
Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

582

 A METHOD FOR MATCHING MODELS IN UML-B

1 MUHAMMED BASHEER JASSER, 2 MAR YAH SAID,

3 ABDUL AZIM ABDUL GHANI, 4PATHIAH ABDUL SAMAT
1Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM

Serdang, Selangor, Malaysia

E-mail: 1mbjasser@m.ieice.org/mbjasser@gmail.com, 2maryah@upm.edu.my

ABSTRACT

UML-B is a graphical front-end formal modelling language of the formal method Event-B. UML-B models
semantics are given by the corresponding generated Event-B. Identifying similarities between models has
several benefits such as model comparison, integration and evolution. Several matching and comparison
methods have been done in the context of model driven software engineering. However, matching models
via a systematic method is not supported yet in UML-B. In this work, we propose a matching method for
UML-B elements based on their semantics. This method includes variable-based matching, event-based
matching and state-machine matching. The variable-based matching provides rules for matching UML-B
classes, attributes, states and variables. The event-based matching provides rules and cases for matching
UML-B transitions and class-events. The state-machine matching provides rules for matching UML-B
state-machines based on the state and transition matching rules. The matching rules are formalized by
means of the generated corresponding Event-B specifications. The correctness of the rules is justified via
preserving the compatibility of the matched state-variables and corresponding modifying events including
their matched guards and actions. These rules are illustrated via a communication-based case study to show
their applicability.

Keywords: Visual modeling languages, Formal specification, Event-B, UML-B, Model Matching

1. INTRODUCTION

Model-Driven Software Engineering MDSE [1]
is part of the software engineering discipline where
models are considered as the primary elements
representing the abstract view of the systems to be
handled with. Model matching is an important
process for model management, evolution and
integration. A correct and accurate model matching
leads to a better model integration.

Several matching approaches and methods have
been proposed in the context of MDSE. They stand
on specifying the model differences through three
phases: calculation, representation and visualization
[2]. The calculation stands for comparing models,
the representation is to provide the outcome of
calculation for further manipulation, and the
visualization is to represent the model differences in
a visualized way.

Formal modelling is part of the software
engineering [3], [4] which provides an accurate way
of modelling and verifying systems. This is by the
precise specification and the mathematical basis
which the formal languages are based on. Event-B

[3] is a formal method which is based on the set-
theory, first order logic and action systems [5]. It
allows modelling correct-by-construction systems
that are verified by the theorem provers offered by
Rodin platform [6].

UML [7] is a semi-formal language for modeling
object-oriented systems. UML-B [8], [9], [10], [11]
is a graphical front-end of the formal method Event-
B. It combines the semi-formal properties of UML
and the formal ones of Event-B. UML-B models
semantics are given by their corresponding Event-B
models generated from the translation process and
used for verification purposes.

Matching UML-B models is interesting as it has
several benefits such as: first, matching helps
observing the compatibility and difference between
the models in UML-B, especially what is related to
mathematical types, second, matching provides a
good potential for reusing the compatibly matched
UML-B elements that could be extracted and reused
avoiding the remodelling and reproving effort of
these elements. Currently, matching models via a
systematic method is not supported yet in UML-B.
The research question that we tackle in this work is:

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

583

How models in UML-B could be matched
compatibly and consistently?. To answer this
question, in this paper, we propose a method for
matching UML-B models based on their semantics
that are given by their corresponding Event-B
models represented by the generated Event-B state-
variables and events. The method introduces rules
for matching the different structures offered by
UML-B. This includes UML-B class, UML-B
attribute, UML-B state, and UML-B variable that
become Event-B variable, and UML-B transition
and UML-B class-event that become Event-B
event. The proposed rules guide the user to a correct
model matching which should lead to correct model
integration and management. The proposed method
is formalized and the justification for correctness is
provided through preserving the compatibility of
the matched UML-B elements. The method
applicability is illustrated through a case study. The
contributions of this paper are as follows:

 Variable-based matching rules.

 Event-based matching rules.

 State-machine matching rules.

 A formalization of the method rules.

 A communication-based case study to
illustrate the method applicability.

This paper is structured as follows. Section 2
reviews a background related with Event-B,
matching in Event-B, and UML-B. Section 3
presents our proposed method. Section 3.1 presents
the variable-based matching rules for UML-B class,
attribute, state and variable. Section 3.2 presents the
matching rules for UML-B transition and class-
event. Section 3.3 introduces the UML-B state-
machine matching rules. Section 4 presents a
formalization and a justification for the method
correctness. Section 5 overviews a communication-
based case-study to show the method applicability.
Section 6 exhibits some of the related work
regarding model matching in the context of Model-
Driven Software Engineering. Section 7 exhibits
some benefits and limitations of the method and
some proposed future works. Section 8 concludes
the work.

2. BACKGROUND

This section discusses Event-B, matching in
Event-B, UML-B diagrams and its semantics.

2.1 Formal Modeling and Matching in Event-B

Event-B [3] is a variant of the B-method [4],

[12] and is based on Action Systems [5]. An action
system is a collection of actions on some set of
state variables. Every action has enabling condition
guard which depends on any system variable. The
mathematical notation used in both Event-B and B-
method is based on set-theory [13]. Event-B models
are described by contexts and machines where they
represent the static and dynamic parts respectively.
The context contains the types, axioms and
constants, while the machine contains the state
variables, invariants and events that can be called to
change the machine state. Invariants represent the
system conditions on variables and should be
preserved for each event that has an effect on the
invariant-related variables. Event-B is supported by
Rodin tool [6] for modeling and proving.

In [14], pattern matching guidelines are

introduced in Event-B. The user has to define
which problem variables are to be matched with all
the pattern variables. The compatibility of the
matching should be guaranteed following specific
checks. First, there is no non-matched events that
alter matched variables. Second, in each pattern
event, all the guards and actions, that depend
naturally on only the matched pattern variables, are
syntactically matched (i.e. a:=a+1 is syntactically
matched with b:=b+1).

Our proposed method for matching UML-B

models is based on some of the Event-B matching
aspects that are related with matching the events
and the syntactical matching of guards and actions.
However, UML-B is a higher level graphical
language, and we provide rules for matching UML-
B class, attribute, state and variable based on their
implicit semantic types, rules for matching UML-B
transitions and class-events based on their
semantics, and rules for matching UML-B state-
machines. In addition, our proposed method
considers the partial matching between the matched
UML-B machines.

2.2 UML-B Diagrams and Semantics

UML-B [8], [9], [10], [11] is a graphical front-

end for the formal method Event-B. It shares
similar properties with UML [7], [15], but UML-B
has its own meta-model. UML-B offers four
diagrams: package, context, class, and state-
machine. These diagrams are translated to Event-B
for verification by Rodin theorem provers.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

584

In package diagram, contexts, machines and
their interconnecting relationships are represented.
a machine refines another machine and a context
extends another context while machines sees
contexts. Figure 1 shows an example of a package
diagram which has two machines DeviceAbs and
DeviceRef, and two contexts CTX1 and CTX2.
Machines relate with each other by refines
relationship such as DeviceRef refines DeviceAbs.
Contexts relate by extends relationship such as
CTX2 extends CTX1. Machine and context relate by
sees relationship such as DeviceRef sees CTX2.
Figure 2 shows an example of the context diagram.
Three class types are defined which are DEVICE,
CONTROLLER and ControllerType.

 Figure 1: UML-B package diagram

Figure 2: UML-B context diagram

In the class diagram, a system dynamic behavior

is represented by classes, variables, events and
invariants. Classes contain attributes, events, state
machines, invariants and theorems. The class
attribute may be of a classtype defined in the
context or predefined type. The class event is
executed whenever guards hold true and executes
actions changing classes, attributes or machine
variables values. Figure 3 shows the UML-B class
diagram of a device system. Two classes are
defined: Controller and Device. The association
relationship DController relates the classes Device
and Controller and represented as an attribute in the
class Device. The class Controller has one attribute
Type that is ControllerType. The association
relationship attribute DController has the type of
the target class Controller. DController has the
multiplicity of 1..1 in the side of Controller class
and 1..1 in the side of Device class allowing a
device to have only one controller, and a controller
to be related with one device only. The class
Device has one class event CreateDevice.

In the state machine diagram, system changes
its state by executing transitions. State-machine
may be attached to a class or defined at the machine
level.

A class partitions its behaviour into different
states in class state machine. System changes its
current state when firing transitions. These
transitions are similar to the class events except an
additional guard and additional action represented
by the source and target states respectively. Figure
4 shows ControllerSM class state machine attached
to the class Controller. Two different disjoint
states are defined Idle and Active. Five transitions
change the system states TurnOn, ShutDown,
Activate, DeActivate and ExecuteCommand.

