
Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1083

DECLARATIVE STACK FOR DISTRIBUTED GRAPH
PROCESSING

1RADWA ELSHAWI, 2ARWA ALDHABAAN, 3SHERIF SAKR
1,2Princess Nourah bint Abdulrahman University

Riyadh, Saudi Arabia
3 King Saud bin Abdulaziz University for Health Sciences

1rmelshawi@pnu.edu.sa

ABSTRACT

Recently, people, devices, processes and other entities have been more connected than at any other point in
history. In general, graphs have been used to represent data sets in various application domains including
computational biology, social science, telecommunications, astronomy, semantic web and protein networks
among many others. In practice, systemsstacks of large scale graph processing platforms are suffering from
the lack of declarative processing interface. They are mainly relying on low level programming abstractions
which can be only used by sophisticated software developers and are not adequate for many users. In order
to tackle this challenge and improve the performance and user acceptance of large scale graph processing
frameworks, we present a declarative querying framework that can seamlessly integrate with various big
graph processing system platforms. Our experimental evaluation shows the effectiveness and efficiency of
our proposed framework.

Keywords: Big Data, Big Graph, Hadoop, Spark

1. INTRODUCTION

The ubiquity of the Internet has dramatically
changed the size, speed and nature of the generated
data. Almost every human becomes a data
generator and every business becames a digital
business. Thus, we are witnessing a data explosion.
In the last years, several technologies have
contributed to this data explosion including mobile
computing, Web 2.0, social media, social network,
cloud computing and Software-as-a-Service
(SaaS). In the future, it is expected that the Internet
of Things will further amplify this challenge.
Several things would be able to get connected to
the Internet, and thus there will be lots of data
passed from users to devices, to servers, and back.
Hence, in addition to the billions of people who are
currently using the Internet and daily producing
lots of data, watches, cars, fridges, toaster, and
many other devices will be online and continuously
generating data as well. It is quite expected that in
the near future, our toasters will be able to
recommend types of bread based on suggested
information from our friends on the Social
Networks.

With the recent emerging wave of technologies
and applications, the world has becoming more
connected than ever. Graph is a popular and neat
data structure which is used to model the data as an
arbitrary set of objects (vertices) connected by
various kinds of relationships (edges). With the

tremendous increase on the size of the graph-
structured data, large-scale graph processing
systems have been crucially on-demand and
attracted a lot of interest. In the last few years,
several specialized platforms which are designed to
serve the unique processing requirements of
distributed large-scale graph processing have been
introduced (e.g, Google Pregel [1], Apache Hama
[2], Apache Giraph [3], GraphLab [4], PowerGraph
[5] and Microsoft Trinity [6]). These systems
provide low-level programmatic abstractions for
performing iterative parallel computations,
querying and analysis of large graphs on clustered
systems. In practice, many programmers and data
scientists prefer to express their analytic jobs
declaratively. For example, in the early days of the
Hadoop framework, the defacto standard in the
domain of big data processing, the lack of
declarative languages to express the large-scale
data processing tasks has limited its practicality
and the wide acceptance and the usage of the
framework. Therefore, several declarative querying
systems on top of the Hadoop framework (e.g., Pig
[7], Hive [8]) have been introduced to fill this gap
and provide higher-level languages for expressing
large scale data analysis tasks on Hadoop. In
practice, these languages have been widely adopted
in the business and research communities.
Currently the systems/stacks of large scale graph
processing platforms are suffering from the same
challenge. The aim of our work is to provide

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1084

higher-level languages for expressing large scale
data analysis tasks in the domain of distributed and
large-scale graph processing. In particular, we
present a declarative query processing framework
on top of the emerging distributed graph processing
platform. The proposed framework relies on a
declarative graph-based query language, Cypher, a
metadata-based catalog for distributed graphs and
cost-based query compiler that compiles the
declarative graph-based queries and computation
generates efficient execution plans using the low-
level programming abstractions of the underlying
distributed graph processing platforms.

