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ABSTRACT 
 

Recently, people, devices, processes and other entities have been more connected than at any other point in 
history. In general, graphs have been used to represent data sets in various application domains including 
computational biology, social science, telecommunications, astronomy, semantic web and protein networks 
among many others. In practice, systemsstacks of large scale graph processing platforms are suffering from 
the lack of declarative processing interface. They are mainly relying on low level programming abstractions 
which can be only used by sophisticated software developers and are not adequate for many users. In order 
to tackle this challenge and improve the performance and user acceptance of large scale graph processing 
frameworks, we present a declarative querying framework that can seamlessly integrate with various big 
graph processing system platforms. Our experimental evaluation shows the effectiveness and efficiency of 
our proposed framework. 
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1.  INTRODUCTION  

The ubiquity of the Internet has dramatically 
changed the size, speed and nature of the generated 
data. Almost every human becomes a data 
generator and every business becames a digital 
business. Thus, we are witnessing a data explosion. 
In the last years, several technologies have 
contributed to this data explosion including mobile 
computing, Web 2.0, social media, social network, 
cloud computing and Software-as-a-Service 
(SaaS). In the future, it is expected that the Internet 
of Things will further amplify this challenge. 
Several things would be able to get connected to 
the Internet, and thus there will be lots of data 
passed from users to devices, to servers, and back. 
Hence, in addition to the billions of people who are 
currently using the Internet and daily producing 
lots of data, watches, cars, fridges, toaster, and 
many other devices will be online and continuously 
generating data as well. It is quite expected that in 
the near future, our toasters will be able to 
recommend types of bread based on suggested 
information from our friends on the Social 
Networks. 

With the recent emerging wave of technologies 
and applications, the world has becoming more 
connected than ever. Graph is a popular and neat 
data structure which is used to model the data as an 
arbitrary set of objects (vertices) connected by 
various kinds of relationships (edges). With the 

tremendous increase on the size of the graph-
structured data, large-scale graph processing 
systems have been crucially on-demand and 
attracted a lot of interest. In the last few years, 
several specialized platforms which are designed to 
serve the unique processing requirements of 
distributed large-scale graph processing have been 
introduced (e.g, Google Pregel [1], Apache Hama 
[2], Apache Giraph [3], GraphLab [4], PowerGraph 
[5] and Microsoft Trinity [6]). These systems 
provide low-level programmatic abstractions for 
performing iterative parallel computations, 
querying and analysis of large graphs on clustered 
systems. In practice, many programmers and data 
scientists prefer to express their analytic jobs 
declaratively. For example, in the early days of the 
Hadoop framework, the defacto standard in the 
domain of big data processing, the lack of 
declarative languages to express the large-scale 
data processing tasks has limited its practicality 
and the wide acceptance and the usage of the 
framework. Therefore, several declarative querying 
systems on top of the Hadoop framework (e.g., Pig 
[7], Hive [8]) have been introduced to fill this gap 
and provide higher-level languages for expressing 
large scale data analysis tasks on Hadoop. In 
practice, these languages have been widely adopted 
in the business and research communities. 
Currently the systems/stacks of large scale graph 
processing platforms are suffering from the same 
challenge. The aim of our work is to provide 
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higher-level languages for expressing large scale 
data analysis tasks in the domain of distributed and 
large-scale graph processing. In particular, we 
present a declarative query processing framework 
on top of the emerging distributed graph processing 
platform. The proposed framework relies on a 
declarative graph-based query language, Cypher, a 
metadata-based catalog for distributed graphs and 
cost-based query compiler that compiles the 
declarative graph-based queries and computation 
generates efficient execution plans using the low-
level programming abstractions of   the underlying 
distributed graph processing platforms. 

