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ABSTRACT 
 

UML-B is a graphical front-end formal modelling language of the formal method Event-B. UML-B models 
semantics are given by the corresponding generated Event-B. Identifying similarities between models has 
several benefits such as model comparison, integration and evolution. Several matching and comparison 
methods have been done in the context of model driven software engineering. However, matching models 
via a systematic method is not supported yet in UML-B.  In this work, we propose a matching method for 
UML-B elements based on their semantics. This method includes variable-based matching, event-based 
matching and state-machine matching. The variable-based matching provides rules for matching UML-B 
classes, attributes, states and variables. The event-based matching provides rules and cases for matching 
UML-B transitions and class-events. The state-machine matching provides rules for matching UML-B 
state-machines based on the state and transition matching rules. The matching rules are formalized by 
means of the generated corresponding Event-B specifications. The correctness of the rules is justified via 
preserving the compatibility of the matched state-variables and corresponding modifying events including 
their matched guards and actions. These rules are illustrated via a communication-based case study to show 
their applicability. 

Keywords: Visual modeling languages, Formal specification, Event-B, UML-B, Model Matching 
 
1. INTRODUCTION  
 

Model-Driven Software Engineering MDSE [1] 
is part of the software engineering discipline where 
models are considered as the primary elements 
representing the abstract view of the systems to be 
handled with. Model matching is an important 
process for model management, evolution and 
integration. A correct and accurate model matching 
leads to a better model integration.  

Several matching approaches and methods have 
been proposed in the context of MDSE. They stand 
on specifying the model differences through three 
phases: calculation, representation and visualization 
[2]. The calculation stands for comparing models, 
the representation is to provide the outcome of 
calculation for further manipulation, and the 
visualization is to represent the model differences in 
a visualized way. 

Formal modelling is part of the software 
engineering [3], [4] which provides an accurate way 
of modelling and verifying systems. This is by the 
precise specification and the mathematical basis 
which the formal languages are based on. Event-B 

[3] is a formal method which is based on the set-
theory, first order logic and action systems [5]. It 
allows modelling correct-by-construction systems 
that are verified by the theorem provers offered by 
Rodin platform [6]. 

UML [7] is a semi-formal language for modeling 
object-oriented systems. UML-B [8], [9], [10], [11] 
is a graphical front-end of the formal method Event-
B. It combines the semi-formal properties of UML 
and the formal ones of Event-B. UML-B models 
semantics are given by their corresponding Event-B 
models generated from the translation process and 
used for verification purposes. 

Matching UML-B models is interesting as it has 
several benefits such as: first, matching helps 
observing the compatibility and difference between 
the models in UML-B, especially what is related to 
mathematical types, second, matching provides a 
good potential for reusing the compatibly matched 
UML-B elements that could be extracted and reused 
avoiding the remodelling and reproving effort of 
these elements. Currently, matching models via a 
systematic method is not supported yet in UML-B. 
The research question that we tackle in this work is: 
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How models in UML-B could be matched 
compatibly and consistently?. To answer this 
question, in this paper, we propose a method for 
matching UML-B models based on their semantics 
that are given by their corresponding Event-B 
models represented by the generated Event-B state-
variables and events. The method introduces rules 
for matching the different structures offered by 
UML-B. This includes UML-B class, UML-B 
attribute, UML-B state, and UML-B variable that 
become Event-B variable, and UML-B transition 
and UML-B class-event that become Event-B 
event. The proposed rules guide the user to a correct 
model matching which should lead to correct model 
integration and management. The proposed method 
is formalized and the justification for correctness is 
provided through preserving the compatibility of 
the matched UML-B elements. The method 
applicability is illustrated through a case study. The 
contributions of this paper are as follows: 

 Variable-based matching rules.  

 Event-based matching rules. 

 State-machine matching rules. 

 A formalization of the method rules. 

 A communication-based case study to 
illustrate the method applicability. 

 

This paper is structured as follows. Section 2 
reviews a background related with Event-B, 
matching in Event-B, and UML-B.  Section 3 
presents our proposed method. Section 3.1 presents 
the variable-based matching rules for UML-B class, 
attribute, state and variable. Section 3.2 presents the 
matching rules for UML-B transition and class-
event. Section 3.3 introduces the UML-B state-
machine matching rules. Section 4 presents a 
formalization and a justification for the method 
correctness. Section 5 overviews a communication-
based case-study to show the method applicability. 
Section 6 exhibits some of the related work 
regarding model matching in the context of Model-
Driven Software Engineering. Section 7 exhibits 
some benefits and limitations of the method and 
some proposed future works. Section 8 concludes 
the work. 

2. BACKGROUND 

This section discusses Event-B, matching in 
Event-B, UML-B diagrams and its semantics. 

  

2.1 Formal Modeling and Matching in Event-B 
 
Event-B [3] is a variant of the B-method [4], 

[12] and is based on Action Systems [5]. An action 
system is a collection of actions on some set of 
state variables. Every action has enabling condition 
guard which depends on any system variable. The 
mathematical notation used in both Event-B and B-
method is based on set-theory [13]. Event-B models 
are described by contexts and machines where they 
represent the static and dynamic parts respectively. 
The context contains the types, axioms and 
constants, while the machine contains the state 
variables, invariants and events that can be called to 
change the machine state. Invariants represent the 
system conditions on variables and should be 
preserved for each event that has an effect on the 
invariant-related variables. Event-B is supported by 
Rodin tool [6] for modeling and proving. 

 
In [14], pattern matching guidelines are 

introduced in Event-B. The user has to define 
which problem variables are to be matched with all 
the pattern variables. The compatibility of the 
matching should be guaranteed following specific 
checks. First, there is no non-matched events that 
alter matched variables. Second, in each pattern 
event, all the guards and actions, that depend 
naturally on only the matched pattern variables, are 
syntactically matched (i.e. a:=a+1 is syntactically 
matched with b:=b+1). 

 
Our proposed method for matching UML-B 

models is based on some of the Event-B matching 
aspects that are related with matching the events 
and the syntactical matching of guards and actions. 
However, UML-B is a higher level graphical 
language, and we provide rules for matching UML-
B class, attribute, state and variable based on their 
implicit semantic types, rules for matching UML-B 
transitions and class-events based on their 
semantics, and rules for matching UML-B state-
machines. In addition, our proposed method 
considers the partial matching between the matched 
UML-B machines. 

 
2.2 UML-B Diagrams and Semantics 

 
UML-B [8], [9], [10], [11] is a graphical front-

end for the formal method Event-B. It shares 
similar properties with UML [7], [15], but UML-B 
has its own meta-model. UML-B offers four 
diagrams: package, context, class, and state-
machine. These diagrams are translated to Event-B 
for verification by Rodin theorem provers. 
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In package diagram, contexts, machines and 
their interconnecting relationships are represented. 
a machine refines another machine and a context 
extends another context while machines sees 
contexts. Figure 1 shows an example of a package 
diagram which has two machines DeviceAbs and 
DeviceRef, and two contexts CTX1 and CTX2. 
Machines relate with each other by refines 
relationship such as  DeviceRef refines DeviceAbs. 
Contexts relate by extends relationship such as 
CTX2 extends CTX1. Machine and context relate by 
sees relationship such as DeviceRef sees CTX2. 
Figure 2 shows an example of the context diagram. 
Three class types are defined which are DEVICE, 
CONTROLLER and ControllerType. 

 

 
 Figure 1: UML-B package diagram 

 
Figure 2: UML-B context diagram 

 
In the class diagram, a system dynamic behavior 

is represented by classes, variables, events and 
invariants. Classes contain attributes, events, state 
machines, invariants and theorems. The class 
attribute may be of a  classtype defined in the 
context or predefined type. The class event is 
executed whenever guards hold true and executes 
actions changing classes, attributes or machine 
variables values. Figure 3 shows the UML-B class 
diagram of a device system. Two classes are 
defined: Controller and Device.  The association 
relationship  DController relates the classes Device 
and Controller and represented as an attribute in the 
class Device. The class Controller has one attribute 
Type that is ControllerType. The association 
relationship attribute DController has the type of 
the target class Controller. DController has the 
multiplicity of 1..1 in the side of Controller class 
and 1..1 in the side of  Device class allowing a 
device to have only one controller, and a controller 
to be related with one device only.  The class 
Device has one class event CreateDevice. 

In the state machine diagram, system changes 
its state by executing transitions. State-machine 
may be attached to a class or defined at the machine 
level. 

A class partitions its behaviour into different 
states in class state machine. System changes its 
current state when firing transitions. These 
transitions are similar to the class events except an 
additional guard and additional action represented 
by the source and target states respectively. Figure 
4 shows ControllerSM class state machine attached 
to the class  Controller.  Two different disjoint 
states are defined Idle and Active. Five transitions 
change the system states TurnOn, ShutDown, 
Activate, DeActivate and ExecuteCommand. 

