
Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

995

PREVENTING SECURITY ATTACKS ON MOBILE PATTERN
PASSWORDS

1Bh PADMA, 2GVS RAJKUMAR
1Gayatri Vidya Parishad, Rushikonda Beach Road, Visakhapatnam-45, INDIA

2GITAM, Rushikonda Beach Road, Visakhapatnam-45, INDIA

E-mail: 1padma.bhogaraju@gmail.com, 2gvsrajkumar@gmail.com

ABSTRACT

An Android Smartphone is a personal device, which keeps many of our personal files and data, such as
photos, videos, messages, bank account information etc. Keeping these files safe from outsiders may be
troublesome especially when they try to speculate the device passwords. So Android authentication
processes should always pursue robust security enhancements to preserve the security of the sensitive data
stored in the mobiles. For pattern locking systems of Android, older versions such as Kit Kat and Lollipop
make use of authentication systems which rely on SHA-1 and MD5 unsalted hashes, but the latest versions
such as Android Marshmallow employ Gatekeeper Mechanism and store the passwords and authenticate
the users in a trusted execution environment and are more secured from brute-forcing. The former methods
are vulnerable to dictionary and rainbow table attacks since they are unsalted hashes, whereas the later
Android hashing schemes such as HMAC or Scrypt hashes use salts for hashing but cannot flee from
hacker’s forensic tools that crack the passwords and they do need an additional hardware support.
Therefore this paper presents two substitute methodologies that suggest a new approach to enhance the
basic SHA-1 hashing scheme using Elliptic Curves to prevent pre-computation attacks such as dictionaries,
rainbow tables and brute forcing on pattern password scheme. These proposed methods seem to be simple
and secure without employing a complex hardware-backed environment such as Trusted Execution
Environment (TEE). This paper also presents a comparison among the proposed schemes with respect to
Strict Avalanche Effect and CPU Execution Times after the implementation.

Keywords: Android, Smartphone, SHA-1, Brute- Force, Dictionaries, TEE.

1. INTRODUCTION

Mobile devices are more powerful than they were
in the past, and these devices have a relatively huge
storage capacity. Furthermore, mobile devices have
gone from being vague novelties to becoming
mainstream technologies. Providing security to
mobile phones using robust cryptographic
authentication techniques is very important now a
days, because they protect confidential data.
Especially for pattern unlock systems of Android,
there is a lack of awareness in the people about
various security breaches.

Android offers many types of password
lock protection schemes. Among them pattern
locking system is a graphical password
authentication system[17], which is a mix of lines
drawn by the phone owner linking the points on a

matrix for unlocking his phone. But these systems
seem to be insecure enough to be cracked using
Smudge Attacks[16] and particularly suffer from
pre-computation attacks in the lower versions of
Android such as Kit Kat because they generate
SHA-1 unsalted hashes for user authentication[2].
The pattern selected by the user must have at least
four points where each point only can be used once.
Statistically, it is very simple to experiment all the
combinations between 0123 and 876543210 using
either dictionaries or rainbow tables and many
mobile unlocking methods are also available in the
web. But here the focus is on gaining the password
file attempting passive attacks. When your mobile
is rooted and USB enabled, people can capture the
gesture.key[8] file in which the pattern password
i.e. SHA-1 hash of the pattern, is stored in
“ /data/system/” folder. If you have full admission
to a mobile, you can just take away or replace the

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

996

file that contains the SHA-1[13] pattern password.
Figure 1 and Figure 2 shows how an attacker uses
forensic tools[7] such as Andriller to achieve the
password using a dictionary that can be
downloaded and using SQLite browser. He easily
finds the original pattern by running the query,

 “Select * from Rainbow Table where hash
 = “2c3422d33fb9dd9cde87657408e48f4e635713cb”.

In this situation, the password storage file

could be accessed, and the pattern password could
be cracked. However, the attacker just needs to
remove the key storage file directly, and the unlock
pattern will fail. But if the attacker attacks
passively, he silently gets the password using
dictionary attacks through which he gains the
access to the device a number of times. After Kit
Kat 4.4 Android brought some changes in the
authentication systems, which include salts for
hashing particularly in Lollipop and android
Marshmallow[9] versions. But salts will not solve
the problem completely because we store them in
database, if compromised the attacker may brute-
force the password using the salt value. Once the
salt is compromised, the attacker finds some way to
gain the password using pre-computations, because
having 100% security[21] for any security system is
not achievable.