BIG GRAPH PROCESSIG 

Recently, people, devices, processes and other 
entities have been more connected than at any 
other point in history. In general, the complex 
relationships, interactions and interdependencies 
between objects are naturally modeled as graphs. 
Therefore, graphs have been used to represent data 
sets in various application domains including 
computational biology, social science, 
telecommunications, astronomy, semantic web, 
protein networks, and many more [3]. For example, 
in a social graph, nodes are commonly used to 
represent people while the friendship relationships 
among them are modelled via edges.  
In principle, graph analytics is considered as one of 
the most important big data discovery tool [3]. For 
example, it enables inspecting fraud operations in a 
complex interaction network, identifying 
influential persons in a social network and 
recognizing product affinities by analyzing 
community buying patterns. In practice, nowadays, 
graphs with millions and billions of nodes and 
edges have become very common. For example, in 
2012, Facebook has reported that its social network 
graph contains more than a billion users (nodes) 
and more than 140 billion friendship relationships 
(edges) [3]. The continuous growth in the size of 
the graph datasets requires scalable computing 
resources to achieve the goal of effectively 
analyzing and utilizing them. In general, one of the 
most important challenges in processing large scale 
graphs, in addition to their size, is the inherent 
irregular structure and the iterative nature of graph 
processing and computation algorithms. 
 
In practice, the popular MapReduce framework [9] 
and its open source realization, the Apache Hadoop 
project [10], together associated with its ecosystem 
(e.g., Apache Pig [7], Apache Hive [8]) has 
represented the pervasive technology for big data 
processing platforms [11]. In principle, the 

MapReduce framework provides a simple but 
powerful programming model that supports the 
developers to easily build parallel and scalable 
algorithms to analyze massive amounts of data on 
clusters of commodity machines. However, the 
MapReduce programming model has its own 
limitations [12]. For example, it does not provide a 
direct support for iterative data analysis (or 
equivalently, recursive) tasks. Instead, users need 
to design iterative jobs by manually chaining 
various MapReduce tasks and orchestrating their 
execution via a controller program [12]. 
 
Generally, graph processing algorithms are 
iterative and need to traverse the graph in some 
way (e.g., breadth first or depth first). In practice, 
graph algorithms can be mapped into a sequence of 
lined MapReduce jobs where the whole state of the 
graph get passed from one task to the next. 
However, such approach is not adequate for graph 
processing and commonly leads to inefficient 
performance because of the overhead on the 
communication costs which is also associated with 
the serialization overhead in addition to the need of 
coordinating the steps of a chained MapReduce. 
Several approaches have proposed Hadoop 
extensions (e.g., HaLoop [13], Twister [14], 
iMapReduce [15]) to optimize the iterative support 
of the MapReduce framework and other 
approaches have attempted to implement graph 
processing operations on top of the MapReduce 
framework (e.g. Surfer [16], PEGASUS [17]). 
However, these approaches remain inefficient for 
the graph processing case because the efficiency of 
graph computations depends heavily on inter-
processor bandwidth as graph structures are sent 
over the network after each iteration. While much 
data might be unaltered from one iteration to 
another, the data must be reloaded and reprocessed 
at each iteration, resulting in the unnecessary 
wastage of I/O, network bandwidth, and processing 
power. In addition, the ending condition might 
involve the detection of when a fix point is 
reached. The condition itself might need to define 
an extra MapReduce task for each iteration which 
consequently increases the resource usage in terms 
of scheduling additional tasks, reading additional 
data from disk, and transmitting additional data 
through the network. 
 
In order to tackle the inherent performance 
problem of the MapReduce framework, several 
specialized platforms which are designed to serve 
the unique processing requirements of large scale 
graph processing have recently emerged. These 
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systems provide programmatic abstractions for 
performing iterative parallel analysis of large 
graphs on clustered systems. In particular, in 2010, 
Google has pioneered this area by introducing the 
Pregel [1] system as a scalable platform for 
implementing graph algorithms. Since then, we 
have been witnessing the development of a large 
number of scalable graph processing platforms. For 
example, the Pregel system has been cloned by 
various open source projects such as Apache 
Giraph [3] and Apache Hama [2]. Pregel system 
has also been further optimized by other systems 
such as Pregelix [18], Mizan [20] and GPS [19]. In 
addition, a family of related systems has been 
initiated by the GraphLab system [4] as an open 
source project at Carnegie Mellon University. 
Furthermore, some other systems have been also 
introduced such as GraphX [21], Trinity [6], 
GRACE [22] and Signal/Collect [23]. 
 
