
Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

832

CLASSIFICATION OF CONCURRENT ANOMALIES FOR IOT
SOFTWARE BASED SUPPORT VECTOR MACHINE

1ZHIQIANG WU, 2ASAD ABBAS, 3XIN CHEN, 4SCOTT UK-JIN LEE*

1,2,3,4Department of Computer Science and Engineering, Hanyang Univerisity, Ansan, South Korea

E-mail: {1wzq0515, 2asadabbas, 3xxtx0122, 4scottlee}@hanyang.ac.kr

Corresponding Author: SCOTT UK-JIN LEE

ABSTRACT

Internet of Thing (IoT) can connect anyone with anything at any point in any place. Currently, growing
number of IoT devices have become a major role of daily life owing to their convenience. The IoT devices
usually controlled by Web applications and mobile applications, which will process lots of events from user’s
controller to devices. Hence, such software is a kind of concurrent program in IoT environment because the
software is unable to simultaneously process these events, which may cause the concurrent issue. There is
event-drive model in either Web application or mobile applications, which is unable to easily detect the
concurrent anomaly by existing approaches due to the non-determined of execution and hardly reproduced
by the same sequence. The previous techniques of concurrent detection are excessive limitations that only
used for one of concurrent anomaly with the large number of false positive. In this paper, we describe a novel
methodology to dynamically classify two types of concurrent anomalies for IoT software. According to the
executable sequence graph, we generate the training and test examples for classification. The vectorization
features are classified by Support Vector Machine (SVM) with Gaussian kernel. The SVM will predict the
concurrent state of current executable example. As a result, the optimal true positive of simulation is 80% in
our experiment which is a higher accuracy than others.

Keywords: Concurrency Anomalies, Machine Learning, IoT Software, Support Vector Machine,
Classification

1. INTRODUCTION

The Internet of Things (IoT) is an emerging
concept, which contains a large number of
heterogeneous and pervasive things that steadily
generate information about our real world [1, 2].
These devices connected to others in the same
network such as objects, machines, vehicles, home
appliance and other physical systems. However,
these devices are various embedded systems, smart
phone, tablets, etc. The Operation Systems which
non-professional users can use have the Graphical
User Interface (GUI) mobile systems such as
WinCE, Android OS and iOS. IoT environment can
be found everywhere in our daily life. The IoT
applications have the ability of these ubiquitous and
mobile connectivity such as WLAN, GPS, sensor
inputs and Bluetooth.

Currently there are few kinds of IoT platforms for
its software that is used to manage and control the
IoT devices. For non-professional users, the mobile
platforms are very convenient to manipulation.

There are two most popular mobile platforms for IoT
software, namely Android OS and iOS, which are
both steadily upgraded and developed over time.
Android OS is an open source, plays a major role as
a platform for IoT software [3, 4].

Recently, the lower performance of IoT devices
cannot be satisfied with user’s requirements that
prevents that users have a good experience especially
for Android devices. The performance of Android
OS will be decelerated by the over time. This issue
has attracted many researchers to improvement of
the performance of mobile systems. But, IoT
software has received relatively less attention [5].
Current mobile systems which used for IoT
environment are different from the traditional OS in
computer. The mobile systems have the exclusive
purposes in designated places for IoT. Hence, these
systems have few characteristics, such as limited
resources, event-based applications, and Linux-
based kernel.

IoT software became universally existent in real
world with convenient manipulation and services.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

833

The IoT software is also a kind of concurrent issue
due to the undetermined of execution from the huge
of data stream in IoT environment, which may cause
the collapse of applications. Nowadays, many kinds
of methodologies are used to detected and solve
concurrent anomalies, such as DEvA [6] and
RacerDroid [7]. These methodologies only focus on
one of concurrent anomaly in each approach.
Furthermore, their approaches lead to the large
number of False Positives (FP). And other researcher
[8] attempted to prune the FP and improve the true
positive of anomaly detection. IoT software provide
an event based model for high concurrent software,
which is different from the thread based mode.
Mobile devices that are available for IoT platforms
have a rich mixture of sensors and diverse ways of
inputs that generate may asynchronicties to the data
stream for IoT software. The event-based model
integrates inputs from various sources, such as user
input, touch screens, accelerators, etc. [8]. The
existing detection tools of concurrent anomalies
focused on thread-based programs. Even if these
triggered events will be processed in a main thread,
but there is logical concurrency among the most of
events while these events may not be changed the
order of processing by any developers.