In this paper we concentrate on how to get

rid of pre-computation on patterns. We need to
have a solution to modify pattern authentication
systems so that they can withstand to dictionaries.
The proposed methodologies change the
representation of the pattern entirely different and
the pattern representation changes from user to user
depending on his identities. We have included the
application of elliptic curves in Android pattern
representation, as the small key sizes of Elliptic
Curve Crytography make it very smart for devices
with restricted storage and processing power. So
ECC is supposed to be the best candidate for
mobile devices. After the pattern is selected by the
user, it is transformed into another form which is
unpredictable using dictionaries and rainbow tables.
Also we enhance this idea to generate a dynamic
salt value for the hash[11] to be stored in the
databases. As the salt need not be stored along with
the hash, it makes the pattern password difficult to
guess using brute-forcing and obviously salts
always prevent dictionary attacks.

Figure 1 : Andriller tool

Figure 2: Using SQLite Browser

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

997

2. SALTS

The best way to safeguard passwords is to make use
of salted password hashing[23]. There are lot of
conflicting ideas and false impressions on how to do
password hashing perfectly. Ahead of hashing, we
can randomize the hashes either by appending or
prepending a string called a salt. This causes the
similar password hash into an entirely dissimilar
string each time. Salting" is a security practice of
attaching random data (a "salt") to a password
sooner than hashing it and storing the hashed value.

The hashes are deterministic and present a
problem with unsalted passwords. In the simplest
case, if two people select the same password, then
their hashed passwords are also same. And more
importantly, if we are trying to crack a number of
unsalted passwords, any result could strike any of
the passwords. By salting, a successful attack can
be practical to only one password at a time, and it is
not easy to tell whether two passwords (with
different salts) are same.

2.1 Salts and Dictionaries
In fact, there's a general strategy based on this plan
is called a dictionary. A dictionary is a list of
common passwords. If we can somehow get the
passwords file, then with a dictionary, you can find
users using common passwords. Salting passwords
resolves this problem of dictionary attacks. In a
salting scheme, we don’t find the hash of a user’s
password by combining it with some additional
random data, and later hashing that combination or
concatenated strings. The additional information is
known as the salt. We can use lots of methods to
generate salts. There's a complex set of dealings in
the correct salting strategy, which are beyond the
scope of this research. We can choose a fixed salt
string. This salt is added to each password, or we
can make salts unique to each password. These salts
are added along with user password hashed in the
system.

If each user has a different salt that means

that any attempt to breach the system needs to look
at each user separately. If a salt is added, the
hackers can't compute the hash code for a given
common password once, and if each user has a
different salt, then even if you've got terrible
passwords, a thief needs to do a lot of labor to
break the system. The attackers have to recompute
the dictionaries and rainbow tables for each
possible salt value or user.

Salts effectively increase the amount of
effort needed to crack the passwords. If we add 12
bits of salt, then a rainbow table requires 4096
times more entries to discover common passwords.
If the salt is long enough, then it will not be
possible to create a rainbow table at all. If they try
to attack you without a rainbow table, a 12 bit salt
means that the attacker needs to attack the
passwords of each of the user’s separately. Even if
they know the value of the salt, you’ve made it
much harder for them to violate your security.

A public salt will not make dictionary

attacks harder when cracking a single password.
The attacker has admission into both the hashed
password and the salt value, so when operating the
dictionary attack, the attacker can simply employ
the known salt when attempting to crack the
password. So a static salt stored in a device/system
database is always having a security breach to be
hacked at any time.

2.2 Brute forcing with Salts in Android

Authentication

The salt is stored in plaintext in the server or device
database. To validate the user whenever he logs in,
we need to ensure the password is correct, and we
need the salt value, which usually is stored in the
systems directory beside with the password or it is a
part of the hash string. As the attacker won't be able
to find out the salt value in advance, they can't
pre-compute a lookup table or rainbow table. If each
user's password is hashed by means of a different
salt, each time he logs in, the reverse lookup table
attack will not work either.

For example, SHA-1 hash of

(1234+QXLUF1bgIAde)

= 73a4b911081c1689f037e98b65ed6d95ba53f25.

But salted hashes are susceptible to brute-
force attacks if they are not protected well. Even the
most current versions of Android employ salts to
generate the hashes such as Marshmallow, they are
always liable to security vulnerabilities because
hackers always try to attack the password files and
salt values using certain tools to access the root
directory and hack the salts.

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

998

3. MOTIVATION OF THE RESEARCH

Android latest versions such as Marshmallow,
utilize Gatekeeper mechanism and needs a special
hardware support such as TEE (Trusted Execution
Environment). But there is a lack of research, in
exploring how to make pattern authentication
systems, stronger against pre-computations without
using a special hardware support. So our motivation
in this research is to invent a simple, enhanced
design of the existing SHA-1 systems for pattern
passwords against dictionaries and brute-forcing.