In the early days of the Hadoop framework, the 
lack of declarative languages to express the large-
scale data processing tasks has represented one of 
the main limitations towards its practical usage and 
wide acceptance by many users [12]. As a result, 
several declarative querying frameworks (e.g., 
Apache Pig, Apache Hive) have been introduced 
on top of the Hadoop stack in order to fill this gap. 
In practice, these frameworks have gained wide 
attention and adoption in the industry and research 
communities. Nowadays, the systems/stacks of 
large scale graph processing platforms are 
suffering from the same challenge of the early days 
of the Hadoop framework. Therefore, with the 
current momentum and increasing interest on 
building and using distributed graph processing 
platforms, we believe that it is beyond doubt that 
high level programming abstractions and 
declarative querying frameworks that ease the 
user’s job for expressing their graph processing 
jobs and enable the underlying systems/stacks to 
perform automatic optimization are crucially 
required and represent an important research 
direction to enrich this domain. 

BIG SQL PROCESSING SYSTEMS 

Several systems have been introduced to support 
the SQL flavor on top of the Hadoop infrastructure 
and provide competing and scalable performance 
on processing large scale structured data. For 
example, Hive [8] is considered to be the first 
system which has been introduced to support SQL-
on-Hadoop with familiar relational database 
concepts such as tables, columns, and partitions. 
Hive has been widely used in many reputable 

organizations to manage and process large volumes 
of data, such as Facebook, eBay, LinkedIn and 
Yahoo! [8]. Hive supports all of the major 
primitive types (for example, integers, floats, and 
strings) and complex types (for example, maps, 
lists, and structs). It also supports queries that are 
expressed in an SQL-like declarative language, 
Hive Query Language (HiveQL1), which represents 
a subset of SQL92, and therefore can be easily 
understood by anyone who is familiar with SQL. 
These queries automatically compile into 
MapReduce jobs that are run by using Hadoop. 
HiveQL enables users to plug custom MapReduce 
scripts into queries as well. Recently, Huai et al. 
[24] have reported about the major technical 
advancements that have been implemented into the 
HIVE project by its development community. 
These advancements include a new file format, 
Optimized Record Columnar File (ORC File) [25], 
which is designed to provide high storage and data 
access efficiency with low overhead. In addition, 
the query planning component has been updated to 
provide more sophisticated optimizations for 
complex queries and significantly reduce 
unnecessary operations in the executed query 
plans. Hive has some limitations eg. Updating data 
is complicated  because of using HDFS, no real 
time access to data and latency for Hive queries is 
generally very high. 
 
Impala [26] is another open source project, built by 
Cloudera, to provide a massively parallel 
processing SQL query engine that runs natively in 
Apache Hadoop. Impala does not use Hadoop to 
run the queries. Instead, it relies on its own set of 
daemons, which are installed alongside the data 
nodes and are tuned to optimize the local 
processing to avoid bottlenecks. In principle, 
Impala is part of the Hadoop ecosystem and shares 
the same infrastructure (for example, metadata, 
Apache Hive). Therefore, by using Impala, the user 
can query data which is stored in Hadoop 
Distributed File System (HDFS) [27]. It also uses 
the same metadata, SQL syntax (HiveQL), that 
Apache Hive uses. One of the main limitations of 
Impala is that it relies on an in-memory join 
implementation. Therefore, queries can fail if the 
joined tables can’t fit into memory. Impala does 
not replace Hive or other frameworks built on 
MapReduce for long-running batch-oriented 
queries. Impala is not fit as a query layer to support 

                                                           
1https://cwiki.apache.org/confluence/display/Hive/

LanguageManual  
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operational/OLTP applications (No update/deletes, 
not optimized for point look-ups). 
 
Big SQL [28] is the SQL interface for the IBM big 
data processing platform, InfoSphere BigInsights, 
which is built on the Apache Hadoop framework. 
In particular, it provides SQL access to data that is 
stored in InfoSphere BigInsights and uses the 
Hadoop framework for complex data sets and 
direct access for smaller queries. In the initial 
implementation of Big SQL, the engine was 
designed to decompose the SQL query into a series 
of Hadoop jobs. For interactive queries, Big SQL 
relied on a built-in query optimizer that rewrites 
the input query as a local job to help minimize 
latencies by using Hadoop dynamic scheduling 
mechanisms. The query optimizer also takes care 
of traditional query optimization such as optimal 
order, in which tables are accessed in the order 
where the most efficient join strategy is 
implemented for the query. The design of the 
recent version of the Big SQL engine has been 
implemented by adopting a shared-nothing parallel 
database architecture, in which it replaces the 
underlying Hadoop framework with a massively 
parallel processing SQL engine that is deployed 
directly on the physical Hadoop Distributed File 
System (HDFS). Therefore, the data can be 
accessed by all other tools of the Hadoop 
ecosystem, such as Pig and Hive. The system 
infrastructure provides a logical view of the data 
through the storage and management of metadata 
information. In particular, a table is simply a view 
that is defined over the stored data in the 
underlying HDFS. In addition, the Big SQL engine 
uses the Apache Hive database catalog facility for 
storing the information about table definitions, 
location and storage format. one of the 
fundamental challenges with the Big SQL is they 
are mainly designed for supporting analytical 
workload without any consideration of 
transactional workloads. I 
 
