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ABSTRACT 
 

Internet of Thing (IoT) can connect anyone with anything at any point in any place. Currently, growing 
number of IoT devices have become a major role of daily life owing to their convenience. The IoT devices 
usually controlled by Web applications and mobile applications, which will process lots of events from user’s 
controller to devices. Hence, such software is a kind of concurrent program in IoT environment because the 
software is unable to simultaneously process these events, which may cause the concurrent issue. There is 
event-drive model in either Web application or mobile applications, which is unable to easily detect the 
concurrent anomaly by existing approaches due to the non-determined of execution and hardly reproduced 
by the same sequence. The previous techniques of concurrent detection are excessive limitations that only 
used for one of concurrent anomaly with the large number of false positive. In this paper, we describe a novel 
methodology to dynamically classify two types of concurrent anomalies for IoT software. According to the 
executable sequence graph, we generate the training and test examples for classification. The vectorization 
features are classified by Support Vector Machine (SVM) with Gaussian kernel. The SVM will predict the 
concurrent state of current executable example. As a result, the optimal true positive of simulation is 80% in 
our experiment which is a higher accuracy than others. 

Keywords: Concurrency Anomalies, Machine Learning, IoT Software, Support Vector Machine, 
Classification 

 
 
1. INTRODUCTION  
 

The Internet of Things (IoT) is an emerging 
concept, which contains a large number of 
heterogeneous and pervasive things that steadily 
generate information about our real world [1, 2]. 
These devices connected to others in the same 
network such as objects, machines, vehicles, home 
appliance and other physical systems. However, 
these devices are various embedded systems, smart 
phone, tablets, etc. The Operation Systems which 
non-professional users can use have the Graphical 
User Interface (GUI) mobile systems such as 
WinCE, Android OS and iOS. IoT environment can 
be found everywhere in our daily life. The IoT 
applications have the ability of these ubiquitous and 
mobile connectivity such as WLAN, GPS, sensor 
inputs and Bluetooth.  

Currently there are few kinds of IoT platforms for 
its software that is used to manage and control the 
IoT devices. For non-professional users, the mobile 
platforms are very convenient to manipulation. 

There are two most popular mobile platforms for IoT 
software, namely Android OS and iOS, which are 
both steadily upgraded and developed over time. 
Android OS is an open source, plays a major role as 
a platform for IoT software [3, 4].  

Recently, the lower performance of IoT devices 
cannot be satisfied with user’s requirements that 
prevents that users have a good experience especially 
for Android devices. The performance of Android 
OS will be decelerated by the over time. This issue 
has attracted many researchers to improvement of 
the performance of mobile systems. But, IoT 
software has received relatively less attention [5]. 
Current mobile systems which used for IoT 
environment are different from the traditional OS in 
computer. The mobile systems have the exclusive 
purposes in designated places for IoT. Hence, these 
systems have few characteristics, such as limited 
resources, event-based applications, and Linux-
based kernel.  

IoT software became universally existent in real 
world with convenient manipulation and services. 
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The IoT software is also a kind of concurrent issue 
due to the undetermined of execution from the huge 
of data stream in IoT environment, which may cause 
the collapse of applications. Nowadays, many kinds 
of methodologies are used to detected and solve 
concurrent anomalies, such as DEvA [6] and 
RacerDroid [7]. These methodologies only focus on 
one of concurrent anomaly in each approach. 
Furthermore, their approaches lead to the large 
number of False Positives (FP). And other researcher 
[8] attempted to prune the FP and improve the true 
positive of anomaly detection. IoT software provide 
an event based model for high concurrent software, 
which is different from the thread based mode. 
Mobile devices that are available for IoT platforms 
have a rich mixture of sensors and diverse ways of 
inputs that generate may asynchronicties to the data 
stream for IoT software. The event-based model 
integrates inputs from various sources, such as user 
input, touch screens, accelerators, etc. [8].  The 
existing detection tools of concurrent anomalies 
focused on thread-based programs. Even if these 
triggered events will be processed in a main thread, 
but there is logical concurrency among the most of 
events while these events may not be changed the 
order of processing by any developers. 

