
Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

811

SCHEDULING ALGORITHMS FOR MULTICORE SYSTEMS
BASED ON APPLICATION CHARACTERISTICS

1JUNG KYU PARK, 2*JAEHO KIM, 3HEUNG SEOK JEON
1Department of Digital Media Design and Applications, Seoul Women’s University, Korea

2Department of Electrical and Computer Engineering Virginia Tech Blacksburg, USA
3Department of Computer Engineering, Konkuk University, Korea

E-mail: 1smartjkpark@gmail.com, 2kjhnet@gmail.com, 3hsjeon@kku.ac.kr

ABSTRACT

In this paper, we research how an application effects on other applications when they are executed in the
same processor. And we take advantage of PMU (Performance Monitoring Unit) to examine that shared
resource has the strongest relation with the influence. Based on the analysis, we design a novel user-level
scheduling scheme that monitors applications characteristics on-line utilizing PMU and allocates
applications into cores so that it can reduce the contention of shared resources. The key idea of this scheme
is separating high-influential applications into different processors.

Keywords: CPU, LLC, NUMA, Performance Monitoring Unit

1. INTRODUCTION 1

 In order to improve the performance of
the system, the number of cores of the processor is
increasing in order to improve the parallelism of the
system in addition to the processing speed of the
CPU. By improving the parallelism, it is possible to
perform different applications simultaneously on
each core, or to allocate one application to each
core, thereby improving the performance of the
system [1].

For example, the Xeon E5-2697 processor

and the AMD Opteron processor each have 14
cores and 16 cores, which can handle 14 and 16
applications simultaneously. The number of cores
for each processor is no more than 20, but recent
systems have more than two processors, the IBM
x3850 system has 8 processors with 8 cores and the
AMD Bulldozer has 4 cores with 16 cores Both
systems have a total of 64 cores [2][3].

In such a Many Core environment, cores

share resources of the system, causing competition
for shared resources, and performance degradation
occurs when cores perform applications due to
competition. In order to improve the overall
performance of the system, a task scheduling
Figure 4.2: Behavior of various functions nearer to the
proposed function

* Corresponding author

method considering the contention of shared
resources among cores has been studied [4][5][6].

For this work, we selected 11 workloads to

determine their mutual influence. The workload has
two patterns, pattern with frequently access data to
memory, which results in high memory bandwidth
and relatively regular execution patterns. Based on
this result, we used the PMU (Performance
Monitoring Unit) to analyze the causes of mutual
influences [3]. As a result of analysis, PMU
registers representing the characteristics and
interactions of the core under application are
selected and based on this, an optimal scheduling
scheme for efficiently writing shared resources in
the NUMA structure is proposed [7][8]. In order to
verify the proposed scheme, we performed
experiments comparing with the Linux 4.2 basic
scheduling policy in two system environments.

The composition of the paper is as follows.

In section 2, we review the NUMA environment
and cache allocation works related this work. In
Section 3, we show the motivation of this paper. In
section 4, we discuss the application attribute-based
scheduling algorithm proposed in this paper. In
Section 5, we introduce the shared resource
problem in inter-cores. In Section 6, we present
evaluation results focusing on performance and
describe the difference of prior work at section 7.
Finally, Section 8 concludes the paper.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

812

Figure 1: Architecture of NUMA(Non-Uniform-
Memory-Access)

2. RELATED WORKS

Studies dealing with the competition of
cores for limited shared resources have focused on
the distribution of cache resources. In order to
prevent the corruption of the cache resource, it is
necessary to divide the available cache space
according to the cache hit ratio or the operation
characteristic of the core, or the cache hit ratio of
the cores in the NUMA environment, have been
proposed to balance the cache hit ratio between
processors by competing shared resources in the
same processor in the order of application having
the highest priority [7][9]. There is also a technique
that divides the entire memory space so that each
cache space can only load data in a specific
memory space, preventing a small number of cores
from contaminating the cache. There are a lot of
other researches, too. The reason why the study of
cache resources is actively conducted is because
competition for cache space is the most influential
factor in application performance among shared
resource competition.

