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ABSTRACT 
 

In this paper, we research how an application effects on other applications when they are executed in the 
same processor. And we take advantage of PMU (Performance Monitoring Unit) to examine that shared 
resource has the strongest relation with the influence. Based on the analysis, we design a novel user-level 
scheduling scheme that monitors applications characteristics on-line utilizing PMU and allocates 
applications into cores so that it can reduce the contention of shared resources. The key idea of this scheme 
is separating high-influential applications into different processors. 
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1. INTRODUCTION 1 
 

 In order to improve the performance of 
the system, the number of cores of the processor is 
increasing in order to improve the parallelism of the 
system in addition to the processing speed of the 
CPU. By improving the parallelism, it is possible to 
perform different applications simultaneously on 
each core, or to allocate one application to each 
core, thereby improving the performance of the 
system [1]. 

 
For example, the Xeon E5-2697 processor 

and the AMD Opteron processor each have 14 
cores and 16 cores, which can handle 14 and 16 
applications simultaneously. The number of cores 
for each processor is no more than 20, but recent 
systems have more than two processors, the IBM 
x3850 system has 8 processors with 8 cores and the 
AMD Bulldozer has 4 cores with 16 cores Both 
systems have a total of 64 cores [2][3]. 

 
In such a Many Core environment, cores 

share resources of the system, causing competition 
for shared resources, and performance degradation 
occurs when cores perform applications due to 
competition. In order to improve the overall 
performance of the system, a task scheduling 
Figure 4.2: Behavior of various functions nearer to the 
proposed function 
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method considering the contention of shared 
resources among cores has been studied [4][5][6]. 

 
For this work, we selected 11 workloads to 

determine their mutual influence. The workload has 
two patterns, pattern with frequently access data to 
memory, which results in high memory bandwidth 
and relatively regular execution patterns. Based on 
this result, we used the PMU (Performance 
Monitoring Unit) to analyze the causes of mutual 
influences [3]. As a result of analysis, PMU 
registers representing the characteristics and 
interactions of the core under application are 
selected and based on this, an optimal scheduling 
scheme for efficiently writing shared resources in 
the NUMA structure is proposed [7][8]. In order to 
verify the proposed scheme, we performed 
experiments comparing with the Linux 4.2 basic 
scheduling policy in two system environments. 

 
The composition of the paper is as follows. 

In section 2, we review the NUMA environment 
and cache allocation works related this work. In 
Section 3, we show the motivation of this paper. In 
section 4, we discuss the application attribute-based 
scheduling algorithm proposed in this paper. In 
Section 5, we introduce the shared resource 
problem in inter-cores. In Section 6, we present 
evaluation results focusing on performance and 
describe the difference of prior work at section 7. 
Finally, Section 8 concludes the paper.  
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Figure 1: Architecture of NUMA(Non-Uniform-
Memory-Access) 

2. RELATED WORKS 

Studies dealing with the competition of 
cores for limited shared resources have focused on 
the distribution of cache resources. In order to 
prevent the corruption of the cache resource, it is 
necessary to divide the available cache space 
according to the cache hit ratio or the operation 
characteristic of the core, or the cache hit ratio of 
the cores in the NUMA environment, have been 
proposed to balance the cache hit ratio between 
processors by competing shared resources in the 
same processor in the order of application having 
the highest priority [7][9]. There is also a technique 
that divides the entire memory space so that each 
cache space can only load data in a specific 
memory space, preventing a small number of cores 
from contaminating the cache. There are a lot of 
other researches, too. The reason why the study of 
cache resources is actively conducted is because 
competition for cache space is the most influential 
factor in application performance among shared 
resource competition. 

 
Studies on cache resource allocation as 

well as studies on memory bandwidth allocation 
have been carried out in many researches related to 
virtualized environments with high memory 
bandwidth usage because they operate several 
virtual machines [10]. For example, in the NUMA 
environment, memory allocation and access have 
higher latency when accessing the remote memory, 
so that the local memory has a higher priority than 
the remote memory. However, when memory 
access is concentrated in local memory, and 
memory bandwidth usage exceeds available 
memory bandwidth, a bottleneck occurs. 