Figure 3: UML-B class diagram

Figure 4: UML-B state machine diagram

2.2.1 UML-B semantics

The semantics of UML-B models are given by

the generated corresponding Event-B models
obtained from U2B translator [16]. U2B has a
specific translation rule for each UML-B element.
In this section, we provide a background regarding
some rules to comprehend the proposed matching
method.

In this article, we differentiate the UML-B
implicit guards and actions from the explicit ones.
The implicit (semantic) guards and actions are
related with the graphical UML-B structures and
generated according to the transition/class-event
kind. The explicit guards and actions are the ones
added explicitly to the transition/class-
event/machine-event (via the Properties section),
and they are not generated from the graphical
structures. The implicit and explicit invariants are
discussed similarly.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

585

UML-B class, attribute, state and variable are
translated to Event-B variable, while UML-B
machine event, class event and state machine
transition are translated to Event-B event. The
implicit invariants and specifications for the UML-
B elements are discussed in the next paragraphs.

UML-B classes, attributes, states: The classes
Controller and Decive, the class attributes Type and
DController, and the states Idle and Active are
translated to Event-B variables.

Typing and Class Partition Invariants: Typing
invariants are defined in INVARIANTS section.
Controller and Device are typed as subsets of
CONTROLLER and DEVICE respectively. Type is
typed as total function with Controller and
ControllerType as the domain and range
respectively. DController is typed as bijective
function with Device as the domain and Controller
as the range. partitions(Controller, Active, Idle) is
the class partition invariant which partitions the
states of class Controller. This is equivalent to
((Controller= Idle ∪ Active) ∧ (Idle ∩ Active = ∅)).

UML-B transitions and class-events: The
ControllerSM state machine transitions Activate,
TurnOn and ShutDown, and the class event
createDevice are translated to Event-B events.
Three kinds of transitions exist which are the
constructor (transition with initial source state), the
destructor (the transition with final target state) and
the normal (the transition with normal source and
target states). The generated implicit Event-B
specifications of these transitions are as follows:

TurnOn ≙
Any self. WHERE

self ∈ CONTROLLER ∖ Controller
THEN
 Controller ≔ Controller ∪ {self}
 Idle ≔ Idle ∪ {self}
END

ShutDown ≙
Any self. WHERE

self ∈ Controller
self ∈ Idle

THEN
 Controller ≔ Controller \ {self}
 Idle ≔ Idle \ {self}
 Type ≔ {self} ⩤ Type

 END

Activate ≙
Any self. WHERE

self ∈ Controller
self ∈ Idle

THEN
 Idle ≔ Idle \ {self}
 Active ≔ Active ∪ {self}
END

self represents the instance parameter of the

class Controller. The same name self is used to
represent in general any instance parameter of
UML-B classes in this article.

TurnOn has the initial source state and the target

state Idle. A guard related with the containing class,
and two actions related with the containing class
and the target state are generated. self ∈
CONTROLLER ∖ Controller is the guard generated
for the class Controller. Controller ≔ Controller ∪
{self} and Idle≔ Idle ∪ {self} are the actions
generated for the class Controller and the state Idle
respectively. self represents the class instance
parameter.

ShutDown has the source state Idle and the final

target state. Two guards related with the containing
class and the source state, and three actions related
with the containing class, the source state and the
class attribute Type are generated. self ∈ Controller
is the guard generated for the class Controller. self
∈ Idle is the guard generated for the source state.
Controller ≔ Controller ∖ {self} is the destruction
action generated for the class Controller. Idle≔
Idle ∖ {self} is the action generated for the source
state. Type ≔ { self } ⩤ Type is the generated
destruction action for the class attribute Type,
which is necessary to preserve its functional type.

Activate has the normal source and target states

Idle and Active respectively. Two guards related
with the containing class and the source state, and
two actions related with the source and target states
are generated. self ∈ Controller is the guard
generated for the containing class Controller. self
∈ Idle is the guard generated for the source state.
Idle ≔ Idle \ {self} and Active ≔ Active ∪ {self}
are the actions generated for Idle and Active states
respectively.

CreateDevice is a constructor class event

contained in the class Device. This is discussed
similarly to the transition TurnOn except that
CreateDevice does not use states.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

586

3. THE PROPOSED METHOD FOR
MATCHING MODELS IN UML-B

The proposed method is based on UML-B

semantics given by the corresponding generated
Event-B state-variables and events.

The matching rules treat the UML-B models as
a collection of generated state-variables and
corresponding events changing their values. UML-
B class, state, attribute and variable represent the
state-variable, and UML-B transition, class-event
and machine-event represent the corresponding
event. The outcome of the matching method is a
boolean identity (matched/non-matched) for the
state-variables, and their related events including
their guards and actions.

The matching of these UML-B state-variables
and their modifying events is based on the set-
theory and some aspects of the Event-B matching
in [14] as follows:

 The set-theory is the basis of variables typing

in Event-B which is to guide the matching of
UML-B class, attribute, state and variable
based on their semantic Event-B types.

 The Event-B matching steps in [14] preserve
the compatibility of the matched Event-B
variables by checking the related modifying
events. It is assumed in [14] that one of the
matched Event-B models should be
completely matched with the other one. In this
method, the compatibility of the matched
UML-B class, attribute, state, and variable is
also preserved following a similar concept via
matching their modifying UML-B transitions,
class-events and machine-events. However, in
this method the partial matching of models is
also treated, and matching rules are proposed
to handle the cases that are related with both
the complete and partial matching.

The proposed matching rules are classified to
variable-based, event-based and state-machine
matching. These are introduced in Sections 3.1,
3.2 and 3.3 respectively. Briefly, they are as
follows:

 The variable-based matching rules concern
matching the state-variables (UML-B
class, attribute, state and variable).

 The event-based matching rules are related
with the variable-based matching rules
and concern matching the corresponding
events (UML-B transition and class-
event). The transition and class-event
matching cases decide the compatibility
of the related state-variables based on the
variable-based matching rules.

 The state-machine matching is proposed
based on the UML-B state and transition
matching rules.

The matching is performed between two

models M1 and M2. As shown in Table 1, M1C,
M1A, M1S and M1V represent the model M1
class, attribute, state and variable respectively,
and M1T and M1CE represent the model M1
transition and class event. M1CASVm represents
the matched state-variables that are the matched
class, attribute, state and variable. M1CASVnm
represents the non-matched state-variables.
M1Em represents the generated matched event
from transition, class-event and machine-event.
M1Enm represents the non-matched generated
event. The UML-B elements (generated state-
variables and corresponding events) of the model
M2 are discussed similarly.

Table 1: UML-B Matching Frequently Used Symbols
Model/
UML-B element, Event-B
Generated State-variables and events

M1 M2

UML-B Class M1C M2C

UML-B Attribute M1A M2A
UML-B State M1S M2S
UML-B Variable M1V M2V
UML-B Transition M1T M2T
UML-B Class-event M1CE M2CE
Event-B State-variables M1CASVm (matched),

M1CASVnm (non-matched)
M2CASVm (matched),
M2CASVnm (non-matched)

Event-B Generated Events M1Em (matched),
M1Enm (non-matched)

M2Em (matched),
M2Enm (non-matched)

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

587

The model matching is based on the

following assumptions:

 Matching occurs between elements of the
same type (i.e. a transition with a transition,
a class with a class).

 Classes and attributes may be implicitly or
explicitly modified by transitions, class-
events or machine-events. States may only
be implicitly modified by transitions.

 The implicit modifiers of the UML-B class,
attribute and state are as follows:

 The implicitly modifying transitions
and class-events of classes are the
constructors and destructors of the
classes.

 The implicitly modifying transitions
and class-events of the attributes are
the destructors of the containing
classes of these attributes.

 The implicitly modifying transitions
of the states are the incoming and
outgoing transitions of the states.

 The actions and guards, mentioned in the
conditions of variable-based matching
rules include both generated implicit and
explicit ones, except the modifying actions
in the state matching rule SMatch, because
states are only implicitly modified. The
implicit guards and actions are those
obtained from UML-B graphical semantics
and generated from U2B translator in the
corresponding Event-B model. The
explicit guards and actions are not part of
the graphical semantics and added
explicitly to the UML-B model in
transitions, class-events or machine-
events.

3.1. Variable-Based Matching

This section presents the matching rules for
the UML-B classes (M1C, M2C), attributes (M1A,
M2A), states (M1S, M2S) and variables (M1V,
M2V). The conditions in each rule are to guide the
matching of UML-B classes, attributes, states and
variables based on their semantic Event-B types,
and to maintain their compatible changes by
preserving that their behavioural modifications are
the same.