The anomalies are difficult to recur by the same 
sequence of user’s actions due to the undetermined 
schedules of potential events and limited system 
resources in IoT. Whereas the existing 
methodologies which are applied in concurrent 
systems for anomalies detection, focused on 
detecting one of concurrent anomalies that causes 
increased system overhead for concurrent anomaly. 
We propose a classification approach for two kinds 
of concurrent anomalies such as deadlock and data 
race [9].  These two anomalies are the most common 
issues in concurrent programs. The feature vector of 
deadlock and data race in IoT environments will be 
deduced in this paper. These executable sequence as 
features will be vectored to training samples for 
classification. The different sequences of executable 
programs will be classified by Support Vector 
Machine (SVM) with Gaussian kernel [10] in Octave 
[11] according to the features of executable 
sequences. We generated 22 samples to simulate our 
methodology. The result shows the prediction True 
Positive (TP) is 80% that is higher than previous 
works. Hence, the performance is improved by SVM 
model for IoT software. The concurrent anomalies 
can be efficiently exposed by this method with lower 
FP. 

The rest of this paper is organized as follows. 
Section 2 describes the background of this study. The 

related work of this study is described in Section 3. 
Section 4 and Section 5 present the implementation 
of the concurrency anomaly classification using 
machine learning with SVM model and simulation 
result respectively. Finally, Section 6 concludes this 
paper and future work. 

 
2. BACKGROUND 

 
In this section, we briefly describe the related 

background of concurrent systems and IoT software. 
 

2.1 IoT Software 
 
IoT software are applied for portable and 

embedded devices that have become the most 
popular with rapidly increase in the amount and 
complexity of their capabilities. The mobile 
applications which are used for IoT environment 
replaced the role of traditional software for its 
portability and the convenient number of services. 
However, there are some differences between 
traditional software and IoT software, as described 
in Table 1 as below. 

Table 1: Comparison between Mobile and Computers 

Items IoT Devices Computers 
Processors RSIC CISC 
Computing Lower Higher 

Input Sensors,  
touch screen 

Mouse, 
keyboard 

OS Resources Limited  Entire 
Storage Limited Sufficient 

Software Event-driven Thread-driven 
Connectivity Wi-Fi, 3G, 

4G, LAN 
LAN, Wi-Fi 

The IoT software are easier to encounter the threat 
of concurrent issues owing to the limited resources 
and system architectures. Nevertheless, the event-
drive program has three steps to interleaving execute, 
which are still processed in the main thread. When 
the steps handle the I/O operations, a callback will 
be registered to events cycle. After I/O operation, the 
prior step may continue its next procedures. The 
cycle of events accesses all events that are in the 
event queue when the triggered events will be 
allocated to a callback, which exists the non-
determined schedules of events. The software may 
be crashed because the unknown event triggered 
with limited system overhead. 

2.2 Concurrent Anomaly 
 
The concurrent anomaly is a common situation in 

multithreading software, and these anomalies also 
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exists in event-driven programs because it belongs to 
concurrent systems. These anomalies are not only 
difficult to recur but also quite challenging to detect 
with the undetermined of concurrent manipulations. 
Fiedor, et al. [12] described their work on the 
uniform classification of concurrent anomalies. The 
five kinds of common anomalies in concurrent 
systems, namely, data races, atomicity violation, 
order violations, deadlocks and missed signals. We 
propose a classification for two most common 
anomalies of concurrent systems in IoT software, 
which are deadlock and data race. 

2.2.1 Data Races 
Data race is one of the common anomalies in 

concurrent systems. The two situations can 
distinguish data race with other anomalies in 
concurrent programs: a) where variables are shared 
with two or more events; b) where any given 
multiple accesses to a given shared variable are 
synchronized in some ways. 

Therefore, a software contains data race if and 
only if it includes at least two non-synchronized 
accesses to a shared memory address where one of 
them is a write access [13]. The data races will be 
occurred while the write accesses have conflicts with 
others. 