 

 
Figure 3: UML-B class diagram 

 

 
Figure 4: UML-B state machine diagram 

 
 
2.2.1 UML-B semantics 

 
The semantics of UML-B models are given by 

the generated corresponding Event-B models 
obtained from U2B translator [16]. U2B has a 
specific translation rule for each UML-B element. 
In this section, we provide a background regarding 
some rules to comprehend the proposed matching 
method.  

In this article, we differentiate the UML-B 
implicit guards and actions from the explicit ones. 
The implicit (semantic) guards and actions are 
related with the graphical UML-B structures and 
generated according to the transition/class-event 
kind. The explicit guards and actions are the ones 
added explicitly to the transition/class-
event/machine-event (via the Properties section), 
and they are not generated from the graphical 
structures.  The implicit and explicit invariants are 
discussed similarly. 
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UML-B class, attribute, state and variable are 
translated to Event-B variable, while UML-B 
machine event, class event and state machine 
transition are translated to Event-B event. The 
implicit invariants and specifications for the UML-
B elements are discussed in the next paragraphs. 
 
UML-B classes, attributes, states: The classes 
Controller and Decive, the class attributes Type and 
DController, and the states Idle and Active are 
translated to Event-B variables. 
 
Typing and Class Partition Invariants: Typing 
invariants are defined in INVARIANTS section. 
Controller and Device are typed as subsets of  
CONTROLLER and  DEVICE respectively. Type is 
typed as total function with  Controller and 
ControllerType as the domain and range 
respectively.  DController is typed as bijective 
function with  Device as the domain and Controller 
as the range. partitions(Controller, Active, Idle) is 
the class partition invariant which partitions the 
states of class Controller. This is equivalent to 
((Controller= Idle ∪ Active) ∧ (Idle ∩ Active = ∅)). 
 
UML-B transitions and class-events: The 
ControllerSM state machine transitions Activate, 
TurnOn and ShutDown, and the class event 
createDevice are translated to Event-B events. 
Three kinds of transitions exist which are the 
constructor (transition with initial source state), the 
destructor (the transition with final target state) and 
the normal (the transition with normal source and 
target states). The generated implicit Event-B 
specifications of these transitions are as follows: 
 

TurnOn ≙ 
Any self. WHERE  

self ∈  CONTROLLER ∖  Controller 
THEN  
  Controller ≔  Controller ∪  {self} 
  Idle ≔ Idle ∪ {self} 
END 

 
 
 

ShutDown ≙ 
Any self. WHERE  

self ∈  Controller 
self ∈  Idle 

THEN  
  Controller ≔  Controller \  {self} 
  Idle ≔ Idle \ {self} 
 Type ≔  {self}  ⩤  Type 

     END 

Activate ≙
Any self. WHERE  

self ∈  Controller 
self ∈  Idle 

THEN  
    Idle ≔ Idle \ {self} 
   Active ≔ Active ∪ {self} 
END

 
self  represents the instance parameter of the 

class Controller. The same name self  is used to 
represent in general any instance parameter of 
UML-B classes in this article. 

 
TurnOn has the initial source state and the target 

state Idle. A guard related with the containing class, 
and two actions related with the containing class 
and the target state are generated. self ∈ 
CONTROLLER ∖ Controller is the guard generated 
for the class Controller. Controller ≔ Controller ∪ 
{self} and Idle≔ Idle ∪ {self} are the actions 
generated for the class Controller and the state Idle 
respectively. self  represents the class instance 
parameter. 

 
ShutDown has the source state Idle and the final 

target state. Two guards related with the containing 
class and the source state, and three actions related 
with the containing class, the source state and the 
class attribute Type are generated. self ∈ Controller 
is the guard generated for the class Controller. self 
∈ Idle is the guard generated for the source state.   
Controller ≔ Controller ∖ {self} is the destruction 
action generated for the class Controller.  Idle≔ 
Idle ∖ {self} is the action generated for the source 
state. Type ≔ { self }  ⩤  Type is the generated 
destruction action for the class attribute Type, 
which is necessary to preserve its functional type. 

 
Activate has the normal source and target states 

Idle and Active respectively. Two guards related 
with the containing class and the source state, and 
two actions related with the source and target states 
are generated. self ∈  Controller is the guard 
generated for the containing class Controller.  self 
∈  Idle  is the guard generated for the source state. 
Idle ≔ Idle \ {self}  and Active ≔ Active ∪ {self}  
are the actions generated for Idle and  Active states 
respectively. 

 
CreateDevice is a constructor class event 

contained in the class Device. This is discussed 
similarly to the transition TurnOn except that 
CreateDevice does not use states. 
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3. THE PROPOSED METHOD FOR 
MATCHING MODELS IN UML-B 

 
The proposed method is based on UML-B 

semantics given by the corresponding generated 
Event-B state-variables and events. 

The matching rules treat the UML-B models as 
a collection of generated state-variables and 
corresponding events changing their values. UML-
B class, state, attribute and variable represent the 
state-variable, and UML-B transition, class-event 
and machine-event represent the corresponding 
event. The outcome of the matching method is a 
boolean identity (matched/non-matched) for the 
state-variables, and their related events including 
their guards and actions. 

The matching of these UML-B state-variables 
and their modifying events is based on the set-
theory and some aspects of the Event-B matching 
in [14] as follows: 

 
 The set-theory is the basis of variables typing 

in Event-B which is to guide the matching of 
UML-B class, attribute, state and variable 
based on their semantic Event-B types. 

 The Event-B matching steps in [14] preserve 
the compatibility of the matched Event-B 
variables by checking the related modifying 
events. It is assumed in [14] that one of the 
matched Event-B models should be 
completely matched with the other one. In this 
method, the compatibility of the matched 
UML-B class, attribute, state, and variable is 
also preserved following a similar concept via 
matching their modifying UML-B transitions, 
class-events and machine-events. However, in 
this method the partial matching of models is 
also treated, and matching rules are proposed 
to handle the cases that are related with both 
the complete and partial matching. 

The proposed matching rules are classified to 
variable-based, event-based and state-machine 
matching. These are introduced in Sections 3.1, 
3.2 and 3.3 respectively. Briefly, they are as 
follows: 
 

 The variable-based matching rules concern 
matching the state-variables (UML-B 
class, attribute, state and variable). 

 The event-based matching rules are related 
with the variable-based matching rules 
and concern matching the corresponding 
events (UML-B transition and class-
event). The transition and class-event 
matching cases decide the compatibility 
of the related state-variables based on the 
variable-based matching rules. 

 The state-machine matching is proposed 
based on the UML-B state and transition 
matching rules. 

 
The matching is performed between two 

models M1 and M2. As shown in Table 1, M1C, 
M1A, M1S and M1V represent the model M1 
class, attribute, state and variable respectively, 
and M1T and M1CE represent the model M1 
transition and class event. M1CASVm represents 
the matched state-variables that are the matched 
class, attribute, state and variable. M1CASVnm 
represents the non-matched state-variables. 
M1Em represents the generated matched event 
from transition, class-event and machine-event. 
M1Enm represents the non-matched generated 
event. The UML-B elements (generated state-
variables and corresponding events) of the model 
M2 are discussed similarly. 

 
 
 

Table 1: UML-B Matching Frequently Used Symbols 
Model/ 
UML-B element, Event-B 
Generated State-variables and events 

M1 M2 

UML-B Class M1C M2C 

UML-B Attribute M1A M2A 
UML-B State M1S M2S 
UML-B Variable M1V M2V 
UML-B Transition M1T M2T
UML-B Class-event M1CE M2CE
Event-B State-variables M1CASVm (matched), 

M1CASVnm (non-matched)
M2CASVm (matched), 
M2CASVnm (non-matched)

Event-B Generated Events M1Em (matched), 
M1Enm (non-matched)

M2Em (matched), 
M2Enm (non-matched) 
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The model matching is based on the 

following assumptions: 

 Matching occurs between elements of the 
same type (i.e. a transition with a transition, 
a class with a class).  

 Classes and attributes may be implicitly or 
explicitly modified by transitions, class-
events or machine-events. States may only 
be implicitly modified by transitions.  

 The implicit modifiers of the UML-B class, 
attribute and state are as follows: 

 The implicitly modifying transitions 
and class-events of classes are the 
constructors and destructors of the 
classes.                                         

 The implicitly modifying transitions 
and class-events of the attributes are 
the destructors of the containing 
classes of these attributes. 
  

 The implicitly modifying transitions 
of the states are the incoming and 
outgoing transitions of the states. 

 The actions and guards, mentioned in the 
conditions of variable-based matching 
rules include both generated implicit and 
explicit ones, except the modifying actions 
in the state matching rule SMatch, because 
states are only implicitly modified. The 
implicit guards and actions are those 
obtained from UML-B graphical semantics 
and generated from U2B translator in the 
corresponding Event-B model. The 
explicit guards and actions are not part of 
the graphical semantics and added 
explicitly to the UML-B model in 
transitions, class-events or machine-
events. 