Facebook has released Presto [29] as an open 
source distributed SQL query engine for running 
interactive analytic queries against large scale 
structured data sources of sizes up to gigabytes to 
petabytes. In particular, it targets analytic 
operations where expected response times ranges 
from sub-second to minutes. Presto allows 
querying data where it lives, including Hive, 
NoSQL databases (e.g., Cassandra), relational 
databases or even proprietary data stores. 
Therefore, a single Presto query can combine data 
from multiple sources. Presto currently has limited 

fault tolerance capabilities when querying. If a 
process fails while processing, the whole query 
must be re-run. 
 

2. DECLARATIVE BIG GRAPH 

PROCESSING FRAMEWORK 

Currently the systems/stacks of large scale graph 
processing platforms are suffering from the same 
challenge. The aim of our work is to fill this gap 
and introduce a flexible and extensible declarative 
querying framework on top of the emerging 
distributed graph processing platforms. Our 
proposed framework consists of declarative graph-
based query language, metadata-based catalog for 
distributed graphs and cost-based query compiler 
that compiles the declarative graph-based queries 
and computation generates efficient execution 
plans using the low-level programming 
abstractions of   the underlying distributed graph 
processing platforms. In general, for the graph 
pattern matching operations, it is necessary to 
express a query graph declaratively. To achieve 
this goal, we rely on Cypher, the graph query 
language of Neo4j [30]. In practice, there is an 
ongoing effort to standardize Cypher as a graph 
query language within the open Cypher project2.  
 
Figure 1 illustrates our proposed framework 
architecture with the following main components: 

1- A declarative graph-based query 
language, Cypher, that can express 
various graph querying requirements (e.g., 
pattern matching, shortest path) of 
different application domains (e.g., Web 
graphs, social networks).  

2- A cost-based query optimizer for 
distributed graph storage. The query 
optimizer collects metadata and statistics 
about the stored graph partitions, generate 
different execution plans and select 
among them based on statistical cost-
based model. 

3- The framework is designed in a form of 
being agnostic towards the underlying 
distributed graph processing platform. 
Therefore, the query compiler of the 
framework will be designed in a flexible 
and extensible fashion that enables 
compiling the generated execution plans 
into the low-level programming 
abstractions of the various distributed 
graph processing platforms. For example, 

                                                           
2 https://www.opencypher.org/  
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our framework can translate Cypher 
queries to SQL statements that are 
evaluated using Big SQL systems [31] or 
BSP implementation for graph pattern 
match queries [32].  

 

 
Figure 1: Framework Architecture 

 
In practice, for any declarative query, there are 
always various possible execution plans to evaluate 
such query. Thus, our framework is equipped with 
a query optimizer that seeks to optimize the query 
execution time for any input query. In particular, 
among a wide space of alternative possible query 
plans for executing the user input query, the query 
optimizer employs a cost model to predict the time 
execution cost of each plan then selects the 
execution plan that with the minimum cost for 
actual execution. In order to achieve this goal, the 
query coordinator node maintains a set of graph 
statistics (e.g., structural indices, selectivity 
information of value-based predicates on the 
attributes of graph nodes and edges) which are 
utilized by the query optimizer to estimate the time 
execution cost of each possible query plan.  
 
In practice, the query optimizer starts by compiling 
the user input query (Q) into a logical query plan 
using a defined set of algebraic operators. Using 
the statistical information and the cost model, the 
query optimizer compiles the logical query plan 
into a set of sub-query physical query execution 
plans. Finally, our framework relies on a set of 
cost-based query optimization techniques that 
attempt to estimate the cost of the various possible 
execution plans and predicts the one with the 
lowest-cost or at least a closest one to it. 

