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ABSTRACT 
 

Voice activity detection (VAD) is implemented in the preprocessing stage of various speech applications to 
identify speech and non-speech periods. Recently, deep neural networks (DNNs) have been utilized for 
VAD given their superior performance over other methods. When used to identify speech and non-speech 
periods, DNNs depend on the input of different features to discriminate speech from noise. Hence, different 
features have been used as input for DNN-based VAD. However, the contribution and effectiveness of such 
features have not been thoroughly evaluated. In this paper, we address these aspects by comparing five 
features, namely, log power spectra, filter bank, mel-frequency cepstral coefficients, relative spectral 
perceptual linear predictive analysis, and amplitude modulation spectrogram, which are widely used on 
speech processing, to evaluate their performance in a DNN-based VAD. Experiments on the TIMIT speech 
corpus show that the amplitude modulation spectrogram is the feature with the best performance given its 
high accuracy even when processing speech data with low signal-to-noise ratio. The next feature showing 
high performance is log power spectra, which can be considered as a raw feature because it does not require 
as many calculations or processing as the other features. This suggests that raw features may be suitable 
inputs for DNN-based VAD. Moreover, limiting the number and processing of features for DNNs may 
foster system performance, real-time application, and portability of VAD by reducing the computational 
cost, required memory and storage.  

Keywords: DNN, Speech Period, Speech Features, Voice Activity Detection, Amplitude Modulation 
Spectrogram, Log Power Spectra 

 
1. INTRODUCTION  
 

Voice activity detection (VAD) is an important 
stage in speech applications as it discriminates the 
presence of speech periods from background noise 
in an audio signal. VAD has been used in different 
applications for a variety of purposes. For instance, 
in speech coding, VAD allows to deactivate 
transmission in the absence of speech, and hence 
reduce the amount of transmitted data while 
maintaining quality [1]. In speech enhancement, 
VAD is employed to estimate noise during non-
speech periods and subsequently remove noise 
during speech [2]. In speech recognition, VAD is 
utilized to identify speech in audio signals, as it 
should be fed to a recognition engine, thus avoiding 
the processing of non-speech periods that do not 
convey information and may even undermine the 
recognition process [3]. 

 

Essentially, VAD is a binary classification 
problem, with one indicating speech and zero non-
speech. The successful classification depends on 
extracting speech features from audio signals to 
separate speech from noise [4]. Hence, several 
features have been proposed for VAD. Some of the 
previous studies considered features in the time 
domain, such as energy and zero-crossing rates. In 
particular, Rabiner et al. [5] proposed to trace the 
endpoints of an utterance based on these features. 
This type of technique is suitable for clean signals, 
but its performance degrades under a low signal-to-
noise ratio (SNR). To increase robustness against 
noise, some methods have been proposed to modify 
energy-related features. Prasad et al. [6] used a 
detector based on adaptive linear energy to update a 
threshold that adjusts the detector operation 
according to different acoustic environments, and 
Sakhnov et al. [7] used the root-mean-square 
energy of speech signals. Moreover, VAD methods 
that rely on energy features have been adopted in 
certain standards, such as the ITU-T 
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Recommendation G.729, given its low 
computational complexity. Other widely used 
features have been developed in the frequency 
domain, including some based on the entropy 
estimation of time–frequency quantities [8]. 
Ramirez et al. [9] proposed a method using long-
term spectral divergence, which provides a metric 
between speech and noise; Ma and Nishihara [10] 
used the long-term spectral flatness measure. In 
addition, mel-frequency cepstral coefficients 
(MFCCs) also serve as features for VAD, and they 
have been used with classifiers such as support 
vector machine [11] and Gaussian mixture model 
[12]. Other approaches include the use of long-term 
temporal information [13], an acoustic feature that 
represents the power ratio between periodic and 
aperiodic components in a signal [14], and spectral 
autocorrelation under co-channel condition [15]. 
Pek et al. [16] investigated effective modulation 
frequency ranges and used the modulation spectrum 
to detect speech and non-speech periods for VAD. 
Statistical approaches have also been used for 
VAD. For instance, Sohn et al. [17] modeled 
speech and noise probability density functions, and 
VAD was based on a likelihood ratio test. Davis et 
al. [18] employed a low-variance spectrum and 
determined an optimal detection threshold based on 
noise estimation. 