BIG GRAPH PROCESSIG

Recently, people, devices, processes and other
entities have been more connected than at any
other point in history. In general, the complex
relationships, interactions and interdependencies
between objects are naturally modeled as graphs.
Therefore, graphs have been used to represent data
sets in various application domains including
computational biology, social science,
telecommunications, astronomy, semantic web,
protein networks, and many more [3]. For example,
in a social graph, nodes are commonly used to
represent people while the friendship relationships
among them are modelled via edges.
In principle, graph analytics is considered as one of
the most important big data discovery tool [3]. For
example, it enables inspecting fraud operations in a
complex interaction network, identifying
influential persons in a social network and
recognizing product affinities by analyzing
community buying patterns. In practice, nowadays,
graphs with millions and billions of nodes and
edges have become very common. For example, in
2012, Facebook has reported that its social network
graph contains more than a billion users (nodes)
and more than 140 billion friendship relationships
(edges) [3]. The continuous growth in the size of
the graph datasets requires scalable computing
resources to achieve the goal of effectively
analyzing and utilizing them. In general, one of the
most important challenges in processing large scale
graphs, in addition to their size, is the inherent
irregular structure and the iterative nature of graph
processing and computation algorithms.

In practice, the popular MapReduce framework [9]
and its open source realization, the Apache Hadoop
project [10], together associated with its ecosystem
(e.g., Apache Pig [7], Apache Hive [8]) has
represented the pervasive technology for big data
processing platforms [11]. In principle, the

MapReduce framework provides a simple but
powerful programming model that supports the
developers to easily build parallel and scalable
algorithms to analyze massive amounts of data on
clusters of commodity machines. However, the
MapReduce programming model has its own
limitations [12]. For example, it does not provide a
direct support for iterative data analysis (or
equivalently, recursive) tasks. Instead, users need
to design iterative jobs by manually chaining
various MapReduce tasks and orchestrating their
execution via a controller program [12].

Generally, graph processing algorithms are
iterative and need to traverse the graph in some
way (e.g., breadth first or depth first). In practice,
graph algorithms can be mapped into a sequence of
lined MapReduce jobs where the whole state of the
graph get passed from one task to the next.
However, such approach is not adequate for graph
processing and commonly leads to inefficient
performance because of the overhead on the
communication costs which is also associated with
the serialization overhead in addition to the need of
coordinating the steps of a chained MapReduce.
Several approaches have proposed Hadoop
extensions (e.g., HaLoop [13], Twister [14],
iMapReduce [15]) to optimize the iterative support
of the MapReduce framework and other
approaches have attempted to implement graph
processing operations on top of the MapReduce
framework (e.g. Surfer [16], PEGASUS [17]).
However, these approaches remain inefficient for
the graph processing case because the efficiency of
graph computations depends heavily on inter-
processor bandwidth as graph structures are sent
over the network after each iteration. While much
data might be unaltered from one iteration to
another, the data must be reloaded and reprocessed
at each iteration, resulting in the unnecessary
wastage of I/O, network bandwidth, and processing
power. In addition, the ending condition might
involve the detection of when a fix point is
reached. The condition itself might need to define
an extra MapReduce task for each iteration which
consequently increases the resource usage in terms
of scheduling additional tasks, reading additional
data from disk, and transmitting additional data
through the network.

In order to tackle the inherent performance
problem of the MapReduce framework, several
specialized platforms which are designed to serve
the unique processing requirements of large scale
graph processing have recently emerged. These

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1085

systems provide programmatic abstractions for
performing iterative parallel analysis of large
graphs on clustered systems. In particular, in 2010,
Google has pioneered this area by introducing the
Pregel [1] system as a scalable platform for
implementing graph algorithms. Since then, we
have been witnessing the development of a large
number of scalable graph processing platforms. For
example, the Pregel system has been cloned by
various open source projects such as Apache
Giraph [3] and Apache Hama [2]. Pregel system
has also been further optimized by other systems
such as Pregelix [18], Mizan [20] and GPS [19]. In
addition, a family of related systems has been
initiated by the GraphLab system [4] as an open
source project at Carnegie Mellon University.
Furthermore, some other systems have been also
introduced such as GraphX [21], Trinity [6],
GRACE [22] and Signal/Collect [23].