 
In addition, in the NUMA environment, a 

research has been conducted to allocate more cache 
resources considering the remote memory access 
penalty due to the difference of local / remote 
memory access latency in balancing the cache hit 
ratio between processors. Hardware Prefetch is 
mainly focused on improving the prediction 
accuracy of Prefetcher. For example, when the core 
detects data approaching a certain pattern, 
Hardware Prefetcher uses a filter or prefetch after 
checking previous logs. Decides whether to 
perform it. We have also studied the optimal use 
frequency of prefetch. The more aggressive use of 

prefetch, the higher performance improvement can 
be expected when the prefetch prediction is 
successful. As a representative solution, research 
has been conducted to monitor the data access of 
the core and to switch the prefetch utilization 
frequency in real time. 

 
Studies have also been conducted to better 

utilize PMU (Performance Monitoring Units) 
provided by chip manufacturers to provide system 
programmers with micro-architecture information 
about cores. There are studies to reduce the 
overhead to monitor the execution of cores in real 
time, and to improve the monitoring accuracy by 
changing the mechanism that kernel saves register 
information in Context Switch. 

 
3. MOTIVATION 

 As the number of cores increases, recent 
systems are composed of NUMA (Non-Uniform 
Memory Access) in hardware. In order to solve the 
bottleneck of the memory bandwidth due to 
intensified competition for the memory bandwidth, 
which is one of the resources of the system sharing 
between the cores, the memory is physically 
accessed for each core of the processor as shown in 
Figure 1. 

 
In this architecture, the cores still compete 

for resources such as LLC in the processor, 
memory bandwidth between processors, and 
interconnect bandwidth. In such a shared resource 
competitive environment, depending on the shared 
resource usage or the data access pattern of each 
core, the inter-core work is affected. 
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Figure 2 shows the impact of the sp.B and omnetpp 
workloads on the performance of different 
workloads and the impact of different workloads on 
different workloads and shared resource contention. 
As shown in the figure, the sp.B workload shows 
that the impact on other workloads is greater than 
the omnetpp workload, but stubborn against its 
performance degradation. In this way, the core 
tends to be different from the shared resource 
competition depending on the characteristics of the 
application being executed. 

 
The applications that the core performs 

have different mutual influences. It is expected that 
the performance of the system can be improved if 
core applications are identified and classified 
according to their mutual influences, scheduling 
applications being executed by cores between 
different processors, and optimizing shared 
resource competition. 
 

 
4. INTER-CORE SHARED RESOURCES 

 As the number of cores increases, recent 
systems are composed of NUMA (Non-Uniform 
Memory Access) in hardware. In order to solve the 
bottleneck of the memory bandwidth due to 
intensified competition for the memory bandwidth, 
which is one of the resources of the system sharing 
between the cores, the memory is physically 
accessed for each core of the processor as shown in 
Figure 1. 
 
4.1 Shared Cache 

The cache in the processor has a 
hierarchical structure in which caches having 
different sizes are classified as Level 1 and Level 2. 
The LLC (Last Level Cache) is a cache resource 
that is shared among cores as the name implies in 
the last Level cache. In recent systems, the Level 3 
cache is mostly Last Level, and as the number of 
cores increases, the size of the LLC increases. As 
the cache hit ratio is low because of the low 
localization of the cores performed by the 
processor, the LLC space is insufficient and LLC 
competition is intensified. 

 
For example, if core A is low in locality of 

accessing data and the cache hit ratio is low, data of 
Core A that is not reused will occupy space in LLC 
and data that will be hit by another core will not be 
loaded into LLC. Or, if the data access pattern is a 
pattern that contaminates the LLC like the stream 
pattern, or if the data access is frequent and 
occupies more cache space than the other cores, the 
LLC competition will be intensified and the 
performance of the LLC will drop significantly. 
 