 
Feature classification of speech signals is the 

final stage of VAD. The simplest way to classify a 
signal is by using a detection threshold, which 
defines the features as speech or non-speech. 
However, using a threshold is not effective for 
classification when the feature space is not linearly 
separable. To overcome this drawback, machine 
learning approach may be useful, such as support 
vector machines [11, 19, 20] and neural networks 
[21, 22]. Recently, deep neural networks (DNNs) 
have been successfully applied in speech 
processing, including VAD, given their capabilities. 
In fact, Mohamed et al. [23] describe DNNs as a 
flexible model that does not require information on 
the specific data distribution. In addition, a DNN 
can include several nonlinear hidden layers, thus 
increasing its flexibility and discrimination 
capabilities. Furthermore, a generative pre-training 
allows a strong, domain-dependent regularization of 
the network weights.  

 
A variety of DNN applications have been 

proposed in speech processing to detect speech and 
non-speech periods. For instance, Zhang et al. [24] 
utilized a DNN to explore the advantages of 
features such as pitch, discrete Fourier transform, 

MFCCs, linear prediction coefficient, relative 
spectral perceptual linear predictive (RASTA-PLP) 
analysis, and amplitude modulation spectrogram 
(AMS) with its delta features as DNN input for 
VAD. Likewise, Ryant et al. [25] used MFCCs as 
inputs of a DNN for speech activity on YouTube, 
and Espi et al. [26] used spectro–temporal features 
as inputs of a DNN to detect non-speech acoustic 
signals (e.g., the sound of a moving chair). 
Although using a single feature or a combination of 
features has been considered in such DNNs, their 
selection and combination is not a trivial problem, 
and these aspects should be thoroughly considered 
to obtain a high classification performance, which is 
highly dependent on the features used as input. 
Therefore, in this paper we evaluate the 
effectiveness and contribution of different speech 
features to improve the performance of a VAD 
DNN. Moreover, we aim to reduce computational 
complexity by discarding features with low 
contribution and using those that require less 
processing. To achieve this goal, we investigate five 
speech features, namely, log power spectra, mel 
filter bank, MFCCs, RASTA-PLP, and AMS, which 
have shown a high performance in different speech 
processing applications, such as speech recognition 
[27]. After the evaluation, we aim to obtain the best 
features regarding classification accuracy and 
provide guidelines on the most effective 
implementation of VAD using DNNs. Likewise, by 
considering feature characteristics, we intend to 
evaluate the performance of that with less 
computational cost (i.e., log power spectra) and 
compare it with its counterparts that require more 
processing and calculations. This way, we can 
verify whether a raw feature can outperform “hand 
crafted” feature, which would lead to an increased 
efficiency for VAD.  

 
This paper is organized as follows. In Section 2, 

we summarize the DNN-based VAD used for our 
study. Section 3 presents descriptions of the speech 
features that we used as DNN inputs and the 
evaluation method to compare the features. The 
results and discussion are detailed in Section 4. 
Finally, we draw our conclusions in Section 5. 

 
2. DNN-BASED VAD 

 
A DNN can be used for accurate classification of 

speech and non-speech periods in VAD. We 
considered the DNN proposed in [28] as the basis 
for our study. The activation vector for the first 𝐿 
layers of the DNN is expressed by 
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vℓ = 𝑓൫zℓ൯ = 𝑓൫Wℓvℓିଵ + bℓ൯, 0 < ℓ < 𝐿,   (1) 
 
where zℓ = Wℓvℓିଵ + bℓ ∈ ℝேℓ×ଵ, vℓ ∈ ℝேℓ×ଵ,
Wℓ ∈ ℝேℓ×ேℓషభ , bℓ ∈ ℝேℓ×ଵ , and 𝑁ℓ ∈ ℝ  are the 
excitation vector, activation vector, weight matrix, 
bias vector, and number of neurons at layer ℓ , 
respectively, and 𝑓(∙): ℝேℓ×ଵ → ℝேℓ×ଵ  is the 
elementwise activation function. The input layer is 
denoted by ℓ = 0 , and thus v଴ = o ∈ ℝேబ×ଵ 
corresponds to the speech features of the DNN, and 
𝑁଴ = 𝐷  is the number of features. The logistic 
sigmoid function, 
 

𝜎(𝑧) =
1

1 + 𝑒ି௭
,                          (2) 

 
is used as activation function of the DNN.  