The anomalies are difficult to recur by the same
sequence of user’s actions due to the undetermined
schedules of potential events and limited system
resources in IoT. Whereas the existing
methodologies which are applied in concurrent
systems for anomalies detection, focused on
detecting one of concurrent anomalies that causes
increased system overhead for concurrent anomaly.
We propose a classification approach for two kinds
of concurrent anomalies such as deadlock and data
race [9]. These two anomalies are the most common
issues in concurrent programs. The feature vector of
deadlock and data race in IoT environments will be
deduced in this paper. These executable sequence as
features will be vectored to training samples for
classification. The different sequences of executable
programs will be classified by Support Vector
Machine (SVM) with Gaussian kernel [10] in Octave
[11] according to the features of executable
sequences. We generated 22 samples to simulate our
methodology. The result shows the prediction True
Positive (TP) is 80% that is higher than previous
works. Hence, the performance is improved by SVM
model for IoT software. The concurrent anomalies
can be efficiently exposed by this method with lower
FP.

The rest of this paper is organized as follows.
Section 2 describes the background of this study. The

related work of this study is described in Section 3.
Section 4 and Section 5 present the implementation
of the concurrency anomaly classification using
machine learning with SVM model and simulation
result respectively. Finally, Section 6 concludes this
paper and future work.

2. BACKGROUND

In this section, we briefly describe the related

background of concurrent systems and IoT software.

2.1 IoT Software

IoT software are applied for portable and

embedded devices that have become the most
popular with rapidly increase in the amount and
complexity of their capabilities. The mobile
applications which are used for IoT environment
replaced the role of traditional software for its
portability and the convenient number of services.
However, there are some differences between
traditional software and IoT software, as described
in Table 1 as below.

Table 1: Comparison between Mobile and Computers

Items IoT Devices Computers
Processors RSIC CISC
Computing Lower Higher

Input Sensors,
touch screen

Mouse,
keyboard

OS Resources Limited Entire
Storage Limited Sufficient

Software Event-driven Thread-driven
Connectivity Wi-Fi, 3G,

4G, LAN
LAN, Wi-Fi

The IoT software are easier to encounter the threat
of concurrent issues owing to the limited resources
and system architectures. Nevertheless, the event-
drive program has three steps to interleaving execute,
which are still processed in the main thread. When
the steps handle the I/O operations, a callback will
be registered to events cycle. After I/O operation, the
prior step may continue its next procedures. The
cycle of events accesses all events that are in the
event queue when the triggered events will be
allocated to a callback, which exists the non-
determined schedules of events. The software may
be crashed because the unknown event triggered
with limited system overhead.

2.2 Concurrent Anomaly

The concurrent anomaly is a common situation in

multithreading software, and these anomalies also

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

834

exists in event-driven programs because it belongs to
concurrent systems. These anomalies are not only
difficult to recur but also quite challenging to detect
with the undetermined of concurrent manipulations.
Fiedor, et al. [12] described their work on the
uniform classification of concurrent anomalies. The
five kinds of common anomalies in concurrent
systems, namely, data races, atomicity violation,
order violations, deadlocks and missed signals. We
propose a classification for two most common
anomalies of concurrent systems in IoT software,
which are deadlock and data race.

2.2.1 Data Races
Data race is one of the common anomalies in

concurrent systems. The two situations can
distinguish data race with other anomalies in
concurrent programs: a) where variables are shared
with two or more events; b) where any given
multiple accesses to a given shared variable are
synchronized in some ways.

Therefore, a software contains data race if and
only if it includes at least two non-synchronized
accesses to a shared memory address where one of
them is a write access [13]. The data races will be
occurred while the write accesses have conflicts with
others.

2.2.2 Deadlock
The other common anomaly is deadlock in

concurrent systems. This anomaly exists in OS,
distributed system and resources allocation system.
Deadlock describes a status of events blocking due
to the irrelevant invoking between events with the
limited system resources. When system occurs this
situation that cannot be recovered, these permanent
blocking events or threads are called deadlock
anomaly.

Deadlock occurs under four conditions: a) the
threads/events shared multiple system resources,
such as memory, CPU usage, etc.; b) the
threads/events hold partial required resources and are
waiting for others to continue the processing; c) the
held resources cannot be released before the threads/
events completion; d) multiple events/threads exist
in which each task holds other resources that are
requested by the other task in the chain.

Thus, the deadlock anomaly will be triggered as a
cycle while the multiple events mutually require the
other resources. There is an example of deadlock is
shown in Figure 1.

