
Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

543

AN ITERATIVE GENETIC ALGORITHM BASED SOURCE
CODE PLAGIARISM DETECTION APPROACH USING NCRR

SIMILARITY MEASURE

1M. BHAVANI, 2DR.K.THAMMI REDDY, 3DR.P.SURESH VARMA

1Dept. of Information Technology, GITAM University, Visakhapatnam, Andhra Pradesh.

2Dept. of Computer Science Engineering, GITAM University, Visakhapatnam, Andhra Pradesh, India.
3Dept. of Computer Science, Adhikavi Nannayya University, Rajahmundry, Andhra Pradesh, India.

E-Mail: 1bhavani.mm@gmail.com

ABSTRACT: With the advent of WWW and improvements in globally accessible software warehouses
attained that source code is enthusiastically reachable to software designers. Even though, reusing of source
code has its individual benefits, precaution is to be taken to guarantee that patented software [19] does not
invade any authorizations. In this Context, Plagiarism Detection plays a very significant role. Although
several existing detection approaches has been introduced, most of the approaches work on one to many
similarity measures. However, this might not be very much helpful in case large number of datasets where
many-to-many relationship exist. In this paper, an intelligent detection model is purposed by employing the
iterative genetic algorithm with two different fitness evaluation functions. Prior to the detection model, the
source code is preprocessed to remove noise and dimensionality reduction techniques are employed. The
experimental results for the proposed approach are carried out using two different data sets. From the
experimental results, it is found that the proposed model has good performance compared to the other existing
approaches such as fuzzy clustering based Detection system and Incremental Genetic Algorithm.

Keywords: Source Code, Plagiarism detection, Genetic Algorithm, Singular Vector Decomposition,
Similarity Measure, Normalized Cumulative Reciprocal Rank, Euclidean Distance

1. INTRODUCTION

The internet and globally available source
code software’s are increasing day by day in the
present world. Such kind of code replication
deprived of seeking the authorization or referring
from the original authors for his contribution is
known as plagiarism. Source Code plagiarism
identification in programming language is a task
that several higher education instructors
accomplishes [3]. Whenever learners process the
source-code validated through someone else,
either intentionally or unintentionally, and fail to
adequately admit the fact that the specified source-
code is not its individual, the source code
plagiarism ensues at this condition.

Learners, especially, at higher education
are identified to be involved in certain kinds of
academic deception [15, 16] where programming
courses are not exclusion. Fair Evaluation is a
crucial aspect for the achievement of the learning
system, specifically at advanced Educational
learning system. If Fair Evaluation is to be done,
the novelty of the approach needs to be defined.

They replicate the code partitions from entire
resources accessible (internet, records, their class
associates and their elders), in that way that the
data samples where the plagiarism need to be
identified rises.

Usually, Plagiarism detection issues are
of two kinds: one-to-many where the individual
desires to examine a unique document in a group
and many-to-many the user wishes identify
plagiarized pairs within a collection. In the prior
situation, it is essential to limit whether a specific
document is a plagiarized collection of a document
in a group. In the subsequent situation it is essential
to define the records that are plagiarized
collections of one another. Approaches that
perform good for one-to-many conditions does not
essentially measure healthy to many-to-many
condition. This paper mainly deals with the many-
to-many condition. The proposed detection system
generates a group of programs paired in two,
categorized by similarity. Programs that are
extremely identical to the replicas are in the
topmost.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

544

Numerous Plagiarism detection
approaches are developed in the literature
especially for one to many cases [3][10][11].An
intelligent approach is proposed for many to many
cases. In addition to this, there are also similarity
detection techniques that is effortlessly affected by
altering the identifier or program testimonial order,
it fails to provide adequate provision for plagiarism
detection. Thus, the proposed approach employed
an Evolutionary Iterative Genetic Algorithm to
obtain the similar pairs of detected codes by
iteratively selecting the pair of documents from the
pre-processed and diminished matrix .The
normalized Euclidean distance is evaluated
between the pair of source code and the
cumulative reciprocal rank between the retrieved
document pairs are also evaluated.

 A brief introduction to source code detection and
its importance along with the motivation for the
suggested methodology is given in this section.
The section 2 briefly discusses the existing
methodologies in source code detection
techniques. The proposed approach is briefly
illuminated in the section 3. The experimental
outcomes and its analysis for the proposed
approach is given in section 4 followed by
conclusion and references given in section 5 and
section 6 correspondingly.