 
VAD is a binary classification problem (i.e., it 

contains two classes) to identify speech and non-
speech. Observation vector o belongs to the class 
whose output unit 𝑦௞ , 𝑘 = 1, 2 , has a value of 1. 
The output unit is defined by the following decision 
function: 

 

𝑦௞ = ൜
1, if 𝑠௞ > 𝑠௜ , ∀𝑖 = 1, 2, 𝑖 ≠ 𝑘
0,  otherwise                           

,          (3) 

 
where 𝑠௞  is the softmax output that represents the 
probability, 𝑃dnn(𝑘|o) , that observation vector o 
belongs to class 𝑘: 

𝑠௞ = 𝑃dnn(𝑘|o) =
𝑒௭ೖ

ಽ

∑ 𝑒௭೔
ಽூ

௜ୀଵ

,                 (4) 

 
where 𝑧௞

௅ is the 𝑘-th element of excitation vector z௅.  
Therefore, the prediction function of the VAD 
DNN is given by 
 
                                                𝐻ௗ ∈ 𝐻ଵ 

𝑦௢௨௧ ≜ 𝑠ଶ − 𝑠ଵ ≶  𝜂,                     (5) 
                                                𝐻ௗ ∈ 𝐻଴ 
 

where 𝐻ଵ  and 𝐻଴  denote the speech and noise 
hypotheses, respectively, and 𝜂  is an adjustable 
decision threshold.  
 

The DNN training process consists of two stages. 
First, pre-training is performed using greedy layer-
wise unsupervised learning. Second, fine tuning is 
performed to the whole network [29]. In this study, 
we considered a DNN composed of five layers of 
restricted Boltzmann machines (RBMs) that 
constitute the visible and hidden layers. 
Specifically, Bernoulli (visible)–Bernoulli (hidden) 
RBMs were used. After completing the learning 

process of each RBM, the activity values of its 
hidden units were used as inputs for the learning 
process of the subsequent RBM [30]. For pre-
training, we used the contrastive divergence 
algorithm to approximate the gradient of the 
negative log-likelihood of the data with respect to 
the RBM parameters [31]. Finally, we used 
backpropagation techniques through the whole 
DNN to fine-tune the weights and thus obtain 
optimal results [32]. In this study, object oriented 
MATLAB toolbox, namely DeebNet toolbox [32], 
is used to train the DNN. Detailed parameters used 
inside the network are described in Section 3.6. 
 
3. VAD FEATURES AND EVALUATION 

METHOD 
 
3.1 Log Power Spectra 

A speech signal can be analyzed using the short-
time Fourier transform, which is defined as 

 

𝑋(𝑚, 𝑘) = ෍ ℎ(𝑚 − 𝑛)𝑥(𝑛)𝑊௄
௞௡ ,

௡ୀஶ

௡ୀିஶ

      (6) 

 
where 𝑥(𝑛) is a discrete speech signal, ℎ(𝑛) is an 
analysis window, which is time-reversed and 
shifted by 𝑚 frames, 𝑘 is a frequency variable, 𝐾 is 

the number of frequency bins, and 𝑊௄ = 𝑒ି௝ቀ
మഏ

಼
ቁ . 

We considered an analysis window of 20 ms with a 
10 ms window shift.  
 

The transform in Equation (6) represents a 
spectrogram which is a graphical display of speech 
power spectrum over time. Hence, log power 
spectra provide information on the frequencies of a 
speech signal, which is updated over appropriate 
time frames. Consequently, this feature can be used 
for real-time VAD. 

 
3.2 Mel Filter Bank  

 
Equation (6) shows that the short-time Fourier 

transform reflects the amount of energy at different 
frequencies. However, human hearing is not 
equally sensitive to all frequency bands. In fact, it 
becomes less sensitive at frequencies above 1000 
Hz. Moreover, human sensitivity and the perceived 
loudness of audio signals can be considered as 
approximately logarithmic functions [33]. This 
behavior can be suitably represented by the mel 
scale, which is approximately linear below 1000 Hz 
and logarithmic onwards. The mel scale can be 
obtained as follows: 
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𝑀𝑒𝑙(𝑓) = 2595 logଵ଴ ൬1 +
𝑓

700
൰ ,          (7) 

 
where 𝑓 and 𝑀𝑒𝑙(𝑓)  denote the signal frequency 
and the perceived level for that frequency, 
respectively. 

 
A filter bank can be implemented in the 

frequency domain, where their center frequencies 
are usually evenly spaced. However, to mimic 
human perception, we implemented the warped 
frequency distribution according to the nonlinear 
function of Equation (6). In addition, triangular 
filters are commonly used for speech processing. 
Hence, we computed the mel spectrum of 𝑋(𝑘) by 
multiplying the spectrum magnitude by the 
corresponding triangular mel weighting filters: 

 

𝑠(𝑚) = ෍[|𝑋(𝑘)|ଶ𝐻௠(𝑘)]

ேିଵ

௞ୀ଴

, 0 ≤ 𝑚 ≤ 𝑀 − 1,  (8) 

 
where  𝑀 is total number of triangular mel 
weighting filters and 𝐻௠(𝑘) is the weight of the 𝑘-
th power spectrum bin contributing to the m-th 
output band [34]. 𝐻௠(𝑘)  is expressed as  
𝐻௠(𝑘)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

