
Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

744

FREQUENT ITEMSET MINING ALGORITHMS: A SURVEY

1 Sireesha Moturi, 2 Dr.S.N.TirumalaRao, 3 Dr. Srikanth Vemuru
1Research Scholar, K L E F. Astt. Prof., Department of Computer Science and Engineering, NEC

2 Prof., Department of Computer Science and Engineering, Narasaraopeta Engineering College
3 Prof., Department of Computer Science and Engineering, K L E F

E-mail: 1sireeshamoturi@gmail.com, 2naga_tirumalarao@yahoo.co.in, 3vsrikanth@kluniversity.in

ABSTRACT

Task of extracting fruitful knowledge from huge datasets is called data mining. It has several aspects like
predictive modeling or classification, cluster analysis, association analysis, anomaly detection and
regression etc. Among all association rule mining is one of the major tasks for data mining. Association
analysis is mainly used to discover patterns, which describes strongly associated features in the data.
Market basket data is one of the major applications of association rule mining. Other applications include
bioinformatics, medical diagnosis, scientific data analysis, web mining, finding the relationships between
different elements of earth climate system etc. Various algorithms have been proposed by researchers to
improve the performance of frequent pattern mining such as Apriori, Frequent Pattern (FP)-growth etc. We
are providing a brief description of some of the techniques in detail in the later section of this paper.

Keywords: Association Rule Mining, Support, Confidence, Frequent Itemset

1. INTRODUCTION

In today’s competitive world, every
business organization has immense competition to
attain success. So every business organization or
business executive makes strategic decisions in
order to achieve success. In present scenario, a vast
amount of data is generated by daily activities such
as Science, Engg., Business and many other areas,
due to the rapid advances in computerization and
digitalization techniques. Sometimes, users might
have no idea about what kind of patterns in their
data may be more useful, and thus might prefer to
discover various kinds of patterns in parallel.
Therefore, mining the relevant and important
information from this huge amount of data is
necessary for many industries which can help in
decision making process [2]. So, the most
challenging task is to extracting useful knowledge
from that vast amount of data. Thus, it is essential
to have a data mining system which will mine
various kinds of patterns to fulfill the needs of
different users or applications. So, the data mining
is a process which uses wide variety of tools to
extract knowledge from massive datasets.

Data mining plays a crucial role in the
knowledge discovery process by finding hidden
patterns, associations, constructing analytical

models, performing classification and prediction,
performing clustering and presenting the mining
results by using visualization tools and techniques.
So the data mining system should be able to
discover patterns at various levels of granularities
to accommodate different user expectations or
applications. Data mining is also called as
Knowledge Discovery in Databases (KDD) why
because it integrates different techniques form
different disciplines such as neural networks,
statistics, machine learning, database technology
and information retrieval, etc.[1]. Data mining is
extensively used in banking and financial services,
consumer goods and retail distribution sectors and
controlled manufacturing etc.

2. ASSOCIATION RULE MINING

Association rule mining is one of the

major techniques in data mining. Association rule
mining is used to find associations, frequent
patterns, correlations and/or informal structures
from transactional databases or other information
repositories[3].It is useful in various areas like
retail stores, inventory control, marketing, catalog
design, selection of crops in agriculture sector,
wireless sensor networks, bioinformatics,
telecommunication alarm diagnosis, web mining

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

745

and scientific data analysis like earth science data
etc. The main task of association rule mining is to
search for interesting relationships among sets of
items in a given database.

Various algorithms were proposed for
finding the frequent itemsets. Those algorithms are
divided into two groups. One is the Apriori-like
approach which follows horizontal mining
technique and another one is the FP-growth-like
approach which follows vertical mining technique.
In the Apriori-like approach candidate patterns of
length (k+1) are generated by using the frequent
patterns of length k and it follows breadth-first
search strategy. However to generate the longest
frequent itemset, it requires multiple scans of
database. Some studies, such as [3] [5] [18] [22]
[30] [26] [29] adopt the Apriori-like approach. To
improve the performance of Apriori, the FP-
growth-like approach is introduced by using a data
structure FP-tree (Frequent Pattern tree) to store the
database and it follows depth-first search strategy to
find frequent patterns. In the FP-growth methodto
find the frequent patterns, only two scans of
database are enough and there is no candidate
itemset generation. So, FP-growth is much faster
than Apriori. There are several alternatives and
extensions to FP-growth, such as [9] [11]
[14][15][16][20] [21] [24] [25] [27][28].

Generally, association rule mining can be
defined as a two-step process.

 Step1: Find all frequent itemsets.
 Step2: Generate all association rules.
 The overall performance of association

rule mining is determined by first step. After
finding the frequent itemsets[2], the association
rules are generated[5].

3. FREQUENT ITEMSET MINING

The frequent itemset mining can be

formally stated as follows. Transactional database
(TB) contains set of transactions with unique ID’s
called Transaction Identifier (TID). Each
transaction contains collection of zero or more
items called as an itemset. An itemset with zero
elements is called null itemset. If an itemset with
‘n’ elements is called as an ‘n’-itemset. Every
subset of I is an itemset.

Let us consider I={I1,I2,....,Im}be the set
of items and TB={T1,T2,...,Tn}be the task relevant
data, where each transaction Ti is a subset of items
chosen from I, such that Ti€I. Let X be an itemset
and a transaction T is said to contain X if and only
if X I. The support count of an itemset X in TB is
the number of transactions in TB, X occurs as a

subset. For a given TB, let minsup be the minimum
support threshold value specified by the user. If
support_count(X) >= minsup, then itemset X is
called a frequent itemset. The support of an itemset
is represented with σ. σ(X) of an itemset X is
defined as follows.