Dijkstra presented an methodology for deadlock
avoidance named Banker’s algorithm in 1965 [14],
which is applied extensively to OS. Nowadays, the

approaches of deadlock detection have various
techniques with graph/tree algorithm to re-allocate
the required resources reasonably, such as blocked-
tree [15] and mutex tree [16], which try to detect a
cycle in the execution sequence graph. For static
techniques, the most common method is that the
possible execution sequence in the program will be
analyzed the order between events.

2.3 Vector Clocks

Vector clocks [17] is an approach for generating

the partial ordering of events in concurrent systems
by F. Mattern in 1989. The execution relationship is
presented by vector clocks between events in the
systems. Moreover, each event in this executable
sequence will be presented by a bit number for
invoking relationship.

The vector clocks with bit code are applied in our
methodology. The vector clocks of each node in the
graph represents the compact use of the bit code as
the weight of each fan-in event will always be
incremented by the fan-in. the vector clock is easily
used for vectorization of events for classification
using SVM. An example of vector clocks with bit
code in Figure 2 has the initialization vector that is

Figure 2. Vector Clocks with Bit Code

Figure 1: Example of Deadlock

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

835

[0, 0, 0, 0, 0, 0] because the root node is an original
event without any fan-in. Therefore, those leaves
should be incremented the values. The calculation of
weight is formulated as:

௜ሺ݆ሻܥܸ 	≔ ௜ሺ݆ሻܥܸ	 ൅ 1 (1)

2.4 Event-driven Programs

We describe the event-driven programming model

in this part. The event-driven programming model is
used in the current mainstream mobile systems. The
event-driven applications generally exist on mobile
devices. The event-driven model is one of the
common programming paradigm in software
engineering. The executable paths are decided by
triggered events, which could be generated by all
events from external equipment to an application and
internal thread in another application. The event-
driven model has event cycle characteristics. The
callback mechanism will be triggered in the related
threads when external events occur. Moreover, two
other paradigms exist, named synchronization
(single-threaded) model and multi-threaded model.
The three-programming paradigm models were
compared at below.

Single-threaded Model: The tasks are sequentially
executed according to the order of triggered tasks in
the same thread for single-thread model. If a task is
blocked due to I/O operations, all other tasks which
are on waiting status, will not be successively
executed until the previous task is finished.

Multi-threaded Model: The multiple tasks are
separately executed in different threads, which
managed by the OS. However, these threads should
share one I/O operation. If the one thread holds the
system resources, other threads that request the same
system resources should be blocked until the
resource released. This model is more effective than
the single-threaded program, but the developers must
write some related codes to protect the exclusive
resources. Multi-threaded programs are difficult to
curtail because they handle thread problems using
synchronous mechanisms such as locks, critical
section and thread local memory. If the execution
cannot be correctly implemented within the program,
it will generate subtle errors.

Event-driven Model: The multiple events are
interleaving executed, which are still controlled in
the main thread. When the events process the I/O
operations, the callback should be registered to the
event cycle. After the I/O operations, the previous
event can continue its execution. The cycle of events
accesses all events that are in the event queue when
the triggered events will be assigned to a callback,

which is waiting to process the events. A simple
architecture of event-driven programming model is
shown in Figure 3.

Figure 3. Architecture of Event-driven Programming

Model

3. RELATED WORK

The concurrent detection is a popular research
issue in concurrent and parallel systems. And these
researchers made the various methodologies for
different anomalies. We describe the recent research
techniques on concurrent detection by diverse
methods of analysis.

3.1 Static Analysis

Static analysis in IoT software is critical owing to

the quality and reliability for software, which are
vital keys to mobile application market in Android
OS. The developers want to reach an anomaly-free
software, but they will not know the exact executable
sequence which will be triggered by users. Though
developers can traverse the all possible executable
sequences, and some condition still may omit
because of the different environment of devices. The
static analysis is very difficult to detect concurrent
anomalies due to the non-deterministic execution of
events. The static analyzers detect the software by
reviewing the source code. All possible sequence of
events could not be detected by this method.

Li, et al. [18] presented an approach to manifest
concurrent anomalies in Android applications for
generating the potential events by a hybrid-dynamic
analysis. The AATT tool [18] in this paper is used to
detect concurrent anomalies for Android
applications. However, there are two limitations in
this work. Firstly, the concurrent anomalies whose
conflicting events cannot be manifested in different
status. Secondly, the strategy for event scheduling is
only re-scheduling events with a certain probability.