0,                    𝑘 < 𝑓(𝑚 − 1)  

2(𝑘 − 𝑓(𝑚 − 1))

𝑓(𝑚) − 𝑓(𝑚 − 1)
,    𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

2(𝑓(𝑚 + 1) − 𝑘)
𝑓(𝑚 + 1) − 𝑓(𝑚)

,   𝑓(𝑚) < 𝑘 ≤ 𝑓(𝑚 + 1)

0,                     𝑘 > 𝑓(𝑚 + 1)

(9)  

 
with 𝑚 ranging from 0 to 𝑀 − 1. The output of the 
mel filter bank is presented in a logarithmic scale to 
compress the dynamic range and reduce the 
sensitivity of frequency estimates to slight input 
variations. 
 
3.3 MFFCs 

MFCCs have been the dominant feature used in 
speech processing given their ability to compactly 
represent the speech amplitude spectrum. MFCCs 
correspond to the determination of cepstrum. The 
cepstrum is the spectrum of the log of the spectrum.  
Given the vocal tract softness, the components of 
mel-spectral vectors are highly correlated among 
frames. Hence, to decorrelate components and 
reduce the number of parameters, we applied a 
transform to the mel-spectral vectors using the 
discrete cosine transform. Thus, we calculated the 
MFCCs as the inverse DFT using the following 
equation: 

 

𝑐(𝑛) = ෍ logଵ଴(𝑠(𝑚))

ெିଵ

௠ୀ଴

cos ൬
𝜋𝑛(𝑚 − 0.5)

𝑀
൰ ,   (10) 

 
for 𝑛 = 0,1,2, …  𝐶 − 1, where 𝑐(𝑛) are the cepstral 
coefficients and 𝐶 is the number of MFCCs. Since 
log power spectrum is real and symmetric, the 
inverse DFT is equivalent to a discrete cosine 
transform. Figure 1 shows the block diagram to 
obtain MFCCs.  

 
 

Figure 1: Block Diagram of MFCCs 
 

Speech is not constant frame-to-frame, 
dynamics features that show how the cepstral 
coefficients change over time are added. These 
features are delta and double delta features. Delta 
features represent the change between frames in the 
corresponding cepstral and double delta features 
represent the change between frames in the 
corresponding delta features. Delta coefficients are 
calculated as follows 

∆𝑐௠(𝑛) =
∑ 𝑘௜𝑐௠(𝑛 + 𝑖)்

௜ୀି்

∑ |𝑖|்
௜ୀି்

,                             (11) 

where 𝑐௠(𝑛) is the 𝑚-th feature for the 𝑚-th time 
frame, 𝑘௜ is the 𝑖 -th weight and 𝑇 , which is 
generally taken as 2, is the number of successive 
frames used for computation. The double delta 
coefficients are computing by taking the first order 
derivative of the delta coefficients.  
 
3.4 RASTA-PLP 

Perceptual linear prediction, which relies on the 
psychophysics of hearing, is a technique that warps 
speech spectra to minimize the differences among 
speakers while preserving important speech 
information [35]. 
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Figure 2: Block Diagram of RASTA-PLPs 

 
Meanwhile, the relative spectra approach [36] is 
based on a bandpass time applied to a log spectral 
representation of the speech, such as the log filter 
bank energy. Thus, RASTA-PLP analysis combines 
these two methods.  

 
This analysis is based on a sequence of 

calculations for each analysis frame. First, the 
critical-band spectrum is computed. Then, the 
temporal derivative of the log of this spectrum is 
estimated by using a linear regression considering 
five consecutive spectral values. A nonlinear 
processing can also be performed in this domain. 
Next, the derivative is reintegrated by using a first-
order infinite impulse response (IIR) filter. The 
pole position of this filter can be adjusted to define 
the effective window size. Following perceptual 
linear prediction, equal loudness is added and 
multiplied by 0.33 to represent the hearing power 
law. Subsequently, a relative auditory spectrum is 
obtained by taking the inverse logarithm of the 
relative log power spectrum. Finally, an all-pole 
model is computed. As mentioned in [37], the 
derivative–reintegration process is equivalent to a 
bandpass filtering of each frequency channel 
through the following IIR filter:  

 

𝐻(𝑧) = 0.1 ×
2 + 𝑧ିଵ − 𝑧ିଷ − 2𝑧ିସ

𝑧ିସ × (1 − 0.98𝑧ିଵ)
.        (12) 

The detailed process to obtained RASTA-PLP is 
shown in Figure 2.   
 