4. ELLIPTIC CURVES

An elliptic curve is a curve and is also a
group. Elliptic curves[6] come into view in many
areas of mathematics, starting from number theory
to complex analysis, and from cryptography to
mathematical physics. An Elliptic Curve equation is
of the structure E: y2=x3 + ax + c (mod p). The sum
of two points P=(x1, y1) and Q=(x2, y2) is (x3,
y3) where x3 = 2 – x1 – x2, and
y3 =  (x1 – x3) – y1, with  = (y2 – y1)/(x2 – x1)
if P!=Q then x1 = 2 – 2x, y1 =  (x – x1) – y, and
 = (3x2 + a)/2y if P = Q. Elliptic curve
cryptosystems are more extensive in everyday-life
applications. The core operation of elliptic curve
cryptosystems is the scalar multiplication[4] which
multiplies some point on an elliptic curve by some
(usually secret) scalar i.e. if P is a point on the
curve, nP=P+P+…+n times. For any two points P
and Q, it is computationally difficult to find an
integer n such that P=nQ. This is called as discrete
logarithm problem[10] which is difficult to solve
and makes elliptic curve cryptosystems stronger to
withstand the attacks.

Elliptic Curve[5] Cryptographic
algorithms have the advantage of offering an equal
level of security of RSA, using smaller key sizes.
But while implementing elliptic curve protocols,
people face difficulty of mapping a message on to
the elliptic curve. Koblitz[1] proposed a technique
to convert a message to a point on the curve.
According to Koblitz, to map a message point m on
to the curve, choose a parameter, for example k.
For each number mk, obtain x=mk + 1 and attempt
to find a solution for y in the elliptic curve
equation. If we are unable to find such y that
satisfies the curve equation for given x value, try x
= mk +2 and then x = mk +3 till you can solve for
y. Generally, we will find such a y before we get x
= mk + k - 1. Then take the point (x, y) to represent

m. For reverse mapping, the point (x, y) is set to m
where m is the greatest integer less than (x-1)/k.

5. PROPOSED METHODOLOGIES

Hackers can capture the gesture.key file when
people leave their mobiles rooted and USB enabled.
If someone gains access to your mobile device, they
can just remove or replace the file containing the
SHA-1 hash of the pattern password. Android
brought some modifications in the authentication
systems, which include salts for hashing i.e. in
Lollipop and Marshmallow versions. But even
though salts are added to the passwords, the hackers
may still gain the passwords using brute-force
attacks, as salts are stored in the device databases
and they can be compromised. There was no
research regarding how to use salts efficiently so
that they cannot be brute-forced. In this paper we
are trying to invent a simple and novel method
where it safeguards passwords those are being
authenticated using salts.

One of the proposed systems generates a
salt which is dynamically created depending on the
user’s password pattern, and unique identities such
as Gmail-Id and Device-Id. This system do not
store the salt in the system’s directory securely and
thus eliminates the pre-computation attacks such as
dictionaries and rainbow tables and brute forcing.
The way the salt value is used will be distinctive to
each password. As a result, a more protected
password storing technique can be accomplished.

The earlier versions of Android such as

Kit Kat password systems are not using salted
hashes. Salted hash has an advantage that even
though the hash is cracked you cannot get the
password. Android pattern locks are not salted
hashes. Android Kit Kat pattern locks and Android
Lollipop earlier versions are not using salted
hashes. But the latest versions of Android like
Marshmallow authentication systems used salted
hashes generated by Scrypt algorithm and are
somehow strong against dictionaries and rainbow
tables but still stored salts are susceptible to brute-
force. Salts will not solve the problem completely
because we store them in database, if compromised
the attacker may brute force the password using the
salt value. Once the salt is compromised, because
having 100% security for any security system is not
achievable, the attacker finds some way to gain the
salt value and he can still try the brute force attack,
to gain the password. A salted hash has an

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

999

advantage that even though the hash is cracked you
cannot get the password.

This paper presents a novel idea to prevent
pre-computations on patterns, based on the device
identity and user identity that are used to represent
the pattern using elliptic curve points, so that we
can transform the input of the pattern to an
alternative message from which a different hash
[22] can be generated, to make it impossible to
predict the pattern hash using dictionaries and
rainbow tables. This method can be enhanced to
generate a salt dynamically which need not be
stored in the database so that system becomes
resistant to brute-force and also dictionaries. Let us
consider the elliptic curve i.e. y2 = x3 + 9x + 17
over F23, the figure 3 shows how a pattern can be
represented using the points on the curve.