2.2.2 Deadlock 
The other common anomaly is deadlock in 

concurrent systems. This anomaly exists in OS, 
distributed system and resources allocation system. 
Deadlock describes a status of events blocking due 
to the irrelevant invoking between events with the 
limited system resources. When system occurs this 
situation that cannot be recovered, these permanent 
blocking events or threads are called deadlock 
anomaly. 

Deadlock occurs under four conditions: a) the 
threads/events shared multiple system resources, 
such as memory, CPU usage, etc.; b) the 
threads/events hold partial required resources and are 
waiting for others to continue the processing; c) the 
held resources cannot be released before the threads/ 
events completion; d) multiple events/threads exist 
in which each task holds other resources that are 
requested by the other task in the chain. 

Thus, the deadlock anomaly will be triggered as a 
cycle while the multiple events mutually require the 
other resources. There is an example of deadlock is 
shown in Figure 1. 

Dijkstra presented an methodology for deadlock 
avoidance named Banker’s algorithm in 1965 [14], 
which is applied extensively to OS. Nowadays, the 

approaches of deadlock detection have various 
techniques with graph/tree algorithm to re-allocate 
the required resources reasonably, such as blocked-
tree [15] and mutex tree [16], which try to detect a 
cycle in the execution sequence graph. For static 
techniques, the most common method is that the 
possible execution sequence in the program will be 
analyzed the order between events. 

 
2.3 Vector Clocks 

 
Vector clocks [17] is an approach for generating 

the partial ordering of events in concurrent systems 
by F. Mattern in 1989. The execution relationship is 
presented by vector clocks between events in the 
systems. Moreover, each event in this executable 
sequence will be presented by a bit number for 
invoking relationship. 

The vector clocks with bit code are applied in our 
methodology. The vector clocks of each node in the 
graph represents the compact use of the bit code as 
the weight of each fan-in event will always be 
incremented by the fan-in. the vector clock is easily 
used for vectorization of events for classification 
using SVM. An example of vector clocks with bit 
code in Figure 2 has the initialization vector that is 

Figure 2. Vector Clocks with Bit Code 

Figure 1: Example of Deadlock 
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[0, 0, 0, 0, 0, 0] because the root node is an original 
event without any fan-in. Therefore, those leaves 
should be incremented the values. The calculation of 
weight is formulated as: 

௜ሺ݆ሻܥܸ 	≔ ௜ሺ݆ሻܥܸ	 ൅ 1          (1) 

2.4 Event-driven Programs 
 
We describe the event-driven programming model 

in this part. The event-driven programming model is 
used in the current mainstream mobile systems. The 
event-driven applications generally exist on mobile 
devices. The event-driven model is one of the 
common programming paradigm in software 
engineering.  The executable paths are decided by 
triggered events, which could be generated by all 
events from external equipment to an application and 
internal thread in another application. The event-
driven model has event cycle characteristics. The 
callback mechanism will be triggered in the related 
threads when external events occur. Moreover, two 
other paradigms exist, named synchronization 
(single-threaded) model and multi-threaded model. 
The three-programming paradigm models were 
compared at below. 

Single-threaded Model: The tasks are sequentially 
executed according to the order of triggered tasks in 
the same thread for single-thread model. If a task is 
blocked due to I/O operations, all other tasks which 
are on waiting status, will not be successively 
executed until the previous task is finished.  

Multi-threaded Model: The multiple tasks are 
separately executed in different threads, which 
managed by the OS. However, these threads should 
share one I/O operation. If the one thread holds the 
system resources, other threads that request the same 
system resources should be blocked until the 
resource released. This model is more effective than 
the single-threaded program, but the developers must 
write some related codes to protect the exclusive 
resources. Multi-threaded programs are difficult to 
curtail because they handle thread problems using 
synchronous mechanisms such as locks, critical 
section and thread local memory. If the execution 
cannot be correctly implemented within the program, 
it will generate subtle errors. 