3.1. Variable-Based Matching 

This section presents the matching rules for 
the UML-B classes (M1C, M2C), attributes (M1A, 
M2A), states (M1S, M2S) and variables (M1V, 
M2V). The conditions in each rule are to guide the 
matching of UML-B classes, attributes, states and 
variables based on their semantic Event-B types, 
and to maintain their compatible changes by 
preserving that their behavioural modifications are 
the same. 

3.1.1 Classes matching 

The class matching rule CMatch: The classes 
M1C and M2C are compatibly matched 
(M1C=M2C), if the following three conditions are 
met: 

 CMatchCondition1: M1C and M2C have 
the same type and the same instances as 
formalized as follows: 

(M1C ∈ ℙ(TYPE1) ∧ M2C ∈ ℙ(TYPE2)) ∧  

(TYPE1=TYPE2) ∧  

(∀ self . ((self ∈ M1C)  ⇔ (self ∈ M2C))) 

 CMatchCondition2: The implicitly and 
explicitly modifying transitions M1T, 
class-events M1CE, and machine-events of 
M1C are matched with the implicitly and 
explicitly modifying transitions M2T, 
class-events M1CE, and machine-events of 
M2C. 

 CMatchCondition3: In every matched 
transitions, class-events, and machine-
events,  the following three sub-conditions 
are met: 
- CMatchCondition3MatchedActions: 

The actions, which modify the 
classes (M1C, M2C), should be 
syntactically matched and dependent 
only on the classes and possibly other 
matched state-variables. 

- CMatchCondition3MatchedGuards: 
The guards, which depend only on: 
the classes (M1C, M2C); or other 
matched state-variables (M1CASVm, 
M2CASVm), should be enabled 
together and syntactically matched. 

- CMatchCondition3NonMatchedGuards:
The guards, which depend on non-
matched state-variables, and cannot 
be matched, should be enabled 
together  

3.1.2 Class attributes matching 

Attributes matching is considered relational, 
since the semantic of an attribute is recognized as a 
relation with the containing class of the attribute as 
the relation domain and the selected type as the 
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relation range. The relation has several possible 
types (total, functional, surjective, injective, 
bijective). 

The attribute matching rule AMatch: The 
attributes M1A and M2A, as in Figure 5, are 
compatibly matched (M1A=M2A) for all relational 
types, if the following three conditions are met:  

 AMatchCondition1: The containing 
classes of M1A and M2A are compatibly 
matched, selected types are the same, and 
the relation between domain and range is 
the same as formalized as follows: 

(M1A ∈ M1C ↔ TYPE1 ∧ M2A ∈ M2C ↔ 
TYPE2) ∧  

(M1C=M2C) ∧  

 (TYPE1=TYPE2) ∧  

(∀ self,t . ((self ↦ t ∈ M1A) ⇔ (self ↦ t ∈ M2A))) 

 AMatchCondition2: The implicitly and 
explicitly modifying transitions M1T, 
class-events M1CE, and machine-events of 
M1A are matched with the implicitly and 
explicitly modifying transitions M2T, 
class-events M1CE, and machine-events of 
M2A. 

 AMatchCondition3: In every matched 
transitions, class-events, and machine-
events, the following three sub-conditions 
are met: 
- AMatchCondition3MatchedActions: 

The actions, which modify the 
attributes (M1A, M2A), should be 
syntactically matched and dependent 
only on the attributes and possibly 
other matched state-variables. 

- AMatchCondition3MatchedGuards: 
The guards, which depend only on: 
the attributes (M1A, M2A); or other 
matched state-variables (M1CASVm, 
M2CASVm), should be enabled 
together and syntactically matched. 

- AMatchCondition3NonMatchedGuards: 
The guards, which depend on non-
matched state-variables, and cannot 
be matched, should be enabled 
together. 

 

 
Figure 5: The Class Attributes Matching 

 

3.1.3 States matching 

This is part of state-machine matching that 
contains states and transitions. This section presents 
the rule SMatch for matching states, Section 3.2 
presents the rule TMatch for matching transitions, 
and Section 3.3 presents the rule SMMatch for 
matching state-machines based on SMatch and 
TMatch. 

Figure 6 shows the state machine M1CSM in 
the class M1C, and the state machine M2CSM in 
the class M2C. For simplicity, we consider 
matching states from flattened state-machines 
where no nested state-machines are allowed in the 
states. M1CSM is to be matched with M2CSM. 
M1CSM contains the states M1S1, M1S2, ...M1Sn 
states and their types are determined by the typing 
invariant M1Si ∈ ℙ(M1C) and class partition 
invariant partition(M1C,M1S1,M1S2,..,M1Sn). 
M2CSM contains the states M2S1, M2S2, ...M2Sn 
states and their types are determined by the typing 
invariant M2Si ∈ ℙ(M2C) and class partition 
invariant partition(M2C,M2S1,M2S2,..,M2Sn). The 
rule SMatch defines the conditions to match the 
states of the models M1 and M2. 

 

Figure 6: The States Matching 
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The state matching rule SMatch: The states M1S 
and M2S are compatibly matched (M1S=M2S), if 
the following three conditions are met:  

 SMatchCondition1: The containing 
classes M1C and M2C of M1S and M2S 
have the same type, and the states have the 
same instances as formalized as follows: 

(M1S ∈ ℙ(M1C) ∧ M2S ∈ ℙ(M2C)) ∧  

(M1C ∈ ℙ(TYPE1) ∧ M2C ∈ ℙ(TYPE2) ∧ 
TYPE1=TYPE2) ∧  

(∀ self .  ((self ∈ M1S) ⇔ (self ∈ M2S))) 

 SMatchCondition2: The implicitly 
modifying incoming and outgoing 
transitions M1T of M1S are matched with 
the implicitly modifying incoming and 
outgoing transitions M2T of M2S. 

 SMatchCondition3: In every matched 
transitions, the following three sub-
conditions are met: 

- SMatchCondition3MatchedActions: The 
actions, which modify the states (M1S, 
M2S), should be syntactically matched 
and dependent only on the states. 

- SMatchCondition3MatchedGuards: The 
guards, which depend only on: the 
states   (M1S, M2S); or other matched 
state-variables (M1CASVm, 
M2CASVm), should be enabled 
together and syntactically matched. 

- SMatchCondition3NonMatchedGuards: 
The guards, which depend on non-
matched state-variables, and cannot be 
matched, should be enabled together.  

This is comparatively a flexible rule compared 
to the attribute matching rule AMatch, because 
matching the containing classes is not a necessary 
condition for the states to be compatibly matched. 
This is due to the type of a state which is a sub-set 
of its containing class. 

3.1.4 Variables matching 

UML-B variable semantic is the same of its 
corresponding Event-B variable. The rule VMatch 
defines the conditions to match the variables of the 
models M1 and M2. 

The variable matching rule VMatch: The 
variables M1V and M2V are compatibly matched 
(M1V = M2V), if the following three conditions are 
met:  

 VMatchCondition1: M1V and M2V have 
the same type TYPE1=TYPE2 and 
possible values as formalized as follows: 

(M1V ∈ TYPE1 ∧ M2V ∈ TYPE2) ∧	

 (TYPE1=TYPE2) ∧  

(∀ x . ((M1V=x)  ⇔  (M2V=x))) 

 VMatchCondition2: The explicitly 
modifying transitions, class-events, and 
machine-events of M1V are matched with 
the explicitly modifying transitions, class-
events, and machine-events of M2V. 

 VMatchCondition3: In every matched 
transitions, class-events, and machine-
events, the following three sub-conditions 
are met: 

- VMatchCondition3MatchedActions: The 
actions, which modify the variables  
(M1V,  M2V), should be syntactically 
matched and dependent only on the 
variables and possibly other matched 
state-variables. 

- VMatchCondition3MatchedGuards: The 
guards, which depend only on: the 
variables (M1V, M2V); or other 
matched state-variables (M1CASVm, 
M2CASVm), should be enabled 
together and syntactically matched. 

- VMatchCondition3NonMatchedGuards: 
The guards, which depend on non-
matched state-variables, and cannot be 
matched, should be enabled together. 

 

3.2. Event-Based Matching 

In this section, matching UML-B transitions 
(M1T, M2T) and class-events (M1CE, M2CE) of 
the models M1 and M2 is discussed. 

3.2.1 Transitions matching 

Three transition types exist: constructor, 
destructor and normal. Table 2 shows the nine 
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matching cases for the transitions of the two 
models M1 and M2. M1C and M2C represent the 

containing classes of the transitions M1T and M2T 
respectively.  