Figure 3: pattern representation using elliptic curve

Table 1: Elliptic Curve Representation of characters

Algorithm for Pattern Representation Using
Elliptic curves:

Step 1: Choose elliptic curve parameters a,b,p.
(The application may select this triplet from a list
of legal elliptic curve parameters and these values
are stored somewhere in the root directory of the
device.)
Step 2: Concatenate the user’s Gmail-Id with the
Android Device-Id.(these two values can be
obtained programmatically in Android).
Step 3 Represent each character in the above
string as a point on the given elliptic curve using
Koblitz’s method.
Step 4: Choose any 9 points among these points.
Step 5: Represent the pattern grid with these
points

Table 2 : Algorithm Enhanced SHA-1

Proposed Algorithm-1 (Enhanced SHA-1):

Step 1: Represent the pattern using the given
Pattern Representation algorithm.
Step 2: Generate an integer n by performing series
of XOR operations on the character of the Device-
Id.
Step 3: Choose a user pattern p to authenticate.
Step 4: Now all the points on this chosen pattern
are multiplied by n using Scalar Multiplication[12]
giving different points on the same curve.
Step 5: Now concatenate these points after
converting them into hexadecimals to represent a
message.
Step 6: Break this message into two halves and
XOR with each other.
Step 7: Perform step 2 twice to produce an
intermediate message m.
Step 8: Generate SHA-1 hash of the intermediate
message m.
Step 9: Store this hash value in the device root
directory to authenticate the user.

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1000

Table 3: Algorithm Salted SHA-1

Proposed Algorithm-2 (Salted SHA-1):

Step 1: Perform the steps of algorithm 1(Enhanced
SHA-1) from 1 through 7.
Step 2: To make this message a 64-bit value,
reverse the two halves and concatenate them to pad
the string.
Step 3: Mark this message as a Salt value for
SHA-1.
Step 4: Concatenate the salt with the original
pattern selection i.e. p.
Step 5: Generate SHA-1 hash of this message.
Step 6: Store this hash value in the device root
directory to authenticate the user.

6. ALGORITHM-1 EXAMPLE(ENHANCED

SHA-1)

1) Choose the elliptic curve parameters[19] as a=9,
b=7,p=2011.
2) Let us say Gmail-Id is ‘my_name@gmail.com’
and Device-Id is ‘f07a13984f6d116a’. After
concatenation we get the string
‘f07a13984f6d116amy_name@gmail.com’.
 (note: We can take any identity number of the
device).
3) Represent each character with corresponding
point on the elliptic curve using Koblitz’s encoding
method. The elliptic curve representation of each
character is shown in the below in table 4.

Table:4 Representing characters with points of the
Elliptic Curve

f
(1441,30)

0
(363,173)

7
(502,661)

a
(1341,250)

1
(381,554)

3
(421,149)

9
(543,689)

8
(521,487)

4
(441,445)

f
(1441,30)

6
(481,91)

d
(1401,672)

1
(381,554)

1
(381,554)

6
(481,91)

a
(1341,250)

m
(1587,865)

y
(1823,889)

_
(1301,136)

n
(1603,905)

a

(1341,250)
m

(1587,865)
e

(1421,830)
@

(681,446)
g

(1462,123)
m-

(1587,865)
a

(1341,250)
i

(1502,557)
l

(1561,975)
.

(321,525)
c

(1382,758)
0

(1624,862)

m
(1587,865)

4) Now arrange them in ascending order of the
 y-coordinate and choose the first 9 points
eliminating the duplicates. (we can adopt any
policy to choose 9 points. They are highlighted in
table 4).

5) The points that represent the grid are shown in
the Figure 4.

6) Now generate an integer using Device-Id by
performing series of XOR operations i.e.
f  0  7  a 1 3 9 8  4  f  6
 d  1  1  6  a = 84.

7) Lets say the user’s selected pattern is 1235789.

Figure:4 Pattern representations using given elliptic

curve

8) The points that represent these numbers are :
(1441,30), (481,91), (1462,123), (1301,136),
(421,149), (363,173), (1341,250), (441,445),
(681,446). Figure 4 shows the selected pattern.