Event-driven Model: The multiple events are 
interleaving executed, which are still controlled in 
the main thread. When the events process the I/O 
operations, the callback should be registered to the 
event cycle. After the I/O operations, the previous 
event can continue its execution. The cycle of events 
accesses all events that are in the event queue when 
the triggered events will be assigned to a callback, 

which is waiting to process the events. A simple 
architecture of event-driven programming model is 
shown in Figure 3. 

 

 
Figure 3.  Architecture of Event-driven Programming 

Model 

 
3. RELATED WORK 
 

The concurrent detection is a popular research 
issue in concurrent and parallel systems. And these 
researchers made the various methodologies for 
different anomalies. We describe the recent research 
techniques on concurrent detection by diverse 
methods of analysis. 

3.1 Static Analysis 
 
Static analysis in IoT software is critical owing to 

the quality and reliability for software, which are 
vital keys to mobile application market in Android 
OS. The developers want to reach an anomaly-free 
software, but they will not know the exact executable 
sequence which will be triggered by users. Though 
developers can traverse the all possible executable 
sequences, and some condition still may omit 
because of the different environment of devices. The 
static analysis is very difficult to detect concurrent 
anomalies due to the non-deterministic execution of 
events. The static analyzers detect the software by 
reviewing the source code. All possible sequence of 
events could not be detected by this method. 

Li, et al. [18] presented an approach to manifest 
concurrent anomalies in Android applications for 
generating the potential events by a hybrid-dynamic 
analysis. The AATT tool [18] in this paper is used to 
detect concurrent anomalies for Android 
applications. However, there are two limitations in 
this work. Firstly, the concurrent anomalies whose 
conflicting events cannot be manifested in different 
status. Secondly, the strategy for event scheduling is 
only re-scheduling events with a certain probability. 

3.2 Dynamic Analysis 
 
Dynamic analysis is a testing and evaluation 

technique for programs in rum-time. The objective is 
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to find anomalies in programs while the program is 
executed. 

Tang, et al. [7] proposed a demonstrate called 
RacerDroid, which a lightweight scheduler by 
adapting the existed testing techniques. In this study, 
the race anomaly can be fully exposed by 
RacerDroid from the given potential data races, 
which can be generated from other existed detectors. 

Glatz, et al. [16] developed a dynamic library for 
deadlock detection, which called dpthread. It builds 
up a resource allocation graph to detect the cycle in 
the executable graph using Depth First Search (DFS) 
algorithm. The evaluation shows a smaller 
performance and overhead in CPU usage and 
memory consumption without false positive or 
negative. However, this research is based on 
embedded Linux, which is different from event-
driven programs. 

Raychev, et al. [8] presented a dynamic race 
detection for event-driven programs using 
EventRacer in Web applications. The vector clocks 
applied to find the happen-before relation with chain 
decomposition. However, this approach used to web 
applications. There are some differences between 
web applications and mobile applications, such as 
sensor input and Bluetooth, which may cause 
harmful anomalies that cannot be detected by 
EventRacer in mobile applications. 

3.3 Model Checking 
 
Model checking is a method for formally 

verification  of finite-state concurrent systems. It is 
an automatic technique for verifying distributed 
systems with concurrently executed processes. Some 
model checkers used in the current researched 
including CBMC (Bounded Model Chekcer for 
C/C++) [19], SPIN (Simple Promela Interpreter) 
[20] and JPF (Java-PathFinder) [21-23]. 

van der Merwe, et al. [23] proposed the JPF (Java-
Path Finder) for Android, which is an Android 
application verification tool. This tool can 
successfully detect deadlock anomaly. The major 
challagen of  JPF is to decide which part of the 
system should be modeled. If the most of Android 
framework are modelled, the more anomalies may be 
found in Android. However, scheduling prossiblities 
may exponentially increase when the more 
frameworks need to be modelled, which causes a 
huge work to veify. And, the JPF concentrates on 
verfiying a single application with several 
componets. Their work has a restriction that the parts 
of framework can be modelled and eliminated the 
possibility of finding more anomalies. 

The existent techniques can expose many 
concurrent anomalies in concurrent systems. Those 
methodologies only focused on one of concurrent 
anomalies using a unique tool, which has a one to 
one relationship. However, these methodologies 
exist generality and precision issues in the results of 
detection. 