3.1.1 Classes matching

The class matching rule CMatch: The classes
M1C and M2C are compatibly matched
(M1C=M2C), if the following three conditions are
met:

 CMatchCondition1: M1C and M2C have
the same type and the same instances as
formalized as follows:

(M1C ∈ ℙ(TYPE1) ∧ M2C ∈ ℙ(TYPE2)) ∧

(TYPE1=TYPE2) ∧

(∀ self . ((self ∈ M1C) ⇔ (self ∈ M2C)))

 CMatchCondition2: The implicitly and
explicitly modifying transitions M1T,
class-events M1CE, and machine-events of
M1C are matched with the implicitly and
explicitly modifying transitions M2T,
class-events M1CE, and machine-events of
M2C.

 CMatchCondition3: In every matched
transitions, class-events, and machine-
events, the following three sub-conditions
are met:
- CMatchCondition3MatchedActions:

The actions, which modify the
classes (M1C, M2C), should be
syntactically matched and dependent
only on the classes and possibly other
matched state-variables.

- CMatchCondition3MatchedGuards:
The guards, which depend only on:
the classes (M1C, M2C); or other
matched state-variables (M1CASVm,
M2CASVm), should be enabled
together and syntactically matched.

- CMatchCondition3NonMatchedGuards:
The guards, which depend on non-
matched state-variables, and cannot
be matched, should be enabled
together

3.1.2 Class attributes matching

Attributes matching is considered relational,
since the semantic of an attribute is recognized as a
relation with the containing class of the attribute as
the relation domain and the selected type as the

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

588

relation range. The relation has several possible
types (total, functional, surjective, injective,
bijective).

The attribute matching rule AMatch: The
attributes M1A and M2A, as in Figure 5, are
compatibly matched (M1A=M2A) for all relational
types, if the following three conditions are met:

 AMatchCondition1: The containing
classes of M1A and M2A are compatibly
matched, selected types are the same, and
the relation between domain and range is
the same as formalized as follows:

(M1A ∈ M1C ↔ TYPE1 ∧ M2A ∈ M2C ↔
TYPE2) ∧

(M1C=M2C) ∧

 (TYPE1=TYPE2) ∧

(∀ self,t . ((self ↦ t ∈ M1A) ⇔ (self ↦ t ∈ M2A)))

 AMatchCondition2: The implicitly and
explicitly modifying transitions M1T,
class-events M1CE, and machine-events of
M1A are matched with the implicitly and
explicitly modifying transitions M2T,
class-events M1CE, and machine-events of
M2A.

 AMatchCondition3: In every matched
transitions, class-events, and machine-
events, the following three sub-conditions
are met:
- AMatchCondition3MatchedActions:

The actions, which modify the
attributes (M1A, M2A), should be
syntactically matched and dependent
only on the attributes and possibly
other matched state-variables.

- AMatchCondition3MatchedGuards:
The guards, which depend only on:
the attributes (M1A, M2A); or other
matched state-variables (M1CASVm,
M2CASVm), should be enabled
together and syntactically matched.

- AMatchCondition3NonMatchedGuards:
The guards, which depend on non-
matched state-variables, and cannot
be matched, should be enabled
together.

Figure 5: The Class Attributes Matching

3.1.3 States matching

This is part of state-machine matching that
contains states and transitions. This section presents
the rule SMatch for matching states, Section 3.2
presents the rule TMatch for matching transitions,
and Section 3.3 presents the rule SMMatch for
matching state-machines based on SMatch and
TMatch.

Figure 6 shows the state machine M1CSM in
the class M1C, and the state machine M2CSM in
the class M2C. For simplicity, we consider
matching states from flattened state-machines
where no nested state-machines are allowed in the
states. M1CSM is to be matched with M2CSM.
M1CSM contains the states M1S1, M1S2, ...M1Sn
states and their types are determined by the typing
invariant M1Si ∈ ℙ(M1C) and class partition
invariant partition(M1C,M1S1,M1S2,..,M1Sn).
M2CSM contains the states M2S1, M2S2, ...M2Sn
states and their types are determined by the typing
invariant M2Si ∈ ℙ(M2C) and class partition
invariant partition(M2C,M2S1,M2S2,..,M2Sn). The
rule SMatch defines the conditions to match the
states of the models M1 and M2.

Figure 6: The States Matching

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

589

The state matching rule SMatch: The states M1S
and M2S are compatibly matched (M1S=M2S), if
the following three conditions are met:

 SMatchCondition1: The containing
classes M1C and M2C of M1S and M2S
have the same type, and the states have the
same instances as formalized as follows:

(M1S ∈ ℙ(M1C) ∧ M2S ∈ ℙ(M2C)) ∧

(M1C ∈ ℙ(TYPE1) ∧ M2C ∈ ℙ(TYPE2) ∧
TYPE1=TYPE2) ∧

(∀ self . ((self ∈ M1S) ⇔ (self ∈ M2S)))

 SMatchCondition2: The implicitly
modifying incoming and outgoing
transitions M1T of M1S are matched with
the implicitly modifying incoming and
outgoing transitions M2T of M2S.

 SMatchCondition3: In every matched
transitions, the following three sub-
conditions are met:

- SMatchCondition3MatchedActions: The
actions, which modify the states (M1S,
M2S), should be syntactically matched
and dependent only on the states.

- SMatchCondition3MatchedGuards: The
guards, which depend only on: the
states (M1S, M2S); or other matched
state-variables (M1CASVm,
M2CASVm), should be enabled
together and syntactically matched.

- SMatchCondition3NonMatchedGuards:
The guards, which depend on non-
matched state-variables, and cannot be
matched, should be enabled together.

This is comparatively a flexible rule compared
to the attribute matching rule AMatch, because
matching the containing classes is not a necessary
condition for the states to be compatibly matched.
This is due to the type of a state which is a sub-set
of its containing class.

3.1.4 Variables matching

UML-B variable semantic is the same of its
corresponding Event-B variable. The rule VMatch
defines the conditions to match the variables of the
models M1 and M2.

The variable matching rule VMatch: The
variables M1V and M2V are compatibly matched
(M1V = M2V), if the following three conditions are
met:

 VMatchCondition1: M1V and M2V have
the same type TYPE1=TYPE2 and
possible values as formalized as follows:

(M1V ∈ TYPE1 ∧ M2V ∈ TYPE2) ∧	

 (TYPE1=TYPE2) ∧

(∀ x . ((M1V=x) ⇔ (M2V=x)))

 VMatchCondition2: The explicitly
modifying transitions, class-events, and
machine-events of M1V are matched with
the explicitly modifying transitions, class-
events, and machine-events of M2V.

 VMatchCondition3: In every matched
transitions, class-events, and machine-
events, the following three sub-conditions
are met:

- VMatchCondition3MatchedActions: The
actions, which modify the variables
(M1V, M2V), should be syntactically
matched and dependent only on the
variables and possibly other matched
state-variables.

- VMatchCondition3MatchedGuards: The
guards, which depend only on: the
variables (M1V, M2V); or other
matched state-variables (M1CASVm,
M2CASVm), should be enabled
together and syntactically matched.

- VMatchCondition3NonMatchedGuards:
The guards, which depend on non-
matched state-variables, and cannot be
matched, should be enabled together.

3.2. Event-Based Matching

In this section, matching UML-B transitions
(M1T, M2T) and class-events (M1CE, M2CE) of
the models M1 and M2 is discussed.

3.2.1 Transitions matching

Three transition types exist: constructor,
destructor and normal. Table 2 shows the nine

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

590

matching cases for the transitions of the two
models M1 and M2. M1C and M2C represent the

containing classes of the transitions M1T and M2T
respectively.

Table 2: Transition Matching Cases
Matching case/
Transition type

The Containing Classes
(M1C, M2C)

M2T M1T Possibility

TCase1 Matched (M1C = M2C),
Non-matched (M1C ≠ M2C)

initial source state
(Constructor)

initial source state
(Constructor)

Yes

- - initial source state
(Constructor)

final target state (Destructor) No

TCase2 Non-matched (M1C ≠ M2C) initial source state
(Constructor)

normal source and target states
(Normal)

Yes

- - final target state
(Destructor)

initial source state
(Constructor)

No

TCase3 Matched (M1C = M2C),
Non-matched (M1C ≠ M2C)

final target state
(Destructor)

final target state (Destructor) Yes

TCase4 Non-matched (M1C ≠ M2C) final target state
(Destructor)

Normal source and target states
(Normal)

Yes

TCase2S Non-matched (M1C ≠ M2C) Normal source and target
states(Normal)

initial source state
(Constructor)

Yes

TCase4S Non-matched (M1C ≠ M2C) Normal source and
target states(Normal)

final target
state (Destructor)

Yes

TCase5 Matched (M1C = M2C),
Non-matched (M1C ≠ M2C)

Normal source and
target states(Normal)

Normal source and
target states(Normal)

Yes

In all the possible cases, the following terms apply:

 The classes M1C and M2C should have the
same type.