9) Now perform Scalar Multiplication of the
selected pattern points with the scalar generated i.e.
84.
84*(1441, 30) =(454,986)
84*(481,91)= (852,278)
84*(1462,123)=(1184,1759)
84*(421,149)=(1937,1868)
84*(1341,250)=(556,722)

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1001

84*(441,445)=(343,761)
84*(681,446) =(1837,1058)

10) Convert these points into hexadecimal and
concatenate, we end up with the string

‘1C63DA3541164A06DF79174C22C2D21572F97
2D422’.

11) Divide this string into 2 strings and XOR with
each. Repeat this step twice. (pad with 1’s if the
length is odd).

 1C63DA3541164A06DF79

174C22C2D21572F972D422
= 677751762171604167917623B3

6777517621716 04167917623B3
= 63612861434735.

12) The highlighted string is the input for the
SHA-1 Algorithm to generate a pattern hash, so the
SHA-1 hash of
 63612861434735 is
“A9A567A0F8959A62F694ADDCB710E9CA98
EEC576”

This hash is stored in the device memory instead of
storing the hash of the original input 1235789.

7. ALGORITHM-2 EXAMPLE (SALTED SHA-

1)

1) Follow the steps from 1 through 11 of the
Algorithm-1 Example to generate a string i.e.
63612861434735.

2) But to make this string a 64-bit value, reverse
the strings and concatenate them to pad the salt. So,
6821636 and 5374341 are concatenated to get a
string 68216365374341.

3) So pad the message 63612861434735 with 68 to
make it a 64-bit value. Mark the message
‘6361286143473568’ as a salt value for the SHA-1
hash of the selected pattern.

4) Concatenate this salt value to the pattern which
is an input for the SHA-1 Algorithm. So the input is

6361286143473568:1235789.

5) The SHA-1 hash of the input
6361286143473568:1235789 is

‘12097AB19EC250499F4D545C22FC281A2CD1
33FF’.

6) This value is stored in the device folder securely
to authenticate the user whenever he logs in.

8. SECURITY ANALYSIS

The proposed algorithms dynamically generate the
pattern grid representation using elliptic curve
points depending on the user’s identity and device
identity. The existing schemes represent the grid
with 1-9 integer values and pattern combination of
these numbers is an input as a password[15] but the
combinations are limited and known, consequently
attacker can exploit the universal dictionaries
easily. In the proposed schemes, these points are
not fixed and change from user to user. Enhanced
SHA-1 scheme makes the grid representation
dynamic and generates an intermediate input, so
that the attacker cannot get the hashes of input
patterns using SHA-1[3] dictionaries and rainbow
tables. The advantage of using salts in hashing is
‘same passwords produce different hashes’.
Particularly salts save the hashes from brute-
forcing. A salt[14] is simply appended to make a
common password uncommon. It is always safer to
use different passwords for different users, and it is
very common to store the salts in databases, but
protecting salts is not 100% possible.

So there is always a chance for the attacker
to obtain the salt value and brute-force the
password value using Android forensic tools. To
avoid such risks the later scheme i.e. salted SHA-1
uses the dynamic representation of the grid to
generate a dynamic salt value which need not be
stored in the databases to avoid brute-forcing. It is
quite impossible for the eavesdroppers to generate
dictionary or a rainbow table unique for each user.
Both the schemes use Koblitz’s encoding method
which provides more security to the system and
obviously discrete logs are always difficult to solve.

9. PERFORMANCE ANALYSIS

By implementing algorithm-1 for pattern
authentication, we avoid the dictionary attacks and
rainbow tables from the eavesdroppers since it is
difficult to gain the intermediate message generated
by the algorithm, whereas by implementing the
salted hash i.e. algorithm-2 the attacker cannot
brute-force the password, because the salt is not
stored in the database, rather it is dynamically
generated per user depending on the user Gmail-Id

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1002

and Device-Id. This scheme saves the passwords
from dictionaries. Both methods are trustworthy to
avoid pre-computation attacks such as dictionaries,
rainbow tables and brute-forcing. Now we may
have a look into the performance evaluation of the
two proposed methods.

9.1 Strict Avalanche Effect

The performance of any hash algorithm can be
mainly considered with respect to the number of
Collisions and Avalanche Effect. We collected
observations to calculate the Avalanche Effect to
evaluate the performance because finding out the
number of Collisions is not feasible. Avalanche
Effect is the quality of a hashing scheme that shows
for a small change in input should cause a large
change in the output. We have randomly taken 100
pairs of inputs where each pair differ by one bit,
and recorded the number of bits changed in the
output hashes, using both the methods. We have
also observed whether these schemes have met the
SAC (Strict Avalanche Effect). A hash function is
said to satisfy the strict avalanche criterion if, a
single input bit is changed, each of the output bits
should alter with a probability of 50%.