In the early days of the Hadoop framework, the
lack of declarative languages to express the large-
scale data processing tasks has represented one of
the main limitations towards its practical usage and
wide acceptance by many users [12]. As a result,
several declarative querying frameworks (e.g.,
Apache Pig, Apache Hive) have been introduced
on top of the Hadoop stack in order to fill this gap.
In practice, these frameworks have gained wide
attention and adoption in the industry and research
communities. Nowadays, the systems/stacks of
large scale graph processing platforms are
suffering from the same challenge of the early days
of the Hadoop framework. Therefore, with the
current momentum and increasing interest on
building and using distributed graph processing
platforms, we believe that it is beyond doubt that
high level programming abstractions and
declarative querying frameworks that ease the
user’s job for expressing their graph processing
jobs and enable the underlying systems/stacks to
perform automatic optimization are crucially
required and represent an important research
direction to enrich this domain.

BIG SQL PROCESSING SYSTEMS

Several systems have been introduced to support
the SQL flavor on top of the Hadoop infrastructure
and provide competing and scalable performance
on processing large scale structured data. For
example, Hive [8] is considered to be the first
system which has been introduced to support SQL-
on-Hadoop with familiar relational database
concepts such as tables, columns, and partitions.
Hive has been widely used in many reputable

organizations to manage and process large volumes
of data, such as Facebook, eBay, LinkedIn and
Yahoo! [8]. Hive supports all of the major
primitive types (for example, integers, floats, and
strings) and complex types (for example, maps,
lists, and structs). It also supports queries that are
expressed in an SQL-like declarative language,
Hive Query Language (HiveQL1), which represents
a subset of SQL92, and therefore can be easily
understood by anyone who is familiar with SQL.
These queries automatically compile into
MapReduce jobs that are run by using Hadoop.
HiveQL enables users to plug custom MapReduce
scripts into queries as well. Recently, Huai et al.
[24] have reported about the major technical
advancements that have been implemented into the
HIVE project by its development community.
These advancements include a new file format,
Optimized Record Columnar File (ORC File) [25],
which is designed to provide high storage and data
access efficiency with low overhead. In addition,
the query planning component has been updated to
provide more sophisticated optimizations for
complex queries and significantly reduce
unnecessary operations in the executed query
plans. Hive has some limitations eg. Updating data
is complicated because of using HDFS, no real
time access to data and latency for Hive queries is
generally very high.

Impala [26] is another open source project, built by
Cloudera, to provide a massively parallel
processing SQL query engine that runs natively in
Apache Hadoop. Impala does not use Hadoop to
run the queries. Instead, it relies on its own set of
daemons, which are installed alongside the data
nodes and are tuned to optimize the local
processing to avoid bottlenecks. In principle,
Impala is part of the Hadoop ecosystem and shares
the same infrastructure (for example, metadata,
Apache Hive). Therefore, by using Impala, the user
can query data which is stored in Hadoop
Distributed File System (HDFS) [27]. It also uses
the same metadata, SQL syntax (HiveQL), that
Apache Hive uses. One of the main limitations of
Impala is that it relies on an in-memory join
implementation. Therefore, queries can fail if the
joined tables can’t fit into memory. Impala does
not replace Hive or other frameworks built on
MapReduce for long-running batch-oriented
queries. Impala is not fit as a query layer to support

1https://cwiki.apache.org/confluence/display/Hive/

LanguageManual

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1086

operational/OLTP applications (No update/deletes,
not optimized for point look-ups).

Big SQL [28] is the SQL interface for the IBM big
data processing platform, InfoSphere BigInsights,
which is built on the Apache Hadoop framework.
In particular, it provides SQL access to data that is
stored in InfoSphere BigInsights and uses the
Hadoop framework for complex data sets and
direct access for smaller queries. In the initial
implementation of Big SQL, the engine was
designed to decompose the SQL query into a series
of Hadoop jobs. For interactive queries, Big SQL
relied on a built-in query optimizer that rewrites
the input query as a local job to help minimize
latencies by using Hadoop dynamic scheduling
mechanisms. The query optimizer also takes care
of traditional query optimization such as optimal
order, in which tables are accessed in the order
where the most efficient join strategy is
implemented for the query. The design of the
recent version of the Big SQL engine has been
implemented by adopting a shared-nothing parallel
database architecture, in which it replaces the
underlying Hadoop framework with a massively
parallel processing SQL engine that is deployed
directly on the physical Hadoop Distributed File
System (HDFS). Therefore, the data can be
accessed by all other tools of the Hadoop
ecosystem, such as Pig and Hive. The system
infrastructure provides a logical view of the data
through the storage and management of metadata
information. In particular, a table is simply a view
that is defined over the stored data in the
underlying HDFS. In addition, the Big SQL engine
uses the Apache Hive database catalog facility for
storing the information about table definitions,
location and storage format. one of the
fundamental challenges with the Big SQL is they
are mainly designed for supporting analytical
workload without any consideration of
transactional workloads. I