 It is either that the containing classes M1C and
M2C of the matched transitions are matched
(M1C = M2C) or non-matched (M1C ≠ M2C).
In the case that M1C and M2C are non-matched,
it is either M1C is a subset of M2C (M1C ⊂
M2C), M2C is a subset of M1C (M2C ⊂ M1C),
or they share some instances/states (M1C ∩
M2C ≠ M1C)∧ (M1C ∩ M2C ≠ M2C) ∧ (M1C
∩ M2C ≠ ∅). This is decided based on the
matching possible cases. The compatible
matching M1C=M2C applies when the classes
M1C and M2C and their state machines M1CSM
and M2SCM are matched completely, while the
non-compatible matching M1C ≠ M2C applies
when they are matched partially.

 The possible cases represent the situations
where there is a chance to match some class
instances and states. In other words, it should be
at least possible to match some states, while this
is not necessary for classes and attributes to
provide flexibility for the transition matching
rule.

 Generated semantic implicit guards and actions
that decide the matching compatibility for class,
state and attribute are the focus point of
discussion, while the explicit ones are assumed
that they should not violate the variable-based
matching rules.

The transition matching rule TMatch: The rule
TMatch defines the possible cases of matching two
transitions M1T and M2T of the models M1 and
M2.

TCase1: a constructor M1T1 is matched with a
constructor M2T1, as in Figure 7.

Figure 7: TCase1 Matching

TCase1 does not violate the class matching rule
CMatch, and it is not enough to decide the
preservation of CMatch (M1C and M2C
compatible matching) looking at TCase1 alone.
M1C and M2C are compatibly matched
(M1C=M2C) given that all the remaining classes

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

591

constructors and destructors matching cases do not
violate CMatch. M1C and M2C are non-matched
(M1C ≠ M2C), if there exists one
constructor/destructor matching case violates
CMatch. Figure 7 shows the generated implicit
guards and actions for the containing classes and
connected states.

-Given that M1 and M2C are matched, the
classes related guards and actions are only related
with matched classes and syntactically matched.
The M1C class-related guard self ∈ CTYPE ∖ M1C
and the M1C class-related action M1C≔ M1C ∪
{self} are matched with self ∈ CTYPE ∖ M2C and
M2C≔ M2C ∪ {self} respectively.

-Given that M1C and M2C are non-matched,
the classes related guards and actions are related
with non-matched classes and cannot be matched.
The M1C class-related guard self ∈ CTYPE ∖ M1C
and the M1C class-related action M1C≔ M1C ∪
{self} cannot be matched with self ∈ CTYPE ∖ M2C
and M2C≔ M2C ∪ {self} respectively. However,
self ∈ CTYPE ∖ M1C and self ∈ CTYPE ∖ M2C
could be enabled together for all possible values of
self instance.

-TCase1 does not violate the state matching
rule SMatch for M1S1 and M2S1. The generated
implicit actions for the states M1S1 and M2S1
(M1S1 ≔ M1S1 ∪ {self} and M2S1 ≔ M2S1 ∪
{self}) are only related with matched states and
syntactically matched given that all other incoming
and outgoing transitions do not violate the state-
matching rule SMatch making the states matched
(M1S1=M2S1).

TCase2: a constructor transition M2T1 is matched
with a normal transition M1T2, as in Figure 8.

TCase2 is only for the case that M1C and
M2C are non-matched, because there exists a
constructor, which is non-matched with a
corresponding constructor, violating the second
condition in the class matching rule CMatch, and
the classes-related guards and actions cannot be
syntactically matched violating the third condition
in CMatch. Figure 8 shows the generated implicit
guards and actions for the containing classes and
connected states.

- M1C and M2C are non-matched and the
M1C class-related guard self ∈ M1C cannot be
matched with self ∈ CTYPE ∖ M2C. The M2C

class-related action M2C ≔ M2C ∪ {self} does not
have a corresponding match in M1T2. However,
self ∈ M1C ∧ self ∈ M1S1 and self ∈ CTYPE ∖
M2C could be enabled together for all possible
values of self instance.

Figure 8: TCase2 Matching

-TCase2 does not violate the state matching
rule SMatch for states M1S2 and M2S1. The
generated implicit actions for the states M1S2 and
M2S1 (M1S2 ≔ M1S2 ∪ {self} and M2S1 ≔ M2S1
∪ {self}) are only related with matched states and
syntactically matched given that all other incoming
and outgoing transitions do not violate the state
matching rule SMatch conditions making the states
matched (M1S2=M2S1). The state M1S1 is indeed
non-matched, because its state matching rule
SMatch is violated.

TCase3: a destructor M1Tn+1 is matched with a
destructor M2Tn+1, as in Figure 9.

Figure 9: TCase3 Matching

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

592

Similar to TCase1, TCase3 does not violate the
class matching rule CMatch, and it is not enough to
decide the compatible matching of the classes M1C
and M2C looking at TCase3 alone, as both
situations are possible based on the remaining
constructors and destructors matching cases. Figure
9 shows the generated implicit guards and actions
for the containing classes, class attributes and
connected states.

-Given that M1C and M2C are matched, the
classes-related guards and actions are only related
with matched classes and syntactically matched.

--Any class attribute in the matched classes
M1C and M2C could be matched given that all
other modifying transition matching cases do not
violate the attribute matching rule AMatch.

-Given that M1C and M2C are non-matched,

the classes-related guards and actions cannot be
matched because they are related with non-matched
classes. However, the guards that are related with
M1C and M2C could be enabled together for all
possible values of self instance.

--Any class attribute in the non-matched
classes M1C and M2C are considered non-matched
based on the attribute matching rule AMatch.

-TCase3 does not violate the state matching
rule SMatch for the states M1Sn and M2Sn. The
generated implicit guards and actions for the states
M1Sn and M2Sn are only related with matched
states and syntactically matched given that all other
incoming and outgoing transitions do not violate
the state matching rule SMatch conditions making
the states matched (M1Sn=M2Sn).

TCase4: A destructor transition M2Tn+1 is
matched with a normal transition M1Tn, as in
Figure 10.

Figure 10: TCase4 Matching

TCase4 is only for the case that M1C and M2C
are non-matched, because there exists a destructor,
which is non-matched with a corresponding
destructor, violating the second condition in the
class matching rule CMatch, and the classes-related
actions cannot be syntactically matched violating
the third condition in CMatch. Figure 10 shows the
generated implicit guards and actions for the
containing classes and connected states.

- M1C and M2C are non-matched and the M1C
class-related self ∈ M1C cannot be matched with
self ∈ M2C and the M2C class-related destruction
action M2C ≔ M2C ∖ {self} does not have a match
in M1Tn. However, self ∈ M1C and self ∈ M2C
could be enabled together for all possible values of
self instance.

--Any class attribute in the non-matched
classes M1C and M2C is considered non-matched
based on the attribute matching rule AMatch.

-TCase4 does not violate the state matching
rule SMatch for the states M1S2 and M2Sn. The
generated implicit actions for the states M1S2 and
M2Sn are only related with matched states and
syntactically matched given that all other incoming
and outgoing transitions do not violate the state
matching rule SMatch conditions making the states
matched (M1S2=M2Sn). The state-matching rule
SMatch for M1Sn is violated, because a modifying
transition of M1Sn does not have a corresponding
match violating the second condition
SMatchCondition2.

TCase5: a normal M1Tn is matched with a normal
M2Tn, as in Figure 11.

Figure 11: TCase5 Matching

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

593

Similar to TCase1 and TCase3, TCase5 does
not violate the class matching rule CMatch where
M1C and M2C could be compatibly matched
(M1C=M2C) or non-matched (M1C ≠ M2C) based
on the remaining matching cases. Figure11 shows
the generated implicit guards and actions for the
containing classes and connected states.

TCase5 does not violate the state matching rule
SMatch when matching the states M1S2 and M1Sn,
with the states M2S2 and M2Sn. The modified
states could be compatibly matched given that all
other incoming and outgoing transitions do not
violate SMatch.

TCase2S and TCase4S: These cases are similar to
TCase2 and TCase4 respectively and discussed
similarly.

Constructor and Destructor Matching Cases:
These cases are neither possible nor applicable,
because it is not possible to match construction
guards/actions with destruction guards/actions of
matched containing classes, and matched instances
and states cannot be found in these cases.

Class-events matching is similar to transition
matching except that class events do not use states.

3.3. State-Machine Matching

The state matching rule SMatch and the
transition matching cases in TMatch form the
necessary ingredients for matching the state
machines M1CSM and M2CSM in the state-
machine matching rule SMMatch. For being
systematic, the matching should be continuous
which means the state-machine cannot be divided
into several parts where some are matched and the
others are none. This is because the state-machine
represents a consecutive behaviour via a sequence
of states and we do not intend the matched part to
be interrupted.