2. LITERATURE SURVEY

This section summarizes the diverse
source-code plagiarism recognition devices which
is present within the survey along with emphasis
on the most of the current methodologies. In [13],
a token illustration technique is suggested for
programs inscribed in the Java language, and
subsequently employs the Running Karp-Rabin
Greedy String Tiling (RKRGST) approach to
identify code resemblance. These approaches are
matched with the other plagiarism recognition
devices, such as Copy Paste Detector (CPD),
Sherlock, CCFinder and Plaggie and observed that
these techniques outstripped the other techniques.

A source-code plagiarism recognition
approach was presented in [14] which exploits the
greedy string tiling techniques. Summarizing, this
technique primarily chooses a seed source code
document from the data sample and recognizes the
top K identical records by means of source code
metric procedures (like McCabe’s Cyclomatic
Complication, counts of logical, physical,
comment, and blank lines and counts of attributes
and procedure).In the subsequent stage, the
identified archives are matched with the source

record by means of Greedy String Tiling approach.
The archives, whose text resembles with the source
file with identity more than the edge value, are
recognized as identical.

An algorithm depending on kernelized
fuzzy C-means (KFCM) is presented in [8] that
employ the research of source code mining, to
resolve the issue having huge number of quantities,
numerous features and maximum of them are
discrete software engineering. Using this
approach, the efficacy of extraction is enhanced
and pursue quicker and further efficient clustering
technique. This likewise resolved the issue that the
KFCM methodology could not group textual
information openly. Subsequently, it could over
the deficiency of merely being capable to acquire
the minimal values through incorporating KFCM
and genetic algorithm. Lastly, the experimentation
demonstrations that the enhanced KFCM approach
has a better clustering performance and higher
competence on data mining.

A methodology that leveraged the lexical
data and fuzzy clustering is presented in [9] to
minimize the numerous design configuration
examples that prevailing methodologies depends
on structural data (i.e., directing the dependences
amongst software features) inaccurately recover in
source code. To evaluate the efficiency of the
procedures, the outcome of a case study performed
on four open source software systems executed in
java are proposed. The data analysis specifies that
the usage of lexical data and fuzzy clustering
enhances the exactness of the outcomes attained
through previous design pattern retrieval methods
depending on structural knowledge, however
conserving the design pattern examples
appropriately acknowledged.

An incorporated methodology depending
on Latent Semantic Indexing (LSI) and Stylometry
approach is given in [10] for inherent plagiarism
recognition. LSI is employed for the term
document matrix of data samples, however,
stylometry is employed for inherent estimation of
individual inscription style. This accompanied a
sequence of experimentations to examine the
competency of dimensionality minimization
constraint as the fundamental for LSI approach so
as to achieve intuitions into its effects employing
some tiny repositories. The comparative
evaluation for the proposed approach was carried
out through the LSI and Stylometry disjointedly,
and subsequently performing them together. The
result exhibited that the efficiency of the suggested

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

545

technique was enhanced with an incorporated
methodology comprising of LSI and stylometry
was exploited.

An evolutionary neural network approach
was presented in [11] to introduce an intrinsic
plagiarism recognition classifier that is proficient
of developing the weights and configuration of a
neural network. The neural network is empirically
experimented on archives or records and is
exhibited to function better. In [12], genetic
algorithm is used to measure the identity amongst
two codes by resolving an error rectifying sub
graph isomorphism issues on dependency graphs.
He proposed a novel price function for this issue
that replicates the features of the source codes. An

incremental GA is employed to resolve the issue.
The dimension of the graph need to be explored
which is slowly rising in course of evolutionary
approach. Novel operations are introduced for the
methodology, and the entire system is verified on
certain practical data. Experimental outcomes
presented that the technique productively functions
on code plagiarism identification and malicious
recognition. The resemblance evaluated through
the system has retrospected the similarity amongst
the codes appropriately.