Facebook has released Presto [29] as an open
source distributed SQL query engine for running
interactive analytic queries against large scale
structured data sources of sizes up to gigabytes to
petabytes. In particular, it targets analytic
operations where expected response times ranges
from sub-second to minutes. Presto allows
querying data where it lives, including Hive,
NoSQL databases (e.g., Cassandra), relational
databases or even proprietary data stores.
Therefore, a single Presto query can combine data
from multiple sources. Presto currently has limited

fault tolerance capabilities when querying. If a
process fails while processing, the whole query
must be re-run.

2. DECLARATIVE BIG GRAPH

PROCESSING FRAMEWORK

Currently the systems/stacks of large scale graph
processing platforms are suffering from the same
challenge. The aim of our work is to fill this gap
and introduce a flexible and extensible declarative
querying framework on top of the emerging
distributed graph processing platforms. Our
proposed framework consists of declarative graph-
based query language, metadata-based catalog for
distributed graphs and cost-based query compiler
that compiles the declarative graph-based queries
and computation generates efficient execution
plans using the low-level programming
abstractions of the underlying distributed graph
processing platforms. In general, for the graph
pattern matching operations, it is necessary to
express a query graph declaratively. To achieve
this goal, we rely on Cypher, the graph query
language of Neo4j [30]. In practice, there is an
ongoing effort to standardize Cypher as a graph
query language within the open Cypher project2.

Figure 1 illustrates our proposed framework
architecture with the following main components:

1- A declarative graph-based query
language, Cypher, that can express
various graph querying requirements (e.g.,
pattern matching, shortest path) of
different application domains (e.g., Web
graphs, social networks).

2- A cost-based query optimizer for
distributed graph storage. The query
optimizer collects metadata and statistics
about the stored graph partitions, generate
different execution plans and select
among them based on statistical cost-
based model.

3- The framework is designed in a form of
being agnostic towards the underlying
distributed graph processing platform.
Therefore, the query compiler of the
framework will be designed in a flexible
and extensible fashion that enables
compiling the generated execution plans
into the low-level programming
abstractions of the various distributed
graph processing platforms. For example,

2 https://www.opencypher.org/

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1087

our framework can translate Cypher
queries to SQL statements that are
evaluated using Big SQL systems [31] or
BSP implementation for graph pattern
match queries [32].

Figure 1: Framework Architecture

In practice, for any declarative query, there are
always various possible execution plans to evaluate
such query. Thus, our framework is equipped with
a query optimizer that seeks to optimize the query
execution time for any input query. In particular,
among a wide space of alternative possible query
plans for executing the user input query, the query
optimizer employs a cost model to predict the time
execution cost of each plan then selects the
execution plan that with the minimum cost for
actual execution. In order to achieve this goal, the
query coordinator node maintains a set of graph
statistics (e.g., structural indices, selectivity
information of value-based predicates on the
attributes of graph nodes and edges) which are
utilized by the query optimizer to estimate the time
execution cost of each possible query plan.

In practice, the query optimizer starts by compiling
the user input query (Q) into a logical query plan
using a defined set of algebraic operators. Using
the statistical information and the cost model, the
query optimizer compiles the logical query plan
into a set of sub-query physical query execution
plans. Finally, our framework relies on a set of
cost-based query optimization techniques that
attempt to estimate the cost of the various possible
execution plans and predicts the one with the
lowest-cost or at least a closest one to it.