Table 2: Transition Matching Cases 
Matching case/ 
Transition type 

The Containing Classes 
(M1C, M2C) 

M2T M1T Possibility

TCase1 Matched (M1C = M2C), 
Non-matched (M1C ≠ M2C)

initial source state 
(Constructor)

initial source state 
(Constructor)

Yes

- - initial source state 
(Constructor)

final target state (Destructor) No

TCase2 Non-matched (M1C ≠ M2C) initial source state 
(Constructor)

normal source and target states 
(Normal)

Yes

- - final target state 
(Destructor)

initial source state 
(Constructor)

No

TCase3 Matched (M1C = M2C), 
Non-matched (M1C ≠ M2C)

final target state 
(Destructor)

final target state (Destructor) Yes

TCase4 Non-matched (M1C ≠ M2C) final target state 
(Destructor)

Normal source and target states 
(Normal)

Yes

TCase2S Non-matched (M1C ≠ M2C) Normal source and target 
states(Normal)

initial source state 
(Constructor)

Yes

TCase4S Non-matched (M1C ≠ M2C) Normal source and 
target states(Normal) 

final target  
state (Destructor) 

Yes 

TCase5 Matched (M1C = M2C), 
Non-matched (M1C ≠ M2C) 

Normal source and 
target states(Normal) 

Normal source and 
target states(Normal) 

Yes 

 

In all the possible cases, the following terms apply: 

 The classes M1C and M2C should have the 
same type. 

 It is either that the containing classes M1C and 
M2C of the matched transitions are matched 
(M1C = M2C) or non-matched (M1C ≠ M2C). 
In the case that M1C and M2C are non-matched, 
it is either M1C is a subset of M2C (M1C ⊂ 
M2C), M2C is a subset of M1C (M2C ⊂ M1C), 
or they share some instances/states (M1C ∩ 
M2C ≠ M1C)∧ (M1C ∩ M2C ≠ M2C) ∧ (M1C 
∩ M2C ≠ ∅). This is decided based on the 
matching possible cases. The compatible 
matching M1C=M2C applies when the classes 
M1C and M2C and their state machines M1CSM 
and M2SCM are matched completely, while the 
non-compatible matching M1C ≠ M2C  applies 
when they are matched partially. 

  The possible cases represent the situations 
where there is a chance to match some class 
instances and states. In other words, it should be 
at least possible to match some states, while this 
is not necessary for classes and attributes to 
provide flexibility for the transition matching 
rule. 

  Generated semantic implicit guards and actions 
that decide the matching compatibility for class, 
state and attribute are the focus point of 
discussion, while the explicit ones are assumed 
that they should not violate the variable-based 
matching rules. 

 

The transition matching rule TMatch: The rule 
TMatch defines the possible cases of matching two 
transitions M1T and M2T of the models M1 and 
M2. 

TCase1: a constructor M1T1 is matched with a 
constructor M2T1, as in Figure 7.  

 

Figure 7: TCase1 Matching 

TCase1 does not violate the class matching rule 
CMatch, and it is not enough to decide the 
preservation of  CMatch (M1C and M2C 
compatible matching) looking at TCase1 alone. 
M1C and M2C are compatibly matched 
(M1C=M2C) given that all the remaining classes 
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constructors and destructors matching cases do not 
violate  CMatch.  M1C and M2C are non-matched 
(M1C ≠ M2C), if there exists one 
constructor/destructor matching case violates 
CMatch. Figure 7 shows the generated implicit 
guards and actions for the containing classes and 
connected states. 

-Given that M1 and M2C are matched, the 
classes related guards and actions are only related 
with matched classes and syntactically matched. 
The M1C class-related guard self ∈ CTYPE ∖ M1C 
and the M1C class-related action M1C≔ M1C ∪ 
{self} are matched with self ∈ CTYPE ∖ M2C and 
M2C≔ M2C ∪ {self} respectively.    

-Given that M1C and M2C are non-matched, 
the classes related guards and actions are related 
with non-matched classes and cannot be matched. 
The M1C class-related guard self ∈ CTYPE ∖ M1C 
and the M1C class-related action M1C≔ M1C ∪ 
{self} cannot be matched with self ∈ CTYPE ∖ M2C 
and M2C≔ M2C ∪ {self} respectively. However, 
self ∈ CTYPE ∖ M1C and self ∈ CTYPE ∖ M2C 
could be enabled together for all possible values of 
self  instance. 

-TCase1 does not violate the state matching 
rule SMatch for M1S1 and M2S1. The generated 
implicit actions for the states M1S1 and M2S1 
(M1S1 ≔ M1S1 ∪ {self} and M2S1 ≔ M2S1 ∪ 
{self}) are only related with matched states and 
syntactically matched given that all other incoming 
and outgoing transitions do not violate the state-
matching rule SMatch making the states matched 
(M1S1=M2S1). 

TCase2: a constructor transition M2T1 is matched 
with a normal transition M1T2, as in Figure 8. 

TCase2 is only for the case that M1C and 
M2C are non-matched, because there exists a 
constructor, which is non-matched with a 
corresponding constructor, violating the second 
condition in the class matching rule CMatch, and 
the classes-related guards and actions cannot be 
syntactically matched violating the third condition 
in CMatch. Figure 8 shows the generated implicit 
guards and actions for the containing classes and 
connected states. 

- M1C and M2C are non-matched and the 
M1C class-related guard self ∈ M1C cannot be 
matched with self ∈ CTYPE ∖ M2C. The M2C 

class-related action M2C ≔ M2C ∪ {self} does not 
have a corresponding match in M1T2. However, 
self ∈ M1C ∧ self ∈ M1S1 and self ∈ CTYPE ∖ 
M2C could be enabled together for all possible 
values of self  instance. 

 

Figure 8: TCase2 Matching 

-TCase2 does not violate the state matching 
rule SMatch for states M1S2 and M2S1. The 
generated implicit actions for the states M1S2 and 
M2S1 (M1S2 ≔ M1S2 ∪ {self} and M2S1 ≔ M2S1 
∪ {self}) are only related with matched states and 
syntactically matched given that all other incoming 
and outgoing transitions do not violate the state 
matching rule SMatch conditions making the states 
matched (M1S2=M2S1). The state M1S1 is indeed 
non-matched, because its state matching rule 
SMatch is violated. 

TCase3: a destructor M1Tn+1 is matched with a 
destructor M2Tn+1, as in Figure 9. 

 

Figure 9: TCase3 Matching 
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Similar to TCase1, TCase3 does not violate the 
class matching rule CMatch, and it is not enough to 
decide the compatible matching of the classes  M1C 
and M2C looking at TCase3 alone, as both 
situations are possible based on the remaining 
constructors and destructors matching cases. Figure 
9 shows the generated implicit guards and actions 
for the containing classes, class attributes and 
connected states. 

-Given that M1C and M2C are matched, the 
classes-related guards and actions are only related 
with matched classes and syntactically matched.  

--Any class attribute in the matched classes 
M1C and M2C could be matched given that all 
other modifying transition matching cases do not 
violate the attribute matching rule  AMatch. 

 
-Given that M1C and M2C are non-matched, 

the classes-related guards and actions cannot be 
matched because they are related with non-matched 
classes. However, the guards that are related with 
M1C and M2C could be enabled together for all 
possible values of self instance. 

--Any class attribute in the non-matched 
classes M1C and M2C are considered non-matched 
based on the attribute matching rule AMatch. 

-TCase3 does not violate the state matching 
rule SMatch for the states M1Sn and M2Sn. The 
generated implicit guards and actions for the states 
M1Sn and M2Sn are only related with matched 
states and syntactically matched given that all other 
incoming and outgoing transitions do not violate 
the state matching rule SMatch conditions making 
the states matched (M1Sn=M2Sn). 

TCase4: A destructor transition M2Tn+1 is 
matched with a normal transition M1Tn, as in 
Figure 10. 

 

Figure 10: TCase4 Matching 

TCase4 is only for the case that M1C and M2C 
are non-matched, because there exists a destructor,  
which is non-matched with a corresponding 
destructor, violating the second condition in the 
class matching rule CMatch, and the classes-related 
actions cannot be syntactically matched violating 
the third condition in CMatch. Figure 10 shows the 
generated implicit guards and actions for the 
containing classes and connected states. 

- M1C and M2C are non-matched and the M1C 
class-related self ∈ M1C cannot be matched with 
self ∈ M2C and the M2C class-related destruction 
action M2C ≔ M2C ∖ {self} does not have a match 
in M1Tn. However, self ∈ M1C and self ∈ M2C 
could be enabled together for all possible values of  
self  instance. 

--Any class attribute in the non-matched 
classes M1C and M2C is considered non-matched 
based on the attribute matching rule AMatch. 