3. PROPOSED SYSTEM ON INTELLIGENT
GENETIC ALGORITHM BASED SOURCE
CODE DETECTION APPROACH

The proposed approach focuses on many
to many code detection approaches where the user
attempts to detect the plagiarism within a group of
documents where no restrictions is given on the
type and number of documents. The Architecture
for the proposed intelligent code detection
methodology is given in Figure 1. This approach is

mainly divided into three phases for easy working
of the methodology distinctively. They are:

 Source Code Pre-processing Phase
 Noise and Dimensionality Reduction

Phase
 Intelligent Detection Phas

Figure 1: Architecture of the Proposed Iterative
Genetic Algorithm Aided Detection System

3.1 Source Code Pre-Processing

This phase is particularly employed to
pre-process the source code document as to
improve the retrieval of semantic information for
code recognition where the irrelevant and
unwanted information such as meaningless terms
and characters, symbols or words etc. are removed.
This phase is necessary to minimize the dimension
of the information to further effectively seize the
semantic depiction of every source-code file. The
goal of this module is to accumulate the large
number of source code into a processed format to
detect the plagiarized source code relevantly.

Pre-Processing the source code can be of two
forms such as pre-processing constraints that
explicit to source code and parameters that are not
specific to source code . Pre-processing constraints
that specific to source code involves:

 Eliminating commentaries
 Merging or separating terms comprising

of compound words
 Eliminating source code identifiers

containing complex parameters that
joined two words together found within
terms and treated it as single term such as
‘student name’ to ‘studentname’.

 Plotting alternative words to a single form
like function being plotted to procedure

 Reorganization the procedure according
to the order of its function calling

Source
Code

Datasets

Source
Code

Tokenizat
ion

Removing
Unnecessary Terms

and Syntactical
Tokens

Source Code Pre-
Processing Phase

SV
D

Noise and
Dimension

ality
Reduction

Dimensio
nality

Reductio

Intelligen
t

Detection

Iterative
Genetic

Algorithm

Fitness
Evaluation:
Normalized
Euclidean
Distance

Fitness
Evaluatio

n:
Normaliz

ed
Cumulati

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

546

 Eliminating entire tokens that does not
have the lexicon of the target language
such as eliminating entire words which
are not language reserved words

Certain conceivable pre-processing constraints not
specific to source-code achieves involves:

 Eliminating words present in single
document or entire document as these
words preserves no additional knowledge
regarding the association among the
documents.

 Eliminating words merely comprising of
numerical symbols,

 Eliminating syntactical tokens like semi-
colons, colons, comma etc.

 Eliminating words comprising of a one
alphabets, and

 Translating upper case alphabets to lower
case.

After the pre-processing is performed, the
Source Code pre-processing phase forms the
Vector Space Model (VSM) that represents the
source code data samples. In the VSM, a term
document matrix is represented as ܤ௠ൈ௡ ൌ ሾܾ௜௝ሿ
where every row ݅ have the rate of processed terms
such as terms obtained in source-code document
next to pre-processing, and every column ݆
signifies the source-code document. Therefore,
every element ܾ௜௝ of B comprises of the rate at
which the vocabulary term ݅ occurs in a source-
code file ݆. From the, term document matrix the
normalized term frequency is obtained by applying
probability inverse global weighting method
(IDFP) [4] to modify the rate of terms relating to
the whole group of source-code archives.[18]
Similarly, document length normalization is
performed to adjust the frequencies depending on
the dimension of every document file. The two
estimations are given below:

௜݃ ൌ log ቀ
ேି௡೔
௡೔
ቁ (1)

݈௜ ൌ
ଵ

ටሺ∑ ሺ௚೔.௔೔ೕሻ೔ ሻమ
 (2)

Here ௜݃ is the probability inverse global weighting
method, N is number of source code files in the
group, ݊௜ is the number of source code files where
the word݅occurs. ݈௜ represents document length
normalization. After the evaluation, every entry of
the matrix A is updated as:

ܾ௜௝ ൌ ܾ௜௝ ൈ ݃௜ ൈ ݈௜ (3)

3.2 Noise And Dimensionality Reduction

The aim of noise and dimensionality
reduction module is to minimize the size of the
database and remove the noisy and irrelevant
elements from the data sample. Once, the source
code pre-processing module is accomplished, the
obtained matrix A is a sparse matrix which need to
be further evaluated to minimize its dimension and
also remove the noisy term from the matrix. This
task is efficiently accomplished by using the
Singular Vector Decomposition (SVD) approach
which is a useful tool for linear algebra. Using the
SVD approach, the inherent higher order
arrangement can be obtained in associations of
terms with the source code files through specifying
the SVD of huge sparse term in source code file
matrices. SVD [5] is employed to evaluate the
arrangement by means of using source code files.
Retrieval is further accomplished by means of data
sample of singular values and arrays accessible
from the trimmed SVD. Performance information
exhibited that these numerically obtained values
are added strong pointers of importance compared
to single individual words.