3. EXPERIMENTS AND EVALUATION

A. Experimental Environment
Our experiments have been conducted on a cluster
of 20 nodes of Amazon EC2 Computing nodes3.
Each server has an Intel QuadCore 2.9 GHz CPU,
32 GB of main memory storage, 1 TB of SCSI
secondary storage and runs the 64-bit Fedora 13
Linux operating system. For the comparison with
Apache Giraph Systems, we have been using
Apache Hadoop 2.6.0, Apache Giraph 1.1.0 and
Java version 7. For the comparison with Impala,
we used version 2.5.

B. Datasets
 In our experiments, we used the popular LUBM
benchmark [33] which provides an ontology for
academic information (e.g., universities). This is a
synthetic dataset that can be generated with various
sizes by controlling the number of generated
universities. The original data generator of the
benchmark generates the dataset according to the
RDF graph model. Therefore, we have modified
the data generator of the benchmark to generate the
dataset according to the attributed graph model6. In
order to evaluate the scalability of our system, we
generated a dataset with 50K universities (1.2 TB).

C. Workload
In practice, there is no defined standard
benchmarks for evaluating the performance of
query engines. Therefore, we defined our own
categories queries which we used in our evaluation.
In particular, we used two main categories of
queries:

- Highly Selective Pattern Matching
Queries: This category represents a
connected graph pattern (e.g., path, star,
subgraph) with highly selective predicates
that matches to a small set of answers.

- Low Selective Pattern Matching Queries:
This category represents a connected
graph pattern with low selective
predicates that matches to a large set of
answers.

Our main performance metric is the query
execution time. In particular, each query
instantiation of the experimental workload has
been executed 5 times and execution times were
collected. All times are in seconds. In order to
ensure that any caching or system process activity
would not affect the collected results, the longest
and shortest times for each instantiation were

3 https://aws.amazon.com/ec2/

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1088

dropped and the remaining three execution times
for the 20 instantiations were averaged.

D. Experiments
 In our evaluations, we conducted two main
experiments:

- The focus of our first experiment is to
evaluate the efficiency of our query
optimization techniques. To achieve this
goal, we mapped our graph experimental
dataset into relational data which has been
stored on the Impala cluster. In addition,
we have translated the Cypher
experimental workload into SQL queries
with and without using our query
optimization techniques.

- Our second experiment focused on
evaluating the usability of the declarative
interface on the productivity of users. We
compared the required time for the users
to express their graph pattern matching
queries using the Cypher language and

E. Results

Figure 2: Impact of Query Optimization
Techniques

Figure 3: Declarative Querying vs BSP Querying

Figure 2 illustrates the results of our first
experiments. The results show the high impact of
our query optimization techniques on improving
the query performance. The impact of the low
selective pattern matching query category is higher
due to the effectiveness on avoiding the generation
of bigger intermediate results. Figure 3 show the
outcome for the comparison on user productivity
on implementing the graph pattern matching
queries using the declarative interface and the low-
level APIs of the BSP programming interface.
Clearly, the declarative interface is much easier
and faster for the end users to express their queries.
The more number of predicates and the more
complex the query, the higher the effectiveness of
the declarative interface on improving the user
productivity.

4. CONCLUSION AND FUTURE WORK

A graph is a popular data model that has become
pervasively used for modeling structural
relationships between objects. It has been
increasing used in several application domains
including social network, computer networks,
telecommunication networks, the Web, and
knowledge bases. In this article, we presented DG-
SPARQL, an efficient and declarative framework
for querying big graphs. Our experimental
evaluation validated the efficiency and scalability
of our approach. As a future work, we are planning
to support visual query interfaces that can further
reduce the burden of query formulation and ease
the process for different types of non-technical
users. Another future direction is to support the
analysis of unstructured and semi-structured data.
In addition, there is a clear lack of standard
benchmarks for evaluating the performance of
query engines and for building the required depth
and common global understanding. We are
planning to tackle this problem as a future work in
order to guide and improve the significance of the
outcomes of such evaluation and benchmarking
studies.