3.2 Dynamic Analysis

Dynamic analysis is a testing and evaluation

technique for programs in rum-time. The objective is

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

836

to find anomalies in programs while the program is
executed.

Tang, et al. [7] proposed a demonstrate called
RacerDroid, which a lightweight scheduler by
adapting the existed testing techniques. In this study,
the race anomaly can be fully exposed by
RacerDroid from the given potential data races,
which can be generated from other existed detectors.

Glatz, et al. [16] developed a dynamic library for
deadlock detection, which called dpthread. It builds
up a resource allocation graph to detect the cycle in
the executable graph using Depth First Search (DFS)
algorithm. The evaluation shows a smaller
performance and overhead in CPU usage and
memory consumption without false positive or
negative. However, this research is based on
embedded Linux, which is different from event-
driven programs.

Raychev, et al. [8] presented a dynamic race
detection for event-driven programs using
EventRacer in Web applications. The vector clocks
applied to find the happen-before relation with chain
decomposition. However, this approach used to web
applications. There are some differences between
web applications and mobile applications, such as
sensor input and Bluetooth, which may cause
harmful anomalies that cannot be detected by
EventRacer in mobile applications.

3.3 Model Checking

Model checking is a method for formally

verification of finite-state concurrent systems. It is
an automatic technique for verifying distributed
systems with concurrently executed processes. Some
model checkers used in the current researched
including CBMC (Bounded Model Chekcer for
C/C++) [19], SPIN (Simple Promela Interpreter)
[20] and JPF (Java-PathFinder) [21-23].

van der Merwe, et al. [23] proposed the JPF (Java-
Path Finder) for Android, which is an Android
application verification tool. This tool can
successfully detect deadlock anomaly. The major
challagen of JPF is to decide which part of the
system should be modeled. If the most of Android
framework are modelled, the more anomalies may be
found in Android. However, scheduling prossiblities
may exponentially increase when the more
frameworks need to be modelled, which causes a
huge work to veify. And, the JPF concentrates on
verfiying a single application with several
componets. Their work has a restriction that the parts
of framework can be modelled and eliminated the
possibility of finding more anomalies.

The existent techniques can expose many
concurrent anomalies in concurrent systems. Those
methodologies only focused on one of concurrent
anomalies using a unique tool, which has a one to
one relationship. However, these methodologies
exist generality and precision issues in the results of
detection.

Overall, the current methodologies still exist the
large number of false positive and singularity. The
previous research only focused on the one of
concurrent anomalies to detect, which cause the OS
should consume more system resources to execute
multiple detection tools for various anomalies.
However, the aim of the detection methodolodogies
is used for improving the preformance of mobile OS.
Thus, the presented method in this paper is able to
detect the multiple concurrent anomalies in the same
algorithms to reduce the system overhead. In this
paper, we proposed a novel methodology to detect
simultaneously multiple concurrent anomalies with a
lower false positive in our result by SVM that has
been applied in concurrent software field. And the
methodology will be introduced in detail in next
section.

4. METHODOLOGY

We descirbe the methodology that our proposed.
We apply the Event language to generate the
executable sequences of events in IoT software. The
classification of concurrent anomalies consists of
three main parts:

a) Generating executable sequence graph by
source code and distinguishing the read and
write operations.

b) Generating the vector clocks of events
according to a directed graph that bulid on
executable sequence graph, which will unify
vectorization to a one-dimension vector for
each executable path.

c) SVM with Gaussian kernel applied to classify
three types of concurrent states which include
data race, normal and deadlock.

Overall, the whole procedure of concurrent
anomalies classification has five steps. Firstly, the
example data should be input as the training data.
Then, each example data will be hold a value that
represents the concurrent status. The definited
example data will be trained using SVM models
before classification. The likelihood of model is able
to process the features of data to predicit the
categories for new event sequences. Finally, the test
data can be input to the algorithm and get the
prediction values of classification.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

837

4.1 Executable Sequence Graph

We extract the source code from this application

to generate the executable sequence from a IoT
software in Figure 4.

This source code is a simple aircondition
controller in IoT environment. There are only three
functions in this application. Two buttons are to be
clicked for changing the setting temperture such as
up and down. Moreover, two buttons, which
represent two events in this application, and the
functions have respective OnClickListener() to
change temperture by changeTemperture().
However, data race may ocurr in this simple
application due to the non-certain executions.