Figure:5 4-DOT PATTERNSS

Figure:6 5-DOT PATTERNSS

Figure:7 6-DOT PATTERNSS

 Figure:8 7-DOT PATTERNSS

 Figure:9 8-DOT PATTERNSS

(1)

(2)

(3)

(4)

(5)

(6)

65
70
75
80
85
90
95

100

1 8 15 22 29 36 43 50

SHA-1

Enhan
ced
SHA-1
Salted
SHA-1

55
60
65
70
75
80
85
90
95

100

1 4 7 10 13 16 19 22 25 28

SHA-1

Enhanc
ed
SHA-1

60

65

70

75

80

85

90

95

100

1 3 5 7 9

SHA-1

Enhanced
SHA-1

Salted
SHA-1

65

70

75

80

85

90

1 2 3 4 5

SHA-1

Enhanced
SHA-1

Salted SHA-
1

60

65

70

75

80

85

90

95

1 2 3 4 5

SHA-1

Enhance
d SHA-1

Salted
SHA-1

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1003

The graphs 5-9 above show the Avalanche Effect
shown by the two proposed methods which are
almost nearer to that of the original SHA-1 hashing
scheme. The X-axis represents the random input
pair number and the Y-axis represent the number of
bits changed for the input pair. (both inputs are
differed by 1 bit).

 Figure 10: SAC of all the 3 method

Table 5: SAC of the 3 Methods

Table 5 and Figure 10 show the average avalanche
effect for the respective patterns and it can be
observed that the two proposed schemes exhibit the
SAC. Strict Avalanche Criterion of the two
methods is observed by considering a number of
input pairs and the average Avalanche Effect shown
by each method, as shown above in the Table 5.
According to the plotted graphs above and average
SAC’s observed in figure 10, it is obvious that the
two proposed schemes show SAC with slight

variation when compared with the original method
SHA-1.

9.2 Time Complexities

Time complexity becomes an extremely vital issue
when the scale of an application increases. Time
Complexity analysis facilitates optimizing and
improving the efficiency of code. Here we observed
the efficiency of the proposed methods with respect
to time taken by the processor to generate the hash.
As we have examined here that the two methods are
extensions to the existing method, it trivial to
observe the time complexity compared to the
original method. There will be obviously increase
in the time complexity, as we have extended the
existing system. These outputs are taken with a
computer with Pentium-4 processor and 3GB RAM
and 1.6GHz speed. We have taken observations to
find out the executions times for all the pattern
lengths which are shown in the following figures
starting from figure 11 to Figure 15. The time
periods are shown in milliseconds along y-axis. The
x-axis shows the input patterns.

Figure 11: 4-dot pattern Execution Times

Figure 12: 5-dot pattern Execution Times

46

47

48

49

50

51

52

53

SHA-1

enchanced -
SHA-1

Salted SHA-1

13

13.2

13.4

13.6

13.8

14

14.2

12
34

29
83

35
74

98
72

35
68

Enhanced
SHA-1

Salted SHA-1

13.2

13.4

13.6

13.8

Enhanc
ed
SHA-1

Pattern

Scheme

 4-dot 5-dot 6-dot 7-dot 8-dot Avg

SHA-1 50.66 49.5 49.7 51.7 51.6 50.6

Enhanc
ed -
SHA-1

50.36 50.8 48.2 49.4 48.7 49.5

Salted
SHA-1

49.8 50.7 49.6 49.7 49.5 49.8

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1004

Figure 13 : 6-dot pattern Execution Times

 Figure 14 : 7-dot pattern Execution Times

Figure 15 : 8-dot pattern Execution Times

By observing these figures 11-15 , it is apparent
that there are no significant differences in the
execution times of the two proposed methods.

 Table 6: Average Execution Times

Figure 16 : Average Execution Times

 By observing the above statistics and
graph i.e. Figure 16 and table 6, we can deduce that
the proposed methodologies show a slight increase
in the time periods to calculate the hash as there is
increase in the pattern size.

 Since there is an added functionality in
the design of these two schemes, increase in the
time complexities is inevitable. There is no
significant difference observed with respect to
execution times in the two proposed schemes on an
average.

There were no attempts by the researchers

and forensic experts to improve the SHA-1 security
by using a dynamic salt generation to make the
system resistant to pre-computations. Our proposed
methods are simple and need no hardware backend
to build the system stronger against pre-
computations and it generates the grid using
elliptic curves.