4.2 Memory Bandwidth 

The memory bandwidth available in the 
system is limited, but bottlenecks occur when cores 
access memory frequently to access data. In Linux 
4.2 basic NUMA policy, due to the local / remote 
memory access penalty, the memory utilization of 
the core utilizes the local memory of the processor 
until the capacity is short, and the remote memory 
is utilized when the capacity of the local memory 
becomes insufficient. The memory is migrated 
periodically on a page-by-page basis, and the page 
data is migrated to the memory of a processor with 
a frequently accessed core. The core is designed to 
migrate to a remote memory when the access 
frequency to the remote memory is greater than the 
local memory access frequency. 

 

 
(a) Applications influencing other applications 

 

 
(b) Applications being influenced by other 
applications 
 
Figure 2 : Differences in the influence of sp.B 
and omnetpp 
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Figure 3 : Performance of workloads when competing for shared resources 
 

In the worst case, the cores of processor A 
frequently access memory locally, and the cores of 
processor B frequently access the memory of 
processor A to the remote, thereby exceeding the 
available memory bandwidth of processor A. The 
memory bandwidth of processor B is sufficient, but 
the memory bandwidth of processor A is a 
bottleneck. To mitigate this situation, much 
research has been done to balance the demand for 
memory bandwidth of cores per processor in the 
NUMA environment. 
 
4.3 Interconnection 

In a NUMA architecture, the bandwidth is 
for one processor to communicate with the other. 
There are mainly requests for state change requests, 
data requests, and remote memory data for the 
remote cache line, including Intel's Quick Path 
Interconnect (QPI) and AMD's HyperTransport 
technology. As with memory bandwidth, the more 
frequently a core accesses a remote processor, the 
greater the demand for interconnection bandwidth 
and can become a bottleneck. 
 
5. APPLICATION CHARACTERISTIC-

BASED SCHEDULING ALGORITHM 

 
5.1 Mutual influence between applications 

Fig. 3 shows the results of an experiment 
conducted on a system consisting of two Intel Xeon 
x3650 processors with Linux version 4.2 and 4 
cores each. Memory per processor is 32 GB in size, 
8 MB of LLC, 32 KB of L1 Instruction/Data cache, 
and 256 KB of L2 cache. The workloads selected 
from 48 SPEC CPU 2006, PARSEC, and NPB 
workloads. In order to construct a sufficient 
competition state, we selected 11 workloads with 
frequent data access and high memory bandwidth 
and relatively consistent performance pattern. 

 
The experiment performed two workloads 

on different cores in the same processor and 
performed until the end of both workloads. The 
performance of the workload is based on the 
completion time when it is performed by itself, and 
the NUMA Aware Load Balancer of the NUMA 
library is scheduled by the NUMA library to 
prevent the workload from being mapped to another 
core.  

Table 1 : Performance of workloads in the 
presence of shared resources 

 
 

Figure 3 present how each workload on 
the x-axis is affected by the performance of 
different workloads. One x-axis workload depicts 
eleven y-axes, which is the result of the work 
performed with the workloads shown in the legend. 
The order of the y-axis is the same as the order of 
the workloads shown in the legend. To see how it 
affects the performance of different workloads, you 
can refer to the legend on each x-axis workload and 
identify the y-axis of the same sequence number. 
For example, there is an arrow in the Figure 3 that 
shows how the ‘lbm’ affects other workloads. The 
table 1 shows the values of the above Figure 3. 
 
5.2 Grouping applications by mutual influence 

As you can see in Figure 3 above, you can 
group workloads according to their influence. 
Groups used simple numbers to compare the mutual 
influence of workloads. 
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Figure 4 : Memory bandwidth usage 

(1) Group 1 
The workloads for Group 1 are lbm, 

libquantum, and lu.B. They have a big impact on 
the performance of other workloads in common. 
They have an impact on other workloads and are 
heavily impacted by other workloads. 

 
(2) Group 2 

Group 2 workloads are sphinx, omnetpp, 
and streamcluster. Their mutual influence feature 
does not degrade the performance of relatively 
different workloads, but their performance drops 
significantly by Group 1. 
 