Studies on cache resource allocation as

well as studies on memory bandwidth allocation
have been carried out in many researches related to
virtualized environments with high memory
bandwidth usage because they operate several
virtual machines [10]. For example, in the NUMA
environment, memory allocation and access have
higher latency when accessing the remote memory,
so that the local memory has a higher priority than
the remote memory. However, when memory
access is concentrated in local memory, and
memory bandwidth usage exceeds available
memory bandwidth, a bottleneck occurs.

In addition, in the NUMA environment, a

research has been conducted to allocate more cache
resources considering the remote memory access
penalty due to the difference of local / remote
memory access latency in balancing the cache hit
ratio between processors. Hardware Prefetch is
mainly focused on improving the prediction
accuracy of Prefetcher. For example, when the core
detects data approaching a certain pattern,
Hardware Prefetcher uses a filter or prefetch after
checking previous logs. Decides whether to
perform it. We have also studied the optimal use
frequency of prefetch. The more aggressive use of

prefetch, the higher performance improvement can
be expected when the prefetch prediction is
successful. As a representative solution, research
has been conducted to monitor the data access of
the core and to switch the prefetch utilization
frequency in real time.

Studies have also been conducted to better

utilize PMU (Performance Monitoring Units)
provided by chip manufacturers to provide system
programmers with micro-architecture information
about cores. There are studies to reduce the
overhead to monitor the execution of cores in real
time, and to improve the monitoring accuracy by
changing the mechanism that kernel saves register
information in Context Switch.

3. MOTIVATION

 As the number of cores increases, recent
systems are composed of NUMA (Non-Uniform
Memory Access) in hardware. In order to solve the
bottleneck of the memory bandwidth due to
intensified competition for the memory bandwidth,
which is one of the resources of the system sharing
between the cores, the memory is physically
accessed for each core of the processor as shown in
Figure 1.

In this architecture, the cores still compete

for resources such as LLC in the processor,
memory bandwidth between processors, and
interconnect bandwidth. In such a shared resource
competitive environment, depending on the shared
resource usage or the data access pattern of each
core, the inter-core work is affected.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

813

Figure 2 shows the impact of the sp.B and omnetpp
workloads on the performance of different
workloads and the impact of different workloads on
different workloads and shared resource contention.
As shown in the figure, the sp.B workload shows
that the impact on other workloads is greater than
the omnetpp workload, but stubborn against its
performance degradation. In this way, the core
tends to be different from the shared resource
competition depending on the characteristics of the
application being executed.

The applications that the core performs

have different mutual influences. It is expected that
the performance of the system can be improved if
core applications are identified and classified
according to their mutual influences, scheduling
applications being executed by cores between
different processors, and optimizing shared
resource competition.

4. INTER-CORE SHARED RESOURCES

 As the number of cores increases, recent
systems are composed of NUMA (Non-Uniform
Memory Access) in hardware. In order to solve the
bottleneck of the memory bandwidth due to
intensified competition for the memory bandwidth,
which is one of the resources of the system sharing
between the cores, the memory is physically
accessed for each core of the processor as shown in
Figure 1.

4.1 Shared Cache

The cache in the processor has a
hierarchical structure in which caches having
different sizes are classified as Level 1 and Level 2.
The LLC (Last Level Cache) is a cache resource
that is shared among cores as the name implies in
the last Level cache. In recent systems, the Level 3
cache is mostly Last Level, and as the number of
cores increases, the size of the LLC increases. As
the cache hit ratio is low because of the low
localization of the cores performed by the
processor, the LLC space is insufficient and LLC
competition is intensified.

For example, if core A is low in locality of

accessing data and the cache hit ratio is low, data of
Core A that is not reused will occupy space in LLC
and data that will be hit by another core will not be
loaded into LLC. Or, if the data access pattern is a
pattern that contaminates the LLC like the stream
pattern, or if the data access is frequent and
occupies more cache space than the other cores, the
LLC competition will be intensified and the
performance of the LLC will drop significantly.

4.2 Memory Bandwidth

The memory bandwidth available in the
system is limited, but bottlenecks occur when cores
access memory frequently to access data. In Linux
4.2 basic NUMA policy, due to the local / remote
memory access penalty, the memory utilization of
the core utilizes the local memory of the processor
until the capacity is short, and the remote memory
is utilized when the capacity of the local memory
becomes insufficient. The memory is migrated
periodically on a page-by-page basis, and the page
data is migrated to the memory of a processor with
a frequently accessed core. The core is designed to
migrate to a remote memory when the access
frequency to the remote memory is greater than the
local memory access frequency.