13

13.5

14

14.5
Enhanc
ed
SHA-1

Salted
SHA-1

13.5
13.6
13.7
13.8
13.9

14
14.1

76
14

32
9

76
54

12
9

36
54

12
9

36
74

12
9

76
54

32
9

Enha
nced
SHA-1

Salte
d
SHA-1

13.6

13.8

14

Enhanc
ed
SHA-1
Salted
SHA-1

13.4

13.5

13.6

13.7

13.8

13.9

14

4-
do

t
5-

do
t

6-
do

t
7-

do
t

8-
do

t

Enchanc
ed SHA-
1

Salted
SHA-1

Avg

Execution

Times in

millisecs

4-dot 5-dot 6-dot 7-dot 8-dot

Enhanced

SHA-1
13.528 13.502 13.804 13.822 13.846

Salted SHA-1 13.564 13.502 13.7 13.812 13.934

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1005

10. CONCLUSION

Unauthorized admission to data and information by
attackers, is an enormous problem with mobile
security. The pattern passwords are always
vulnerable to dictionaries. We need new security
approaches that keep away from undesired taps on
the mobiles and presents better authorization
schemes than the existing one with respect to
rainbow and dictionary attacks. In this paper we
represented the pattern grid with points of an
elliptic curve.
The smaller key sizes of ECC[18] are potentially
suitable for devices such as mobile computers and
smart cards and embedded systems for secure data
transmissions.

This paper presents alternative methods to
protect Android pattern password schemes against
pre-computation attacks. The pattern grid
representation using elliptic curves transforms the
finite number of inputs to infinite. Enhanced
SHA-1 scheme makes it impossible for the attacker
to employ dictionary attacks where as the Salted
SHA-1 scheme uses the same technique to produce
the a dynamic salt value which is not stored in the
device database, and makes the pattern passwords
difficult to crack using brute-forcing [20].

This paper compares the performance

characteristics of the two proposed methods in
terms of SAC (Strict Avalanche Criterion) and
execution times while producing the hashes.
According to the results obtained, we conclude that
the two scheme exhibits SAC, and a slight increase
in time complexities is observed when the size of
the pattern increases.

11. LIMITATIONS AND ASSUMPTIONS

The proposed methodologies give the impression
that they prevent the pre-computations on pattern
lock passwords. But these methods also have
certain limitations. The only limitation of these
methods is we need to keep the design of this
algorithms secret. Maintaining the algorithm secret
is obviously un-trivial.

Even the algorithm is revealed, the system
is secure because it involves few secret values such
as elliptic curve parameters, device identification
values and mail-id of the user. If the attacker gains

these values, the password becomes vulnerable
tobrute-forcing[26].

As far as the Salted SHA-1 scheme is
concerned, without knowing the application design
if the cryptanalyst knows that a salt is added to the
password, brute-forcing becomes difficult because
the salt is not stored in the database. But here also
we assume that the algorithm is kept secret because
the salt[27] generated is an application secret.

12. FUTURE WORK

Other Android Password Authentication systems
such as PIN passwords[25] and Alphanumeric
Password Systems also suffer from pre-
computation attacks even though they employ salt
values to generate the hashes. If the mobiles are
rooted and USB mode is enabled, the hacker can
use mobile forensic tools[24] to gain the password
hashes. So we need to chase for a better and
alternative security system to defense against these
attacks. Here the two proposed methodologies can
also be applicable to these authentication schemes
also.

REFERENCES

[1] Bh.Padma, “Encoding and Decoding of a
message in the implementation of Elliptic
curve Cryptography using Koblitz‟
Method”, International Journal On Computer
Science and Engineering (IJCSE), volume-2
issue:5 , 2010 pp 1904-1907, ISSN: 0975-
3397.

[2] Bh.Padma and GVS Raj Kumar, “A Review
on Android Authentication system
vulnerabilities”, International Journal of
Modern Trends in Engineering and
Research(IJMTER), volume 3, Issue 8, 2016
pp 118-123, ISSN: 2349.

[3] Stephane Manuel, Classification and
generation of disturbance vectors for
collision attacks against SHA-1 , Des. Codes
Cryptography 59 (2011), no. 1-3, 247–263.

[4] Bh Padma, Efficient Computation of Point
Multiplication in the Implementation of
Elliptic Curve Cryptography, ,E - Commerce
for Future &Trends,STM Journals, Volume
1 , Issue 1.

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1006

[5] N. Koblitz, “Elliptic Curve Cryptosystems",
Mathematics of Computation, 48, pp. 203-
209, 1987.