ACKNOWLEDGMENT

This research was funded by Deanship of Scientific
Research at Princess Nourah bint Abdulrahman
University. (Grant no: 227- 38- ص)

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1089

REFERENCES

[1] Malewicz, Grzegorz, Matthew H. Austern, Aart
JC Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a
system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of
data, pp. 135-146. ACM, 2010.

[2] Seo, Sangwon, Edward J. Yoon, Jaehong Kim,
Seongwook Jin, Jin-Soo Kim, and Seungryoul
Maeng. Hama: An efficient matrix
computation with the mapreduce framework.
In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International
Conference on, pp. 721-726. IEEE, 2010.

[3] Sakr, Sherif, Faisal Moeen Orakzai, Ibrahim
Abdelaziz, and Zuhair Khayyat. Large-Scale
Graph Processing Using Apache Giraph.
Springer, 2016.

[4] Low, Yucheng, Joseph E. Gonzalez, Aapo
Kyrola, Danny Bickson, Carlos E. Guestrin,
and Joseph Hellerstein. Graphlab: A new
framework for parallel machine
learning. arXiv preprint
arXiv:1408.2041 (2014).

[5] Gonzalez, Joseph E., Yucheng Low, Haijie Gu,
Danny Bickson, and Carlos Guestrin.
PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs. In OSDI,
vol. 12, no. 1, p. 2. 2012.

[6] Shao, Bin, Haixun Wang, and Yatao Li.
Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, pp. 505-516. ACM,
2013.

[7] Olston, Christopher, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language
for data processing. In Proceedings of the
2008 ACM SIGMOD international conference
on Management of data, pp. 1099-1110. ACM,
2008.

[8] Thusoo, Ashish, Joydeep Sen Sarma, Namit
Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. Hive: a warehousing
solution over a map-reduce
framework. Proceedings of the VLDB
Endowment 2, no. 2 (2009): 1626-1629.

[9] Dean, Jeffrey, and Sanjay Ghemawat.
MapReduce: simplified data processing on
large clusters. Communications of the
ACM 51, no. 1 (2008): 107-113.

[10] White, Tom. Hadoop: The definitive guide.
O'Reilly Media, Inc.", 2012.

[11] Sakr, Sherif. Big Data 2.0 Processing
Systems: A Survey. Springer, 2016.

[12] Sakr, Sherif, Anna Liu, and Ayman G.
Fayoumi. The family of mapreduce and large-
scale data processing systems. ACM
Computing Surveys (CSUR) 46, no. 1 (2013):
11.

[13] Bu, Yingyi, Bill Howe, Magdalena
Balazinska, and Michael D. Ernst. HaLoop:
Efficient iterative data processing on large
clusters. Proceedings of the VLDB
Endowment 3, no. 1-2 (2010): 285-296.

[14] Ekanayake, Jaliya, Hui Li, Bingjing Zhang,
Thilina Gunarathne, Seung-Hee Bae, Judy
Qiu, and Geoffrey Fox. Twister: a runtime for
iterative mapreduce. In Proceedings of the
19th ACM international symposium on high
performance distributed computing, pp. 810-
818. ACM, 2010.

[15] Zhang, Yanfeng, Qixin Gao, Lixin Gao, and
Cuirong Wang. imapreduce: A distributed
computing framework for iterative
computation. Journal of Grid Computing 10,
no. 1 (2012): 47-68.

[16] Chen, Rishan, Xuetian Weng, Bingsheng He,
and Mao Yang. Large graph processing in the
cloud. In Proceedings of the 2010 ACM
SIGMOD International Conference on
Management of data, pp. 1123-1126. ACM,
2010.

[17] Kang, U., Charalampos E. Tsourakakis, and
Christos Faloutsos. Pegasus: A peta-scale
graph mining system implementation and
observations. In Data Mining, 2009. ICDM'09.
Ninth IEEE International Conference on, pp.
229-238. IEEE, 2009.

[18] Bu, Yingyi, Vinayak Borkar, Jianfeng Jia,
Michael J. Carey, and Tyson Condie. Pregelix:
Big (ger) graph analytics on a dataflow
engine. Proceedings of the VLDB
Endowment 8, no. 2 (2014): 161-172.