M1CSM has M1S1,...M1Sn states and
M1T1,...M1Tn,M1Tn+1 transitions. M2CSM has
M2S1,...M2Sn states and M2T1,...M2Tn,M2Tn+1
transitions. Note that the number of states n and
the number of transitions n+1, shown in M1CSM
and M2CSM, represent just examples, and different
numbers of states and transitions may exist in
M1CSM and M2CSM.

The state-machine matching rule SMMatch: Two
different rule cases exist SMMatch_1 and
SMMatch_2.

SMMatch_1: M1CSM and M2CSM are
matched completely. They have the same number
of states and transitions and they are all matched. In
this case, M1C and M2C are compatibly matched
(M1C = M2C).

Two possible states sequences matchings exist.
We provide a general representation of these in
sequences Seq1 and Seq2 which are represented by
the transitions matching cases.

In Seq1, constructors are matched first as in
TCase1, then, normal transitions are matched as in
TCase5, and finally, destructors are matched as in
TCase3. Figure 12 shows an example of Seq1
matching. The dotted arrows represent the matched
transitions from the state-machine M2CSM of the
model M2. The dashed rectangles around the states
(M1S1, M1S2 and M1Sn) represent the matched
states from the state-machine M2CSM of the model
M2.

Seq1

TCase1(M1C = M2C), TCase5(M1C = M2C),
TCase3(M1C = M2C)

Figure 12. State-Machine Matching Seq1 and Seq2

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

594

In Seq2, constructors are matched first as in
TCase1, and normal transitions are matched as in
TCase5. This is similar to Seq1, except that no
destructor matching case exists. Figure 13 shows an
example of Seq2 matching.

Seq2

TCase1(M1C = M2C), TCase5(M1C = M2C)

SMMatch_2: M1CSM and M2CSM are matched
partially. They may have the same or different
number of states and transitions where some are
matched. In this case, M1C and M2C are non-
matched (M1C ≠ M2C).

Several possible states sequence matching
exist. We provide an example as in SeqNM in
Figure 13.

Figure 13. State-Machine Matching- SeqNM

SeqNM

TCase2, TCase5(M1C ≠ M2C), TCase4s

In SeqNM, a constructor M2T1 is matched
with a normal M1T2 as in TCase2, then, a normal
M2T2 is matched with a normal M1Tn as in
TCase5, and finally, a normal M2Tn is matched
with a destructor M1Tn+1 as in TCase4s. The
dashed lines in Figure 13 represent the matching
linkage between the matched transitions and states.

4. FORMALIZATION AND CORRECTNESS
OF THE MATCHING METHOD

The correctness of the matching rules is based
on the compatibility preservation of the matched
state-variables, the modifying events, and their

matched guards and actions predicates in the
matching rules. This is based on UML-B semantics
given by the generated Event-B specification for
the matched UML-B class, attribute, state, variable
that are discussed in the variable-based matching,
and transition and class-event that are discussed in
the event-based matching.

In this section, we show first the required
compatibility conditions in Section 4.1, then we
show the formalization of the matched machines in
Section 4.2 when following the proposed matching
rules, and finally we show how the compatibility
required conditions are preserved in the
formalization in Section 4.3.

4.1. The Required Compatibility Conditions

The following compatibility conditions should
be maintained within the proposed variable-based
and event-based matching rules:

 The Compatibility Conditions of The
Matched State-variables: The following two
conditions CASVMatchCondition2 and
CASVMatchCondition3 are to preserve the
compatible changes of the matched state-
variables. These represent the second and third
conditions in each variable-based matching
rule. These conditions are CMatchCondition2
and CMatchCondition3 in the class matching
rule CMatch, AMatchCondition2 and
AMatchCondition3 in the attribute matching
rule AMatch, SMatchCondition2 and
SMatchCondition3 in the state matching rule
SMatch, and VMatchCondition2 and
VMatchCondition3 in the variable matching
rule VMatch.

- CASVMatchCondition2: All the
modifying transitions, class-events and
machine-events of the matched state-
variables M1CASVm and M2CASVm
(class, attribute, state and variable) should
be matched.

- CASVMatchCondition3: In every
matched transitions, class-events and
machine-events, the following conditions
are preserved:

 The actions, which modify matched state-
variables M1CASVm and M2CASVm
(class, attribute, state and variable),
should be syntactically matched and
dependent only on matched state-
variables.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

595

 The guards, which depend only on
matched state-variables M1CASVm and
M2CASVm (class, attribute, state and
variable), should be enabled together and
syntactically matched.

 The guards, which depend on non-
matched state-variables, and cannot be
matched, should be enabled together.

Note that these two conditions
CASVMatchCondition2 and CASVMatchCondition3
are to help preserving the first conditions in each
variable-based matching rule (CMatchCondition1,
AMatchCondition1, SMatchCondition1, and
VMatchCondition1).

Note also that CASVMatchCondition2 and
CASVMatchCondition3 are related with the cases
TCase1, TCase2, TCase2s, TCase3, TCase4,
TCase4s and TCase5 in the event-based matching
rules. These cases decide the matching
compatibility of variable-based matching.

 The Compatibility Condition of The
Matched Guards and Actions: The
following condition EGrdActMatchCondition
is to preserve the compatibility of the matched
guards and actions in the event-based
matching.

- EGrdActMatchCondition: The guards and
actions are only considered matched, if they
are dependent only on matched state-
variables and syntactically matched.

4.2. The Formalization of the Matched Machines

In the following description, an Event-B
formalization of the state-variables and
corresponding generated events of both matched
machines M1 and M2 is introduced. These are
based on the proposed matching rules.

In addition to the formalized first conditions
of each variable-based matching rule
(CMatchCondition1, AMatchCondition1,
SMatchCondition1, and VMatchCondition1), the
Event-B formalizations of both machines M1 and
M2 are as follows:

MACHINE M1

VARIABLES M1CASVm M1CASVnm
EVENTS
M1Em ≙
 WHEN
 M1EmGm(M1CASVm)
 M1EmGnm(M1CASVm, M1CASVnm)
 THEN
 M1CASVm :∣ M1EmAm(M1CASVm, M1CASVm')
 M1CASVnm :∣ M1EmAnm(M1CASVm, M1CASVnm,
 M1CASVnm')
 END
M1Enm ≙
WHEN
 M1EnmGnm(M1CASVm, M1CASVnm)
THEN
 M1CASVnm :∣ M1EnmAnm(M1CASVm, M1CASVnm,
 M1CASVnm')
END

MACHINE M2

VARIABLES M2CASVm M2CASVnm
EVENTS
M2Em ≙
 WHEN
 M2EmGm(M2CASVm)
 M2EmGnm(M2CASVm, M2CASVnm)
 THEN
 M2CASVm :∣ M2EmAm(M2CASVm, M2CASVm')
 M2CASVnm :∣ M2EmAnm(M2CASVm, M2CASVnm,
 M2CASVnm')
 END
M2Enm ≙
WHEN
 M2EnmGnm(M2CASVm, M2CASVnm)
THEN
 M2CASVnm :∣ M2EnmAnm(M2CASVm, M2CASVnm,
 M2CASVnm')
END

M1CASVm and M2CASVm represent the
matched state-variables (class, attribute, state and
variable) of both machines M1 and M2
respectively. M1CASVnm and M2CASVnm
represent the non-matched state-variables of both
machines M1 and M2 respectively.

M1Em and M2Em represent the generated
matched events (transitions, class-events and
machine-events) of both machines M1 and M2
respectively.

M1EmGm in M1Em represent the guards that
are related only with the matched state-variables
M1CASVm and matched with their corresponding
M2EmGm in M2Em.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

596

M1EmAm in M1Em represent the actions that
modify and depend only on the matched state-
variables M1CASVm and matched all with their
corresponding M2EmAm in M2Em.

M1EmAnm and M2EmAnm represent the non-
matched actions that modify only the non-matched
state-variables M1CASVnm and M2CASVnm
respectively. M1EmGnm and M2EmGnm represent
the non-matched guards.

M1Enm and M2Enm represent the non-
matched generated events of the models M1 and
M2 respectively. M1EnmGnm and M2EnmGnm
depend on the matched and non-matched state-
variables. M1EnmAnm and M2EnmAnm modify
only the non-matched state-variables and may
depend on both matched and non-matched state-
variables.

4.3. The Preservation of the Compatibility
Conditions in the Formalization

This includes the preservation of the
compatible changes of the matched state-variables
M1CASVm and M2CASVm, and the compatibility
preservation of the matched guards and actions in
the matched events M1Em and M2Em. These
conditions should be preserved, as in the
formalization of the machines M1 and M2, when
following the proposed matching rules.