(a) Applications influencing other applications

(b) Applications being influenced by other
applications

Figure 2 : Differences in the influence of sp.B
and omnetpp

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

814

Figure 3 : Performance of workloads when competing for shared resources

In the worst case, the cores of processor A
frequently access memory locally, and the cores of
processor B frequently access the memory of
processor A to the remote, thereby exceeding the
available memory bandwidth of processor A. The
memory bandwidth of processor B is sufficient, but
the memory bandwidth of processor A is a
bottleneck. To mitigate this situation, much
research has been done to balance the demand for
memory bandwidth of cores per processor in the
NUMA environment.

4.3 Interconnection

In a NUMA architecture, the bandwidth is
for one processor to communicate with the other.
There are mainly requests for state change requests,
data requests, and remote memory data for the
remote cache line, including Intel's Quick Path
Interconnect (QPI) and AMD's HyperTransport
technology. As with memory bandwidth, the more
frequently a core accesses a remote processor, the
greater the demand for interconnection bandwidth
and can become a bottleneck.

5. APPLICATION CHARACTERISTIC-

BASED SCHEDULING ALGORITHM

5.1 Mutual influence between applications

Fig. 3 shows the results of an experiment
conducted on a system consisting of two Intel Xeon
x3650 processors with Linux version 4.2 and 4
cores each. Memory per processor is 32 GB in size,
8 MB of LLC, 32 KB of L1 Instruction/Data cache,
and 256 KB of L2 cache. The workloads selected
from 48 SPEC CPU 2006, PARSEC, and NPB
workloads. In order to construct a sufficient
competition state, we selected 11 workloads with
frequent data access and high memory bandwidth
and relatively consistent performance pattern.

The experiment performed two workloads

on different cores in the same processor and
performed until the end of both workloads. The
performance of the workload is based on the
completion time when it is performed by itself, and
the NUMA Aware Load Balancer of the NUMA
library is scheduled by the NUMA library to
prevent the workload from being mapped to another
core.

Table 1 : Performance of workloads in the
presence of shared resources

Figure 3 present how each workload on
the x-axis is affected by the performance of
different workloads. One x-axis workload depicts
eleven y-axes, which is the result of the work
performed with the workloads shown in the legend.
The order of the y-axis is the same as the order of
the workloads shown in the legend. To see how it
affects the performance of different workloads, you
can refer to the legend on each x-axis workload and
identify the y-axis of the same sequence number.
For example, there is an arrow in the Figure 3 that
shows how the ‘lbm’ affects other workloads. The
table 1 shows the values of the above Figure 3.

5.2 Grouping applications by mutual influence

As you can see in Figure 3 above, you can
group workloads according to their influence.
Groups used simple numbers to compare the mutual
influence of workloads.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

815

Figure 4 : Memory bandwidth usage

(1) Group 1
The workloads for Group 1 are lbm,

libquantum, and lu.B. They have a big impact on
the performance of other workloads in common.
They have an impact on other workloads and are
heavily impacted by other workloads.

(2) Group 2

Group 2 workloads are sphinx, omnetpp,
and streamcluster. Their mutual influence feature
does not degrade the performance of relatively
different workloads, but their performance drops
significantly by Group 1.

(3) Group 3

Group 3 workloads are sp.B, ua.B,
canneal, ferret, gromacs. They compete for
workloads and shared resources but do not
significantly degrade the performance of other
workloads, and their performance is hardly
affected. Sp.B and ua.B have features that degrade
the performance of other workloads than Group 2
workloads, but they do not affect their performance
as much as Group 1 or Group 2 workloads.
Therefore, we tried to separate sp.B and ua.B into
different groups, but it was not so important to
distinguish between workloads and Group 3 to
simplify the identification of application groups.
However, a study was conducted to analyze the
causes.