Overall, the current methodologies still exist the 
large number of false positive and singularity. The 
previous research only focused on the one of  
concurrent anomalies to detect, which cause the OS 
should consume more system resources to execute 
multiple detection tools for various anomalies. 
However, the aim of the detection methodolodogies 
is used for improving the preformance of mobile OS. 
Thus, the presented method in this paper is able to 
detect the multiple concurrent anomalies in the same 
algorithms to reduce the system overhead. In this 
paper, we proposed a novel methodology to detect 
simultaneously multiple concurrent anomalies with a 
lower false positive in our result by SVM that has 
been applied in concurrent software field. And the 
methodology will be introduced in detail in next 
section. 

  
4. METHODOLOGY 

We descirbe the methodology that our proposed. 
We apply the Event language to generate the 
executable sequences of events in IoT software. The 
classification of concurrent anomalies consists of 
three main parts: 

a) Generating executable sequence graph by 
source code and distinguishing the read and 
write operations. 

b) Generating the vector clocks of events 
according to a directed graph that bulid on 
executable sequence graph, which will unify 
vectorization to a one-dimension vector for 
each executable path. 

c) SVM with Gaussian kernel applied to classify 
three types of concurrent states which include 
data race, normal and deadlock. 

Overall, the whole procedure of concurrent 
anomalies classification has five steps. Firstly, the 
example data should be input as the training data. 
Then, each example data will be hold a value that 
represents the concurrent status. The definited 
example data will be trained using SVM models 
before classification. The likelihood of model is able 
to process the features of data to predicit the 
categories for new event sequences. Finally, the test 
data can be input to the algorithm and get the 
prediction values of classification. 
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4.1 Executable Sequence Graph 
 
We extract the source code from this application 

to generate the executable sequence from a IoT 
software in Figure 4.  

This source code is a simple aircondition 
controller in IoT environment. There are only three 
functions in this application. Two buttons are to be 
clicked for changing the setting temperture such as 
up and down. Moreover, two buttons, which 
represent two events in this application, and the 
functions have respective OnClickListener() to 
change temperture by changeTemperture(). 
However, data race may ocurr in this simple 
application due to the non-certain executions.  

If the two buttons clicked with enough speed 
simutaneously, the evetns will be triggered in the 
short lag time. The two events will be sent to the 
event queue, and each event will be split to multiple 
tasks, which will be individually processed in the 
main thread. There is a looper thread for each 
application to process various kinds of tasks. All 

tasks can be executed in this thread, which causes a 
determinant executable sequence in concurrent 
systems. Thus, there exist the same issue in this IoT 
controller software owing to the unknown 
executions. For instance, if only one of buttons is 
clicked at a time, one event will be triggered and 
processed alone at the same time without any data 
race or resource limitation, which is a normal 
execution as a concurrent program. Meanwhile, the 
source code will generate a lot of situations when the 
two OnClickListener()  are triggered simultaneously. 
There is an extreme possibility to ocurr the 
concurrent anomaly. If one of events is processed 
faster than other, these two events will be handled  

smoothly. Otherwise, the two events will be 
interleaving executed. If there is at least one writing 
instruction, the data race will be ocurred.  

The write and read instructions should be 
distinguished by the source code to generate the 
executable sequence. Therefore, the executable 
graph represents the relationship of execution 
between events. This example in Figure 4 contains 
two shared variables temperture and flag, and a 
private method changeTemperture(). Figure 5 shows 
an executable graph for the aircondition controller 
using event semantic. The solid lines represent the 
happens-before relation, and the dotted lines 
represent the existence of some anomalies because at 
least one write instruction accesses the shared 
variable. Thus, the shared variables may be changed 
during the current processing event.  