If the two buttons clicked with enough speed
simutaneously, the evetns will be triggered in the
short lag time. The two events will be sent to the
event queue, and each event will be split to multiple
tasks, which will be individually processed in the
main thread. There is a looper thread for each
application to process various kinds of tasks. All

tasks can be executed in this thread, which causes a
determinant executable sequence in concurrent
systems. Thus, there exist the same issue in this IoT
controller software owing to the unknown
executions. For instance, if only one of buttons is
clicked at a time, one event will be triggered and
processed alone at the same time without any data
race or resource limitation, which is a normal
execution as a concurrent program. Meanwhile, the
source code will generate a lot of situations when the
two OnClickListener() are triggered simultaneously.
There is an extreme possibility to ocurr the
concurrent anomaly. If one of events is processed
faster than other, these two events will be handled

smoothly. Otherwise, the two events will be
interleaving executed. If there is at least one writing
instruction, the data race will be ocurred.

The write and read instructions should be
distinguished by the source code to generate the
executable sequence. Therefore, the executable
graph represents the relationship of execution
between events. This example in Figure 4 contains
two shared variables temperture and flag, and a
private method changeTemperture(). Figure 5 shows
an executable graph for the aircondition controller
using event semantic. The solid lines represent the
happens-before relation, and the dotted lines
represent the existence of some anomalies because at
least one write instruction accesses the shared
variable. Thus, the shared variables may be changed
during the current processing event.

Figure 5 shows all executable paths that can be
triggered by this concurrent program. Two buttons
invoke the same method changeTemperture(). If
these listener events are individually processed, this
program will success change the temperture because

Figure 5. Event Semantic Graph for the
Program in Figure 4

Figure 4. Part of Source Code in Controller

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

838

there is no a confilict of write for shared variables.
However, if these two buttons are triggered
simultaneously, a special situation may be ocuured,
such as the dotted lines in Figure 5. Assume that
button B invokes the method changeTemperture().
Firstly, if the method only wrote a increment to the
variable temperture before the callback to the
listener event of button B, at this time, button A
invokes the method changeTemperture() and change
the value of temperture. At last, the value of
temperture is not the original data when the program
processes the latest read instruction in the listener
event of button A. Thus, the data race ocurrs from
this case as shown in Figure 6(c). Figure 6(a) shows
all possible paths of executions for IoT controller
application.

The executable sequence graph shows the
sequences and relationships among asynchronized
events. All possible executions represent by this
graph and the sub-graph is a separate path of
execution, which a individual executable sequence.

4.2 Vectorization

We manually created the executable sequence

graph by this source code and expalined how data
race ocurrs in the executable path. The feature of
concurrent execution should be presented as one-
dimension vector for classification fo concurrent
anomalies using machine learning. Therefore, this
graph converted to on-dimension vector by vector
clocks.

Figure 6(a) is a directed graph, which consists of
all executable paths of this controller application.
However, all paths cannot be executed at the same
time owing to the event-driven model. The main
thread only handled an executabl path while an event
is triggered. The Figure 6(a) can be divided to
multiple executable paths, such as Figure 6(b) and

Figure 6(c). According to the vector clocks of nodes,
the matrix for features of executable paths is able to
be generated for each path. For instance, the below
matrix presents the status of one executable path in
Figure 6(b). The vector clock of this node will be
updated by formula (1) while the event executed the
i-the node.

ܸ ௕ܶ ൌ

1
2
3
5

൦

0 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

൪ (2)

The above matrix is a normal status of the
executable sequence. The values of events in the
current vector clock will be incremented while the
program is going to the next event. The numbers
which are out of the bracket are notations for each
node. Therefore, VT(5) is the terminal vector clock.
These vector clocks are combined in a matrix before
vectorization of classification. The happens-before
relations is able to be deteremined easily by the
matrix. But this matrix still cannot be used for
classification in SVM as a standard input. As a result,
the feature vector which is used to machine learning
as a one-dimension will be further extracted by this
methodologies.

This 4 by 4 matrix presents an executable
sequence. The multiple dimensional matrices is
unable to be inputted as a feature vector for SVM
model. The handled vector clock is a summation
from the current vector minus the prior vector.
Therefore, n-1 (n represents the number of vector
clocks) vectors will be generated by this method. The
new summation of feature vector is able to get from
these new vectors. The summation formula can be
defined as:

௡ܸ௘௪ ൌ ∑ ܸܶሺ݅ሻ െ ܸܶሺ݅ െ 1ሻ௡
௜ୀଶ (3)

݂݂݅		ܸܶሺ݅ሻ ൒ 0

This equation applied to calculate the sample
graph for Figure 6(b). It is enable the simplification
of feature vector for classification. The simplified
vector clock as follows:

 ܸ ௕ܶ_௙௘௔௧௨௥௘ ൌ ሾ0	1	1	1ሿ (4)

This simplification vector by vectorization should
be VTb(5), which is the latest event in the graph if this
executable sequence is the non-anomalous state.