3.5 AMS 

AMS is inspired on neurophysiology and 
psychoacoustics, and an AMS-based algorithm for 
speech was proposed in [38]. In this algorithm, a 
noisy speech signal is bandpass filtered into 25 
channels according to a mel-frequency spacing. 
Next, the envelopes at each band are computed 
using full-wave rectification and then decimated by 
a factor of 3. where the authors use 128 samples 
acquired every 32 ms with a 50% overlap. Each 
segment is Hann windowed and transformed into a 
256-point fast Fourier transform including zero 
padding. The modulation spectrum is calculated for 
each channel by using the transform, with a 
frequency resolution of 15.6 Hz. Within each band, 
the spectrum magnitudes are multiplied by 15 
triangular-shaped windows evenly spaced in the 
15.6–400 Hz range and summed up to produce 15 
amplitude values. These values represent the AMS 
feature vector. The AMS is a two-dimensional 
representation of the spectral and temporal 
properties of an acoustic signal [39]. Processing 
stage to obtain AMS is shown in Figure 3. 

 
Figure 3: Block Diagram of AMS 

 
3.6 Evaluation Method 

To evaluate and compare the above mentioned 
features on the VAD DNN, we used the data of 150 
speakers from the TIMIT speech corpus [40], 
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which contains phonemically and lexically 
transcribed speech of American English speakers 
with different dialects. From the speaker records, 
100 were used for training and the remaining 50 for 
evaluation. To increase distortion, we injected five 
types of noises in the speech signals, namely, white, 
babble, factory, car, and pink noises from the 
NOISEX-92 database [41]. Each noise type and 
SNR values of 10, 5, 0, and –5 dB were randomly 
selected for injection in the speech signals. 

 
The above mentioned features were extracted 

from clean and noisy speech signals. The input 
signals were sampled at 8 kHz, and we selected a 
frame size of 20 ms and a Hamming analysis 
window with a 10 ms frame shift. In addition, we 
considered a 40-channel mel-scale filter bank, 13 
MFCCs, 12th-order RASTA-PLP, and 15 
modulation spectra for the AMS. All the features 
were normalized to zero mean and unit variance at 
each dimension.  

 
Then, we trained the DNN using five RBMs, 

which were stacked to obtain the hidden layers. The 
consecutive hidden layers contained 512, 512, 256, 
256, and 128 neurons. We also considered a 
learning rate of 0.001, fixed the maximum epochs 
of both pre-training and fine tuning to 100, and 
used equal parameters and settings for the 
evaluation of every feature as DNN input. 

 
To quantify the performance of each feature as 

DNN input for VAD, we generated receiving 
operating characteristic (ROC) curves, which 
correspond to true positive rate TPR against false 
positive rate FPR given by 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,                         (13) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
,                          (14) 

 
where TP represents the number of true positives, 
i.e., the number of correctly identified speech 
frames, TN represents the true negatives, i.e., the 
number of correctly identified non-speech frames, 
FP represents the false positives, i.e., the number of 
non-speech frames incorrectly identified as speech, 
and FN represents the false negatives, i.e., the 
number of speech frames incorrectly identified as 
non-speech. In addition, to obtain a performance 
measure, we calculated the area under the curve 
(AUC) of the ROC curves, where higher AUC 
values indicate more accurate classification. 
 

Finally, to visually assess the separability of 
features, we obtained their distribution. When 
feature values that belong to the same class have a 
strong relation, they can be classified more easily 
through a DNN. Hence, separability can be used as 
a measure to analyze feature performance. To 
obtain the feature distributions, we used the t-
distributed stochastic neighbor embedding (t-SNE) 
[42], which represents data in a plane and clusters 
similar data points. This algorithm is useful to 
visualize high dimensional data and assess their 
degree of separability. t-SNE is a variation of SNE 
which converts pairwise Euclidean distances in 𝑁-
dimensional to joint probability distribution. Given 
a set of 𝑁 -dimensional data points 𝑋 =

{𝑥ଵ,  𝑥ଶ,  ⋯ , 𝑥௡} , the joint probability 
distributions 𝑃 are computed as 

 

𝑝௜௝ =
𝑒ିௗ೔ೕ

మ ఙ⁄

∑ ∑ 𝑒ିௗೖ೗
మ ఙ⁄

௟ஷ௞௞

 ,                    (15) 