Given a matrix ܤ of size ݉ ൈ ݊, where
deprived of loss of generalization ݉ ൈ ݊ and
ሻܤሺ݇݊ܽݎ ൌ the singular value decomposition of ,ݎ
B, symbolized by SVD(B), is specified as

ܤ ൌ ܷΣ்ܸ (4)

Here்ܷܷ ൌ ்ܸܸ ൌ ௡and Σܫ ൌ
݀݅ܽ݃ሺߪଵ, …,ଶߪ . . ;௡ሻߪ ௜ߪ ൐ 0 for 1 ൑ ݅ ൑ ௝ߪ	;ݎ ൌ
0 for ݆ ൒ ݎ ൅ 1. The initial r columns of
orthogonal matrices ܷ and ܸoutline the
orthonormal eigenvectors linked with ݎ non-zero
eigen values of ்ܤܤand ܤ்ܤ, correspondingly.
The columns of ܷ and ܸ	are stated as the left and
right singular vectors, respectively, and the
singular values of B are given as the diagonal
features of that are the non-negative square roots
of ݊ eigen values of [5] ்ܤܤ.These matrices
represent an interruption to the original
associations to a linearly independent vectors or
feature values. SVD of matrix ܤ specified in
equation (4), with ݎ ൌ ሻܤሺ݇݊ܽݎ ൑ ݌ ൌ
min	ሺ݉, ݊ሻ defines

௞ܤ ൌ ∑ .௜ݑ .௜ߪ ௜்ݒ
௞
௜ୀ଴ (5)

It is important to note that, the obtained
 ௞ matrix do not rebuild the original termܤ
document matrix ܣ precisely. The trimmed SVD,
in one way, seizures maximum significant primary

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

547

structure in the association of words and files,
however simultaneously eliminates the noise or
inconsistency in term usage that plagues term
dependent retrieval approach. Instinctively, as
magnitude, k, is much lesser compared to the
number of distinctive terms, m and negligible
variances in vocabulary would be unnoticed.
Terms that are present in alike files, would be
nearer to one another in the k-dimensional feature
domain though they never occur in the similar file.
This reflects that certain files that do not share any
terms with the other source code files might not be
nearer to k-space. This resulted illustration that
seizes term-term relations are employed for
identification.

3.3 Intelligent Detection

The proposed algorithm is to detect the
pair of source code files that are accurately similar
to one another. Once the Noise and Dimensionality
Reduction phase is accomplished, the obtained
 ௡ൈ௞ which is minimized in terms of number ofܤ
dimensions or features is employed to identify the
resemblance within the pair of documents. For this,
purpose, the proposed methodology used the
intelligent evolutionary genetic algorithm to
accomplish the task. The work flow process for the
proposed approach is given in Figure 2.
Evolutionary algorithms are motivated with
Darwinian Theory, and are recognized as human
competitive for various optimization issues [1].
The main benefit of evolutionary approach is that
merely minimum degree of human skill sets is
needed to achieve beneficial outcomes [2].The
Genetic Algorithm (GA) is one of the exploratory
approach that imitate the procedure of natural
evolution and is therefore consistently employed to
produce advantageous results to optimization and
explore the similarity issues pertaining to the
fitness evaluation employed in the algorithm. This
technique is especially exploited in evaluating the
precise or estimated outcomes to the search
optimization issues.

In GA, the candidates are known as
individuals or chromosomes. The initialization of
populace is produced arbitrarily; selection and
dissimilarity function are implemented in a loop
till certain termination strategy is achieved.Every
iteration of the loop is known as generation. The
selection operation is envisioned to enhance the
average quality of the population through
providing chromosomes of highest quality with the
highest possibility to be replicated into further
iteration. The eminence of a chromosome is

measured using the fitness evaluation. A fitness
evaluation proposes the optimality of an outcome
in the genetic algorithm such that a specific
individual might be rated in contradiction to entire
other chromosomes. For every iteration, genetic
operations are employed and hence the population
progresses.