Figure 6(c) represents an anomalous of executable
sequence that is data race due to the multiple writing
instructions simultaneously. In the executable
sequence, each node is able to traversed by Depth-
Frist-Search (DFS) algorithm. The generated order
of vector clocks for each node is different from the

Figure 6. Executable Sequence Tree

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

839

original order by this traversed sequence. However,
above formula still adapts to the anomalous
sequence. The new feature vector for Figure 6(c) is
ܸ ௖ܶ_௙௘௔௧௨௥௘ ൌ ሾ0	0	1	1	1	1	1ሿ . The VTc_feature is not
equal to VTc(7) that is the ending of this event
sequence. This executable sequence is an anomalous
sequence as a sub-graph of Figure 6(a).

ܸ ௖ܶ ൌ

1
2
4
6
3
5
7 ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 1 0
0 0 1 1 0 1 0
0 0 1 1 1 1 0
0 0 1 1 1 1 ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (5)

In the same way, the vector clocks can be
generated easily for Figure 7 by the executable
sequence graph. Then, the feature vector for this
graph is ܸ ௗܶ௘௔ௗ௟௢௖௞ ൌ ሾ0	1	1	2	2ሿ. The VTdeadlock is
not equal to VTdeadlock(2), which causes the
executable sequence to generate a cycle of events in
the graph.

4.3 Classification

In this part, we describe the classification method

using SVM with Gaussian kernel. In our approach,
the vector clocks denote the paths of executable
events, and are used to classify the categories for
concurrent anomalies. There are two steps for
classification with SVM model.

4.3.1 Pre-processing
The thousands of events continously triggered at a

time. The feature vectors are probably exceeding our
predicted length, and they may have the different
length among vectors. The generated feature vectors
in prior section should be pre-processed as input for
SVM before classification.

The feature vectors whose lengths are less than the
initial length will be provided additionally as
element 0 at the end of vectors for avoiding the
jagged length. A horizontal vector that denote an
executable sequence of events in IoT software will
be inputted to SVM model for classification.
Machine learning automatically captures the features
between vectors by the training of these executable
sequences.

Here, we generate 20 training examples by the
source code from IoT software. Each node of vector
represents one feature, and each training example has
a notation y as its substantial concurrent state. For
example, y represents a normal state if y equals 1.
Similarly, it represents data race when y equals 2; the
current executable sequence is a deadlock status if y
equals 3. The complex examples which have a large
of events are sorted to the unified format using the
pre-processing.

4.3.2 Classification
This methodology is trying to increase the training

TP and reduce the FP. The SVM with Gaussian
kernel applied in this work to find out the best
performance. The SVM hypothesis is defined as
follows:

min
ఏ
ሺ௜ሻݕ෍ൣܥ cos ሺ௜ሻ൯ݔ்ߠଵ൫ݐ ൅ ሺ1 െ ሺ௜ሻሻݕ cos ሺ௜ሻ൯൧ݔ்ߠ଴൫ݐ

௠

௜ୀଵ

൅
1
2
෍ߠ௝

ଶ

௡

௝ୀଵ

cos ݔ்ߠଵ൫ݐ
ሺ௜ሻ൯ ൌ െ log

ଵ

ଵା௘షቀഇ
೅ೣሺ೔ሻቁ

 cos ݔ்ߠ଴൫ݐ
ሺ௜ሻ൯ ൌ െ logሺ1 െ

ଵ

ଵା௘షሺഇ೅ೣሺ೔ሻሻ
ሻ (6)

where m is the number of training samples.

Moreover, the Gaussian kernel is used to fit θ. We
should choose the values of C and σ carefully to
reach a higher TP with the lower FP. The different
combinations of C and σ will show the diverse
performance of prediction which shown in Section 5.