Given a transactional database with minimum
support threshold, the task of frequent pattern
mining is to find all frequent patterns from the
transactional database. Consider the transactional
database shown in Table-1with minimum support
threshold=2.

Table-1: Transactional Database
TID ITEMS
T1 ABCEFH
T2 ACG
T3 E
T4 ACDEG
T5 ACEG
T6 E
T7 ABCEF
T8 ACD
T9 ACEG
T10 ACEG

Table-2 shows the set of all frequent patterns
discovered from the transactional database shown
in Table-1

Table-2: Frequent patterns of Table-1
All frequent Patterns with minsup=2

A: 8, B:2, C:8, D:2, E:8, F:2, G:5

AB:2, AC:8, AD:2, AE:6, AF:2, AG:5, BC:2,
BE:2, BF:2, CD:2, CE:6, CF:2, CG:5, EF:2, EG:4

ABC:2, ABE:2, ABF:2, ACD:2, ACE:6, ACF:2,
ACG:5, AEF:2, AEG:4, BCE:2, BCF:2, BEF:2,
CEF:2, CEG:4

ABCE:2, ABCF:2, ABEF:2, ACEF:2, ACEG:4,
BCEF:2

ABCEF:2

4. ASSOCIATION RULES

Association rule is an implication expression and
display it in the form of a rule XY, where X and
Yare disjoint subsets and X I and Y I where I = {I1,
I2,, Im} i.e X∩Y=Φ. For a given dataset TB, the
minconf be the minimum confidence threshold
value specified by the user. If confidence(XY)
>=minconf then XY is called strong association

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

746

rule. The confidence of a rule XY is calculated as
follows.

C(XY) = σ(XUY)/σ(X) or P(Y/X)
 The strength of an association rule can be
measured in terms of support and confidence.
These measures are explained in detail in [4].The
rule XY holds on the transactional database TB
with support S and confidence C, where S is the
percentage of transactions that contain XUY, and C
is the percentage of transactions in TB containing X
that also contains Y. The rules which satisfy both
support and confidence thresholds are called strong
association rules.

5. LITERATURE SURVEY

 One of the first algorithms for association rule
mining was AgrawalImielinski Swami (AIS)
algorithm [2]. In AIS algorithm the candidate
itemsets are generated and counted on-the-fly basis
when the database is scanned. New candidate
itemsets are generated by extending the large
itemsets with other items in the transaction. The
drawback of AIS is it makes multiple passes over
the database that results in unnecessarily generating
and counting too many candidates that turn out to
be small.
 Like AIS, in Set-oriented Mining (SETM) also
the candidate itemsets are generated on-the-fly
basis when the database is scanned, but counted at
the end of the pass. Standard Structured Query
Language (SQL) join operator is used for candidate
generation. When the New candidate itemsets are
generated, the TID of the generating transaction is
saved with the candidate itemset in a sequential
structure. At the end of the pass, the support count
of candidate itemsets is obtained by aggregating
this sequential structure. SETM also have the same
drawback of AIS. In addition to this for each
candidate itemset, there are many entries as its
support value.
 One of best known algorithm for finding the
frequent itemsets is the Apriori algorithm[5].
Apriori is a Breadth First Search algorithm which
uses level wise search to find out the frequent
itemsets i.e frequent-k itemsets are used to generate
frequent k+1 itemsets This is based on the
candidate-generation and test approach i.e first
generate candidate 1-itemsets by scanning the
transactions T of database TB and placed in C1.
The itemsets which satisfy the minimum support
threshold are called frequent-1-itemsets, placed in
level wise relation L1. The frequent-1 itemsets in
L1are used to generate frequent-2-itemsets. This
process is repeated until there are no more frequent

itemsets. Apriori algorithm works in two step
process named as join step and prune step[6].

1. Join step: Self join of Lk-1 with itself is
performed to form Lk. From candidate k-
itemsets i.e the candidates l1 and l2 of Lk-
1 are joined if and only if (l1[1]=l2[1])
(l1[2]=l2[2]) … (l1[k-2]=l2[k-2]) (l1[k-
1]=l2[k-1]). Then the resulting itemset
l1[1], l1[2], …, l1[k-2], l1[k-1], l2[k-1] is
formed by joining l1 and l2.

2. Prune step: This step is mainly used to
eliminate some of the candidate kitemsets
which are infrequent i.e CK is the superset
of LK, but its members may or may not be
frequent. After this step all frequent k-
itemsets are placed in LK.

 In this algorithm, to find frequents patterns
downward closure property is used, i.e all subsets
of a frequent itemset must themselves be frequent
or all supersets of infrequent itemset must be
infrequent.
 The major flaw of this algorithm is multiple
database scans, i.e if the database is too large, it
takes more time to scan the database in order to
calculate the support count of every candidate. To
overcome this problem several variations of Apriori
are developed.
 R.Agarwal, R.Srikant proposed AprioriTid[5]
algorithm which uses the Apriori candidate
generation function. The main feature of this
algorithm is the transactional database TB is not
used for support counting after the first pass.
Instead it uses CK’ .The entries in CK’ is of the
form, where XK is the largest k-itemset. If a
transaction does not have any candidate k-itemset,
then there is no entry in CK’ for that transaction. As
the value of k increases the number of entries in
CK’ are decreased. However, number of entries in
CK’ may be more for smaller value of k. It means
Apriori outperforms AprioriTid for initial passes i.e
for smaller value of k, but for larger value of k
AprioriTid outperforms Apriori.
 Another algorithm known as Apriori hybrid
was also presented by R.Agarwal, R.Srikant[5].
Apriori hybrid is a combination of Apriori and
AprioriTid. It uses Apriori, in the earlier passes and
later it switches to AprioriTid when it expects that
the CK’ is fit in main memory.
 These three algorithms Apriori, AprioriTid
and Apriori hybrid outperforms the previous known
frequent itemset mining algorithms named as AIS
and SETM.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