Table 2 : Selected PMU events for application
identification

Resource Events

LLC

UNC_LLC_HITS.ANY
number of LLC cache hits
UNC_LLC_MISS.ANY
number of LLC cache misses

Memory

IMC_NORMAL_READS.ANY
number of read requests to IMC
UNC_IMC_WRITE.FULL.ANY
number of write requests to IMC
REQUEST_BUFFER_FULL
number of requests blocked due to buffer full

5.3 Identify the properties of an application

group

5.3.1 PMU

Performance level counter (PMU)
information was used to monitor resource usage
and performance characteristics of cores. Intel and
AMD count the usage of each resource in a special
register to provide information on microarchitecture
resource usage. Measurable resource usage can
typically measure information such as clock cycles,

command execution times, cache misses, and
memory accesses. Access to these registers can be
measured by the RDPMC (Read Performance
Monitoring Counter) command, which uses three
registers EAX, EDX, and ECX to measure resource
usage.

The Intel Xeon x5570 processor used in

the experiment has a PerfEvtSelX Machine Specific
Register (MSR), and can set specific events such as
GQ usage, LLC access count by setting 8 bits of
EVTSEL and 8 bits of EVTMSK. The ECX register
is used to set a specific event, and the resource
usage is stored in two registers, EAX and EDX.
The cost of measuring the resource utilization rate
is the level of reading hardware registers, and can
be monitored quickly without large overhead. As a
result of the measurement, the overhead was close
to 0.1%.

5.4 PMU events for group identification

Table 2 shows the results of selecting
events for identifying application programs based
on mutual influence among various PMU events.
Monitor multiple PMU events listed in the table to
identify application groups sequentially.
5.4.1 Memory bandwidth

The more frequently data accesses the core
during execution, the more memory is accessed. It
can be seen that the larger the memory bandwidth
usage, the more the use of shared resources. Fig. 4
shows the memory bandwidth usage of the 11
selected workloads. The workload of the processor
with the clock of 2.93GHz alone was (64 *
(UNC_IMC_NORMAL_READS+UNC_IMC_WRIT
ES.FULL.ANY)*2.93*1000000000/cpu_cycle/1000
000). The core accesses the cache for data access
when the task is performed. If L1 and L2 cache are
accessed but data to be accessed is not loaded,
access to the shared resource, LLC. If the data to be
accessed is not loaded at this time, the address of
the memory is finally accessed. This results in

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

816

Figure 6 : Event Count of LLC Reference

contamination of the LLC, a shared resource, due to
the low locality of the data to be accessed, and uses
limited memory bandwidth. On the other hand, they
may have more data access than other workloads.
Referring to Figure 3 and Figure 4, Group 1
workloads have high memory bandwidth usage and
are detrimental to the performance of other
workloads.

5.4.2 Super Queue Full Count

It would be nice to be able to monitor the
memory bandwidth usage per core using the PMU,
but currently PMU can not monitor the memory
bandwidth usage per core. Therefore, we decided to
use the PMU to monitor Offcore Request Buffer
Full events for each core. There is a queue called
Super Queue for each core. This Queue is filled
with Reuquest for the shared resources of the core.
When the core sends a reach request to the LLC for
a cache line access request, the corresponding
request is filled in the super queue corresponding to
the core. The Offcore Request Buffer Full event is
incremented when the core requests a request but
the Super Queue is full of requests.

If you monitor this event, you will not
know the exact memory bandwidth usage per core,
but instead you will see performance characteristics
for the core shared resources. When the Super
Queue is full and the core has continually requested
a Cache Line Request, it means that it is using the
shared resources aggressively. In Figure 5, not only
can you distinguish Wolf workloads, but also the
number of PMU values between workloads that
have different workloads and those that do not.

Therefore, we have chosen this Offcore

Request Buffer Full event as a PMU event to
distinguish between cores with high impact and
cores that are not affected by other workloads.

5.4.3 Shared Cache Reference

The LLC Reference event can tell how
much the core is affected by other workloads. The
LLC reference value is equal to the
UNC_LLC_HITS.ANY (LLC hit) value shown in

Table 2 plus the UNC_LLC_MISS.ANY
(LLC miss) value. This shows how the performance
of the core is dependent on the LLC, which is a
shared resource. Figure 7 shows that Sheep
workloads have a much higher LLC reference value
than other workloads. And the Offcore Request
Buffer Full PMU values and the unaffected Hippo
workloads canneal, ferret, and gromacs workloads
have lower LLC reference numbers than other
workloads.