4.3.1 The compatibility preservation of the
matched state-variables

The compatible changes of the matched state-
variables M1CASVm and M2CASVm is preserved
by maintaining in the formalization the
aforementioned two conditions
CASVMatchCondition2 and CASVMatchCondition3
that are explained in Section 4.1. These conditions
should be preserved as follows.

 The condition CASVMatchCondition2: The
matched actions M1EmAm and M2EmAm are
all the modifying actions of M1CASVm and
M2CASVm that only exist in the matched
generated events M1Em and M2Em. This
implies that all the modifying events, via
actions, of M1CASVm and M2CASVm are
matched.

 The condition CASVMatchCondition3: In
M1Em and M2Em, the following sub-
conditions are preserved as follows:

- Firstly, M1EmAm and M2EmAm are only
related with M1CASVm and M2CASVm, and
syntactically matched. There is no non-
matched action (M1EmAnm, M2EmAnm,
M1EnmAnm, M2EnmAnm) that modifies a
matched state-variable (M1CASVm or
M2CASVm).

- Secondly, M1EmGm and M2EmGm, which
are only related with M1CASVm and
M2CASVm, are syntactically matched.
Because of that, M1EmGm and M2EmGm
are enabled together.

- Thirdly, M1EmGnm and M2EmGnm do not
contradict with each other and it should be
always possible that they are enabled
together whenever matching M1Em and
M2Em.

 The syntactical matching of the implicit
predicates M1EmGm and M1EmAm with their
corresponding M2EmGm and M2EmAm, and how
they should depend on only matched state-variables
have been discussed in the transition matching rule
TMatch.

 The simultaneous enabling of the implicit non-
matched guards M1EmGnm and M2EmGnm are
discussed in more details in this section. We focus
on the implicit non-matched guards of the matching
cases in TMatch, because these implicit guards
represent the semantics of UML-B. It is up to the
method user to investigate the simultaneous
enabling of the explicit guards. Remember that, in
all the matching cases TCase1, TCase2, TCase2s
TCase3, TCase4, TCase4s, and TCase5, the
graphical containing classes (M1C, M2C) of the
transitions have the same type CTYPE. The
simultaneous enabling of the non-matched implicit
guards in the cases is discussed as follows.

In TCase1, a constructor transition M2T1 of a
class M2C is matched with a constructor transition
M1T1 of a class M1C. When the classes M1C and
M2C are non-matched, self ∈ CTYPE∖ M1C and
self ∈ CTYPE∖ M2C are non-matched guards. It is
always possible that these guards are enabled
together whenever M1T1 and M2T1 are matched.
This is because M1T1 and M2T1 are both
constructors, their non-matched implicit guards are
simply non-belonging conditions to the classes
representing the semantics of two constructors, and
they do not disable each other. This is formalized as
follows:

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

597

∀ self, M2T1, M1T1, M1C, M2C . (((M1T1 and
M2T1 are constructors of M1C and M2C) ∧ (M1T1
is matched with M2T1)) ⇒ (self ∈ CTYPE ∖ M1C ∧
self ∈ CTYPE ∖ M2C))

In TCase2, a constructor M2T1 of a class M2C
is matched with a normal transition M1T2 of a class
M1C. self ∈ CTYPE ∖ M2C is the non-matched
guard in M2T1. self ∈ M1C and self ∈ M1S1 are the
non-matched guards in M1T2. It is always possible
that these guards are enabled together whenever
M2T1 and M1T2 are matched. This is because
M2T1 and M1T2 are constructor and normal
transitions, their non-matched implicit guards are
simply belonging/non-belonging conditions
representing the semantics of a constructor and a
normal transitions, and they do not disable each
other. TCase4, TCase2S, TCase4S are discussed
similarly. This is formalized as follows:

∀ self, M2T1, M1T2, M1C, M2C, M1S1. (((M2T1
is a constructor of M2C and M1T2 is a normal
transition of M1C) ∧ (M2T1 is matched with
M1T2)) ⇒ (self ∈ CTYPE ∖ M2C ∧ self ∈ M1C ∧
self ∈ M1S1))

In TCase3, a destructor transition M1Tn+1 of
a class M1C is matched with a destructor transition
M2Tn+1 of a class M2C. When the classes M1C
and M2C are non-matched, self ∈ M1C and self ∈
M2C are the non-matched guards. It is always
possible that these guards are enabled together
whenever M1Tn+1 and M2Tn+1 are matched. This
is because M1Tn+1 and M2Tn+1 are both
destructors, their non-matched implicit guards are
simply belonging conditions representing the
semantics of two destructors, and they do not
disable each other. This is formalized as follows:

∀ self, M1Tn+1, M2Tn+1, M1C,M2C . (((M1Tn+1
and M2Tn+1 are destructors of M1C and M2C) ∧
(M1Tn+1 is matched with M2Tn+1)) ⇒ (self ∈
M1C ∧ self ∈ M2C))

In TCase5, a normal transition M1Tn of a
class M1C is matched with a normal transition
M2Tn of a class M2C. When the classes M1C and
M2C are non-matched, self ∈ M1C and self ∈ M2C
are non-matched guards. It is always possible that
these guards are enabled together whenever M1Tn
and M2Tn are matched. This is because M1Tn and
M2Tn are both normal transitions, their non-

matched implicit guards are simply belonging
conditions representing the semantics of two
normal transitions, and they do not disable each
other. This is formalized as follows:

∀	 self,	 M1Tn,	 M2Tn,	 M1C,	 M2C	 .	 ሺሺሺM1Tn and	
M2Tn are	normal	transitions	of	M1C	and	M2C ሻ	
∧	ሺM1Tn is	matched	with	M2Tnሻሻ	⇒	ሺself	 ∈	M1C
∧	self ∈	M2C ሻሻ

The explicitly added non-matched guards has
to be checked when employing the matching rules
so that they do not disable each other fulfilling the
compatibility condition.

In a special case where all the model M2 state-
variables and generated events are matched with
their corresponding in M1, M2Em is matched
completely with M1Em. There are no non-matched
guards in M2Em. In this situation, it is indeed
whenever guards in M1Em are enabled, then the
matched guards in M2Em are enabled as well.

4.3.2 The compatibility preservation of the
matched guards and actions

The compatible matching of M1EmGm and
M1EmAm with their corresponding M2EmGm and
M2EmAm is preserved by maintaining in the
formalization the aforementioned condition
EGrdActMatchCondition that is explained in
Section 4.1. This is preserved as follows.

The guards M1EmGm and actions M1EmAm
in M1Em are only considered matched with their
corresponding guards M2EmGm and actions
M2EmAm in M2Em, because they are dependent
only on matched state-variables (M1CASVm,
M2CASVm), and syntactically matched.

The syntactical matching is decided based on
the guards and actions predicates themselves
referring to either candidate or confirmed matched
state-variables. The dependency on only matched
state-variables (M1CASVm, M2CASVm) requires
studying and confirming, via the variable-based
matching rules, that the appearing state-variables in
these guards and actions are matched.

For example, the actions (M1C ≔ M1C ∪
{self} and M2C ≔ M2C ∪ {self}) are syntactically
matched considering M1C and M2C as candidate
matched classes. However, in addition to this
syntactical matching, the appearing classes (M1C,

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

598

M2C) should be confirmed matched via the class
matching rule CMatch, for the actions to be
matched.

5. COMMUNICATION-BASED CASE
STUDY

This section, presents a communication-based
case study showing the applicability of the
proposed rules. Two systems Sys1 and Sys2
communicate through a middle ware MW, as shown
in Figure 14. Sys1 prepares a value S1 to be
processed and sends it to MW. Next, MW makes a
backup of S1 and forwards it to Sys2 which in turn
processes S1 producing the resulted value S2 in
order to send it to MW. Then, MW makes a backup
of S2 and forwards it to Sys1, and finally Sys1
obtains S2. Sys1 communicates with MW by means
of Buffer1, and MW communicates with Sys2 by
means of Buffer2.

Figure 14. Communication-based Case Study Schemata

In this case-study, we show how the proposed
UML-B matching rules are applied to compare two
existing models Com1 and Com2 that have a
similar behaviour related with communication.
Com1 consists of one abstract and seven refinement
machines, while Com2 consists of one abstract
machine. Figure 15 shows the package diagram of
the model Com1. We summarize each machine as
follows:

ComBasedAbs: Introduces Communication
class and the transitions to start, end and repeat the
communication process.

ComBasedRef1: Introduces Sys1 and
S1Values classes, and the transition to prepare and
send S1 value. Sys1 is to be a sender in the
complete system scenario.

ComBasedRef2Match: Applies state machine
flattening. At this level, matching is applied with an
existing model Com2 that has the functionality of a
sender. At this level, state machines are completely
matched.

ComBasedRef3: Introduces Buffer1 and the
communication transitions with it. Buffer1 will
serve as a communication channel with MW
through the introduced transitions.