747

 Improved Apriori Algorithm (IAA) [18]
based on the original Apriori algorithm is
introduced by Huan Wu et al. by using a new count
based method in order to prune the candidate
itemsets and uses new record generation method in
order to reduce the size of the data scan. By using
these two methods IAA outperforms other
algorithms like Apriori, AprioriTid, HDO[19] etc.
 o reduce the scanning time and to reduce the
redundant generation of candidate itemsets an
improved Apriori algorithm called Transaction
Reduction [23] is introduced by Jaishree Singh,
Hari Ram, and Dr.J.S.Sodhi. In this method an
attribute Size OfTransaction (SOT) is introduced.
According to the value of k, the transactional
database is updated by deletion process. According
to the value of k, algorithm searches for same value
of SOT in database. If it matches then delete only
those transactions from database, then that leads to
reduced scan time and less number of candidate
itemsets. So, it reduces the total I/O time required.
However it has the overhead to manage the new
database after updating the database every time. So,
there should be some approach which has very less
number of database scans.
 The classical Apriori algorithm is inefficient,
because it takes so much time to scan the database,
and is inefficient due to several scans of database.
To overcome these limitations, a new algorithm
Transaction Reduction- Bit Array Matrix (TR-
BAM)[26], [31] is developed by Vijayalakshmi et
al. The entire database is scanned only once and
then the data is represented in the form of a Bit
Array Matrix. The transactions which are repeated
in the database are represented by the Repetition
Count (RC) column and a new row sum is used to
store the number of nonzero elements in the
column. The support count of k-itemset can be
obtained by performing bitwise AND operation on
the bits of corresponding items and by using the
count value in the RC column. By using these two
techniques RC and sum. TR-BAM method greatly
reduces the amount of time and space required. The
time consumed between original Apriori and TR-
BAM is greatly reduced when the value of support
increases.
 To avoid the costly candidate itemset
generation and test process completely two new
algorithms called CountTableFI (CTFI) and Binary
CountTableFI (BCTFI) [30] are recommended by
Marghny H. These algorithms represent the
transactional database in the form of a binary
number and decimal number. In CTFI the original
transactional data is transformed into smaller
transactional data along with the information of

frequent itemsets. CTFI algorithm is based on the
set and subset properties. If multiple transactions
having the same set of items merge those
transactions and represent the number of
occurrences as count. If multiple transactions
having the common prefix and one transaction is
subset of another according to some sorted order,
then merge the shared part as long as the count of
items is registered properly. Here the Bitwise AND
operation is used for intersection operation for
quick generation of frequent itemsets. In BCTFI,
first the original transactional database is
transformed to binary data. By using this binary
data the original data is transformed to decimal
number. The BCTFI is similar to CTFI, but the
merge process in BCTFI is based on the decimal
value of each transaction. So, it is easy to identify
the identical transactions by using the decimal
number. These two algorithms does not need to
generate candidate itemsets, so it reduces the costly
database scans. Experimental results shown that
CTFI, and BCTFI outperforms most of the Apriori-
like algorithms and FP-growth algorithm in most of
the cases.
 Improved Apriori algorithm named BE-
Apriori [29] based on pruning optimization and
transaction reduction is introduced by Zhuang
Chen, et al. By using this improved algorithm, the
number of frequent itemsets becomes much less,
therefore a significant reduction in running time.
Pruning optimization strategy states that to generate
candidate-K itemsets on the basis of candidate-(K-
1) frequent itemsets, a temporary table is used to
count the frequency of all the items in frequent
itemsets. This method reduces the number of
frequent itemsets generated. Transaction reduction
strategy is used to reduce the number of
transactions to be scanned by compressing the
transactional database. In this way, BE-Apriori
algorithm improves the efficiency of Apriori by
reducing the number of candidates generated and a
significant improvement in running time by
reducing the transaction length.
 To overcome the problem found in many
Apriori-like algorithms i.e candidate set generation
and test approach, a new algorithm to find frequent
patterns of length K without candidate generation is
Frequent Pattern growth (FP-growth) introduced by
the Jiawei Han et al.[7] based on Depth First Search
method. The FP-growth algorithm compresses the
dataset using a compact data structure called as
Frequent Pattern tree (FP-tree) and directly extracts
frequent patterns from an FP-tree by exploring the
tree in a bottom-up fashion, which avoids costly
repeated database scans. To avoid the generation of

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

748

a large number of candidate itemsets it uses
frequent pattern growth method. To reduce the
search space it adopts a divide-and-conquer
strategy to decompose the mining task into a set of
smaller tasks. In most of the cases, FP-growth
outperforms the Apriori-like algorithms by several
orders of magnitude. This method saves
considerable amount of memory for storing the
transactions, therefore it substantially reduces the
search costs. Finally, it reduces both the time and
space complexity required when compared to
Apriori. However, if the database is too large, it is
unrealistic to construct a main memory based FP-
tree.
 A novel vertical data mining algorithm called
Diffset[8] using vertical data format was proposed,
which only maintains the differences in the TId’s of
a candidate patterns from its generating frequent
patterns i.e it avoids storing the entire TIDset for
every member of a class. So, this method
drastically reduces the size of memory required by
orders of magnitude to store intermediate results
that significantly increase the performance.
 MingjunSong, and Sanguthevar
Rajasekaran[9] recommended a novel algorithm
called Transaction Mapping Algorithm by
exploring the vertical data representation for
Frequent Itemsets Mining. The transaction tree is
used to represent all the transactions in the
database. Each node in the tree has the name of the
item and count that keeps track of number of
transactions that contain this item. After
constructing the transaction tree the transactions ids
of each itemset are mapped and compressed to
transaction intervals. The counting of these itemsets
is performed by intersecting these interval lists in a
depth-first manner along with the lexicographic
tree. This compression technique greatly reduces
the intersection time.
 M. J. Zaki [10] worked with two new
algorithms Eclat and MaxElat for fast association
rule mining. In these algorithms first itemsets are
clustered by using equivalence classes and then
frequent itemsets are extracted from each cluster by
using bottom-up or hybrid traversal. To enhance the
performance of association rule mining a new data
structure named as Support-Ordered Trie Itemset
(SOTrieIT) is introduced by Yew-KwongWoon et
al. [14] with two algorithms named as Fast Online
Dynamic growth (FOLD-growth) and Fast Online
Dynamic Association Rule Mining-2
(FOLDARM2). First SOTrieIT is constructed by
extracting 1-itemsets and 2-itemsets. SOTrieIT is
ordered by decreasing support count and every
node of SOTrieIT is represented with an item name