 

where 𝑑௜௝ = ฮ𝑥௜ − 𝑥௝ฮ
ଶ
 is the N-dimensional norm, 

𝜎  is the variance of the Gaussian distribution 
centered on data point 𝑥௜ and 𝑝௜௜ = 0.  Input data is 
high dimensional data. The similarity of data point 
𝒙௝  to data point 𝒙𝒊  is the conditional probability, 
that 𝒙𝒊  would pick 𝒙௝  as its neighbor if neighbors 
were picked in proportion to their probability 
density under a Gaussian centered at 𝒙௜ . The 
bandwidth of Gaussian kernels is set in such a way 
that the perplexity of the conditional distribution 
equals as predefined perplexity using the bisection 
method. As a result, the bandwidth is adapted to the 
density of the data, smaller values of 𝜎  are used in 
denser parts of the data space. t-SNE aims to learn a 
𝑑 -dimensional map that reflects the similarities 
𝑝௜௝as well as possible. Next, it measures similarities 
𝑞௜௝  between two points in the map 𝑦௜  and 𝑦௝ in low 
dimensional map using similar approach.  The low 
dimensional mapping obtained by t-SNE, 𝑌 =

{𝑦ଵ,  𝑦ଶ,  ⋯ , 𝑦௡}  uses a student-t distribution with a 
single degree of freedom to model the similarity 
between two data points 
 

𝑞௜௝ =
(1 + 𝑑௜௝)ିଵ

∑ ∑ (1 + 𝑑௞௟)ିଵ
௟ஷ௞௞

,                   (16) 

 

where 𝑑௜௝ = ฮ𝑦௜ − 𝑦௝ฮ
ଶ

 is the low dimensional 
norm, and 𝑞௜௜ = 0 . The obtained mapping 
minimizes the Kullback-Leibler divergence with 
respect to the high dimensional distribution, using a 
gradient descent method.  
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4. RESULTS AND DISCUSSION  
 
The VAD on the noisy signals for the different 

features is illustrated in Figure 4, where the red 
dashed lines represent the speech (high level) and 
non-speech (low level) periods, and the blue solid 
lines represent the VAD DNN output for the 
corresponding feature. In addition, the top graph in 
Figure 4 shows the VAD from a typical clean signal 

and the noisy signal polluted by car noise at SNR of 
–5 dB. For the noisy signal, it can be seen that the 
DNN-based VAD output using the log power 
spectra provides the best results, which are close to 
the ground truth, followed by AMS and filter bank. 
Hence, this feature might be suitable for 
distinguishing speech and non-speech periods, and 
contain more discriminative information for VAD 
than the other evaluated features.  

 
  

  

 

 

 

 
 

Figure 4: Typical Speech Signal And VAD DNN Output For Different Features 
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(a) Clean speech 

 

  

(b) White noise 

 

  

(c) Babble noise 

 

 

(d) Factory noise 

 

 

(e) Car noise 

 

  

(f) Pink noise 

 

   

Figure 5: ROC Curves Of The VAD DNN Considering Each Feature When Using The Clean Signal And A 10-dB SNR 
With Different Types Of Noises   
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Table 1: AUC For Feature ROC Curves. The Numbers In Bold Indicate The Best Performance  

Noise SNR 
(dB) 

AUC (%) 
Filter 
bank 

MFCC Log 
Power 
Spectra 

RASTA-
PLP 

AMS MFCCs+△
+△△ 

RASTA-PLP 
+△+△△ 

Filter bank 
+△+△△ 

No noise 98.16 93.99 98.57 85.84 97.71 95.02 86.65 98.27 

White 

10 92.41 85.40 94.54 89.00 94.24 86.44 89.24 93.03 

5 89.61 79.28 91.50 86.31 91.84 80.56 85.88 90.15 

0 85.18 72.68 87.14 82.48 87.38 74.68 81.15 85.97 

–5 79.52 67.06 82.33 76.95 82.34 70.32 74.67 80.87 

Babble 

10 90.10 81.67 92.96 81.93 93.98 84.66 85.33 91.84 

5 84.53 74.49 88.65 77.36 90.56 78.55 80.50 86.59 

0 76.20 66.48 81.92 71.18 84.21 71.29 74.07 79.26 

–5 66.24 59.14 72.97 63.88 75.64 64.34 66.80 71.52 

Factory 

10 87.36 84.63 89.40 83.14 90.61 86.25 85.12 90.44 

5 81.18 77.76 84.10 78.31 86.95 79.86 80.04 84.96 

0 73.75 71.23 77.55 71.74 80.75 73.65 73.41 77.88 

–5 64.76 64.98 70.16 64.21 73.40 68.04 66.31 70.79 

Car 

10 96.61 95.52 97.16 89.38 97.39 95.83 92.45 97.86 

5 96.66 95.88 96.93 89.29 97.02 96.01 92.18 97.44 

0 96.25 95.64 96.42 88.81 96.36 95.76 91.53 96.78 
–5 94.81 94.73 95.26 87.59 94.53 94.75 90.04 95.49 

Pink 

10 89.36 85.97 92.49 88.01 92.65 87.49 89.73 91.88 

5 84.89 79.37 88.21 84.86 89.18 81.14 86.20 87.74 

0 78.49 71.32 82.27 79.54 80.32 73.96 80.60 82.08 

-5 69.76 63.55 74.46 71.78 76.43 67.18 72.76 75.65 

 

 
Figure 6: AMS Of Noisy Signal  
(Factory Noise, SNR of –5 dB). 