Steps in Genetic Algorithm based Intelligent
Detection Phase:

i. Population Initialization: The
initialization of population for the
performance of the proposed Detection is
selected from the reduced matrix ܤ௡ൈ௞. It
is observed that the matrix has ݊ number
of source code files with k terms within
each source code file i.e. from 1, 2, … . ݊.
The source code files with k terms are
considered as individuals or
chromosomes .In this approach the source
code files are selected randomly from 1 to
݊ of length ݇ , the row elements of the
matrix is a chromosome which is
represented as the complete solution.

ܺ ൌ ሾܾଵ௞, ܾଶ௞, ……ܾ௡௞	ሿ
ii. Recombination: This is similar to the

organic systems, candidates are merged
to generate their offspring in every
programmatic loop known as iteration or
generation. Generally, a pair of
individuals or more are recombined to
obtain the candidate solution. In this
approach, a pair of source code
documents are recombined as to find the
similarities between the two. The picking
of the pairs of source code documents are
done randomly and a form of permutation
and combination technique is applied to
select the individual source code files.

iii. Fitness Evaluation: A value for suitability
is allotted to every individual pertaining
on how closely and truly is to resolve the
issue hence reaching the outcome of the
preferred problem. The fitness evaluation
is a metric of the objective to be attained
having it to be a maximal or a minimal
value [6]. Fitness evaluation is
augmented by means of genetic
operations and computes every outcome
to choose whether it would subsidize to
the subsequent generation of results [7].
In this proposed approach two forms of
fitness evaluation are made. They are:

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

548

Normalized Euclidean Distance between
the pair of selected individual’s source
code documents as to obtain the value of
similarity between them. The Normalized
Euclidean Distance is given as:
,ݔሺܦܧ ሻݕ ൌ
ଵ

ଶ
ቆ∑ ටሺሺ௫೔ିఓሺ௫ሻሻିሺ௬೔ିఓሺ௬ሻሻሻ

ఙሺ௫ሻିఙሺ௬ሻ

ଶ
௞
௜ୀଵ ቇ

(6)

The Similarity Measure that is employed
for the proposed approach is Normalized
Cumulative Reciprocal Rank which is
evaluated as:

ܴܴܥܰ ൌ ∑ ሺ݈݃ܽ݌ሺܦ௜ሻ ൈ
஽
௜ୀଵ

ଵ

௜
ሻ ൊ ∑ ଵ

௜
|ோ|
௜ୀଵ (7)

Where D is the group of obtained
document pairs, R is the set of
acknowledged plagiarized document
pairs and ݈݃ܽ݌ሺ݀ሻ returns 1 for a
plagiarized document pair and 0 for a
non-plagiarized pair. The fitness values
range from 0.0 to 1.0. NCRR similarity
measures shows the proportion of the
retrieved documents with respect to the
relevant documents.

iv. Genetic Operations: Three different
genetic operations are performed in the
proposed approach like selection,
crossover and mutation operations. These
are the most influencing operator in the
optimized evolutionary algorithms. Each
operation has its own importance in the
optimization of the algorithm to obtain
the relevant outcomes.

 Selection: This approach executes

the selection operation where most-
suitable individuals of the populace
persist, and the least-suitable
individuals are eradicated. The

procedure is the phase that monitors
the methodology in the direction of
even-better results. The most-fit
condition for this approach is defined
through the Euclidean Distance. If
the Euclidean Distance is less than
the threshold value 0.6, then those
pairs of source files are considered
for the computation of next
generation.

 Crossover: This operation is
achieved by attempting to merge
individuals i.e. decision values of
previous results so as to generate a
novel result, having certain
characteristics of every "parent". The
crossover operation that is used is the
point crossover with the probability
of 0.5.

 Mutation: This operation

occasionally attains arbitrary
modifications in one or more
individuals of the present populace,
generating a novel outcome that
might be superior to the preceding
ones. This is achieved by altering the
information of one parents with the
information of other parent with the
probability of 0.1.

v. Termination Criteria: This is also one of

the important parameter in the evolution
of solutions. The criteria for the proposed
approach is the number of generation.
The fitness function that is normalized
Euclidean distance used in initial genetic
approach terminates the process till
number of iteration reaches 20. For the
subsequent genetic algorithm the
termination criteria are the condition
where NCRR attains a near value to 1.0
with same number of iterations.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

549

Figure 2: Work Flow Process of the Intelligent Detection Phase

5. EXPERIMENTAL RESULTS AND ITS
ANALYSIS

The Experimental Results for the
proposed Iterative Genetic Algorithm based
Source Code Detection System is carried out using
two different kinds of datasets. One is a set of
simple source codes in Java programming
Language with 30 in number and the other is the
set of simple source codes in C Programming
Language with 40 in number. The source code files
with a maximum of 50 lines are considered for
experimentation. The proposed approach is
compared with the existing detection systems such

as detection system using incremental genetic
algorithm by means of sub graphs [12] and
detection system using Fuzzy based Approach
[17].