(3) Group 3 

Group 3 workloads are sp.B, ua.B, 
canneal, ferret, gromacs. They compete for 
workloads and shared resources but do not 
significantly degrade the performance of other 
workloads, and their performance is hardly 
affected. Sp.B and ua.B have features that degrade 
the performance of other workloads than Group 2 
workloads, but they do not affect their performance 
as much as Group 1 or Group 2 workloads. 
Therefore, we tried to separate sp.B and ua.B into 
different groups, but it was not so important to 
distinguish between workloads and Group 3 to 
simplify the identification of application groups. 
However, a study was conducted to analyze the 
causes. 
 

Table 2 : Selected PMU events for application 
identification 

 
Resource Events 

LLC 

UNC_LLC_HITS.ANY 
number of LLC cache hits 
UNC_LLC_MISS.ANY 
number of LLC cache misses 

Memory 

IMC_NORMAL_READS.ANY 
number of read requests to IMC 
UNC_IMC_WRITE.FULL.ANY 
number of write requests to IMC 
REQUEST_BUFFER_FULL 
number of requests blocked due to buffer full 

 
5.3 Identify the properties of an application 

group 
 
5.3.1 PMU 

Performance level counter (PMU) 
information was used to monitor resource usage 
and performance characteristics of cores. Intel and 
AMD count the usage of each resource in a special 
register to provide information on microarchitecture 
resource usage. Measurable resource usage can 
typically measure information such as clock cycles, 

command execution times, cache misses, and 
memory accesses. Access to these registers can be 
measured by the RDPMC (Read Performance 
Monitoring Counter) command, which uses three 
registers EAX, EDX, and ECX to measure resource 
usage. 

 
The Intel Xeon x5570 processor used in 

the experiment has a PerfEvtSelX Machine Specific 
Register (MSR), and can set specific events such as 
GQ usage, LLC access count by setting 8 bits of 
EVTSEL and 8 bits of EVTMSK. The ECX register 
is used to set a specific event, and the resource 
usage is stored in two registers, EAX and EDX. 
The cost of measuring the resource utilization rate 
is the level of reading hardware registers, and can 
be monitored quickly without large overhead. As a 
result of the measurement, the overhead was close 
to 0.1%. 
 
5.4 PMU events for group identification 

Table 2 shows the results of selecting 
events for identifying application programs based 
on mutual influence among various PMU events. 
Monitor multiple PMU events listed in the table to 
identify application groups sequentially. 
5.4.1 Memory bandwidth 

The more frequently data accesses the core 
during execution, the more memory is accessed. It 
can be seen that the larger the memory bandwidth 
usage, the more the use of shared resources. Fig. 4 
shows the memory bandwidth usage of the 11 
selected workloads. The workload of the processor 
with the clock of 2.93GHz alone was (64 * 
(UNC_IMC_NORMAL_READS+UNC_IMC_WRIT
ES.FULL.ANY)*2.93*1000000000/cpu_cycle/1000
000). The core accesses the cache for data access 
when the task is performed. If L1 and L2 cache are 
accessed but data to be accessed is not loaded, 
access to the shared resource, LLC. If the data to be 
accessed is not loaded at this time, the address of 
the memory is finally accessed. This results in 
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Figure 6 : Event Count of LLC Reference 

contamination of the LLC, a shared resource, due to 
the low locality of the data to be accessed, and uses 
limited memory bandwidth. On the other hand, they 
may have more data access than other workloads. 
Referring to Figure 3 and Figure 4, Group 1 
workloads have high memory bandwidth usage and 
are detrimental to the performance of other 
workloads. 

 
5.4.2 Super Queue Full Count 
 

It would be nice to be able to monitor the 
memory bandwidth usage per core using the PMU, 
but currently PMU can not monitor the memory 
bandwidth usage per core. Therefore, we decided to 
use the PMU to monitor Offcore Request Buffer 
Full events for each core. There is a queue called 
Super Queue for each core. This Queue is filled 
with Reuquest for the shared resources of the core. 
When the core sends a reach request to the LLC for 
a cache line access request, the corresponding 
request is filled in the super queue corresponding to 
the core. The Offcore Request Buffer Full event is 
incremented when the core requests a request but 
the Super Queue is full of requests. 
 