 
To quantify the effectiveness of each feature, we 

generated the ROC curves from the clean and 
different types of noisy signals, as shown in Figure 
5. For the clean signal (Figure 5a), the VAD DNN 
results in a high and similar performance for the log 
power spectra, AMS, and filter bank, as these 
features produce higher true positive rate TPR and 
lower false positive rate FPR than the MFCCs and 
RASTA-PLP. For noisy signals (Figures 5b–5f), 
the AMS and log power spectra maintain a high 
performance. In contrast, the MFCCs and RASTA-
PLP show a high sensitivity to noise, especially 
non-stationary noise such as the babble noise 

(Figure 5c). Overall, the AMS and log power 
spectra show the best performance among all the 
features in noisy conditions.    

Then, to measure the classification accuracy of 
each feature, we calculated the AUC for each ROC 
curve. Table 1 lists the AUC values for the different 
features used in the VAD DNN. In the clean speech 
signals, the best performance was obtained using 
the log power spectra, followed in descending order 
by the mel filter bank, AMS, MFCCs, and RASTA-
PLP. In the noisy speech signals, the AMS showed 
the best performance for most cases. Moreover, the 
performance of log power spectra approaches that 
of AMS, especially with the signal polluted by 
stationary noise, such as white noise. Interestingly, 
log power spectra can be considered as a raw 
feature because, unlike the others, it can be directly 
obtained from the observed signal without intensive 
processing or calculations. Among the other 
features, MFCCs provided the lowest performance, 
but it improved when combined to dynamic 
features, i.e., delta and delta–delta cepstral features. 
In addition, RASTA-PLP outperforms MFCCs 
when considering noisy signals. These results 
suggest that a raw feature may be more useful as 
input for DNN-based VAD compared to 
counterparts that require more processing and 
calculations.  
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Overall, Table 1 shows the superior performance 
of AMS as feature for VAD, especially when 
considering noisy signals. This can be due to the 
fact that AMS contains information of both center 
and modulation frequencies within each analysis 
frame, as illustrated in Figure 3, where the feature 
distribution might be helpful to discriminate speech 
from noise, and hence provide a high performance 
as input for DNN-based VAD. Furthermore, AMS 
encodes modulation spectra that are computed for 
each channel, and the harmonicity of speech is 
clearly exhibited as peaks on such encoding. 

Moreover, AMS is based on perception and 
physiology, and hence it provides an accurate 
speech representation with a wide resolution. In 
addition, regarding the DNN, the AMS input 
information is not influenced by its dimension, 
because the hidden layers can unveil higher-order 
data. Even in the worst-case scenario, when 
considering the –5 dB signal with babble noise, 
Table 1 shows that the highest performance of 
75.64% is achieved when using AMS. 

 
 

 
 

 
(a) Log power spectra 

 

 
 

 
(b) MFCCs 

 
(c) Filter bank 

 

 
(d) RASTA-PLP 

 

 
(e) AMS 

 
Figure 7: t-SNE Planar Map Of Feature Vectors 
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Another high-performance feature is the log 
power spectra, as it shows better results than the 
mel filter bank and MFCCs. Furthermore, the log 
power spectra feature has a similar performance to 
AMS for stationary noise and even outperforms 
AMS when considering white noise at 10 dB and 
pink noise at 0 dB. This high performance may be 
due to the detailed time–frequency information 
provided by log power spectra. On the contrary, the 
mel filter bank and MFCCs contain information of 
specific sub-bands caused by the dimension 
reduction and discrete cosine transform, 
respectively, which may cause a notable 
information loss. The performance of log power 
spectra reflects that raw data can be superior to 
highly processed features for the VAD DNN. In 
fact, the log power spectra feature is directly 
derived from the speech signal and does not require 
complicated calculations. Hence, this feature may 
lead to lower computational time and complexity 
than the other features. 