This methodology will classify three classes of
concurrent states in IoT software, which belongs to
multip classes classification in SVM with multiple
features. Nevertheless, the one to one method of
SVM fro multi-class is used in this work. The three
pairwise of classes are created as input data by the
formula in vectorization section.each training set
will be detected respectively in the simulation. When
an example predicted by three SVM models, this
example will get three results of predition by each
combination of classes. SVM model will output a
value to present a concurrent state that is the
predicted result for the example. The number of
predicted times for each class is able to calculate the
result. The maximum number in the result of
concurrent states is the final predicted result;

Figure 7. Executable Sequence Graph of
Deadlock Example

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

840

otherwise, it will be re-classified until get a specific
result. The calculation model is shown in Table 2
which used a normal example.

In the next section, we will show the experiment
result in detail and analyze the performance of this
method.

Table 2. SVM Models

SVM Model Normal Deadlock Data Race
(Normal,

Deadlock)
1 0 /

(Normal,
Data Race)

1 / 0

(Deadlock,
Data Race)

/ 0 1

Sum 2 0 1

5. IMPLEMENTATION RESULT

In this section, we describe the performance for

our implementation by simulation. We generated 15
training examples and artificially distinguish their
concurrent states by the source code inclu

ding an example in Figure 4. The 20 testing
examples include the training exmaples which also
will be detected by machine learning to calculate the
precision. And there are nine examples of the non-
anomalous, five examples of data race and six
examples of deadlock.

The featire vectors that generated in vectorization
will be applied in this section. There are two
parameters for input which include a feature vector
of executable sequence and an identifier of
concurrent states. We should classify three types of
status that mentioned in previous part. Then, the
three group SVM models will predict each
executable sequence.

Table 3. Simulation Results when C=1

σ 0.01 0.03 0.1 0.3

TP 70% 75% 75% 75%

σ 1 3 10 30

TP 80% 65% 70% 70%

The ideal performance is able to find out by

adjusting the values of C and σ in SVM with
Gaussian kernel. The C is the tolerance of fault. The
tolerance is the lowest, which easily cause the overfit
while C is too large; otherwise, the performance will
be the lowest in the implementation. The σ denotes

the number of training examples, which can effective
the number of support vector and the speed of
prediction.

Therefore, we applied the control variable method
to find out the optimal combination of two related
parameters. As a result, when σ is constantly
increased, it causes the higher basis, and the TP is
increased until σ equals 1 as shown in Table 3. On
the contrary, the FP is decresed until σ over 1; then,
FP will be increaed to 30%, which leads to a higher
variance.

According to this simulation, the partial figure
show the performance under the different values of σ

when C equals to 1 as shown in Figure 8. The TP
achieved the highest performance. When both
parameters σ and C are equal to 1, the performance
will reach the optimum condition. Nevertheless, the
highest TP is 80% with the 20% false positive in our
methodoloy. This performance still exceeds
EventRacer [8]. This method is a novel and effective
for classifying dynamically the concurrent anomalies
by vector clocks for IoT software.

6. CONCULSION

The concurrent anomaly in IoT software is a

popular issue. These current methodologies have the
large number of FP and simplex concurrent anomaly
without extensibility.

In this paper, we proposed a novel methodology
for multiple kinds of concurrent anomaly in IoT
software. This classification approach is able to be
applied in IoT plarforms to detect the concurrent
anomalies using machine laerning which is enable to
predict the executable sequence. The machine
learning used in this work to classify two kinds

Figure 8. Simulation Result when C=1

70%
75% 75% 75%

80%

65%

70% 70%

30.00%

25% 25% 25%
20.00%

35%
30% 30%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8

True Positive False Positive

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

841

ofconcurrent anomalies. By the experimental
simulation, the TP reached 80%, and FP decreased
to 20% when the parameters C and σ equal to 1.
Meanwhile, our method can classify the multiple
anomalies in IoT software, that is an advantage with
others.

Nowaday, seriously depend on various smart
devices to either manipulate family appliances or
monitor the real-time data. When a lot of requests
send to the processing termination, the IoT
environment is an individual concurrent system.
Hence, a fluent operation in IoT software is essential.

We merely applied very limited examples to
simulate the methodology. In the future, we will
extend this method to automatically extract the
executable sequence and vector clocks from the
executing software. Meanwhile, this method will
access to some open IoT software to increase the
reliability and precision of simulation.

ACKNOWLEDGEMENT

This work was supported by the National

Research Foundation of Korea through the Korean
Government (MSIP) under Grant NRF-
2016R1C1B2008624.