-TCase4 does not violate the state matching 
rule SMatch for the states M1S2 and M2Sn. The 
generated implicit actions for the states  M1S2 and 
M2Sn are only related with matched states and 
syntactically matched given that all other incoming 
and outgoing transitions do not violate the state 
matching rule SMatch conditions making the states 
matched (M1S2=M2Sn). The state-matching rule 
SMatch for M1Sn is violated, because a modifying 
transition of M1Sn does not have a corresponding 
match violating the second condition 
SMatchCondition2. 

TCase5: a normal M1Tn is matched with a normal 
M2Tn, as in Figure 11. 

 

Figure 11: TCase5 Matching 
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Similar to TCase1 and TCase3, TCase5 does 
not violate the class matching rule CMatch where 
M1C and M2C could be compatibly matched 
(M1C=M2C) or non-matched (M1C ≠ M2C) based 
on the remaining matching cases. Figure11 shows 
the generated implicit guards and actions for the 
containing classes and connected states. 

TCase5 does not violate the state matching rule 
SMatch when matching the states M1S2 and M1Sn, 
with the states M2S2 and M2Sn. The modified 
states could be compatibly matched given that all 
other incoming and outgoing transitions do not 
violate SMatch. 

 

TCase2S and TCase4S: These cases are similar to 
TCase2 and TCase4 respectively and discussed 
similarly. 

Constructor and Destructor Matching Cases: 
These cases are neither possible nor applicable, 
because it is not possible to match construction 
guards/actions with destruction guards/actions of 
matched containing classes, and matched instances 
and states cannot be found in these cases. 

Class-events matching is similar to transition 
matching except that class events do not use states. 

3.3. State-Machine Matching 

The state matching rule SMatch and the 
transition matching cases in TMatch form the 
necessary ingredients for matching the state 
machines M1CSM and M2CSM in the state-
machine matching rule SMMatch. For being 
systematic, the matching should be continuous 
which means the state-machine cannot be divided 
into several parts where some are matched and the 
others are none. This is because the state-machine 
represents a consecutive behaviour via a sequence 
of states and we do not intend the matched part to 
be interrupted. 

M1CSM has M1S1,...M1Sn states and 
M1T1,...M1Tn,M1Tn+1 transitions. M2CSM has 
M2S1,...M2Sn states and M2T1,...M2Tn,M2Tn+1 
transitions. Note that the number of states n and  
the number of transitions n+1, shown in M1CSM 
and M2CSM, represent just examples, and different 
numbers of states and transitions may exist in 
M1CSM and M2CSM. 

The state-machine matching rule SMMatch: Two 
different rule cases exist SMMatch_1 and 
SMMatch_2. 

SMMatch_1: M1CSM and M2CSM are 
matched completely. They have the same number 
of states and transitions and they are all matched. In 
this case, M1C and M2C are compatibly matched 
(M1C = M2C). 

Two possible states sequences matchings exist. 
We provide a general representation of these in 
sequences Seq1 and Seq2 which are represented by 
the transitions matching cases. 

In Seq1, constructors are matched first as in 
TCase1, then, normal transitions are matched as in 
TCase5, and finally, destructors are matched as in 
TCase3. Figure 12 shows an example of Seq1 
matching. The dotted arrows represent the matched 
transitions from the state-machine M2CSM of the 
model M2. The dashed rectangles around the states 
(M1S1, M1S2 and M1Sn) represent the matched 
states from the state-machine M2CSM of the model 
M2. 

Seq1 

TCase1(M1C = M2C), TCase5(M1C = M2C), 
TCase3(M1C = M2C) 

 

Figure 12. State-Machine Matching Seq1 and Seq2  
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In Seq2, constructors are matched first as in 
TCase1, and normal transitions are matched as in 
TCase5. This is similar to Seq1, except that no 
destructor matching case exists. Figure 13 shows an 
example of Seq2 matching. 

 

Seq2 

TCase1(M1C = M2C), TCase5(M1C = M2C) 

 

SMMatch_2: M1CSM and M2CSM are matched 
partially. They may have the same or different 
number of states and transitions where some are 
matched. In this case, M1C and M2C are non-
matched (M1C ≠ M2C). 

Several possible states sequence matching 
exist. We provide an  example as in SeqNM in 
Figure 13. 

 

Figure 13. State-Machine Matching- SeqNM 

SeqNM 

TCase2, TCase5(M1C ≠ M2C), TCase4s 

 

In SeqNM, a constructor  M2T1 is matched 
with a normal M1T2 as in TCase2, then, a normal 
M2T2 is matched with a normal M1Tn as in 
TCase5, and finally, a normal M2Tn is matched 
with a destructor M1Tn+1 as in TCase4s.  The 
dashed lines in Figure 13 represent the matching 
linkage between the matched transitions and states. 

 

4. FORMALIZATION AND CORRECTNESS 
OF THE MATCHING METHOD  
 

The correctness of the matching rules is based 
on the compatibility preservation of the matched 
state-variables, the modifying events, and their 

matched guards and actions predicates in the 
matching rules. This is based on UML-B semantics 
given by the generated Event-B specification for 
the matched UML-B class, attribute, state, variable 
that are discussed in the variable-based matching, 
and transition and class-event that are discussed in 
the event-based matching. 

In this section, we show first the required 
compatibility conditions in Section 4.1, then we 
show the formalization of the matched machines in 
Section 4.2 when following the proposed matching 
rules, and finally we show how the compatibility 
required conditions are preserved in the 
formalization in Section 4.3. 

 

4.1. The Required Compatibility Conditions 

The following compatibility conditions should 
be maintained within the proposed variable-based 
and event-based matching rules: 

 The Compatibility Conditions of The 
Matched State-variables: The following two 
conditions CASVMatchCondition2 and 
CASVMatchCondition3 are to preserve the 
compatible changes of the matched state-
variables. These represent the second and third 
conditions in each variable-based matching 
rule. These conditions are  CMatchCondition2 
and CMatchCondition3 in the class matching 
rule CMatch, AMatchCondition2 and 
AMatchCondition3 in the attribute matching 
rule AMatch, SMatchCondition2 and 
SMatchCondition3 in the state matching rule 
SMatch, and VMatchCondition2 and 
VMatchCondition3 in the variable matching 
rule VMatch. 

-  CASVMatchCondition2: All the 
modifying transitions, class-events and 
machine-events of the matched state-
variables M1CASVm and M2CASVm 
(class, attribute, state and variable) should 
be matched. 

-   CASVMatchCondition3: In every 
matched transitions, class-events and 
machine-events, the following conditions 
are preserved: 

  The actions, which modify matched state-
variables M1CASVm and M2CASVm 
(class, attribute, state and variable), 
should be syntactically matched and 
dependent only on matched state-
variables. 
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 The guards, which depend only on 
matched state-variables M1CASVm and 
M2CASVm (class, attribute, state and 
variable), should be enabled together and 
syntactically matched. 

  The guards, which depend on non-
matched state-variables, and cannot be 
matched, should be enabled together. 

 

Note that these two conditions 
CASVMatchCondition2 and CASVMatchCondition3 
are to help preserving the first conditions in each 
variable-based matching rule (CMatchCondition1, 
AMatchCondition1, SMatchCondition1, and 
VMatchCondition1). 

 

Note also that CASVMatchCondition2 and 
CASVMatchCondition3 are related with the cases  
TCase1, TCase2, TCase2s, TCase3, TCase4, 
TCase4s and TCase5 in the event-based matching 
rules. These cases decide the matching 
compatibility of variable-based matching. 

 The Compatibility Condition of The 
Matched Guards and Actions: The 
following condition  EGrdActMatchCondition 
is to preserve the compatibility of the matched 
guards and actions in the event-based 
matching. 

- EGrdActMatchCondition: The guards and 
actions are only considered matched, if they 
are dependent only on matched state-
variables and syntactically matched. 

 

4.2. The Formalization of the Matched Machines 

In the following description, an Event-B 
formalization of the state-variables and 
corresponding generated events of both matched 
machines M1 and M2 is introduced. These are 
based on the proposed matching rules. 