On the other hand, the performance of RASTA-
PLP is similar to that of MFCCs. In addition, 
MFCCs show a high performance only for clean 
signals, whereas this feature is outperformed by 
RASTA-PLP when using noisy signals, especially 
those with stationary noise. Table 1 also shows that 
both MFCCs and RASTA-PLP features have a 
similar performance when the speech signal is 
polluted by non-stationary noise, e.g., factory noise 
at 0 dB. These results suggest that RASTA-PLP 
may contain more information on VAD for the 
DNN when considering signals with stationary 
noise. This more detailed information may be 
attributed to the three components of hearing 
psychophysics represented by RASTA-PLP, 
namely, critical-band spectral selectivity, equal 
loudness curve, and intensity loudness power law. 
To further improve performance, we included 
dynamic features that represent time-varying signal 
characteristics. In our analysis, the addition of 
dynamic features (i.e., delta and delta–delta 
features) improved the performance of the VAD 
DNN. In fact, Table 1 shows that the dynamic 
features can boost the performance of VAD for 
MFCCs, RASTA-PLP, and mel filter bank, with the 
latter obtaining the highest improvement, with a 
performance close to that of log power spectra and 
AMS. Hence, dynamic features may be also 
important for VAD. 

 
Finally, we evaluated the distribution of each 

feature to visualize its separability. Hence, we used 
t-SNE because log power spectra, mel filter bank, 
MFCCs, RASTA-PLP, and AMS convey high 

dimensional data, and t-SNE allows to preserve the 
intrinsic data structure by grouping similar data 
points in a lower-dimensional space. Figure 4 
shows that the feature values are clustered 
according to their classes, which are represented by 
different colors. Log power spectra (Figure 4a) and 
AMS (Figure 4e) show stronger clustering than the 
other features, as the data points from the two 
classes (i.e., speech and non-speech) are clearly 
separated, which implies that these features exhibit 
a high variability that is required to retrieve suitable 
classification. Hence, both features may be the best 
suited as inputs for the VAD DNN by carrying 
more discriminant information at every dimension. 
Next, the mel filter bank (Figure 4c) shows stronger 
separability than both MFCCs (Figure 4b) and 
RASTA-PLP (Figure 4d), which show more 
scattered points. Hence, these “hand crafted” 
features have the lowest separability among the 
evaluated features, thus indicating a lower 
variability for classification than log power spectra, 
which is a raw feature. 

From the abovementioned experiments, we 
reached to some important insights regarding VAD 
using DNNs. First, AMS and log power spectra 
were the most effective features for DNN-based 
VAD, clearly outperforming the other evaluated 
features. In addition, we confirmed that a raw 
feature, such as log power spectra, can be more 
suitable than features that demand several 
calculations. Therefore, utilizing such raw features 
may reduce the complexity related to VAD, and 
thus allow its widespread use in real-time and 
portable speech applications.  
 
5. CONCLUSION 
 

DNNs can be used as a robust method for VAD. 
In fact, a DNN may be one of the most accurate 
classifiers for VAD, but the features used as input 
can notably affect its performance. Hence, we 
evaluated the performance of different features in a 
VAD DNN. We aimed to identify the features that 
have the most discriminant information to provide a 
high classification accuracy, and thus improve 
VAD. Furthermore, we intended to identify and 
select the best features for a VAD DNN to reduce 
the related computational cost.  

In this paper, we analyze five speech features: 
log power spectra, mel filter bank, MFCCs, 
RASTA-PLP, and AMS, to determine their 
contribution to a VAD DNN. As a result, we found 
that a feature that does not require much 
processing, i.e., log power spectra, outperforms 
features involving several calculations such as mel 
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filter bank, MFCCs, and RASTA-PLP. Hence, log 
power spectra can be useful in reducing the 
computational cost and obtaining a high 
performance to detect speech and non-speech 
periods. However, for speech signals polluted by 
non-stationary noise, such as babble noise, the 
perception-based feature AMS showed the best 
performance as input for the VAD DNN. Thus, 
AMS appears to have more discriminative 
information for the VAD DNN than its 
counterparts.  

Overall, the results from this study suggest the 
importance of feature selection, and that raw 
features may be more suitable than its sophisticated 
counterparts as input for a VAD DNN. 
Nevertheless, future studies will require evaluating 
different features and DNN structures such as 
convolutional neural networks. Likewise, the DNN 
hidden layer processes should be thoroughly 
investigated to improve efficiency, and dynamic 
features should be evaluated with more detail. We 
expect that selecting the most appropriate DNN 
structures and features will ultimately lead to a 
highly efficient VAD that can be applied in real 
time and embedded in portable devices with low 
computational cost, thus spreading the use and 
benefits of speech-based applications in our daily 
life.  
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