ComBasedRef4: Introduces MW class, and the
transitions for sending and receiving values to and
from MW.

ComBasedRef5Match: Applies state machine
flattening. At this level, matching is applied with
the model Com2. Matching in this case considers
the partial state machines matching.

Figure 15. The Com1 Model Package Diagram

ComBasedRef6: Introduces Buffer2 and Sys2
classes and the communication transitions with
both classes. Buffer2 serves as a communication
channel with Sys2 through the introduced
transitions.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

599

ComBasedRef7: Introduces the class S2Value,
and class attributes of the class Buffer2 providing
more details related with the Sys2.

We focus in the next discussion on
ComBasedRef2Match and ComBasedRef5Match
where the matching rules are applied to evaluate
which elements could be compatibly matched with
the elements of the model Com2.

5.1. First Matching

Figure 16(a) and Figure 16(b) show class and
state machine diagrams of ComBasedRef2Match
machine respectively in the model Com1.

(a) Class Diagram

(b) State-machine Diagram

Figure 16. Com1 Model- ComBasedRef2Match

Figure 17(a) and Figure 17(b) show class and
state-machine diagrams of the UML-B model
Com2 that have the behaviour of a sender initiating
a request to another communication end-point.

Figure 17(a) shows the class diagram in which
the class Sender represents the instances of the
sender end-point and the class CommunicationPart
represents the communication instances that are
communicated between the Sender and other end-

points. Figure 17(b) shows the state machine
diagram in which in_Sender and
Sender_Request_in_Process represent the states
where Sender requests are prepared and processed
respectively. AddToSender and
RemoveFromSender are construction and
destruction transitions initiating and ending the
communication in Sender respectively.
sendMessage and receiveReply transitions are to
transfer the communication (from,to) the Sender
respectively.

Matching Application: It is possible to match the
machine ComBasedRef2Match shown in Figure 16
with the machine Com2 shown in Figure 17. Table
3 shows the matched and non-matched UML-B
elements.

(a) Class Diagram

(b) State-machine Diagram

Figure 17. The Com2 Model machine

The compatible matching of classes and
states is guided by the fact that they have the
same type. The class matching rule CMatch
conditions are preserved for Communication=
CommunicationPart matching. These classes
have the same type containing the same states
and instances, all constructors and destructors
are matched, and the guards and actions that
are related with Communication and

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

600

CommunicationPart are syntactically matched
(i.e. they have the same syntactical
predicates). Sys1=Sender compatible

matching conditions are preserved and
discussed similarly.

Table 3: First Possible Matching
Matching Status/
Element Type

Matched Elements Non-Matched
Elements

Class Communication = CommunicationPart, Sys1=Sender S1Values
Class Attribute - -
State Sys1ProcessStarted =In Sender,

Sys1ValuePreparedSent= Sender _Request_ In _Process

Variable - -
Class Event - -
Transition Containing classes of matched transitions are matched:

Start-Process/AddToSender(TCase1),
Prepare-Send S1Value/sendMessage(TCase5),
DoProcessAgain/receiveReply(TCase5),
endProcess/RemoveFromSender(TCase3)

Machine Event - -
State Machine ComSM/CommunicationPartSM (SMMatch_1, Seq1) -

The state matching rule SMatch conditions are
preserved for Sys1ProcessStarted=In_Sender
matching. These states have the same types
containing the same instances, all their incoming
and outgoing transitions are matched, and all the
generated implicit related guards and actions are
syntactically matched. Sys1ValuePreparedSent
=Sender_Request_In_Process compatible matching
conditions are preserved and discussed similarly.

SMMatch_1 is followed to match ComSM and
CommunicationPartSM completely and the
matching corresponds to the sequence Seq1.

5.2. Second Matching

Figure 18(a) and Figure 18(b) show class and
state machine diagrams of ComBasedRef5Match
respectively in the model Com1.

At this level, the complete requirements for
the communication between Sys1 and MW through
Buffer1 are modelled. It is still required that MW to
be a sender to Sys2. It is interesting to match
ComBasedRef5Match model with the machine in
same model Com2 in Figure 17. The aim is to show
the partial model matching between these
machines.

Matching Application: Table 4 shows the matched
and non-matched UML-B elements.

(a) Class Diagram

(b) State-machine Diagram

Figure 18. Com1 Model- ComBasedRef5Match

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

601

Table 4: Second Possible Matching
Matching Status/
Element Type

Matched Elements Non-Matched Elements

Class MW=Sender CommunicationPart,
Communication, Sys1,
S1Values, Buffer1

Class Attribute - Buffer1S1Value,
Buffer1S2Value

State In_MW=In_Sender,
Out MW = Sender_Request_ In_Process

Sys1ProcessStarted,
In_ Buffer1

Variable - -
Class Event - -
Transition Containing classes of the matched transitions

are non-matched:

recvS1FromBuffer1_makeS1Backup/
AddToSender(TCase2),

sendS1Value/ sendMessage(TCase5),

receiveReply/ receiveReply(TCase5),

 sendReplyTo_Buffer1/
RemoveFromSender(TCase4)

startProcess,
endProcess,
Prepare_send_S1ToBuffer1,
recv_FromBuffer1_DoAgain

Machine Event - -
State Machine ComSM/CommunicationPartSM (SMMatch_2) -

Based on class transitions matching cases
which correspond to SMMatch_2, the state
machines are partially matched and the containing
classes Communication and CommunicationPart
cannot be matched. TCase2 violates the rule
CMatch, and the construction guard and action (self
∈ COMMUNICATION ∖ CommunicationPart,
CommunicationPart ≔ CommunicationPart ∪
{self}) cannot find a corresponding match in
recvS1FromBuffer1_makeS1Backup. TCase4
violates the rule CMatch, the destruction guard and
action (self ∈ CommunicationPart ,
CommunicationPart ≔ CommunicationPart ∖
{self}) cannot find a corresponding match in
sendReplyToBuffer1. TCase5 in this case study
corresponds to the situation that Communication
and CommunicationPart are non-matched, and the
containing class guard (self ∈ CommunicationPart)
cannot be matched with (self ∈ Communication) in
sendS1Value and receiveReply.

States compatible matching conditions in the
rule SMatch are discussed similarly to the first
matching. In_MW and Out_MW are matched
compatibly with In_Sender and Out_Sender
respectively preserving the rule SMatch.

6. RELATED-WORK

In [14], pattern matching steps are introduced
for Event-B. This assumes that the pattern is
matched completely with the problem model. In our
work, models can be matched completely or
partially considering more possible cases of
matching the models M1 and M2. Based on [14],
the user should decide the problem variables to be
matched with their corresponding in the pattern. In
our work, we provide a more concrete guidance to
the user defining how to match the class, state as
subset of class, and attribute as a relational type.
Based on [14], the matching cannot be guaranteed
unless the matched events alter the matched
variables in the same way through syntactical
matching of the events guards and actions. Our
work is similar, as the proposed rules for matching
classes, states and attributes restrict all their related
modifying transitions and class-events to be
matched having the same syntactically matched
generated actions that modify the matched state-
variables depending only on them.

In [17], a matching approach is introduced for
Object-Z formal language. Their work considers
both syntactical and structural similarity where
syntactic similarity is calculated by comparing the
elements names strings and that is considered as

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

602

initial starting point for their matching approach.
The structural similarity uses the object oriented
aspects (i.e. class elements, relations). In our work,
we consider the exact matching of UML-B
elements which results in either matched/non-
matched since UML-B semantics are based on
Event-B and we prefer the matching correctness to
be based on the set-theory strict typing for
preciseness.

A specification matching method is introduced
in [18] to facilitate recognizing and retrieving
reusable components that address the objectives of
a reuse system. They employ order-sorted predicate
logic to specify the software component
considering the exact, relaxed and logical matching
for methods and components. In our work, we
employ first order logic and set-theory considering
the exact matching for UML-B individual elements
and predicates and the relaxed matching between
UML-B machines.

In [19], definitions for matching the formal
specifications of components are introduced in the
context of object-oriented programming. These are
based on the first order logic and theory proving.
The definitions consider exact and relaxed
matching for functions and modules. Our work is
similar, that is based on the first order logic and
theory proving considering the UML-B elements
exact match and the relaxed matching for machines,
however our work considers, in addition to
transitions, class-events and machine-events, the
UML-B variable-based matching that is related
with the set-theory.

In [20], it is proposed to extend the
specification matching methods, which are limited
to functions and modules, to handle the object-
oriented components. This include classes matching
and its contained attributes and methods. Our work
considers also matching classes and their contained
attributes, states, transitions and class events.