 

In addition to the formalized first conditions 
of each variable-based matching rule  
(CMatchCondition1, AMatchCondition1, 
SMatchCondition1, and  VMatchCondition1), the 
Event-B formalizations of both machines M1 and 
M2 are as follows: 

 

MACHINE M1 

VARIABLES M1CASVm  M1CASVnm 
EVENTS 
M1Em ≙ 
  WHEN 
    M1EmGm(M1CASVm) 
    M1EmGnm(M1CASVm, M1CASVnm) 
 THEN 
  M1CASVm :∣ M1EmAm(M1CASVm, M1CASVm' ) 
  M1CASVnm :∣ M1EmAnm(M1CASVm, M1CASVnm, 
  M1CASVnm' ) 
 END 
M1Enm ≙ 
WHEN 
 M1EnmGnm(M1CASVm, M1CASVnm) 
THEN 
  M1CASVnm :∣  M1EnmAnm(M1CASVm, M1CASVnm, 
  M1CASVnm' ) 
END 

 

MACHINE M2 

VARIABLES M2CASVm  M2CASVnm 
EVENTS 
M2Em ≙ 
  WHEN 
    M2EmGm(M2CASVm) 
    M2EmGnm(M2CASVm, M2CASVnm) 
 THEN 
  M2CASVm :∣ M2EmAm(M2CASVm, M2CASVm' ) 
  M2CASVnm :∣ M2EmAnm(M2CASVm, M2CASVnm, 
  M2CASVnm' ) 
 END 
M2Enm ≙ 
WHEN 
 M2EnmGnm(M2CASVm, M2CASVnm) 
THEN 
  M2CASVnm :∣  M2EnmAnm(M2CASVm, M2CASVnm, 
  M2CASVnm' ) 
END 

 

M1CASVm and M2CASVm represent the 
matched state-variables (class, attribute, state and 
variable) of both machines M1 and M2 
respectively. M1CASVnm and M2CASVnm 
represent the non-matched state-variables of both 
machines M1 and M2 respectively. 

M1Em and M2Em represent the generated 
matched events (transitions, class-events and 
machine-events) of both machines M1 and M2 
respectively. 

M1EmGm in M1Em represent the guards that 
are related only with the matched state-variables 
M1CASVm and matched with their corresponding 
M2EmGm in M2Em. 
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M1EmAm in M1Em represent the actions that 
modify and depend only on the matched state-
variables M1CASVm and matched all with their 
corresponding M2EmAm in M2Em. 

M1EmAnm and M2EmAnm represent the non-
matched actions that modify only the non-matched 
state-variables M1CASVnm and M2CASVnm 
respectively. M1EmGnm and M2EmGnm represent 
the non-matched guards. 

M1Enm and M2Enm represent the non-
matched generated events of the models M1 and 
M2 respectively. M1EnmGnm and M2EnmGnm  
depend on the matched and non-matched state-
variables. M1EnmAnm and M2EnmAnm modify 
only the non-matched state-variables and may 
depend on both matched and non-matched state-
variables. 

 

4.3. The Preservation of the Compatibility 
Conditions in the Formalization 

This includes the preservation of the 
compatible changes of the matched state-variables 
M1CASVm and M2CASVm, and the compatibility 
preservation of the matched guards and actions in 
the matched events M1Em and M2Em. These 
conditions should be preserved, as in the 
formalization of the machines M1 and M2, when 
following the proposed matching rules. 

 

4.3.1 The compatibility preservation of the 
matched state-variables  

The compatible changes of the matched state-
variables M1CASVm and M2CASVm is preserved 
by maintaining in the formalization the 
aforementioned two conditions 
CASVMatchCondition2 and CASVMatchCondition3 
that are explained in Section 4.1.  These conditions 
should be preserved as follows. 

 The condition CASVMatchCondition2: The 
matched actions M1EmAm and M2EmAm are 
all the modifying actions of M1CASVm and 
M2CASVm that only exist in the matched 
generated events M1Em and M2Em. This 
implies that all the modifying events, via 
actions, of M1CASVm and M2CASVm are 
matched. 

 The condition CASVMatchCondition3: In  
M1Em and M2Em, the following sub-
conditions are preserved as follows: 

- Firstly, M1EmAm and M2EmAm are only 
related with M1CASVm and M2CASVm, and 
syntactically matched. There is no non-
matched action (M1EmAnm, M2EmAnm, 
M1EnmAnm, M2EnmAnm) that modifies a 
matched state-variable (M1CASVm or 
M2CASVm). 

- Secondly, M1EmGm and M2EmGm, which 
are only related with M1CASVm and 
M2CASVm, are syntactically matched. 
Because of that, M1EmGm and M2EmGm 
are enabled together. 

- Thirdly, M1EmGnm and M2EmGnm do not 
contradict with each other and it should be 
always possible that they are enabled 
together whenever matching M1Em and 
M2Em. 

   The syntactical matching of the implicit 
predicates M1EmGm and M1EmAm with their 
corresponding M2EmGm and M2EmAm, and how 
they should depend on only matched state-variables 
have been discussed in the transition matching rule 
TMatch. 

   The simultaneous enabling of the implicit non-
matched guards M1EmGnm and M2EmGnm are 
discussed in more details in this section. We focus 
on the implicit non-matched guards of the matching 
cases in TMatch, because these implicit guards 
represent the semantics of UML-B. It is up to the 
method user to investigate the simultaneous 
enabling of the explicit guards.  Remember that, in 
all the matching cases TCase1, TCase2, TCase2s 
TCase3, TCase4, TCase4s, and TCase5, the 
graphical containing classes (M1C, M2C) of the 
transitions have the same type CTYPE. The 
simultaneous enabling of the non-matched implicit 
guards in the cases is discussed as follows. 

 

In TCase1, a constructor transition M2T1 of a 
class M2C is matched with a constructor transition 
M1T1 of a class M1C. When the classes M1C and 
M2C are non-matched, self ∈ CTYPE∖ M1C and 
self ∈ CTYPE∖ M2C are non-matched guards. It is 
always possible that these guards are enabled 
together whenever M1T1 and M2T1 are matched. 
This is because M1T1 and M2T1 are both 
constructors, their non-matched implicit guards are 
simply non-belonging conditions to the classes 
representing the semantics of two constructors, and 
they do not disable each other. This is formalized as 
follows: 
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∀ self, M2T1, M1T1, M1C, M2C . ((( M1T1 and 
M2T1 are constructors of M1C and M2C) ∧ (M1T1 
is matched with M2T1)) ⇒ (self ∈ CTYPE ∖ M1C ∧ 
self ∈ CTYPE ∖ M2C )) 

 

In TCase2, a constructor M2T1 of a class M2C 
is matched with a normal transition M1T2 of a class 
M1C. self ∈ CTYPE ∖ M2C is the non-matched 
guard in M2T1. self ∈ M1C and self ∈ M1S1 are the 
non-matched guards in M1T2. It is always possible 
that these guards are enabled together whenever 
M2T1 and M1T2 are matched. This is because 
M2T1 and M1T2 are constructor and normal 
transitions, their non-matched implicit guards are 
simply belonging/non-belonging conditions 
representing the semantics of a constructor and a 
normal transitions, and they do not disable each 
other. TCase4, TCase2S, TCase4S are discussed 
similarly. This is formalized as follows: 

∀ self, M2T1, M1T2, M1C, M2C, M1S1. ((( M2T1 
is a constructor of M2C and M1T2 is a normal 
transition of M1C ) ∧ ( M2T1 is matched with 
M1T2 )) ⇒ (self ∈ CTYPE ∖ M2C ∧ self ∈ M1C ∧ 
self ∈ M1S1)) 

 

In TCase3, a destructor transition M1Tn+1 of 
a class M1C is matched with a destructor transition  
M2Tn+1 of a class M2C. When the classes M1C 
and M2C are non-matched, self ∈ M1C and self ∈ 
M2C are the non-matched guards. It is always 
possible that these guards are enabled together 
whenever M1Tn+1 and M2Tn+1 are matched. This 
is because M1Tn+1 and M2Tn+1 are both 
destructors, their non-matched implicit guards are 
simply belonging conditions representing the 
semantics of two destructors, and they do not 
disable each other. This is formalized as follows: 

∀ self, M1Tn+1, M2Tn+1, M1C,M2C . (((M1Tn+1 
and M2Tn+1 are destructors of M1C and M2C) ∧ 
(M1Tn+1 is matched with M2Tn+1)) ⇒ (self ∈ 
M1C ∧ self ∈ M2C)) 

 

In TCase5, a normal transition M1Tn of a 
class M1C is matched with a normal transition 
M2Tn  of a class M2C. When the classes M1C and 
M2C are non-matched, self ∈ M1C and self ∈ M2C 
are non-matched guards. It is always possible that 
these guards are enabled together whenever M1Tn 
and M2Tn are matched. This is because M1Tn and 
M2Tn are both normal transitions, their non-

matched implicit guards are simply belonging 
conditions representing the semantics of two 
normal transitions, and they do not disable each 
other. This is formalized as follows:  

∀	 self,	 M1Tn,	 M2Tn,	 M1C,	 M2C	 .	 ሺሺሺM1Tn and	
M2Tn are	normal	transitions	of	M1C	and	M2C ሻ	
∧	ሺM1Tn is	matched	with	M2Tnሻሻ	⇒	ሺself	 ∈	M1C
∧	self ∈	M2C ሻሻ 

 

The explicitly added non-matched guards has 
to be checked when employing the matching rules 
so that they do not disable each other fulfilling the 
compatibility condition. 