and its support count. SOTrieIT contains only two
levels of nodes. First level node of 8 SOTrieIT is
the support count of 1-itemset and second level
node of SOTrieIT is the support count of 2-itemset.
FP-growth is good in situations where kmax >10,
while FOLDARM is extremely fast when the kmax
of largest frequent itemset is small and thus, FOLD-
growth is an attempt to amalgamate both (FP-
growth and FOLDARM) algorithms strengths. In
FOLD-growth L1 and L2 are found quickly with
the SOTrieIT and they can be used to prune the
transactions which are used to construct the FP-
tree. Hence, only one scan of database is enough to
build the FP-tree. If L2 is not found, immediately
terminate the algorithm because all possible
frequent itemsets in L1 are already obtained. When
the transaction are added or deleted, the SOTrieIT
can be incrementally updated, but FP-tree can be
reconstructed always whenever the database is
updated. In this way FOLD-growth achieves better
performance than Apriori and FP-growth.
FOLDARM uses the SOTrieIT for quick generation
of L1 and L2 like FOLD-growth. To find the
remaining itemsets it uses Apriori. FOLDARM2 is
similar to FOLDARM but it uses an additional step
to reduce the size of the database. FOLD-growth is
nearly 100 times faster than FP-growth with the
SOTrieIT data structure. The main strength of
SOTrieIT is speed in discovering L1 and L2, while
the main weakness is it discovers only L1 and L2.
FOLD-growth uses SOTrieIT, so it can be more
incremental than FP-growth to certain extend.
 JieDong and Min Han presented an effective
algorithm named BitTableFI[16] to mine frequent
itemsets, to compress the database and for quick
candidate itemset support count generation a
special data structure named BitTable is used
horizontally and vertically. First generate the
frequent 1-itemsets and then initialize the BitTable
database. If an item ‘i’ appears in transaction ‘t’,
the bit ‘i’ of BitTable’s TB element is set to one
otherwise set to zero[17]. For every frequent 1-
itemsets, the binary values of the item are converted
to an integer value and that is added to the BitTable
database. In this manner the entire database is
compressed to a BitTable database, so that it can be
fit in main memory. The candidate itemset support
count is calculated quickly by accessing the support
of the candidate itemsets directly from the BitTable
database and performing bitwise AND operation on
corresponding elements of the each candidate
itemset. Then that candidate itemset is said to be
frequent if it satisfies the minimum support
threshold.
 The major advantages of this method are

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

749

1) It construct special BitTable database
which is much smaller in size when
compared to the original database.

2) It uses bitwise AND operation to generate
the frequent candidate itemsets.

 This Bitwise AND operation is much faster
than the traditional candidate itemset generation
mechanisms. However, the BitTable is only
focusing on candidate itemset generation and
support counting issues, but it does not concentrate
on any other techniques like to reduce the size of
the candidate itemset and number of times scanning
the database etc.
 A novel vertical mining algorithm called
PrePostVertical (PPV) [20] is presented by Zhihong
Deng et al. for fast frequent itemset discovery. It
uses a new data structure Node-list, which is
obtained from PrePostCode-tree (PPC-tree). PPC-
tree is constructed to store the database and
traversed in preorder and postorder manner. Every
node in a PPCtree is assigned with preorder code,
postorder code, count, item name, and children
node list. The PP-code of any node N in the PPC-
tree is represented as
<(N.Preorder,N.Postorder):N.count>. Every
frequent 1-itemset can be represented as a Node-list
by using the PP-codes and count from the PPC-tree.
The Node-list of a frequent item is the sequence of
all the PP-codes for that item from the PPC-tree.
Generally, the Node-list is represented as below.

{ (a1,b1):c1>,<(a2,b2):c2>,…<(an,bn):cn> }
 Where ‘a’ is its preorder value, ‘b’ is its
postoder value and ‘c’ is its support count. The
support of an item ‘i’ is obtained by adding
c1+c2+….+ cn. To generate frequent patterns of
length (k+1) it performs intersection operation on
Node-lists of frequent patterns of length k. The
Node-list is more efficient because transactions
with common prefixes share the same nodes of the
PPC-tree and support count is calculated by
performing intersection on the Node-lists. The
ancestor-descendent relationship of two nodes can
be effectively verified by prepost codes of nodes in
the PPC-tree. The experimental results show that
PPV outperforms other vertical mining algorithms
like FPgrowth, Eclat and dEclat.
 For mining frequent itemsets, a novel
algorithm named BitApriori[21] is invented, by
describing the transactional database in the form of
a binary string. First frequent-1, and frequent-2
itemsets are generated, then binary string is used to
record each of the frequent-2 itemsets. The trie is
constructed with the binary string in each leaf node,

