extraction of an EER model from
relational database. In Data & Knowledge
Engineering (March 1994) pages 107-142

[4] Anderson, M: Extracting an entity relationship
schema from a relational database through

Figure 5 : UML Class Diagram Result

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1149

reverse engineering. In Entity Relationship
approach (1994) pages 403-419

[5] Ramanathan, S. Hodges, J: Extraction of
object-oriented structures from existing
relational databases. In ACM Sigmod Record
(March 1997) pages 59-64

[6] David W. Embely: Relational database reverse
engineering: A model-centric,
transformational, interactive approach
formalized in model theory. In DEXA’97
Database and Expert Systems Applications
(1997) pages 372-377

[7] H. Balsters, Modelling Database Views with
Derived Classes in the UML/OCL-framework
in P. Stevens, ≪UML≫2003 - The Unified
Modeling Language. Modeling Languages and
Applications, Volume 2863 of Lecture Notes in
Computer Science; Springer, 2003, pp 295-
309.

[8] D. H. Akehurst, B. Bordbar, On Querying
UML Data Models with OCL in M. gogolla,
≪UML≫ 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and
Tools, Volume 2185 of Lecture Notes in
Computer Science ; Springer, 2001, pp 91-103.

[9] Chaparro. O, Aponte. J, Ortega. F, Towards the
Automatic Extraction of Structural Business
Rules from Legacy Databases in IEEE
Working conference on reverse engineering,
2012, pp 479 – 488.

[10] D. Yeh, Y. Li, and W. Chu, “Extracting entity-
relationship diagram from a table-based legacy
database,” Journal of Systems and Software,
vol. 81, no. 5, pp. 764 – 771, 2008.

[11] Alhajj, R., “Extracting the extended entity-
relationship model from a legacy relational
database”, Information Systems, Elsevier
Science Ltd., 2002, pp.597-618.

[12] Cosentino and S. Martinez: Extracting UML-
OCL Integrity Constraints and Derived Types
From Relational Databases. In the 13th
International Workshop on OCL, Model
Constraints and Query Languages, Miami,
United States, (2013) pages 43-52.

[13] Rajani Chennamaneni, Emanuel S. Grant :
Comparison and Evaluation of Methodologies
for Transforming UML Models to Object-
Relational Databases, University of North
Dakota. 2002

[14] Wai Yin Mok, David P. Paper: On
Transformations from UML Models to Object-
Relational Databases. In the 34th Annual
Hawaii International Conference on system
science. (HICSS-34)-Volume 3 (Jan 2001)
p.3046

[15] Cabot J., Gomez C., Planas E. and Rodriguez
M. E., Reverse Engineering of OO Constructs
in Object-Relational Database Schemas, JISBD
2008, (2008)

[16] Object Constraint Language Specification v 2.4
OCL.2.4
URL:http://www.omg.org/spec/OCL/2.4/PDF/