Figure 5 shows all executable paths that can be 
triggered by this concurrent program. Two buttons 
invoke the same method changeTemperture(). If 
these listener events are individually processed, this 
program will success change the temperture because 

Figure 5. Event Semantic Graph for the 
Program in Figure 4 

Figure 4. Part of Source Code in Controller 



Journal of Theoretical and Applied Information Technology 
15th February 2018. Vol.96. No 3 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                        E-ISSN: 1817-3195  

 
838 

 

there is no a  confilict of write for shared variables. 
However, if these two buttons are triggered 
simultaneously, a special situation may be ocuured, 
such as the dotted lines in Figure 5. Assume that 
button B invokes the method changeTemperture(). 
Firstly, if the method only wrote  a increment to the 
variable temperture before the callback to the 
listener event of button B, at this time, button A 
invokes the method changeTemperture() and change 
the value of temperture. At last, the value of 
temperture is not the original data when the program 
processes the latest read instruction in the listener 
event of button A. Thus, the data race ocurrs from 
this case as shown in Figure 6(c). Figure 6(a) shows 
all possible paths of executions for IoT controller 
application. 

The executable sequence graph shows the 
sequences and relationships among asynchronized 
events. All possible executions represent by this 
graph and the sub-graph is a separate path of 
execution, which a individual executable sequence. 

4.2 Vectorization 
 
We manually created the executable sequence 

graph by this source code and expalined how data 
race ocurrs in the executable path. The feature of 
concurrent execution should be presented as one-
dimension vector for classification fo concurrent 
anomalies using machine learning. Therefore, this 
graph converted to on-dimension vector by vector 
clocks. 

Figure 6(a) is a directed graph, which consists of 
all executable paths of this controller application. 
However, all paths cannot be executed at the same 
time owing to the event-driven model. The main 
thread only handled an executabl path while an event 
is triggered. The Figure 6(a) can be divided to 
multiple executable paths, such as Figure 6(b) and 

Figure 6(c). According to the vector clocks of nodes, 
the matrix for features of executable paths is able to 
be generated for each path. For instance, the below 
matrix presents the status of one executable path in 
Figure 6(b). The vector clock of this node will be 
updated by formula (1) while the event executed the 
i-the node. 

ܸ ௕ܶ ൌ

1
2
3
5

൦

0 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

൪                       (2) 

The above matrix is a normal status of the 
executable sequence. The values of events in the 
current vector clock will be incremented while the 
program is going to the next event. The numbers 
which are out of the bracket are notations for each 
node. Therefore, VT(5) is the terminal vector clock. 
These vector clocks are combined in a matrix before 
vectorization of classification. The happens-before 
relations is able to be deteremined easily by the 
matrix. But this matrix still cannot be used for 
classification in SVM as a standard input. As a result, 
the feature vector which is used to machine learning 
as a one-dimension will be further extracted by this 
methodologies.  

This 4 by 4 matrix presents an executable 
sequence. The multiple dimensional matrices is 
unable to be inputted as a feature vector  for SVM 
model. The handled vector clock is a summation 
from the current vector minus the prior vector. 
Therefore, n-1 (n represents the number of vector 
clocks) vectors will be generated by this method. The 
new summation of feature vector is able to get from 
these new vectors. The summation formula can be 
defined as: 

௡ܸ௘௪ ൌ ∑ ܸܶሺ݅ሻ െ ܸܶሺ݅ െ 1ሻ௡
௜ୀଶ          (3) 

݂݂݅		ܸܶሺ݅ሻ ൒ 0 

This equation applied to calculate the sample 
graph for Figure 6(b). It is enable the simplification 
of feature vector for classification. The simplified 
vector clock as follows: 

        ܸ ௕ܶ_௙௘௔௧௨௥௘ ൌ ሾ0	1	1	1ሿ          (4) 

This simplification vector by vectorization should 
be VTb(5), which is the latest event in the graph if this 
executable sequence is the non-anomalous state.  