First, the Offcore Request Buffer Full
event identifies Wolf workloads that affect other
workloads, and then part of the affected Group 2
workloads and Group 1 workloads that are hardly
affected by this workload it can be identified
through the Reference event. In previous studies, it
was common to see the data locality of the core
through the core's LLC Hit Ratio and to balance
workloads with high LLC hit ratio and low LLC hit
ratio to the same processor, thereby balancing LLC
resources. In this paper, we monitor the LLC
reference of the core without monitoring the
variable LLC Hit Ratio in order to monitor the
operating characteristics of how much workload is
dependent on the LLC.

For example, Group 1 workloads have a

70% higher LLC Hit Ratio in the absence of
competition, but drop to around 20% if they
compete with one other workload for shared
resources. If other workloads compete for shared
resources as well, they will converge to the point

Figure 5 : Event Count of Offcore Requests Buffer
Full Count

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

817

Figure 8: Arrangement group Group 1 and Group 3
 (0,0) in Figure 6. On the other hand, in the case of

the LLC Reference, the difference between the
workloads is maintained even if the competition is
intensive because it is a unique property of the
workload that the core performs.

5.4.4 Prefetch

The reason for writing the cache is to
reduce the cost of core access to memory for data
access. To take advantage of these advantages,
recent processors support Hardware Prefetch.
Hardware Prefetch predicts data that the core will
access next by recognizing continuous data or
regular data access in hardware. The core loads the
data from memory into cache before it accesses the
data in memory.

For example, L2 Prefetch is a technique

for loading data that is expected to be next accessed
from memory to L2 or LLC. When the core misses
a cache miss in L1, it looks for data in the L2 cache
line. At this time, if the cache miss occurs in the
Nth cache line of the L2 cache and the core next
misses a cache miss in the (N + 1)th cache line of
the L2 cache, the L2 Hardware Prefetcher predicts
that the next data of the corresponding data will be
referred to again, And then loads the next data into
the L2 cache in advance.

When the data is hit in the cache, the core

does not have to access the memory and can
perform the task quickly. While cores with frequent
accesses to memory by this technique have great
performance gains, the main reason for the mutual
influence of applications is to utilize the L2
Hardware Prefetch as the core accesses the data.
One of the shared resources, the LLC polluting
factor, is that the core accesses continuous data. We
can get information about how the core is using L2
Hardware Prefetch to access this data.

5.5 Classification and placement of tasks
according to their characteristics

Based on the above experiments and

analysis, PMU is used to group applications 1, 2,
and 3 in real time. First, to identify applications that
are being executed on each core, we use Offcore
Reqeust Buffer Full event numbers to identify
applications that are estimated to be Group 1, and
Group 2 to the remaining workloads do. Other
groups are group 3. The threshold value is used for
the PMU event value at the time of identification,
and this value is determined based on the PMU
event values analyzed above.

In other methods, applications that are

being performed without applying threshold value
to application identification can be classified into
groups relatively. For example, if nine applications
are running, three applications with high Offcore
Request Buffer Full event counts are classified as

Group 1, three as Gruop 2 with the highest
LLC Reference event value, and the remaining
three applications as Group 3.

The mechanism for placing the identified

applications on the core is simple, placing Group 1
applications in isolation from Group 2 applications.
This is how Group 1 workloads are scattered across
different processors, collecting Group 1 workloads
and protecting Group 2 workloads that are heavily
impacted by performance rather than degrading the
performance of other workloads.

On the contrary, the worst case is when

Gruop 1 and Group 2 spread evenly and all
applications are competing to degrade performance.
With this mechanism, we expected that Group
workloads would be much slower than the default.
However, Group 2 was free from competition for

Figure 7: Hardware Prefetch

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

818

Figure 10 : Improved performance using threshold
value with extended workload combination

shared resources and ended quickly. For this
reason, Group 1 was placed in the empty core
where Group 2 was deployed, and the competition
condition was relaxed, showing performance

similar to or faster than default.
However, the performance improvement

prerequisites for how to isolate this Group 2 and
Group 1 workload are when there is enough
competition for shared resources. For example,
when the number of Group 1 workloads was small
and spread, there was little competition for shared
resources. At this time, Group 1 workloads may be
collected to cause the Group 1 workload to compete
for shared resources on the processor.