REFRENCES:
[1] S. Tata, R. Jain, H. Ludwig, and S. Gopisetty,

"Living in the Cloud or on the Edge:
Opportunities and Challenges of IOT
Application Architecture," in Services
Computing (SCC), 2017 IEEE International
Conference on, 2017, pp. 220-224.

[2] I. F. Siddiqui, S. U. J. Lee, A. Abbas, and A. K.
Bashir, "Optimizing lifespan and energy
resources of smart meter in a green cloud-based
smart grid," IEEE Access, 2017, pp. 20934-
20945.

[3] É. Payet and F. Spoto, "Static analysis of
Android programs," Information and Software
Technology, vol. 54, no. 11, 2012, pp. 1192-
1201.

[4] A. Abbas, I. F. Siddiqui, S. U. J. Lee, and A. K.
Bashir, "Binary Pattern for Nested Cardinality
Constraints for Software Product Line of IoT-
Based Feature Models," IEEE Access, vol. 5,
2017, pp. 3971-3980.

[5] Q. Wang et al., "Multimedia IoT systems and
applications," in Global Internet of Things
Summit (GIoTS), 2017, pp. 1-6.

[6] G. Safi, A. Shahbazian, W. G. Halfond, and N.
Medvidovic, "Detecting event anomalies in
event-based systems," in Proceedings of the
2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 25-37.

[7] H. Tang, G. Wu, J. Wei, and H. Zhong,
"Generating test cases to expose concurrency
bugs in android applications," in Proceedings of
the 31st IEEE/ACM International Conference on
Automated Software Engineering, 2016, pp.
648-653.

[8] V. Raychev, M. Vechev, and M. Sridharan,
"Effective race detection for event-driven
programs," in ACM SIGPLAN Notices, vol. 48,
no. 10, 2013, pp. 151-166.

[9] Z. Wu, "Support Vector Machine Based
Concurrency Anomaly Classification for Mobile
Applications," Master of Science, Hanyang
University, 2017.

[10] S. S. Keerthi and C.-J. Lin, "Asymptotic
behaviors of support vector machines with
Gaussian kernel," Neural computation, vol. 15,
no. 7, 2003, pp. 1667-1689.

[11] S. Sonnenburg et al., "The SHOGUN machine
learning toolbox," Journal of Machine Learning
Research, vol. 11, 2010, pp. 1799-1802.

[12] J. Fiedor, B. Křena, Z. Letko, and T. Vojnar, "A
uniform classification of common concurrency
errors," Computer Aided Systems Theory–
EUROCAST 2011, pp. 519-526.

[13] W. Mansky, Y. Peng, S. Zdancewic, and J.
Devietti, "Verifying dynamic race detection," in
CPP, 2017, pp. 151-163.

[14] A. Tanenbaum, "Modern operating systems",
Pearson Education, Inc., 2009.

[15] T. Shimomura and K. Ikeda, "Waiting blocked-
tree type deadlock detection," in Science and
Information Conference (SAI), 2013, pp. 45-50.

[16] B. Glatz, R. Beneder, M. Horauer, and T.
Rauscher, "Deadlock detection runtime service
for Embedded Linux," in IEEE Conference on
Emerging Technologies & Factory Automation ,
2015, pp. 1-7.

[17] F. Mattern, "Virtual time and global states of
distributed systems," Parallel and Distributed
Algorithms, vol. 1, no. 23, 1989, pp. 215-226.

[18] Q. Li et al., "Effectively Manifesting
Concurrency Bugs in Android Apps," in
Software Engineering Conference (APSEC),
23rd Asia-Pacific, 2016, pp. 209-216.

[19] S. Falke, F. Merz, and C. Sinz, "The bounded
model checker LLBMC," in IEEE/ACM

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

842

International Conference on Automated
Software Engineering (ASE), 2013, pp. 706-709.

[20] A. Maleki, "Framework for Analyzing Highly
Concurrent Algorithms In SPIN," 2011.

[21] S. Iqbal, S. U. Shah, M. Nauman, and M. Amin,
"Extending Java Pathfinder (JPF) with property
classes for verification of Android permission
extension framework," in IEEE International
Conference on System Engineering and
Technology, 2013, pp. 15-20.

[22] A. Kohan et al., "Java Pathfinder on Android
Devices," ACM Software Engineering Notes,
vol. 41, no. 6, 2017, pp. 1-5.

[23] H. van der Merwe, B. van der Merwe, and W.
Visser, "Verifying android applications using
Java PathFinder," ACM Software Engineering
Notes, vol. 37, no. 6, 2012, pp. 1-5.