and then the trie is extended by using a special
technique named as equal support pruning. The Kth
layer of the trie is generated by combining each
node ‘m’ in the (K-1)th layer of the trie with one of
its sibling nodes ‘n’. Then check all of its (K-1)
subsets. If one of the (K-1) subsets is infrequent,
then all of its supersets are infrequent. If any of its
(K-1) subsets is in the equal support set, the item in
node ’n’ is placed into the equal support set of p. If
none of the (K-1) subsets are in the equal support
set or infrequent the logical AND operation is
performed between the binary strings of node ‘m’
and ‘n’. If the support is larger than minimum
support, or not equal to the support of ‘m’, then a
new child node is created for ‘m’ with the item in
node 'n’ and inserted into the trie. BitApriori
outperforms Apriori because it just scans the
database twice for candidate generation and
traverse the trie only once for support counting.
However, when the database is large BitApriori
suffers with the problem of memory scarcity and
when the trie has many nodes from the root node,
BitApriori is not effective.
 BitApriori algorithm[21] was modified by
Zubair Khanet al. to find the frequent patterns,
named Modified BitApriori[25] in order to improve
the efficiency based on the trie data structure. The
major difference between BitApriori and Modified
BitApriori is that Bitwise AND operation on binary
strings is performed in BitApriori[21], Bitwise OR
operation on binary strings is performed in
Modified BitApriori. When the minimum support
threshold is low, the Modified BitApriori
outperforms the Apriori.
 To reduce the cost of candidate generation and
test [22] a new algorithm IndexBitTableFI [23] is
presented by Wei Song et al. It uses the BitTable
horizontally and vertically. An IndexArray is
proposed to make use of BitTable horizontally. To
find out the representative items of frequent-1
itemsets quickly subsume index is computed by
using the breadth first search. Then the depth first
strategy is used for the resulting itemsets to
generate all other frequent itemsets. An index array
is an array with size n1, where n1 is the number of
frequent-1 itemsets. Each element of the array
belongs to a tuple, where item is an item and
subsume of an item is the subsume index. The
subsume index of an item is obtained by
intersecting all the transactions containing that
item. The Index-BitTableFI achieves good
performance by computing the subsume index i.e
frequent itemsets having the support count as
representative items can be identified directly by its
subsume index.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

750

 PPV[20] is the first algorithm to integrate FP-
growth method with vertical mining method. Even
though it employs candidate generation and test
strategy to find frequent itemsets, it has inherent
weakness of Apriori-like methods i.e the candidate
itemsets of length(K+1) Node-lists are obtained by
intersecting the Node-lists of frequent patterns of
length K. To overcome this drawback Node-list is
changed to N-list[24]. Based on the Nlist data
structure a new algorithm prepost is proposed,
which can be used to obtain frequent itemsets
directly without candidate generation. To store the
database prepost adopts a prefix tree structure
called PPC-tree. By traversing the PPC-tree in the
preorder and postorder manner each node is
assigned with PP-code (PrePost code). The PP-
codes are arranged in nondecreasing order of their
preorder values. The ancestor-descendent
relationship of two nodes X1 and X2 is defined as
follows.

X1 is an ancestor of X2 if and only if
X1.preorder<X2.preorder and
X1.postorder>X2.postorder. Each frequent item can
be represented by an N-list, where N-list is the
sequence of PP-codes. The N-list of an ‘i1’ is
<(a1m,b1m):c1m> and the N-list of ‘i2’ is
<(a2n,b2n):c2n>, the N-list ‘i1i2’ is <(a1m,b1m):c2n> if
and only if <(a1m,b1m):c1m> is an ancestor of
<(a2n,b2n):c2n>. By intersecting the N-lists of
frequent-K itemsets prepost finds frequent-(K+1)
itemsets.

Let <(a1m,b1m):c1m> and <(a2n,b2n):c2n> be the
PP-codes, then the NodeList-intersection is worked
as follows.
First check the ancestor-descendent relationship of
<(a1m,b1m):c1m> and <(a2n,b2n):c2n>. if
<(a1m,b1m):c1m>is an ancestor of <(a2n,b2n):c2n>, then
check there exists a node in the form of
<(a1m,b1m):cmn> in the N-list of P. if so, change
<(a1m,b1m):cmn> to <(a1m,b1m):cmn+c2n> otherwise
insert <(a1m,b1m):c2n> into the N-list of P. Then if
<(a2n+1,b2n+1):c2n+1> is not null, then check the
ancestor-descendent relationship of <(a1m,b1m):c1m>
and <(<(a2n+1,b2n+1):c2n+1>.

When compared to Node-lists, N-lists have
two advantages. First the length of the N-list of an
item is much smaller than the length of the Node-
list of an item and the second is N-list follow the
single path property. The major advantages of the
prepost algorithm are

1) For the compact representation of original
database it uses a data structure N-list,

which avoids the iterative database, scans
in the subsequent mining process

2) An efficient strategy intersection of two N-
lists is used instead of counting the support
count of itemsets.

3) Without generating the candidate itemsets
it finds frequent itemsets by the use of
single path property.