Figure 8 provides a brief description of the

intent of the algorithm. If it is the same as in the
first box, group 1 applications and group 2
applications are allocated to each processor. If there
are only Group 1 workloads, as in the second box,
divide Group 1 workloads to minimize contention
for shared resources and place Group 3 workloads
on empty cores. In the case of the third box, Group
2 workloads are deployed with Group 3 workloads
to protect and Group 1 workloads are deployed
independently from Group 2.

6. RESULTS

The scheduler implementing the above
algorithm is implemented at the user level. The
scheduler periodically monitors the PMU events
every 10 seconds and uses the system call to
perform applications on the desired core. And we
apply the system calls for applications that use
threads. The NUMA library was used for setting
and utilizing NUMA. In the NUMA environment,
the local memory priority allocation policy, which
is the basic memory allocation policy of Linux, was
applied as it is. In order to identify application
groups for applications, we implemented a version
that applies a threshold value for PMU events and a
version that identifies application groups relatively
in descending order of PMU event values without
applying a threshold value.

We use the workload combinations in

Table 3 to compare the implemented user scheduler
with the default scheduler in Linux 4.2. Basic
workload combinations are combinations of
workloads that are used in the above analyzes and
already know which application group they belong
to. Extended workload is a workload combination

(a) Xeon x3650 system

(b) Xeon E5-2697 system
Figure 9 : Improved performance using threshold
value

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

819

Figure 11 : Improved performance using relativity for application group identification

that includes workloads not used for analysis of
SPEC CPU2006, Parsec, and NPB workloads.
Workloads that make up an extended workload
combination are also workloads that have relatively
consistent execution patterns, such as workloads
that make up basic workloads. The combination of
Basic 1 to 9 and Extended 1 to 3 consists of 6
workloads, Basic 10 to 14, and 8 workloads to
Extended 4.

6.1 Identify application group using threshold

value
Figure 9 shows the performance

improvement of the user scheduler version using
the threshold value compared with the scheduler of
the Linux version 4.2 by executing the user
scheduler version in two environments. The
meaning of the x-axis is that B represents the basic
workload combination, and the following 01
through 14 represent the number of workload
combinations. -08, -28 means the performed
environment. In an environment with two
processors with eight cores, the average
performance of 9(a) shows an average improvement
of 5% to 6% and the basic workload 7 shows a 12%
maximum performance improvement.

The eighth workload of Basic in the first

environment consists of two Group 1 and six Group
2 do not show sufficient performance enhancement
due to the lack of enough shared resource
competition. In the Figure 9(b), the triple shows 18
workloads, three times six workloads, 18 workloads,
quadruple four times six workloads, 24 workloads,
quadruple + 4 workload and 4 random workloads.
Figure 9(a) shows a performance improvement of
up to 25% in a Figure 9(b) environment with more

cores than in the environment, and the performance
is improved as the number of cores in a triple to
quadruple + 4 increases

6.2 Extended workload combinations

Figure 10 show that the user scheduler
version using the threshold value for the extended
workload combination was performed in two
environments. Extended workload combinations do
not provide enough shared resource contention as
well as previous performance degradation, resulting
in only 4.3% improvement in performance.

In the case of E01-28, there is a tendency

that the performance decreases as the number of
cores to be executed increases. This means that the
user scheduler, which is a Group 1 soplex workload
with insufficient mutual influence when it is spread,
Rather than the other.

In E02-28 and E03-28, there is a Group 1

workload with interworking effects such as lbm and
libquantum in the workload combination, enough
workloads are degraded due to competition in the
shared resources, and performance is improved by
the user scheduler.

6.3 Identify application groups using relativity

Figure 11 shows the performance
enhancement of the user scheduler, which is
implemented by dividing the applications to be
executed into application groups. In 28 core
environments, workload combination quadruple + 4
was used. In both environments, the performance
improvement of up to 20% is shown, but the
Extened 1 workload combination also shows that
the effect of the implemented scheduler is degraded

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

820

by 5% because there is not enough shared resource
competition. However, the above results show that
the performance improvement is achieved even
when the threshold value is not used and that the
application is relatively divided into Group1, Group
2 and Group 3, and that the performance
improvement is enough to overcome the
performance degradation of the workload
combination E01 or B07 in various workload
combinations It can be seen that it happens.