3. EXPERIMENTS AND EVALUATION 

A. Experimental Environment  
Our experiments have been conducted on a cluster 
of 20 nodes of Amazon EC2 Computing nodes3. 
Each server has an Intel QuadCore 2.9 GHz CPU, 
32 GB of main memory storage, 1 TB of SCSI 
secondary storage and runs the 64-bit Fedora 13 
Linux operating system. For the comparison with 
Apache Giraph Systems, we have been using 
Apache Hadoop 2.6.0, Apache Giraph 1.1.0 and 
Java version 7. For the comparison with Impala, 
we used version 2.5. 
 
B. Datasets  
 In our experiments, we used the popular LUBM 
benchmark [33] which provides an ontology for 
academic information (e.g., universities). This is a 
synthetic dataset that can be generated with various 
sizes by controlling the number of generated 
universities. The original data generator of the 
benchmark generates the dataset according to the 
RDF graph model. Therefore, we have modified 
the data generator of the benchmark to generate the 
dataset according to the attributed graph model6. In 
order to evaluate the scalability of our system, we 
generated a dataset with 50K universities (1.2 TB). 
 
C. Workload  
In practice, there is no defined standard 
benchmarks for evaluating the performance of 
query engines. Therefore, we defined our own 
categories queries which we used in our evaluation. 
In particular, we used two main categories of 
queries: 

-  Highly Selective Pattern Matching 
Queries: This category represents a 
connected graph pattern (e.g., path, star, 
subgraph) with highly selective predicates 
that matches to a small set of answers. 

- Low Selective Pattern Matching Queries: 
This category represents a connected 
graph pattern with low selective 
predicates that matches to a large set of 
answers. 

Our main performance metric is the query 
execution time. In particular, each query 
instantiation of the experimental workload has 
been executed 5 times and execution times were 
collected. All times are in seconds. In order to 
ensure that any caching or system process activity 
would not affect the collected results, the longest 
and shortest times for each instantiation were 

                                                           
3 https://aws.amazon.com/ec2/  



Journal of Theoretical and Applied Information Technology 
28th February 2018. Vol.96. No 4 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
1088 

 

dropped and the remaining three execution times 
for the 20 instantiations were averaged. 
 
D. Experiments  
 In our evaluations, we conducted two main 
experiments: 

- The focus of our first experiment is to 
evaluate the efficiency of our query 
optimization techniques. To achieve this 
goal, we mapped our graph experimental 
dataset into relational data which has been 
stored on the Impala cluster. In addition, 
we have translated the Cypher 
experimental workload into SQL queries 
with and without using our query 
optimization techniques. 

- Our second experiment focused on 
evaluating the usability of the declarative 
interface on the productivity of users. We 
compared the required time for the users 
to express their graph pattern matching 
queries using the Cypher language and    

 
E. Results  
 

 
Figure 2: Impact of Query Optimization 
Techniques 

 

Figure 3: Declarative Querying vs BSP Querying 

 

Figure 2 illustrates the results of our first 
experiments. The results show the high impact of 
our query optimization techniques on improving 
the query performance. The impact of the low 
selective pattern matching query category is higher 
due to the effectiveness on avoiding the generation 
of bigger intermediate results. Figure 3 show the 
outcome for the comparison on user productivity 
on implementing the graph pattern matching 
queries using the declarative interface and the low-
level APIs of the BSP programming interface. 
Clearly, the declarative interface is much easier 
and faster for the end users to express their queries. 
The more number of predicates and the more 
complex the query, the higher the effectiveness of 
the declarative interface on improving the user 
productivity. 

4. CONCLUSION AND FUTURE WORK 

A graph is a popular data model that has become 
pervasively used for modeling structural 
relationships between objects. It has been 
increasing used in several application domains 
including social network, computer networks, 
telecommunication networks, the Web, and 
knowledge bases. In this article, we presented DG-
SPARQL, an efficient and declarative framework 
for querying big graphs. Our experimental 
evaluation validated the efficiency and scalability 
of our approach. As a future work, we are planning 
to support visual query interfaces  that can further 
reduce the burden of query formulation and ease 
the process for different types of non-technical 
users. Another future direction is to support the 
analysis of unstructured and semi-structured data. 
In addition, there is a clear lack of standard 
benchmarks for evaluating the performance of 
query engines and for building the required depth 
and common global understanding. We are 
planning to tackle this problem as a future work in 
order to guide and improve the significance of the 
outcomes of such evaluation and benchmarking 
studies. 
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