 The prepost outperforms several algorithms
like FP-growth, FP-growth*,Eclat and dEclat in the
point of running time. However, it consumes more
memory for the sparse datasets than FP-growth and
FP-growth*. The representation of PPC-tree is
more memory consumed because each node of the
PPC-tree contains more information like preorder
code, postorder code, and count etc. So it takes
more memory than FP-tree.
 To improve the efficiency of prepost Bay Vo,
et al. present an improved version of prepost [27].
To enhance the process of creating the N-lists
associated with itemsets it uses it uses hash table
representation and an improved N-list intersection
method. First construct the PPC-tree for the given
dataset. Each node N of the PPC-tree maintains five
values like name of the item, frequency of the item,
number of child nodes, preorder code and postorder
code. The N-list of a frequent-1 itemset is the
sequence of PP-codes associated for that node in
the PPC-tree.
 Suppose YM and YN be the two (K-1)
itemsets with the same frequency Y. NL(YM) and
NL(YN) are the N-lists associated with YM and YN.
Then the N-list associated with YMN is fi750nd as
follows. For each PP-code CiεNL(YM) and
CjεNL(YN) the algorithm will add <(Ci.preorder,
Ci.postorder): Cj.frequency> to NL(YMN) if Ci is an
ancestor of Cj. To combine PP-codes which has
same preorder and postoder values, traverse
NL(YMN). The N-list intersection function [24] was
O(x+y+z) where x, y, and z are the lengths of
resulting N-list, but the improve N-list intersection
method is only O(x+y). Another advantage is to
merge the same PP-codes improved intersection
function does not traverse the resulting N-list.
Subsume index of frequent-1 itemsets were
determined to find the representative items, it leads
to great reduction in run time. The proposed
algorithm is faster than prepost for the dense
datasets.
 Node-list[20] and N-list[24][27][32] are the
two data structures used for efficient mining of
frequent itemsets, but these two structures use the
PPC-tree with preorder code and postorder code, so

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

751

these two suffers with the problem of more memory
consumption to mine frequent itemsets. To
overcome this drawback an efficient data structure
named Nodeset[28] was introduced by Zhi-Hong
Deng et al. POC- tree is used to represent the
transactional dataset. For each node of POC-tree
the Nodeset maintains only the preorder code or
postorder code, which reduces half of the memory
required when compared to Node-lists and N-lists.
Based on Nodesets, a new algorithm named
Frequent Itemset Mining (FIM) is proposed for
efficient mining of frequent itemsets. A search tree
called set-enumeration tree is used by FIM for
discovery of frequent itemsets. To reduce the
search space, it adopts a pruning strategy called
promotion, which is similar to children-parent
equivalence pruning. The M-info for a node M in a
POC tree is, it’spreorder code or postorder code and
the count of that item registering in it. The
Nodesetof a frequent item A is the sequence of all
the M-infos of nodes registering A in the POC tree.
Given a frequent item A, assume it Nodeset is
{(P1:C1), (P2:C2),……., (Pm:Cm)} where P is the
preorder or postorder value and C is its Count.
Then the support of an item A is C1+C2+….+Cm.
Experimental results shown that the Nodeset
structure is effective because of

a) Less memory consumption
b) Fin runs faster than prepost and FP-growth

because of reduced search space with
pruning strategy.

 The improved version of prepost was N-list
and Subsume based algorithm for mining Frequent

Itemsets (NSFI) [32]. The NSFI uses the hash table
to enhance the process of creating N-lists and an
improved N-list intersection algorithm. Here two
theorems are proposed, to determine the subsume
index of frequent-1 itemsets based on the N-list
concept. It uses an early abandon strategy which
consists of 3 steps.

1) By summing the frequencies of first and
second N-lists, total frequency of two
Nlists is determined.

2) For each PP-code Cj that does not belong
to the resultant N-list TF=TF-Cj
frequency.

3) If TF is less than minimum support then
stop the process and consider that itemset
as infrequent.

 The subsume concept [23] was adopted in
NSFI algorithm in order to reduce the memory
consumption requirements, because it is not
essential to store the N-lists associated with a set of
frequent itemsets to calculate their supports. The
NSFI is faster than prepost for the dense datasets
and the runtime of NSFI is always faster than
dEclat.

6. COMPARATIVE STUDY OF DIFFERENT

FREQUENT PATTERN MINING
METHODS

S.
No.

Method Pros Corns

1 Agrawal Imielinski
Swami (AIS) [2]

-When the database is scanned, candidate
itemsets are generated and counted on-the-
fly basis.

-Unnecessarily generating and
counting too many candidates.
-Requires multiples scans over
the database

2 SETM [2] - Standard SQL join operator is used for
candidate generation.
- Support count of itemset is calculated at the
end of pass.

- Requires multiple database
scans.
- For each candidate itemset
many entries ass it’s support
value.

3 Apriori [5] - Reduces the number of candidates
generated when compared to brute-force
method.
- It is based on candidate-generation and test
approach.

- If the database is too large, it
requires more time to scan the
database for support counting.

4 Apriori Tid [5] - After the first pass transactional database is
not used for support counting.
- AprioriTid outperforms Apriori for larger
value of ‘K’.

- It requires more memory.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

752

5 Improved Apriori
Algorithm (IAA) [18]

- Reduces the number of frequent itemsets
generated.
- The amount of time required for scanning
is reduced. Hence, the execution time is
reduced.
- Performance is improved.

- If the database is too large it
takes more time.

6 Transaction Reduction
[22]

- Attribute Size Of Transaction (SOT) is
used to update the database.
- It reduces the total I/O time required and
the total time required for scanning.

- It has a overhead of managing
the database after updating the
database every time.
- More memory is required to
manage updatable database.

7 Transaction Reduction
– Bit Array Matrix(TR
– BAM) [31]

- The entire database is scanned only once.
- Bit Array Matrix is used to represent the
data.
- Repetition Count (RC) column is used to
represent the repeated data.
- Number of nonzero elements in each
column is represented with sum.

- More memory
consumption.

8 Count Table FI (CTFI)
[30]

- Count is used to represent the multiple
transactions having the same set of items.
- No need to generate candidate, itemsets.
So, it reduces costly database scans.
- Less execution time and less memory
usage.

- Transactional database is
represented in the form of a
binary number and decimal
number which takes more time
for conversion.