Figure 6(c) represents an anomalous of executable 
sequence that is data race due to the multiple writing 
instructions simultaneously. In the executable 
sequence, each node is able to traversed by Depth-
Frist-Search (DFS) algorithm. The generated order 
of vector clocks for each node is different from the 

Figure 6. Executable Sequence Tree 
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original order by this traversed sequence. However, 
above formula still adapts to the anomalous 
sequence. The new feature vector for Figure 6(c) is 
ܸ ௖ܶ_௙௘௔௧௨௥௘ ൌ ሾ0	0	1	1	1	1	1ሿ . The VTc_feature is not 
equal to VTc(7) that is the ending of this event 
sequence. This executable sequence is an anomalous 
sequence as a sub-graph of Figure 6(a). 

ܸ ௖ܶ ൌ

1
2
4
6
3
5
7 ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 1 0
0 0 1 1 0 1 0
0 0 1 1 1 1 0
0 0 1 1 1 1 ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (5) 

In the same way, the vector clocks can be 
generated easily for Figure 7 by the executable 
sequence graph. Then, the feature vector for this 
graph is ܸ ௗܶ௘௔ௗ௟௢௖௞ ൌ ሾ0	1	1	2	2ሿ. The VTdeadlock is 
not equal to VTdeadlock(2), which causes the 
executable sequence to generate a cycle of events in 
the graph.  

 
4.3 Classification 

 
In this part, we describe the classification method 

using SVM with Gaussian kernel. In our approach, 
the vector clocks denote the paths of executable 
events, and are used to classify the categories for 
concurrent anomalies. There are two steps for 
classification with SVM model. 

4.3.1 Pre-processing 
The thousands of events continously triggered at a 

time. The feature vectors are probably exceeding our 
predicted length, and they may have the different 
length among vectors. The generated feature vectors 
in prior section should be pre-processed as input for 
SVM before classification. 

The feature vectors whose lengths are less than the 
initial length will be provided additionally as 
element 0 at the end of vectors for avoiding the 
jagged length.  A horizontal vector that denote an 
executable sequence of events in IoT software will 
be inputted to SVM model for classification. 
Machine learning automatically captures the features 
between vectors by the training of these executable 
sequences.  

Here, we generate 20 training examples by the 
source code from IoT software. Each node of vector 
represents one feature, and each training example has 
a notation y as its substantial concurrent state. For 
example, y represents a normal state if y equals 1. 
Similarly, it represents data race when y equals 2; the 
current executable sequence is a deadlock status if y 
equals 3. The complex examples which have a large 
of events are sorted to the unified format using the 
pre-processing. 

4.3.2 Classification 
This methodology is trying to increase the training 

TP and reduce the FP. The SVM with Gaussian 
kernel applied in this work to find out the best 
performance. The SVM hypothesis is defined as 
follows: 

min
ఏ
ሺ௜ሻݕ෍ൣܥ cos ሺ௜ሻ൯ݔ்ߠଵ൫ݐ ൅ ሺ1 െ ሺ௜ሻሻݕ cos ሺ௜ሻ൯൧ݔ்ߠ଴൫ݐ

௠

௜ୀଵ

൅
1
2
෍ߠ௝

ଶ

௡

௝ୀଵ

 

cos ݔ்ߠଵ൫ݐ
ሺ௜ሻ൯ ൌ െ log

ଵ

ଵା௘షቀഇ
೅ೣሺ೔ሻቁ

      

      cos ݔ்ߠ଴൫ݐ
ሺ௜ሻ൯ ൌ െ logሺ1 െ

ଵ

ଵା௘షሺഇ೅ೣሺ೔ሻሻ
ሻ               (6) 

where m is the number of training samples. 

Moreover, the Gaussian kernel is used to fit θ. We 
should choose the values of C and σ carefully to 
reach a higher TP with the lower FP. The different 
combinations of C and σ will show the diverse 
performance of prediction which shown in Section 5. 

This methodology will classify three classes of 
concurrent states in IoT software, which belongs to 
multip classes classification in SVM with multiple 
features. Nevertheless, the one to one method of 
SVM fro multi-class is used in this work. The three 
pairwise of classes are created as input data by the 
formula in vectorization section.each training set 
will be detected respectively in the simulation. When 
an example predicted by three SVM models, this 
example will get three results of predition by each 
combination of classes. SVM model will output a 
value to present a concurrent state that is the 
predicted result for the example. The number of 
predicted times for each class is able to calculate the 
result. The maximum number in the result of 
concurrent states is the final predicted result; 

Figure 7. Executable Sequence Graph of 
Deadlock Example 
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otherwise, it will be re-classified until get a specific 
result. The calculation model is shown in Table 2 
which used a normal example.  