7. DIFFERENCE OF PRIOR WORK

As the number of cores increases in
multicore systems, there have been many studies to
efficiently or evenly distribute shared resources
among the cores. Typically, there are technologies
such as Cache Partitioning and Page Coloring that
allocate the Last Level Cache separately for each
core. Or NUMA environments, research has been
conducted on coordinating core and task mapping
to solve resource bottlenecks such as memory
bandwidth.

In this paper, we have directly tested the

mutual influence on performance when typical
applications compete for other applications and
shared resources in order to efficiently distribute
shared resources in NUMA environment. Among
the 48 SPEC CPU 2006, PARSEC, and NPB
workloads, 11 workloads with high memory
bandwidth usage and consistent application
performance pattern were selected to generate
sufficient shared resource competition. To analyze
the causes of mutual influence between applications,
PMU supported by processor was used.

We have implemented a user scheduler

that monitors performance characteristics of each
core in real time and identifies the mutual influence
of cores to schedule tasks. The user scheduler
avoids mutual impacts by placing applications that
have a large impact on the performance of other
applications and applications that are greatly
damaged in performance by different applications
on different processors.

8. CONCLUSION

In this paper, we analyzed the performance
characteristics of applications through experiments
on representative applications that cause shared
resource competition. Moreover, we monitored the
PMU event, Offcore Request Buffer Full, LLC
Reference, which shows the performance
characteristics, and grouped the applications into

Group 1, Group 2, and Group 3 according to the
mutual influence of the application. The user
scheduler that isolates Group 1 and Group 2
provides up to a 25% performance improvement
over various workload combinations and the
performance of each workload has a certain effect.

REFRENCES:

[1] J. Rao, K. Wang, X. Zhou, and C. Xu,

“Optimizing virtual machine scheduling in
NUMA multicore systems,” Proc. of the the
19th International Symposium on High
Performance Computer Architecture (HPCA),
IEEE (China), February 23-27, 2013.

[2] D. Levinthal, “Performance Analysis Guide for
Intel Core i7 Processor and Intel Xeon 5500
Processor,” https://software.intel.com/, 2009.

[3] Intel, “Intel 64 and IA-32 Architectures
Optimization Reference Manual,”
https://www.intel.com.

 [4] S. Blagodurov, S. Zhuravlev, M. Dashti, and A.
Fedorova, “A case for NUMA-aware contention
management on multicore systems,” Proc. of
the USENIX Annual Technical Conference
(ATC), USENIX(USA), June 14-17, 2011, pp.
1-15.

[5] S. Zhuravlev, S. Blagodurov, and A. Fedorava,
“Addressing shared resource contention in
multicore processors via scheduling,” Proc. of
the 15th International Conference on
Architectural support for programming
languages and operating systems (ASPLOS),
ACM(USA), March 13-17, 2010, pp. 1291-142.

[6] R. Lachaize, B. Lepers, and V. Quema,
“MemProf: a memory profiler for NUMA
multicore systems,” Proc. of the USENIX
Annual Technical Conference (ATC),
USENIX(USA), June 26-28, 2012.

[7] R. Ge, P. Zou and X. Feng, “Application-Aware
Power Coordination on Power Bounded NUMA
Multicore Systems,” Proc. of 46th International
Conference on Parallel Processing (ICPP), Aug.
14-17, 2017, pp. 591-600.

[8] N. Saranya and R. C. Hansdah, “An
implementation of partitioned scheduling
scheme for hard real-time tasks in multicore
Linux with fair share for Linux tasks,” 2014
IEEE 20th International Conference on
Embedded and Real-Time Computing Systems
and Applications (RTCSA), IEEE (China),
August 20-22, 2014, pp. 1-9.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

821

[9] B. Lepers, V. Quema, And A. Fedorova, “Thread
and memory placement on NUMA systems:
Asymmetry matters,” In Proceeding of the
USENIX Annual Technical Conference (ATC),
USENIX(USA), June 22-24, 2015, pp. 277-289.

[10] Y. Cheng, W. Chen, Z. Wang, X. Yu,
“Performance-Monitoring-Based Traffic-Aware
Virtual Machine Deployment on NUMA
Systems,” IEEE Systems Journal, Vol. 11, No.
2, 2017, pp. 973-982.