Performance Evaluation Measures:

Recall and Precision are two
benchmarked and utmost recurrently employed
metric in information retrieval system to estimate.
These measures are exploited to estimate the
efficiency of plagiarism detection. For the reason
of estimation, the following terms are given:

Yes NO

Populatio
n

Initializat

Recombinat
ion

Fitness
Evaluation:

NED

Genetic
Operatio

ns:
Selection
Crossover
Mutation

Terminat
ion

Criterion

Similarity Measure:
NCRR

Terminati
on

Criterion

Genetic
Operations:

Crossover
Mutation

Stop

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

550

i. Suspicious file pairs: Every suspicious
pair, ݌ݏ, comprises of documents that are
being judged through human graders as
suspicious. A class of suspicious pairs is
given as ܵܲ ൌ ሼ݌ݏଵ, ,ଶ݌ݏ … . ௫ሽ where݌ݏ
the total amount of known suspicious
pairs in a class (i.e., data sample) is ݔ ൌ
|ܵܲ|.

ii. Innocent file pairs: These are the pairs
that does not share any type suspicious
identity however been identified as
suspicious by proposed and existing
detection systems.

iii. Detected file pairs: These pairs are
obtained by means of the proposed
Detection approaches. A class of
identified pairs is referred as ܨܦ ൌ ܦܵ ∪
ܰܵ ൌ ሼ݀ݏଵ, ௫ሽ݀ݏ	…,ଶ݀ݏ ∪
൛݊ݏଵ, ,ଶݏ݊ … ܦܵ ௬ൟ whereݏ݊	 ⊆ ܵ. The
total number of detected file pairs is |ܨܦ|.
The total amount of suspicious pairs
identified is given by|ܵܦ|, and the total
amount of innocent file pairs identified is
denoted by |ܰܵ|.

Recall is given as R, where ܴ ∈ ሾ0, 1ሿ, is the
percentage of suspicious pairs that are recognized
depending on the limit value, . Recall is 1.00
whenever entire suspicious pairs are recognized.

ܴ݈݈݁ܿܽ ൌ
|ܦܵ|
|ܵܲ|

ൌ
݀݁ݐܿ݁ݐ݁݀_ݎ݅ܽ݌_݈݂݁݅_ݏݑ݋݅ܿ݅݌ݏݑݏ_݂݋_ݎܾ݁݉ݑ݊

ݏݎ݅ܽ݌_݈݂݁݅_ݏݑ݋݅ܿ݅݌ݏݑݏ_݈ܽݐ݋ݐ

Precision is given as P, where ܲ ∈ ሾ0, 1ሿ, is the
percentage of suspicious pairs that are recognized
in the group of document pairs identified.
Precision is 1.00 whenever each document pair
identified is suspicious.

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
|ܦܵ|
|ܨܦ|

ൌ
݀݁ݐܿ݁ݐ݁݀_ݎ݅ܽ݌_݈݂݁݅_ݏݑ݋݅ܿ݅݌ݏݑݏ_݂݋_ݎܾ݁݉ݑ݊

݀݁ݐܿ݁ݐ݁݀_ݏݎ݅ܽ݌_݈݂݁݅_݈ܽݐ݋ݐ

The complete performance of every device will be
estimated through merging the precision and recall
metrics. As a unique measure for estimating the
efficiency of device for plagiarism detection, the
weighted total of precision and recall would be
evaluated as

ݎ݋ܿݏܨ ఉ݁ ൌ
ሺߚଶ ൅ 0.1ሻሺܲ݊݋݅ݏ݅ܿ݁ݎ ൈ ܴ݈݈݁ܿܽሻ
ଶߚ ൈ ሺܲ݊݋݅ݏ݅ܿ݁ݎ ൅ ܴ݈݈݁ܿܽሻ

,

∈ ሾ0, 1ሿ

Theߚ coefficient obtains a way to bias
 .in the direction of Precision or Recall ݁ݎ݋ܿݏܨ
Specifically, the value 0.5=ߚ biases in the
direction of precision, value 1.0 = ߚevaluates
precision and recall similarly and value2.0 = ߚ
biases in the direction of recall. In the
experimentations, entire three conditions are
verified to define the comparative efficiency of
several algorithms while highlighting recall or
precision, and both. Henceforth, to penalize false
negatives further powerfully compared to false
positives through picking a value 1 <ߚ, therefore
provides higher weightage to Recall.