If you monitor this event, you will not 
know the exact memory bandwidth usage per core, 
but instead you will see performance characteristics 
for the core shared resources. When the Super 
Queue is full and the core has continually requested 
a Cache Line Request, it means that it is using the 
shared resources aggressively. In Figure 5, not only 
can you distinguish Wolf workloads, but also the 
number of PMU values between workloads that 
have different workloads and those that do not.  

 
Therefore, we have chosen this Offcore 

Request Buffer Full event as a PMU event to 
distinguish between cores with high impact and 
cores that are not affected by other workloads. 

 
5.4.3 Shared Cache Reference 

The LLC Reference event can tell how 
much the core is affected by other workloads. The 
LLC reference value is equal to the 
UNC_LLC_HITS.ANY (LLC hit) value shown in  
 

Table 2 plus the UNC_LLC_MISS.ANY 
(LLC miss) value. This shows how the performance 
of the core is dependent on the LLC, which is a 
shared resource. Figure 7 shows that Sheep 
workloads have a much higher LLC reference value 
than other workloads. And the Offcore Request 
Buffer Full PMU values and the unaffected Hippo 
workloads canneal, ferret, and gromacs workloads 
have lower LLC reference numbers than other 
workloads.  
 

First, the Offcore Request Buffer Full 
event identifies Wolf workloads that affect other 
workloads, and then part of the affected Group 2 
workloads and Group 1 workloads that are hardly 
affected by this workload it can be identified 
through the Reference event. In previous studies, it 
was common to see the data locality of the core 
through the core's LLC Hit Ratio and to balance 
workloads with high LLC hit ratio and low LLC hit 
ratio to the same processor, thereby balancing LLC 
resources. In this paper, we monitor the LLC 
reference of the core without monitoring the 
variable LLC Hit Ratio in order to monitor the 
operating characteristics of how much workload is 
dependent on the LLC. 

 
For example, Group 1 workloads have a 

70% higher LLC Hit Ratio in the absence of 
competition, but drop to around 20% if they 
compete with one other workload for shared 
resources. If other workloads compete for shared 
resources as well, they will converge to the point 

Figure 5 : Event Count of Offcore Requests Buffer 
Full Count 
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Figure 8: Arrangement group Group 1 and Group 3 
 (0,0) in Figure 6. On the other hand, in the case of 

the LLC Reference, the difference between the 
workloads is maintained even if the competition is 
intensive because it is a unique property of the 
workload that the core performs. 
 
5.4.4 Prefetch 

The reason for writing the cache is to 
reduce the cost of core access to memory for data 
access. To take advantage of these advantages, 
recent processors support Hardware Prefetch. 
Hardware Prefetch predicts data that the core will 
access next by recognizing continuous data or 
regular data access in hardware. The core loads the 
data from memory into cache before it accesses the 
data in memory. 

 
For example, L2 Prefetch is a technique 

for loading data that is expected to be next accessed 
from memory to L2 or LLC. When the core misses 
a cache miss in L1, it looks for data in the L2 cache 
line. At this time, if the cache miss occurs in the 
Nth cache line of the L2 cache and the core next 
misses a cache miss in the (N + 1)th cache line of 
the L2 cache, the L2 Hardware Prefetcher predicts 
that the next data of the corresponding data will be 
referred to again, And then loads the next data into 
the L2 cache in advance. 

 
When the data is hit in the cache, the core 

does not have to access the memory and can 
perform the task quickly. While cores with frequent 
accesses to memory by this technique have great 
performance gains, the main reason for the mutual 
influence of applications is to utilize the L2 
Hardware Prefetch as the core accesses the data. 
One of the shared resources, the LLC polluting 
factor, is that the core accesses continuous data. We 
can get information about how the core is using L2 
Hardware Prefetch to access this data. 

 

5.5 Classification and placement of tasks 
according to their characteristics 

 
Based on the above experiments and 

analysis, PMU is used to group applications 1, 2, 
and 3 in real time. First, to identify applications that 
are being executed on each core, we use Offcore 
Reqeust Buffer Full event numbers to identify 
applications that are estimated to be Group 1, and 
Group 2 to the remaining workloads do. Other 
groups are group 3. The threshold value is used for 
the PMU event value at the time of identification, 
and this value is determined based on the PMU 
event values analyzed above. 