In a special case where all the model M2 state-
variables and generated events are matched with 
their corresponding in M1, M2Em is matched 
completely with M1Em. There are no non-matched 
guards in M2Em. In this situation, it is indeed 
whenever guards in M1Em are enabled, then the 
matched guards in M2Em are enabled as well. 

 

4.3.2 The compatibility preservation of the 
matched guards and actions 

 

The compatible matching of M1EmGm and 
M1EmAm with their corresponding M2EmGm and 
M2EmAm is preserved by maintaining in the 
formalization the aforementioned condition 
EGrdActMatchCondition that is explained in 
Section 4.1. This is preserved as follows.  

The guards M1EmGm and actions M1EmAm 
in M1Em are only considered matched with their 
corresponding guards M2EmGm and actions 
M2EmAm in M2Em, because they are dependent 
only on matched state-variables (M1CASVm, 
M2CASVm), and syntactically matched. 

The syntactical matching is decided based on 
the guards and actions predicates themselves 
referring to either candidate or confirmed matched 
state-variables. The dependency on only matched 
state-variables (M1CASVm, M2CASVm) requires 
studying and confirming, via the variable-based 
matching rules, that the appearing state-variables in 
these guards and actions are matched. 

For example, the actions (M1C ≔ M1C ∪ 
{self} and M2C ≔ M2C ∪ {self}) are syntactically 
matched considering M1C and M2C as candidate 
matched classes. However, in addition to this 
syntactical matching, the appearing classes (M1C, 
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M2C) should be confirmed matched via the class 
matching rule CMatch, for the actions to be 
matched.  

 

5. COMMUNICATION-BASED CASE     
STUDY 

 

This section, presents a communication-based 
case study showing the applicability of the 
proposed rules. Two systems Sys1 and Sys2 
communicate through a middle ware MW, as shown 
in Figure 14. Sys1 prepares a value S1 to be 
processed and sends it to MW. Next, MW makes a 
backup of S1 and forwards it to Sys2 which in turn 
processes S1 producing the resulted value S2 in 
order to send it to MW. Then, MW makes a backup 
of S2 and forwards it to Sys1, and finally Sys1 
obtains S2. Sys1 communicates with MW by means 
of Buffer1, and MW communicates with Sys2 by 
means of Buffer2.  

 

Figure 14. Communication-based Case Study Schemata 

In this case-study, we show how the proposed 
UML-B matching rules are applied to compare two 
existing models Com1 and Com2 that have a 
similar behaviour related with communication. 
Com1 consists of one abstract and seven refinement 
machines, while Com2 consists of one abstract 
machine.  Figure 15 shows the package diagram of 
the model Com1. We summarize each machine as 
follows: 

ComBasedAbs: Introduces Communication 
class and the transitions to start, end and repeat the 
communication process. 

ComBasedRef1: Introduces Sys1 and  
S1Values classes, and the transition to prepare and 
send S1 value. Sys1 is to be a sender in the 
complete system scenario. 

ComBasedRef2Match: Applies state machine 
flattening. At this level, matching is applied with an 
existing model Com2 that has the functionality of a 
sender. At this level, state machines are completely 
matched. 

ComBasedRef3: Introduces Buffer1 and the 
communication transitions with it. Buffer1 will 
serve as a communication channel with MW 
through the introduced transitions.   

ComBasedRef4: Introduces MW class, and the 
transitions for sending and receiving values to and 
from MW. 

ComBasedRef5Match: Applies state machine 
flattening.  At this level, matching is applied with 
the model Com2. Matching in this case considers 
the partial state machines matching. 

 

Figure 15. The Com1 Model Package Diagram 

ComBasedRef6: Introduces Buffer2 and Sys2 
classes and the communication transitions with 
both classes. Buffer2 serves as a communication 
channel with Sys2 through the introduced 
transitions. 
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ComBasedRef7: Introduces the class S2Value, 
and class attributes of the class Buffer2 providing 
more details related with the Sys2. 

We focus in the next discussion on 
ComBasedRef2Match and ComBasedRef5Match 
where the matching rules are applied to evaluate 
which elements could be compatibly matched with 
the elements of the model Com2. 

5.1. First Matching  

Figure 16(a) and Figure 16(b) show class and 
state machine diagrams of ComBasedRef2Match 
machine respectively in the model Com1. 

 

(a) Class Diagram 

 

(b) State-machine Diagram 

Figure 16. Com1 Model- ComBasedRef2Match 

Figure 17(a) and Figure 17(b) show class and 
state-machine diagrams of the UML-B model 
Com2 that have the behaviour of a sender initiating 
a request to another communication end-point. 

Figure 17(a) shows the class diagram in which 
the class Sender represents the instances of the 
sender end-point and the class CommunicationPart 
represents the communication instances that are 
communicated between the Sender and other end-

points.  Figure 17(b) shows the state machine 
diagram in which in_Sender and 
Sender_Request_in_Process represent the states 
where Sender requests are prepared and processed 
respectively. AddToSender and 
RemoveFromSender are construction and 
destruction transitions initiating and ending the 
communication in Sender respectively. 
sendMessage and receiveReply transitions are to 
transfer the communication (from,to) the Sender 
respectively. 

Matching Application: It is possible to match the 
machine ComBasedRef2Match shown in Figure 16 
with the machine Com2 shown in Figure 17. Table 
3 shows the matched and non-matched UML-B 
elements. 

 

(a) Class Diagram 

 

(b) State-machine Diagram 

Figure 17. The Com2 Model machine 

The compatible matching of classes and 
states is guided by the fact that they have the 
same type. The class matching rule CMatch 
conditions are preserved for Communication= 
CommunicationPart matching. These classes 
have the same type containing the same states 
and instances, all constructors and destructors 
are matched, and the guards and actions that 
are related with Communication and 
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CommunicationPart are syntactically matched 
(i.e. they have the same syntactical 
predicates). Sys1=Sender compatible 

matching conditions are preserved and 
discussed similarly. 

Table 3: First Possible Matching 
Matching Status/ 
Element Type 

Matched Elements Non-Matched 
Elements 

Class Communication = CommunicationPart, Sys1=Sender S1Values 
Class Attribute - - 
State Sys1ProcessStarted =In Sender, 

Sys1ValuePreparedSent= Sender _Request_ In _Process 
 

Variable - - 
Class Event - - 
Transition Containing classes of matched transitions are matched:  

 
Start-Process/AddToSender(TCase1),  
Prepare-Send S1Value/sendMessage(TCase5), 
DoProcessAgain/receiveReply(TCase5), 
endProcess/RemoveFromSender(TCase3) 

 

Machine Event - - 
State Machine ComSM/CommunicationPartSM (SMMatch_1, Seq1) - 

 

The state matching rule SMatch conditions are 
preserved for Sys1ProcessStarted=In_Sender 
matching. These states have the same types 
containing the same instances, all their incoming 
and outgoing transitions are matched, and all the 
generated implicit related guards and actions are 
syntactically matched. Sys1ValuePreparedSent 
=Sender_Request_In_Process compatible matching 
conditions are preserved and discussed similarly. 

SMMatch_1 is followed to match ComSM and 
CommunicationPartSM completely and the 
matching corresponds to the sequence Seq1. 

5.2. Second Matching  

Figure 18(a) and Figure 18(b) show class and 
state machine diagrams of ComBasedRef5Match 
respectively in the model Com1. 

At this level, the complete requirements for 
the communication between Sys1 and MW through 
Buffer1 are modelled. It is still required that MW to 
be a sender to Sys2. It is interesting to match 
ComBasedRef5Match model with the machine in 
same model Com2 in Figure 17. The aim is to show 
the partial model matching between these 
machines. 

Matching Application: Table 4 shows the matched 
and non-matched UML-B elements. 

 

 

(a) Class Diagram 

 

(b) State-machine Diagram 

Figure 18. Com1 Model-  ComBasedRef5Match 
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Table 4: Second Possible Matching 
Matching Status/  
Element Type 

Matched Elements Non-Matched Elements 

Class MW=Sender CommunicationPart, 
Communication, Sys1, 
S1Values, Buffer1 

Class Attribute - Buffer1S1Value, 
Buffer1S2Value 

State In_MW=In_Sender,  
Out MW = Sender_Request_ In_Process 

Sys1ProcessStarted, 
In_ Buffer1 

Variable - - 
Class Event - - 
Transition Containing classes of the matched transitions 

are non-matched: 
 
recvS1FromBuffer1_makeS1Backup/ 
AddToSender(TCase2),  
 
sendS1Value/ sendMessage(TCase5), 
 
receiveReply/ receiveReply(TCase5), 
 
 sendReplyTo_Buffer1/ 
RemoveFromSender(TCase4) 

startProcess,  
endProcess, 
Prepare_send_S1ToBuffer1, 
recv_FromBuffer1_DoAgain 

Machine Event - - 
State Machine ComSM/CommunicationPartSM (SMMatch_2) - 

 

Based on class transitions matching cases 
which correspond to SMMatch_2, the state 
machines are partially matched and the containing 
classes Communication and CommunicationPart 
cannot be matched. TCase2 violates the rule 
CMatch, and the construction guard and action (self 
∈ COMMUNICATION ∖ CommunicationPart, 
CommunicationPart ≔ CommunicationPart ∪ 
{self}) cannot find a corresponding match in 
recvS1FromBuffer1_makeS1Backup. TCase4 
violates the rule CMatch, the destruction guard and 
action (self ∈ CommunicationPart , 
CommunicationPart ≔ CommunicationPart ∖ 
{self}) cannot find a corresponding match in 
sendReplyToBuffer1. TCase5 in this case study 
corresponds to the situation that Communication 
and CommunicationPart are non-matched, and the 
containing class guard (self ∈ CommunicationPart) 
cannot be matched with (self ∈ Communication) in 
sendS1Value and receiveReply.  