9 BE-Apriori [29] - Number of frequent itemsets becomes
much less. So, there is a significant
reduction in running time.
- Transactional database is compressed to
reduce the number of transactions to be
scanned by maintaining the frequency of all
the items in frequent itemsets.

- Overhead of maintaining the
temporary table.

10 Frequent Pattern
Growth (FP-Growth)
[7]

- Two scans are enough to find the frequent
itemsets.
- It does not generate candidate itemsets.
- It reduces the amount of memory required
for storing the transactions.

- It generates more number of
conditional FP-trees.
- If the database is too large, it
is difficult to construct a main
memory based FP-tree.

11 Diffset [8] - Rather than maintaining the entire
database, it only maintains the differences in
Tid’s. So, this method greatly reduces the
amount of memory required by order of
magnitude.

- Number of comparisions are
required to find the differences
in Tid’s, so it requires more
execution time.

12 Transaction Mapping
(TM) [9]

-Transaction tree is constructed for all
Transaction Id’s and those are compressed
into transaction intervals. This compression
reduces the intersection time.

- Need to maintain transaction
tree.

13 Bit Table FI [16] -It uses a special data structure called Bit
Table to represent the database which is
much smaller in size when compared to the
original database.
- Bitwise AND operation is used to generate
the frequent itemsets, it is much faster than
traditional candidate itemset generation
procedure.

- It cannot reduce the number
of database scans.
- It cannot reduce the size of the
candidate itemsets.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

753

14 PrePostVertical (PPV)
[20]

- It uses a special tree called PrePostCode-
tree (PPC-tree) to store the database.
- The Node-list is more effective because
transactions with common prefix share the
same nodes.

- More memory consumption
because each node in a PPC-
tree maintains name of the
item, frequency of the item,
number of child nodes,
preorder code and postorder
code.

15 BitApriori [21] - For candidate generation, it scans the
database only twice.
- It traverse the trie only once for support
counting.

- If the trie has many nodes
from the root node, it suffers
with the problem of memory
scarcity.

16 Index –BitTableFI [23] - It uses the Bit Table horizontally and
vertically.
- Subsume Index was used to find the
representative items.

- Transactional database is
transformed into Index Array
which takes more time.

17 PrePost [24] - Frequent itemsets are obtained without
candidate generation.
- It uses a special data structure named N-list
which avoids iterative database scans.

- More memory consumption
because each node in a PPC-
tree maintains name of the
item, frequency of the item,
number of child nodes,
preorder code and postorder
code.

18 Node set [28] - It represents data in the form of a POC tree
i.e either preorder code or postorder code.
- It reduces the search space with the special
pruning strategy named Promotion.

- More memory consumption if
the tree has more nodes.

7. OPEN RESEARCH ISSUES

Association rule mining performing vital role in the
essential area data mining. Applications of
association rule mining are Large and Distributed
database - Businesses, e.g. logistics, marketing and
Government - almost all branches e.g. defence,
public safety, Spatial database - GIS, Relational
database - Industries, Medical database- Medical
diagnosis, Hospital, Medical shops, scan centers.
Future work is to find out the better algorithm to
find frequent itemsets.

8. CONCLUSION

One of the important data mining

techniques is association rule mining. Association

rule mining is not only used to discover interesting

relationships, it also used to discover differences

between different kinds of classes in a database.

Association rule mining algorithms are basically

categorized into two groups named as horizontal

mining algorithms and vertical mining algorithms.

Horizontal mining algorithm suffers with the

problem of repeated scans of database and more

number of candidate itemsets generated, where the

vertical mining algorithms gave some improvement

over the horizontal mining algorithms by reducing

the number of scans and by reducing the number of

candidate itemsets generated. This improvement

leads to significant reduction in run time. This

paper briefly gives the overview of some existing

frequent pattern mining algorithms. This analysis

states that all the methods have its own pros and

corns.

REFRENCES:

[1] Han.J, Kamber.M, “Data Mining:
Concepts and Techniques”, Morgan
kaufmann Publishers, Book, 2000.

[2] R. Agrawal, T. Imielinski, A. Swami,
“Mining associations between sets of
items in large databases, Proceedings of
the ACM SIGMOD 1993 Conference
Washington DC, USA, May 1993.

[3] R. Srikant and R. Agarwal, “ Mining
quantitative association rules in large
relation tables” proceedings of the 1996
SIGMOD, pp. 1-12, 1996.

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

754

[4] T. Karthikeyan and N. RaviKumar, “A
Survey on Association rule mining”,
International Journal of Advanced
Research in Computer and
Communication Engg(IJARCCE),
PP.5223-5227, 2014.

[5] R. Agarwal and R. Srikant, “ Fast
algorithm for mining association rules”,
Proceedings of the 20th international
conference on very large databases ,
Margunkaufmann , PP. 487-499.

[6] J. Han, M.Kamber, “Data Mining:
Concepts and Techniques”, The Morgan
kaufmann Series in Data Management
Systems, Champaign: CS 497JH, fall
2001.

[7] Jiawei Han, Jianpei, and Yiwenyini,
“Mininig Frequent Patterns without
Candidate Generation”, Proceedings of the
ACM SIGMOD International Conference
on Management of Data Pages , PP. 1-12,
2000.

[8] Mohammed J. Zaki and Karam Gouda,
“Fast Vertical Mining using Diffsets”
Proceedings of the ASM SIGKDD ’03
Washiton, DC, USA, Aug-2003.

[9] Mingjun Song, and
SanguthevarRajasekaran, “A transaction
mapping algorithm for frequent itemset
mining “, in IEEE transactions on
knowledge and Data Engg.