 
In other methods, applications that are 

being performed without applying threshold value 
to application identification can be classified into 
groups relatively. For example, if nine applications 
are running, three applications with high Offcore 
Request Buffer Full event counts are classified as  
 

Group 1, three as Gruop 2 with the highest 
LLC Reference event value, and the remaining 
three applications as Group 3. 

 
The mechanism for placing the identified 

applications on the core is simple, placing Group 1 
applications in isolation from Group 2 applications. 
This is how Group 1 workloads are scattered across 
different processors, collecting Group 1 workloads 
and protecting Group 2 workloads that are heavily 
impacted by performance rather than degrading the 
performance of other workloads. 

 
On the contrary, the worst case is when 

Gruop 1 and Group 2 spread evenly and all 
applications are competing to degrade performance. 
With this mechanism, we expected that Group 
workloads would be much slower than the default. 
However, Group 2 was free from competition for 

Figure 7: Hardware Prefetch 
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Figure 10 :  Improved performance using threshold 
value with extended workload combination 

shared resources and ended quickly. For this 
reason, Group 1 was placed in the empty core 
where Group 2 was deployed, and the competition 
condition was relaxed, showing performance 

similar to or faster than default. 
However, the performance improvement 

prerequisites for how to isolate this Group 2 and 
Group 1 workload are when there is enough 
competition for shared resources. For example, 
when the number of Group 1 workloads was small 
and spread, there was little competition for shared 
resources. At this time, Group 1 workloads may be 
collected to cause the Group 1 workload to compete 
for shared resources on the processor. 

 
Figure 8 provides a brief description of the 

intent of the algorithm. If it is the same as in the 
first box, group 1 applications and group 2 
applications are allocated to each processor. If there 
are only Group 1 workloads, as in the second box, 
divide Group 1 workloads to minimize contention 
for shared resources and place Group 3 workloads 
on empty cores. In the case of the third box, Group 
2 workloads are deployed with Group 3 workloads 
to protect and Group 1 workloads are deployed 
independently from Group 2. 

 

6. RESULTS 

The scheduler implementing the above 
algorithm is implemented at the user level. The 
scheduler periodically monitors the PMU events 
every 10 seconds and uses the system call to 
perform applications on the desired core. And we 
apply the system calls for applications that use 
threads. The NUMA library was used for setting 
and utilizing NUMA. In the NUMA environment, 
the local memory priority allocation policy, which 
is the basic memory allocation policy of Linux, was 
applied as it is. In order to identify application 
groups for applications, we implemented a version 
that applies a threshold value for PMU events and a 
version that identifies application groups relatively 
in descending order of PMU event values without 
applying a threshold value. 

 
We use the workload combinations in 

Table 3 to compare the implemented user scheduler 
with the default scheduler in Linux 4.2. Basic 
workload combinations are combinations of 
workloads that are used in the above analyzes and 
already know which application group they belong 
to. Extended workload is a workload combination 

(a)  Xeon x3650 system 
 

(b)  Xeon E5-2697 system 
Figure 9 :  Improved performance using threshold 
value 
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Figure 11 :  Improved performance using relativity for application group identification 

that includes workloads not used for analysis of 
SPEC CPU2006, Parsec, and NPB workloads. 
Workloads that make up an extended workload 
combination are also workloads that have relatively 
consistent execution patterns, such as workloads 
that make up basic workloads. The combination of 
Basic 1 to 9 and Extended 1 to 3 consists of 6 
workloads, Basic 10 to 14, and 8 workloads to 
Extended 4. 

 
6.1 Identify application group using threshold 

value 
Figure 9 shows the performance 

improvement of the user scheduler version using 
the threshold value compared with the scheduler of 
the Linux version 4.2 by executing the user 
scheduler version in two environments. The 
meaning of the x-axis is that B represents the basic 
workload combination, and the following 01 
through 14 represent the number of workload 
combinations. -08, -28 means the performed 
environment. In an environment with two 
processors with eight cores, the average 
performance of 9(a) shows an average improvement 
of 5% to 6% and the basic workload 7 shows a 12% 
maximum performance improvement. 