In the next section, we will show the experiment 
result in detail and analyze the performance of this 
method. 

Table 2. SVM Models 

SVM Model Normal Deadlock Data Race 
(Normal, 

Deadlock) 
1 0 / 

(Normal, 
Data Race) 

1 / 0 

(Deadlock, 
Data Race) 

/ 0 1 

Sum 2 0 1 
 

 
5. IMPLEMENTATION RESULT 

 
In this section, we describe the performance for 

our implementation by simulation. We generated 15 
training examples and artificially distinguish their 
concurrent states by the source code inclu 

ding an example in Figure 4. The 20 testing 
examples include the training exmaples which also 
will be detected by machine learning to calculate the 
precision. And there are nine examples of the non-
anomalous, five examples of data race and six 
examples of deadlock. 

The featire vectors that generated in vectorization 
will be applied in this section. There are two 
parameters for input which include a feature vector 
of executable sequence and an identifier of 
concurrent states. We should classify three types of 
status that mentioned in previous part. Then, the 
three group SVM models will predict each 
executable sequence. 

Table 3. Simulation Results when C=1 

σ 0.01 0.03 0.1 0.3 

TP 70% 75% 75% 75% 

σ 1 3 10 30 

TP 80% 65% 70% 70% 

 
The ideal performance is able to find out by 

adjusting the values of C and σ in SVM with 
Gaussian kernel. The C is the tolerance of fault. The 
tolerance is the lowest, which easily cause the overfit 
while C is too large; otherwise, the performance will 
be the lowest in the implementation. The σ denotes 

the number of training examples, which can effective 
the number of support vector and the speed of 
prediction. 

Therefore, we applied the control variable method 
to find out the optimal combination of two related 
parameters. As a result, when σ is constantly 
increased, it causes the higher basis, and the TP is 
increased until σ equals 1 as shown in Table 3. On 
the contrary, the FP is decresed until σ over 1; then, 
FP will be increaed to 30%, which leads to a higher 
variance.  

According to this simulation, the partial figure 
show the performance under the different values of σ 

when C equals to 1 as shown in Figure 8. The TP 
achieved the highest performance. When both 
parameters σ and C are equal to 1, the performance 
will reach the optimum condition. Nevertheless, the 
highest TP is 80% with the 20% false positive in our 
methodoloy. This performance still exceeds 
EventRacer [8]. This method is a novel and effective 
for classifying dynamically the concurrent anomalies 
by vector clocks for IoT software. 

 
6. CONCULSION 

 
The concurrent anomaly in IoT software is a 

popular issue. These current methodologies have the 
large number of FP and simplex concurrent anomaly 
without extensibility. 

In this paper, we proposed a novel methodology 
for multiple kinds of concurrent anomaly in IoT 
software. This classification approach is able to be 
applied in IoT plarforms to detect the concurrent 
anomalies using machine laerning which is enable to 
predict the executable sequence.  The machine 
learning used in this work to classify two kinds 

Figure 8. Simulation Result when C=1 
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ofconcurrent anomalies. By the experimental 
simulation, the TP reached 80%, and FP decreased 
to 20% when the parameters C and σ equal to 1. 
Meanwhile, our method can classify the multiple 
anomalies in IoT software, that is an advantage with 
others. 

Nowaday, seriously depend on various smart 
devices to either manipulate family appliances or 
monitor the real-time data. When a lot of requests 
send to the processing termination, the IoT 
environment is an individual concurrent system. 
Hence, a fluent operation in IoT software is essential. 

We merely applied very limited examples to 
simulate the methodology. In the future, we will 
extend this method to automatically extract the 
executable sequence and vector clocks from the 
executing software. Meanwhile, this method will 
access to some open IoT software to increase the 
reliability and precision of simulation. 
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