Techniques for matching state-based modules
are introduced in [21]. These extend the existing
specification matching methods that are based on
functions specified by pre- and post-conditions.
This work considers the data-refinement and the
use of state and coupling invariants. Our work is
similar in the sense that it considers matching state-
variables represented by UML-B class, attribute,
state and variable, and events represented by UML-
B transition, class event and machine event. In
addition, our work considers the state-variables
typing invariants for the matching to be compatible.

In [22], a pattern approach which is based on
set-theory is introduced for conceptual models.
Their approach considers every model as a set of
objects and relationships. A collection of functions
is proposed and a set of operators is defined to
combine the resulting sets from the functions. Their
work is similar to our work as both are based
generally on set-theory with some differences in
terms of elements typing.

7. THE METHOD SIGNIFICANCE,
LIMITATIONS AND FUTURE WORKS

In this section, we discuss the method

benefits, limitations and some future works
explaining in more details the future works that we
are working on currently.

The method significance: In this work, we
introduce rules for matching UML-B models. The
matching is not necessarily complete between the
models M1 and M2 to provide flexibility. It is
necessary to preserve the compatibility conditions
mentioned in Section 4 for the method to be
correct. In the context of UML-B modelling, the
method may serve in the following:

 Managing compared UML-B models on
which the matching method is applied. This
includes observing compatible and non-
compatible UML-B elements among these
models.

 Extract and store compatibly matched UML-
B model elements, as a common model, for
future reuse and integration with other
models. The compatibly matched elements,
which are: matched state-variables
(M1CASVm, M2CASVm) and their
modifying events (M1Em, M2Em) including
their guards (M1EmGm, M2EmGm) and
actions (M1EmAm, M2EmAm), may be
extracted as a proven correct UML-B model
that is suitable for future reuse.

 Reusing compatibly matched UML-B
models in constructing larger ones to avoid
remodelling and reproving.

The method limitations: In this work, for
simplicity, matching state state-machines is
performed for flattened state-machines in which no
nested state-machines are allowed in the matched
states.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

603

Also, this work considers only the state-sets
translation, whereas it does not consider the state-
function translation that has different semantics of
the state-set translation.

Future works: In a special situation in the
matching method, the model M2 may be matched
completely with part of the model M1. We are
currently working on: specializing the matching
rules to suit this situation; and employing these
special rules in a method for pattern reuse
considering M2 as the pattern model and M1 as the
problem model. In this situation, whenever a state-
variable in M1 is modified under some
circumstances, it is indeed that the matched-with
state-variable in M2 is modified in the same way
under the same circumstances. This is because all
the state-variables and generated events of M2 are
matched with their corresponding in M1. The future
proposed pattern reuse method will support the
modelling in UML-B avoiding remodelling and
reproving the pattern model when constructing a
larger UML-B model.

The matching method is based on the state-
sets translation. Another possible future work is
to investigate the state-function translation to
explore more matching options when matching
UML-B models based on the these semantics
that are related with the state-function.

8. CONCLUSIONS

Model matching provides means for the
integration, management, and reuse for the matched
models in the context of model driven software
engineering. In this work, we propose a method to
match models in UML-B. The contributions of this
paper are as follows:

 Variable-based matching rules.

 Event-based matching rules.

 State-machine matching rules.

 A formalization of the method rules.

 A communication-based case study to
illustrate the method applicability.

The variable-based matching provides rules for
the compatible matching of UML-B class, attribute,
state, and variable. These are based on the elements
types, which are given by UML-B semantics, and

the compatible behaviour of their modifying
transitions, class-events, and machine-events.

The event-based matching provides rules and
cases for matching UML-B transitions and class-
events. These cases decide the compatibility of the
related state-variables.

The state-machine matching provides rules based
on the state and transition matching rules. Based on
these rules, state-machines and their containing
classes are partially or completely matched.

The proposed method considers the partial and
complete matching of two UML-B models M1 and
M2.

The method rules are formalized by means of the
generated corresponding Event-B specifications.
The correctness of these rules is justified via
preserving the compatibility of the matched state-
variables and their corresponding modifying events
including their matched guards and actions
predicates.

The compatibility of the matched state-variables
(class, attribute, state, and variable) is preserved by
two conditions. First, all the modifying generated
events (transitions, class-events, and machine-
events) of the matched state-variables should be
matched. Second, in every matched modifying
events, the modifying actions of the matched state-
variables should be syntactically matched and
dependent only on matched state-variables, the
guards that depend only on matched state-variables
should be enabled simultaneously and syntactically
matched, and the guards that depend on non-
matched state-variables and cannot be matched
should be enabled simultaneously. The
compatibility of the matched guards and actions is
preserved by the condition that they are only
considered matched, when they are dependent only
on matched state-variables, and syntactically
matched.

To illustrate the applicability of the method, a
communication-based case-study is introduced. The
matching rules have been applied in this case study
showing the practicality of these rules.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the financial
assistance from the Malaysian Technical
Cooperation Program (MTCP) fund from the
Malaysian government reference number
KPT.B.600-5/3 JILID 3, and Fundamental

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

604

Research Grant Scheme, Project Code: 08-02-13-
1368FR.

REFERENCES.

[1] T. Stahl, M. Voelter, and K. Czarnecki, Model-

driven software development: technology,
engineering, management. John Wiley & Sons,
2006.

[2] D. S. Kolovos, D. Di Ruscio, A. Pierantonio,
and R. F. Paige, “Different models for model
matching: An analysis of approaches to support
model differencing,” in Proceedings of the 2009
ICSE Workshop on Comparison and Versioning
of Software Models, IEEE Computer Society,
2009, pp. 1–6.

[3] J.-R. Abrial, Modeling in Event-B: system and
software engineering. Cambridge University
Press, 2010.

[4] J.-R. Abrial and J.-R. Abrial, The B-Book:
Assigning programs to meanings. Cambridge
University Press, 2005.

[5] R.-J. Back and R. Kurki-Suonio,
“Decentralization of process nets with
centralized control,” Distributed Computing,
vol. 3, no. 2, 1989, pp. 73–87.

[6] J.-R. Abrial, M. Butler, S. Hallerstede, T. S.
Hoang, F. Mehta, and L. Voisin, “Rodin: an
open toolset for modelling and reasoning in
event-b,” International journal on software tools
for technology transfer, vol. 12, no. 6, 2010 pp,.
447–466.

[7] Object Management Group, “Unified modeling
language UML,” 2017.

[8] C. Snook and M. Butler, “UML-B: Formal
modeling and design aided by UML,” ACM
Transactions on Software Engineering and
Methodology (TOSEM), vol. 15, no. 1, 2006,
pp. 92–122.

[9] C. Snook and M. Butler, “UML-B and Event-B:
an integration of languages and tools,” 2008.

[10] C. Snook and M. Butler, “UML-B: A plug-in
for the event-b tool set,” 2008.

[11] C. Snook, I. Oliver, and M. Butler, The UML-
B profile for formal systems modelling in UML,
Springer, 2004, pp. 69–84.

[12] K. Lano, The B language and method: a guide
to practical formal development. Springer
Science & Business Media, 2012.

[13] J.-R. Abrial, “From Z to B and then Event-B:
Assigning proofs to meaningful programs,” in
Integrated Formal Methods, Springer, 2013, pp.
1–15.

[14] T. S. Hoang, A. F¨urst, and J.-R. Abrial,
“Event-b patterns and their tool support,”
Software & Systems Modeling, vol. 12, no. 2,
2013, pp. 229–244.

[15] J. Rumbaugh, I. Jacobson, and G. Booch,
Unified Modeling Language Reference Manual,
The. Pearson Higher Education, 2004.

[16] C. Snook and M. Butler, “U2B-a tool for
translating UML-B models into B,” 2004.

[17] F. Taibi, F. M. Abbou, and M. J. Alam, “A
matching approach for object oriented formal
specifications.,” Journal of Object Technology,
vol. 7, no. 8, 2008, pp. 139–153.

[18] J.-J. Jeng and B. H. Cheng, “Specification
matching for software reuse: A foundation,” in
ACM SIGSOFT Software Engineering Notes,
vol. 20, ACM, 1995, pp. 97–105.

[19] A. M. Zaremski and J. M. Wing,
“Specification matching of software
components,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol.
6, no. 4, 1997, pp. 333–369.

[20] F. Feiks and D. Hemer, “Specification
matching of object-oriented components,” in
Software Engineering and Formal Methods,
2003. Proceedings. First International
Conference on, IEEE, 2003, pp. 182–190.

[21] D. Hemer, “Specification matching of state-
based modular components,”in Software
Engineering Conference, 2003. Tenth Asia-
Pacific, IEEE, 2003, pp. 446–455.

[22] J. Becker, P. Delfmann, S. Herwig, and Ł. Lis,
“A generic set theory based pattern matching
approach for the analysis of conceptual
models,”in International Conference on
Conceptual Modeling, Springer, 2009, pp. 41–
54.