[6] V. Miller, “Uses of elliptic curves in
 cryptography", Advances in Cryptology:
 proceedings of Crypto'85, Lecture Notes in
 Computer Science, vol. 218. New York:
 Springer-Verlag, 1986, pp. 417-426.

[7] ”Cellphone Forensic Tools: An overview and
Analysis “available at
http://csrc.nist.gov/publications/nistir/nistir-
7250.pdf.

[8] Android Forensics:How To Bypass The
Android Phone Pattern Lock
http://niiconsulting.com/checkmate.2014/04/
how-to-bypass-the-android-phone-pattern-
lock/

[9] “Android Explorations” available at
https://nelenkov.blogspot.in/.

[10] G.V.S.Raju and Rehan Akbani,2003,
“Elliptic Curve Cryptosystem and its
Applications”,2003,TheUniversity of Texas
at san Atonio.

[11] B.V. Rompay, “Analysis and Design of
Cryptographic Hash functions, MAC
algorithms and Block Ciphers”, Ph.D. thesis,
Electrical Engineering Department,
KatholiekeUniversiteit,Leuven, Belgium,
2004.

[12] Miller, V. (1986) ‘Uses of elliptic curves in
cryptography’, in Advances in Cryptology:
Proceedings of Crypto'85, Lecture Notes in
Computer Science, Vol. 218, Springer-
Verlag, New York, pp.417–426.

[13] Bh.Padma(2010), “Implementation of
Optimizing point Multiplication in Elliptic
Curve Cryptography using Binary Method”,
Journal Of Computer Science(JCS),Sep-
Oct2010,vol-4,issue:
6.http://www.karpagamjcs.in/index.php/abstr
acts/articles/volume_4_issue_6_article_6

[14] Cryptographic Hash Functions: A Review
Rajeev Sobti1 , G.Geetha2 IJCSI
International Journal of Computer Science
Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online):1694-0814 www.IJCSI.org.

[15] Dynamic Salt Generation and Placement for
Secure Password Storing Sirapat Boonkrong
and Chaowalit Somboonpattanakit, IAENG
International Journal of Computer Science,
43:1,IJCS_43_1_04.
http://www.iaeng.org/IJCS/issues_v43/issue_
1/IJCS_43_1_04.pdf.

[16] Tao, H. and Adams, C. 2008. Pass-Go: A
proposal to improve the usability of graphical
passwords, International Journal of Network
Security

[17] Aviv, A. J., Gibson, K., Mossop, E., Blaze,
M., and Smith, J. M. 2010. Smudge attacks
on Smartphonetouch screens. In USENIX 4th
Workshop on Offensive Technologies.

[18] S. Wiedenbeck, J. Waters, J. C. Birget, A.
Brodskiy, and N.Memon, “Authentication
Using Graphical Passwords: Basic Results”,
In Human-Computer Interaction International
(HCII 2005), Las Vegas, NV, 2005.

[19] Darrel Hankerson, Julio Lopez Hernandez,
Alfred Menezes, Software Implementation of
Elliptic Curve Cryptography over Binary
Fields, 2000, Available at
http://citeseer.ist.psu.edu/hankerson00softwar
e.html

[20] Certicom, Standards for Efficient
Cryptography, SEC 2: Recommended Elliptic
Curve Domain Parameters, Version 1.0,
September 2000, Available at
http://www.secg.org/download/aid-
386/sec2_final.pdf

[21] Alfred J. Menezes, Paul C. van Oorschot and
Scott A. Vanstone,Handbook of Applied
Cryptography, CRC Press, 1996.

[22] William Stallings, Cryptography and
Network Security, Principles and
Practice.ed.,Prentice Hall,New Jersey,2003.

[23] N. Koblitz. A Course in Number Theory and
Cryptography, Springer-Verlag, second
edition, 1994.

[24] http://android-forensics.com/android-
forensics-study-of-password-and-pattern-
lock-protection/143.

[25] http://forensics.spreitzenbarth.de/2012/02/28/
cracking-the-pattern-lock-on-android.

Journal of Theoretical and Applied Information Technology
28th February 2018. Vol.96. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1007

[26] Padma, Bh., Raj Kumar, GVS., 2016. Design
And Analysis of An Enhanced SHA-1 Hash
Generation Scheme for Android Mobile
Computers. International Journal of Applied
Engineering Research (IJAER). ISSN 0973-
4562 Volume 11, Number 4, pp 2359-2363.

[27] Padma, Bh., Raj Kumar, GVS., 2017.
Dynamic salt generation for mobile data
security using elliptic curves against
precomputation attacks. Int. J. Image
Mining. Vol. 2, Nos. 3/4, pp 179-194.