[19] Salihoglu, Semih, and Jennifer Widom. GPS:
A graph processing system. In Proceedings of
the 25th International Conference on Scientific
and Statistical Database Management, p. 22.
ACM, 2013.

[20] Khayyat, Zuhair, Karim Awara, Amani
Alonazi, Hani Jamjoom, Dan Williams, and
Panos Kalnis. Mizan: a system for dynamic
load balancing in large-scale graph
processing. In Proceedings of the 8th ACM
European Conference on Computer Systems,
pp. 169-182. ACM, 2013.

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1090

[21] Xin, Reynold S., Joseph E. Gonzalez, Michael
J. Franklin, and Ion Stoica. Graphx: A resilient
distributed graph system on Spark. In First
International Workshop on Graph Data
Management Experiences and Systems, p. 2.
ACM, 2013.

[22] Wang, Guozhang, Wenlei Xie, Alan J.
Demers, and Johannes Gehrke. Asynchronous
Large-Scale Graph Processing Made Easy.
In CIDR, vol. 13, pp. 3-6. 2013.

[23] Stutz, Philip, Abraham Bernstein, and William
Cohen. Signal/collect: graph algorithms for
the (semantic) web. The Semantic Web–ISWC
2010 (2010): 764-780.

[24] Huai, Yin, Ashutosh Chauhan, Alan Gates,
Gunther Hagleitner, Eric N. Hanson, Owen
O'Malley, Jitendra Pandey, Yuan Yuan, Rubao
Lee, and Xiaodong Zhang. Major technical
advancements in apache Hive. In Proceedings
of the 2014 ACM SIGMOD international
conference on Management of data, pp. 1235-
1246. ACM, 2014.

[25] He, Yongqiang, Rubao Lee, Yin Huai, Zheng
Shao, Namit Jain, Xiaodong Zhang, and
Zhiwei Xu. RCFile: A fast and space-efficient
data placement structure in MapReduce-based
warehouse systems. In Data Engineering
(ICDE), 2011 IEEE 27th International
Conference on, pp. 1199-1208. IEEE, 2011.

[26] Bittorf, M. K. A. B. V., Taras Bobrovytsky,
Casey Ching Alan Choi Justin Erickson,
Martin Grund Daniel Hecht, Matthew Jacobs
Ishaan Joshi Lenni Kuff, Dileep Kumar Alex
Leblang, Nong Li Ippokratis Pandis Henry
Robinson, David Rorke Silvius Rus, John
Russell Dimitris Tsirogiannis Skye
Wanderman, and Milne Michael Yoder.
Impala: A modern, open-source SQL engine
for Hadoop. In Proceedings of the 7th Biennial
Conference on Innovative Data Systems
Research. 2015.

[27] Borthakur, Dhruba. HDFS architecture
guide. Hadoop Apache Project 53 (2008).

[28] Gray, S., F. Özcan, H. Pereyra, B. van der
Linden, and A. Zubiri. IBM Big SQL 3.0: SQL-
on-Hadoop without compromise. (2014).

[29] Traverso, Martin. Presto: Interacting with
petabytes of data at Facebook. Retrieved
February 4 (2013): 2014.

[30] Webber, Jim. A programmatic introduction to
Neo4j. In Proceedings of the 3rd annual
conference on Systems, programming, and
applications: software for humanity, pp. 217-
218. ACM, 2012.

[31] Chong, Eugene Inseok, Souripriya Das,
George Eadon, and Jagannathan Srinivasan.
An efficient SQL-based RDF querying scheme.
In Proceedings of the 31st international
conference on Very large data bases, pp. 1216-
1227. VLDB Endowment, 2005.

[32] Fard, Arash, M. Usman Nisar, Lakshmish
Ramaswamy, John A. Miller, and Matthew
Saltz. A distributed vertex-centric approach
for pattern matching in massive graphs. In Big
Data, 2013 IEEE International Conference on,
pp. 403-411. IEEE, 2013.

[33] Guo, Yuanbo, Zhengxiang Pan, and Jeff
Heflin. LUBM: A benchmark for OWL
knowledge base systems. Web Semantics:
Science, Services and Agents on the World
Wide Web 3, no. 2 (2005): 158-182.