States compatible matching conditions in the 
rule SMatch are discussed similarly to the first 
matching. In_MW and Out_MW are matched 
compatibly with In_Sender and Out_Sender 
respectively preserving the rule SMatch. 

 

6. RELATED-WORK  
 

In [14], pattern matching steps are introduced 
for Event-B. This assumes that the pattern is 
matched completely with the problem model. In our 
work, models can be matched completely or 
partially considering more possible cases of 
matching the models M1 and M2. Based on [14], 
the user should decide the problem variables to be 
matched with their corresponding in the pattern. In 
our work, we provide a more concrete guidance to 
the user defining how to match the class, state as 
subset of class, and attribute as a relational type. 
Based on [14], the matching cannot be guaranteed 
unless the matched events alter the matched 
variables in the same way through syntactical 
matching of the events guards and actions. Our 
work is similar, as the proposed rules for matching 
classes, states and attributes restrict all their related 
modifying transitions and class-events to be 
matched having the same syntactically matched 
generated actions that modify the matched state-
variables depending only on them.  

In [17], a matching approach is introduced for 
Object-Z formal language. Their work considers 
both syntactical and structural similarity where 
syntactic similarity is calculated by comparing the 
elements names strings and that is considered as 
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initial starting point for their matching approach. 
The structural similarity uses the object oriented 
aspects (i.e. class elements, relations). In our work, 
we consider the exact matching of UML-B 
elements which results in either matched/non-
matched since UML-B semantics are based on 
Event-B and we prefer the matching correctness to 
be based on the set-theory strict typing for 
preciseness. 

A specification matching method is introduced 
in [18] to facilitate recognizing and retrieving 
reusable components that address the objectives of 
a reuse system. They employ order-sorted predicate 
logic to specify the software component 
considering the exact, relaxed and logical matching 
for methods and components. In our work, we 
employ first order logic and set-theory considering 
the exact matching for UML-B individual elements 
and predicates and the relaxed matching between 
UML-B machines. 

In [19], definitions for matching the formal 
specifications of components are introduced in the 
context of object-oriented programming. These are 
based on the first order logic and theory proving. 
The definitions consider exact and relaxed 
matching for functions and modules. Our work is 
similar, that is based on the first order logic and 
theory proving considering the UML-B elements 
exact match and the relaxed matching for machines, 
however our work considers, in addition to 
transitions, class-events and machine-events, the 
UML-B variable-based matching that is related 
with the set-theory. 

In [20], it is proposed to extend the 
specification matching methods, which are limited 
to functions and modules, to handle the object-
oriented components. This include classes matching 
and its contained attributes and methods. Our work 
considers also matching classes and their contained 
attributes, states, transitions and class events. 

Techniques for matching state-based modules 
are introduced in [21]. These extend the existing 
specification matching methods that are based on 
functions specified by pre- and post-conditions. 
This work considers the data-refinement and the 
use of state and coupling invariants. Our work is 
similar in the sense that it considers matching state-
variables represented by UML-B class, attribute, 
state and variable, and events represented by UML-
B transition, class event and machine event. In 
addition, our work considers the state-variables 
typing invariants for the matching to be compatible. 

In [22], a pattern approach which is based on 
set-theory is introduced for conceptual models. 
Their approach considers every model as a set of 
objects and relationships. A collection of functions 
is proposed and a set of operators is defined to 
combine the resulting sets from the functions. Their 
work is similar to our work as both are based 
generally on set-theory with some differences in 
terms of elements typing. 

 

7. THE METHOD SIGNIFICANCE, 
LIMITATIONS AND FUTURE WORKS 

  
In this section, we discuss the method 

benefits, limitations and some future works 
explaining in more details the future works that we 
are working on currently.   

The method significance: In this work, we 
introduce rules for matching UML-B models. The 
matching is not necessarily complete between the 
models M1 and M2 to provide flexibility. It is 
necessary to preserve the compatibility conditions 
mentioned in Section 4 for the method to be 
correct. In the context of UML-B modelling, the 
method may serve in the following:  

 Managing compared UML-B models on 
which the matching method is applied. This 
includes observing compatible and non-
compatible UML-B elements among these 
models.  

 Extract and store compatibly matched UML-
B model elements, as a common model, for 
future reuse and integration with other 
models. The compatibly matched elements, 
which are: matched state-variables 
(M1CASVm, M2CASVm) and their 
modifying events (M1Em, M2Em) including 
their guards (M1EmGm, M2EmGm) and 
actions (M1EmAm, M2EmAm), may be 
extracted as a proven correct UML-B model 
that is suitable for future reuse.     

 Reusing compatibly matched UML-B 
models in constructing larger ones to avoid 
remodelling and reproving.   

 

The method limitations: In this work, for 
simplicity, matching state state-machines is 
performed for flattened state-machines in which no 
nested state-machines are allowed in the matched 
states.  
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Also, this work considers only the state-sets 
translation, whereas it does not consider the state-
function translation that has different semantics of 
the state-set translation.  

Future works: In a special situation in the 
matching method, the model M2 may be matched 
completely with part of the model M1. We are 
currently working on: specializing the matching 
rules to suit this situation; and employing these 
special rules in a method for pattern reuse 
considering M2 as the pattern model and M1 as the 
problem model. In this situation, whenever a state-
variable in M1 is modified under some 
circumstances, it is indeed that the matched-with 
state-variable in M2 is modified in the same way 
under the same circumstances. This is because all 
the state-variables and generated events of M2 are 
matched with their corresponding in M1. The future 
proposed pattern reuse method will support the 
modelling in UML-B avoiding remodelling and 
reproving the pattern model when constructing a 
larger UML-B model. 

 

The matching method is based on the state-
sets translation. Another possible future work is 
to investigate the state-function translation to 
explore more matching options when matching 
UML-B models based on the these semantics 
that are related with the state-function. 

8. CONCLUSIONS 
 

Model matching provides means for the 
integration, management, and reuse for the matched 
models in the context of model driven software 
engineering. In this work, we propose a method to 
match models in UML-B. The contributions of this 
paper are as follows: 

 Variable-based matching rules.  

 Event-based matching rules. 

 State-machine matching rules. 

 A formalization of the method rules.  

 A communication-based case study to 
illustrate the method applicability. 

 

The variable-based matching provides rules for 
the compatible matching of UML-B class, attribute, 
state, and variable. These are based on the elements 
types, which are given by UML-B semantics, and 

the compatible behaviour of their modifying 
transitions, class-events, and machine-events.  

The event-based matching provides rules and 
cases for matching UML-B transitions and class-
events. These cases decide the compatibility of the 
related state-variables. 

The state-machine matching provides rules based 
on the state and transition matching rules. Based on 
these rules, state-machines and their containing 
classes are partially or completely matched. 

The proposed method considers the partial and 
complete matching of two UML-B models M1 and 
M2.   

The method rules are formalized by means of the 
generated corresponding Event-B specifications. 
The correctness of these rules is justified via 
preserving the compatibility of the matched state-
variables and their corresponding modifying events 
including their matched guards and actions 
predicates. 

 

The compatibility of the matched state-variables 
(class, attribute, state, and variable) is preserved by 
two conditions. First, all the modifying generated 
events (transitions, class-events, and machine-
events) of the matched state-variables should be 
matched. Second, in every matched modifying 
events, the modifying actions of the matched state-
variables should be syntactically matched and 
dependent only on matched state-variables, the 
guards that depend only on matched state-variables 
should be enabled simultaneously and syntactically 
matched, and the guards that depend on non-
matched state-variables and cannot be matched 
should be enabled simultaneously. The 
compatibility of the matched guards and actions is 
preserved by the condition that they are only 
considered matched, when they are dependent only 
on matched state-variables, and syntactically 
matched. 

To illustrate the applicability of the method, a 
communication-based case-study is introduced. The 
matching rules have been applied in this case study 
showing the practicality of these rules. 
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