The Analysis of the proposed approach is
also performed by means of the Fitness Functions
or the similarity measures that employed in the
proposed approach. The average Normalized
Euclidean Distance (NED) and Normalized
Cumulative Reciprocal Rank (NCRR) measures is
used to analyze the proposed approach specifically
the Iterative Genetic Algorithm with Pre-
processing and Dimensionality Reduction (GA
with Pre-processing) against Simple Iterative
Genetic Algorithm without any kind of Pre-
processing and Dimensionality Reduction (GA
without Pre-processing). The comparison is
accomplished against the number of generation or
iterations employed in the proposed Iterative
Genetic Algorithm.

Figure 3: Average NED for Java Source Code Data
Samples

0

0.2

0.4

0.6

0.8

1

10 15 25 30

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
u

cl
id

ea
n

D

is
ta

n
ce

Number of Generation

Average NED for Java Source Code Data
Samples

Without Pre-Processing With Pre-Processing

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

551

Figure 4: Average NED for C Source Code Data Samples

Figure 5: NCRR for Java Source Code Data Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 15 25 30

A
ve

ra
ge

 N
or

m
al

iz
ed

 E
u

cl
id

ea
n

 D
is

ta
n

ce

Number of Generations

Average NED for C Source Code Data Samples

Without Pre-Processing With Pre-Processing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 0.15 25 30

N
C

R
R

Number of Generations

NCRR for Java Source Code Data Samples

Without Pre-Processing With Pre-Processing

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

552

Figure 6: NCRR for C Source Code Data Samples

The precision, recall and ݁ݎ݋ܿݏܨ with different ߚ
are evaluated for the proposed Iterative Genetic
Algorithm based Source Code Detection System
against the existing approaches given in [12] and
[17] for two different sets of data samples
separately. Table 1 represents the Performance
Measures of proposed IGA on Java Source Code
Data Samples and C Programming Source Code
Data Samples. Table 2 and Fig 7 represent the
precision of the proposed approach that are

matched with the existing detection system using
the java programming source code data samples.

From table 1, table 2 and Fig 7, it is clearly
observed that the performance measures of the
suggested method are higher when compared to the
other two techniques. It can also be inferred that
the computational complexity of the proposed
approach is also less compared to the other two
approaches.

Table 1: Performance Measures of proposed IGA on Java Source Code Data Samples and C Programming Source Code
Data Samples

Performance
Measures

Java Source
Code Data
Samples

C
Programming
Source Code
Data Samples

Precision 0.99 0.98
Recall 0.79 0.8
଴.ହ݁ݎ݋ܿݏܨ 0.615 0.616
ଵ.଴݁ݎ݋ܿݏܨ 0.483 0.484
 ଶ.଴ 0.4503 0.4514݁ݎ݋ܿݏܨ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 15 25 30

N
C

R
R

Number of Generations

NCRR for C Source Code Data Samples

Without Pre-Processing With Pre-Processing

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

553

Table 2: Precision of Proposed approach with Existing methods.

Precision Fuzzy
Clustering
based
Detection
System

Incremental
Genetic
Algorithm
based
Detection
System

Proposed
Iterative
Genetic
Algorithm
based
Approach

Java Source
Code Data
Samples

0.95 0.97 0.99

C
Programming
Source Code
Data Samples

0.95 0.96 0.98

Figure 7 Precision of proposed approach with existing methods

6. CONCLUSIONS

The proposed intelligent iterative genetic
algorithm employed two different fitness
evaluation functions that compared the similarities
between the pair of source code documents. The
Source Code Pre-Processing and Noise and
Dimensionality Reduction Module have further
minimized the computational complexity of the
proposed approach. The experimental results is
been performed using two java and C
programming data samples distinctively. The

experimental outcomes showed that the suggested
approach has good performance in term of
precision and recall when compared with the other
two existing approaches.