[10] M. J. Zaki, S. Parthasarathy, M. Ogihara,
and whi, “New Algorithms for Fast
Discovery of Association Rules”
Proceedings of KDD – 97, pp. 983-286.

[11] Jianyong Wang, Jiawei Han, “ TFP: An
Efficient Alogirithm for Mining Top-K
Frequent Closed Itemsets” IEEE
TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, VOL. 17,
NO. 5, MAY 2005.

[12] M.J. Zaki and C.J Hsiao, “CHARM: An
Efficient Algorithm for Closed Itemset
Mining.” Proc. 2002 SIAM Int’ I Conf.
Data Mining[SDM ’02), pp. 457-473. Apr.
2002.

[13] I. Wang, J. Han, and J. Pei, “CLOSET+ :
Searching for the Best Startagesies for
Mining Frequently Closed Itemsets, “ Prc.
2003 ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data
Mining(KDD ’03), pp. 236-245, Aug.
2003.

[14] Yew KwongWoon, Wee Keong Ng, Ee-
Peng Lim, “A Support-Ordered Trie for
Fast Frequent Itemset Discovery”, IEEE
transactions on Knowledge and Data
Engineering , PP. 875-879, Aug. 2004.

[15] Y.K. Woon, W.K,Ng, and A. Das, “Fast
Online Dynamic Association Rule
Mining”, Proc. Secont Int’l Copnf. Web
Informatoion Systems Eng., pp. 278-287,
2001.

[16] Jie Dong, Min Han “BitTableFI: An
efficient mining frequent itemsets
algorithm“, Knowlwdge-Based Systems,
vol.20, pp.329-335, 2007.

[17] D.Burdick, M. Calimlim, J. Flannick, J.
Gehrke, T.M. Yiu. “MAFIA: a maximal
frequent itemset algorithm”, IEEE
Transactions on Knowledge and Data
Engineering 17(11) (2005) 1490-1504.

[18] Huan Wu, Zhigang Lu, Lin Pan,
RongshengXu, “An Improved Apriori-
based Algorithm for Association Rules
Mining“, Sixth International Conference
on Fuzzy Systems and Knowledge
Discovery, pp. 51-55, 2009.

[19] Lei Ji, Baowen Zhang, and Jianhua Li, “A
New Improvement on Apirori Algorithm”,
Computational Intelligence and Security,
2006 International Conference on Volume
1, Nov 2006, pp 840-844.

[20] Zhihong Deng, Zhonghui Wang, “ A New
Fast Vertical Methof for Mining Frequent
Patterns” International Journal of
Computational Intelligence Systems, Vol
3, No. 6,PP. 733-744, Dec 2010.

[21] JieminZheng, Defu Zhang, Stephen C. H.
Leung, Xiyue Zhou, “An efficient
algorithm for frequent itemsets in data
mining”, International Conference on
Advances in Signal Processing and

Journal of Theoretical and Applied Information Technology
15th February 2018. Vol.96. No 3

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

755

Communication (ICSSSM), PP. 1-6, June
2010.

[22] Jaishree Singh, Hari Ram, Dr. J.S.Sodhi, “
Improving Efficiency of Apriori
Algorithm Using Transaction Reduction”,
International Journal of Scientific and
Research Publications, Vol.3, 2013.

[23] Wei Song, Bingru Yang, ZhangyanXu, “
Index-BiTTableFI: An improved
algorithm for mining frequent itemsets”
Knowledge-Based Systems, Vol. 21,PP.
507-513, 2008.

[24] Deng. Z., Wang. Z., & Jiang, J.(2012).
“A new algorithm for fast mining frequent
itemsets using N-lists” , SCIENCE
CHINA Information Sciences , Vol. 55,
PP. 2008-2030, 2012.

[25] Zubair Khan, NeetuFaujdar,
Prashantkumar sing, Tarifabbas , “
Modified Bit Aopriori Algorithm: An
Intelligent Approach for Mining Frequent
Item-Set” Proc of Int. Conf. on Advances
in Signal Processing and Communication,
PP.813-819, 2013.

[26] V. Vijayalakshmi, Dr. A Pethalakshmi,
“Mining of Frequent Itemsets with an
Enhanced Apriori Algorithm”
International Journal of Computer
Applications(0975-8887) Volume 81 –
No. 4. November 2013.

[27] Bay Vo, Tuong Le, FransCoenen, Tzung-
Pei Hong , “ A Hybrid approach for
Mining Frequent Itemsets” Systems, Man,
and Cybernatics, IEEE, PP.4647-4651,
2013.

[28] Zhi-Hong Deng, Sheng-Long Lv, “ Fast
mining frequent itemsets using Nodesets”
Expert Systems with Applications 41
(2014) 4505- 4512.

[29] Zhuang Chen, Shiban Cai, Qiulin Song,
and Chonglai Zhu, “ An Improved Apriori
Algorithm Based on Pruning Optimization
and Transaction Reduction”, Artificial
Intelligence, Management Science and
Electronic Commerce (AIMSEC), PP.
1908-19011, Aug-2011.

[30] Marghny .H, Mohamed .M, and
Darwieesh, “ Efficient Mining Frequent

Itemset Algorithms ”, International Journal
of Machine Learninbg and Cybernatics,
Vol. 5, PP. 823-833, 2013.

[31] V. Vijayalakshmi, Dr. A Pethalakshmi,
“An Efficient Count Based Transaction
Reduction Approach For Mining Frequent
Patterns”, Procedia Computer Science,
Vol.47, PP. 52-61, 2015.

[32] Bay Vo, Tuong Le, Frans Coenen, and
Tzung-pei Hong, “Mining frequent
itemsets using the N-list and subsume
concepts”, International Journal of
Machine Learning & Cybernatics, PP. 1-
13, Apr 2014.