 
The eighth workload of Basic in the first 

environment consists of two Group 1 and six Group 
2 do not show sufficient performance enhancement 
due to the lack of enough shared resource 
competition. In the Figure 9(b), the triple shows 18 
workloads, three times six workloads, 18 workloads, 
quadruple four times six workloads, 24 workloads, 
quadruple + 4 workload and 4 random workloads. 
Figure 9(a) shows a performance improvement of 
up to 25% in a Figure 9(b) environment with more 

cores than in the environment, and the performance 
is improved as the number of cores in a triple to 
quadruple + 4 increases  

 
6.2 Extended workload combinations 

Figure 10 show that the user scheduler 
version using the threshold value for the extended 
workload combination was performed in two 
environments. Extended workload combinations do 
not provide enough shared resource contention as 
well as previous performance degradation, resulting 
in only 4.3% improvement in performance. 

 
In the case of E01-28, there is a tendency 

that the performance decreases as the number of 
cores to be executed increases. This means that the 
user scheduler, which is a Group 1 soplex workload 
with insufficient mutual influence when it is spread, 
Rather than the other. 

 
In E02-28 and E03-28, there is a Group 1 

workload with interworking effects such as lbm and 
libquantum in the workload combination, enough 
workloads are degraded due to competition in the 
shared resources, and performance is improved by 
the user scheduler. 

 
6.3 Identify application groups using relativity 

Figure 11 shows the performance 
enhancement of the user scheduler, which is 
implemented by dividing the applications to be 
executed into application groups. In 28 core 
environments, workload combination quadruple + 4 
was used. In both environments, the performance 
improvement of up to 20% is shown, but the 
Extened 1 workload combination also shows that 
the effect of the implemented scheduler is degraded 
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by 5% because there is not enough shared resource 
competition. However, the above results show that 
the performance improvement is achieved even 
when the threshold value is not used and that the 
application is relatively divided into Group1, Group 
2 and Group 3, and that the performance 
improvement is enough to overcome the 
performance degradation of the workload 
combination E01 or B07 in various workload 
combinations It can be seen that it happens. 

 
7. DIFFERENCE OF PRIOR WORK 

As the number of cores increases in 
multicore systems, there have been many studies to 
efficiently or evenly distribute shared resources 
among the cores. Typically, there are technologies 
such as Cache Partitioning and Page Coloring that 
allocate the Last Level Cache separately for each 
core. Or NUMA environments, research has been 
conducted on coordinating core and task mapping 
to solve resource bottlenecks such as memory 
bandwidth. 

 
In this paper, we have directly tested the 

mutual influence on performance when typical 
applications compete for other applications and 
shared resources in order to efficiently distribute 
shared resources in NUMA environment. Among 
the 48 SPEC CPU 2006, PARSEC, and NPB 
workloads, 11 workloads with high memory 
bandwidth usage and consistent application 
performance pattern were selected to generate 
sufficient shared resource competition. To analyze 
the causes of mutual influence between applications, 
PMU supported by processor was used.  

 
We have implemented a user scheduler 

that monitors performance characteristics of each 
core in real time and identifies the mutual influence 
of cores to schedule tasks. The user scheduler 
avoids mutual impacts by placing applications that 
have a large impact on the performance of other 
applications and applications that are greatly 
damaged in performance by different applications 
on different processors. 

 
8. CONCLUSION 

In this paper, we analyzed the performance 
characteristics of applications through experiments 
on representative applications that cause shared 
resource competition. Moreover, we monitored the 
PMU event, Offcore Request Buffer Full, LLC 
Reference, which shows the performance 
characteristics, and grouped the applications into 

Group 1, Group 2, and Group 3 according to the 
mutual influence of the application. The user 
scheduler that isolates Group 1 and Group 2 
provides up to a 25% performance improvement 
over various workload combinations and the 
performance of each workload has a certain effect. 
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