REFERENCES

[1] Koza, J. (2003). Genetic Programming IV:
Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers,
Norwell, MA.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Fuzzy Clustering
based Detection

System

Incremental
Genetic

Algorithm based
Detection System

Proposed Iterative
Genetic

Algorithm based
Approach

P
re

ci
si

on

Methods

PRECISION

Java Source Code Data
Samples

C Programming Source Code
Data Samples

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

554

[2] Koza, J. (1992). Genetic Programming: On the
Programming of Computers by Means of
NaturalSelection. MIT Press, Cambridge,
MA.

[3] Arwin, C. and Tahaghoghi, S. M. M. (2006).
Plagiarism Detection across Programming
Languages. In Proceedings of the 29th
Australasian Computer Science Conference,
volume 48, pages 277–286,Hobart, Australia.
Australian Computer Society, Inc.

[4] W. B. Croft, and D. J. Harper. Using
probabilistic models of documentretrieval
without relevance information. J.
Documentation, 35(4): pp.285-295, 1979

[5] G. Golub and C. V. Loan, Matrix
Computations, Johns-Hopkins, Baltimore,
second ed., 1989.

[6] Praveen Pathak, Michael Gordon, Weiguo Fan,
"Effective Information Retrieval Using
Genetic Algorithms Based Matching
Functions Adaptation," hicss, vol. 02, no.
2,pp. 2011, February 2000.

[7] Luger G F, “Artificial Intelligence- structure
and strategies for complex problem solving”,
4th edition, Pearson Education, 2002.

[8]X. Wang, “Kfcm algorithm based on the source
code mining method study,” in Intelligent
Systems Design and Engineering
Applications(ISDEA), 2014 Fifth
International Conference on, June 2014, pp.
586–588.

[9] S. Romano, G. Scanniello, M. Risi, and C.
Gravino, “Clustering and lexical information
support for the recovery of design pattern in
sourcecode,” in Software Maintenance
(ICSM), 2011 27th IEEE International
Conference on, Sept 2011, pp. 500–503.

[10] Rahat Iqbal, Saad Amin, Anne James, Muna
Alsallal,“Intrinsic Plagiarism Detection Using
Latent Semantic Indexing and Stylometry”,
Sixth International Conference on
Developments in eSystems Engineering
(DeSE), 2013, IEEE.

[11] Dara Curran, “An Evolutionary Neural
Network Approach to Intrinsic Plagiarism
Detection”, Irish Conference on Artificial

Intelligence and Cognitive Science, Artificial
Intelligence and Cognitive Science, pp 33-40,
2009, Springer.

[12] Jinhyun Kim, HyukGeun Choi, Hansang Yun,
Byung-Ro Moon, “Measuring Source Code
Similarity by Finding Similar Subgraph with
an Incremental Genetic Algorithm”, In
Proceeding of the Genetic and Evolutionary
Computation Conference, pp. 925-932, ACM,
2016.

[13] B. Muddu, A. Asadullah, and V. Bhat, “Cpdp:
A robust technique for plagiarism detection in
source code,” 7th International Workshop on
in Software Clones (IWSC), pp. 39–45, 2013.

[14] O. Ajmal, M. Missen, T. Hashmat, M. Moosa,
and T. Ali, “Eplag: A two layer source code
plagiarism detection system,” in Digital
Information Management (ICDIM), 2013
Eighth International Conference on,
Sept2013, pp. 256–261.

[15] S. Burrows, S. M. M. Tahaghoghi and J.
Zobel, “Efficient plagiarism detection for
large code repositories”, Software Practice
and Experience, vol.37, pp. 151-175, 2006.

[16] Noh, Seo-Young, Sangwoo Kim, and S. K.
Gaida. "An XML plagiarism detection model
for procedural programming languages." In
Proceedings ofthe 2nd International
Conference on Computer Science and its
Applications.2004.

[17] Giovanni Acampora, Georgina Cosma, “A
Fuzzy-based Approach to Programming
LanguageIndependent Source-Code
Plagiarism Detection”, IEEE International
Conference on Fuzzy Systems, 2015.

[18] K.Thammi Reddy, M.Shashi and L.Pratap
Reddy,” Hybrid Clustering Approach for
Concept Generation “,IJCSNS International
Journal of Computer Science and Network
Security, VOL.7 No.4, April 2007.

[19]www.bitlaw.com/software-
patent/patentable.html

