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ABSTRACT 
 

This paper compares the speed of Baby-step Giant-step method and Pollard Rho with Brent Cycle Detection 
method to cause Total Break, which in turn is used to attack Digital Signature Algorithm i.e. forging a 
signature. This paper also finds out how the free parameter of Digital Signature Algorithm can affect the 
performance of the two method. This paper will present an empirical result on how the two method would 
perform under signature forgery scenario. Furthermore, an analysis of how close both method's performance 
is presented. Also, this paper provides an analysis regarding how the size of free parameter of DSA may 
affect the overall performance of the two methods. These analysis can provide useful basis for DSA’s 
parameter security analysis. Moreover, the result presented in this paper can extend to other discrete logarithm 
problem. 
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1. INTRODUCTION  

Digital Signature is a protocol mainly used as 
means to protect from source repudiation. In other 
words, it protects from a sender denying that he is 
the one who send a certain message. Digital 
Signature plays an important role in many practical 
aspect. Take for example, banking. 

There has been several digital signature algorithm, 
such as ElGamal Digital Signature and Schnorr 
Digital Signature. One particular digital signature 
algorithm is published by NIST as a standard with 
the name Digital Signature Algorithm. This 
algorithm uses asymmetric key to work. What makes 
this algorithm enticing is that this algorithm uses the 
hardness of discrete logarithm problem as its security 
measure. Digital Signature Algorithm (DSA) 
follows a certain parameter specification. 

Goldwasser et al. has made a work to determine 
the secureness of digital signature scheme against 
adaptive-chosen message attacks [1]. In the same 
work, Goldwasser et al stated four kind of attacks 
against digital signature scheme—one of them is 
called total break where the user's private key is 

compromised. This paper is interested to dwelve 
deeper into this type of attack. 

The idea of total break is to find out the private 
key from the cryptosystem. Various algorithm has 
been developed to solve discrete logarithm. There 
are two general-purpose algorithm that can be 
utilized, namely Baby-step Giant-step and Pollard 
Rho. These two algorithms have very broad 
application due to both can be used for any algebraic 
structure and not only for integer domain. Due to this 
fact, these algorithms are very good candidate as the 
method to cause total break. 

It has been noted that there are plentiful of 
research that revolves around Pollard Rho method. 
Many are interested in improving the performance 
either via specific hardware utilization (for example, 
[2], [3], and [4]) or by finding more efficient 
approach (for example, [5]). Combined with ever-
developing hardware evolution, the improvement 
would be cumulative. With this fruitful 
development, it would be interesting to know where 
such improvement has taken us since it would 
definitely impact how security protocols, including 
DSA, might get compromised. 
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This paper is interested in finding out how free 
parameter in DSA can affect the performance in 
causing total break. As stated before, Baby-step 
Giant-step and Pollard Rho is a potential means to 
cause total break, so the two method is to be used as 
a control method. The two method is to be run with 
various values following the DSA's specification, 
and see how well both method can tackle the chosen 
parameters. 

1.1. Contribution 
The outcome of this research is two fold. 

1.1.1. Empirical evidence of how DSA's 
parameter may affect two method's 
performance 

This research will introduce the effect of various 
DSA parameter towards the time needed for Baby-
step Giant-step and Pollard Rho method to cause 
total break. This research focuses on as many free 
DSA parameter as possible, following the standard 
protocol. While there are many works, especially 
student guidebook, which already explained a certain 
DSA parameter's effect to the two method's 
performance, this research is to give an empirical 
result of what effect they would produce. Hopefully, 
this can serve as a good basis for future work 
regarding the secureness of DSA. 
1.1.2. Provide a comparison between two 

method on classical computer in term of 
causing total break 

This paper is interested in discovering how Baby-
step Giant-step and Pollard Rho would compare in 
term of their speed in causing total break when faced 
with Digital Signature Algorithm—one of the digital 
signature scheme. And as such, both method will be 
used to simulate signature forgery, the type of attack 
which Digital Signature Algorithm can fall victim 
into. The knowledge of how DSA can fall vulnerable 
to each method can serve as starting point for further 
development of DSA. 

While this is the main objective, the finding 
resulted from this research can be extended to any 
context, as long they are related to discrete logarithm 
problem, ran on classical computer. 

2. THEORETICAL REFERENCE 

In this paper, two methods will be introduced. 
1. Baby-step Giant-step.  
2. Pollard Rho (using Brent Cycle Detection). 
Along these two methods, a Digital Signature 

Algorithm explanation also will be presented. 

2.1. Digital Signature Algorithm 
Digital Signature Algorithm is a standard digital 

signature method issued by NIST as the first version 

of Digital Signature Standard [6]. Digital Signature 
Algorithm works as follow. Given a hashed message 
𝐻ሺ𝑀ሻ: 

1. Determine the global public key component. 
a) A prime number 𝑝	where 2௅ିଵ ൑ 𝑝 ൑

2௅ for 512 ൏ 𝐿 ൏ 1024 and 𝐿 is a 
multiple of 64. 

b) A prime number where 𝑞|ሺp െ 1ሻ and 
2ଵହଽ ൏ 𝑞 ൏ 2ଵ଺଴. 

c) A generator g	that can be obtained using 
𝑔 ൌ ℎሺ௣ିଵሽ/௤  𝑚𝑜𝑑  𝑝. ℎ can be set 
arbitrarily where 1 ൏ ℎ ൏ ሺ𝑝 െ 1ሻ 

2. Determine the keypair 
a) An integer 𝑥 determined randomly with 

0 ൏ 𝑥 ൏ 𝑞 
b) An integer 𝑦 where 𝑦 ൌ 𝑔௫ 𝑚𝑜𝑑 𝑝 

3. Signature generation follows this procedure. 
a) 𝑟 ൌ ሺ𝑔௞𝑚𝑜𝑑 𝑝ሻ 𝑚𝑜𝑑 𝑞 
b) 𝑠 ൌ ሾ𝑘ିଵሺ𝐻ሺ𝑀ሻ ൅ 𝑥𝑟ሻሿ 𝑚𝑜𝑑 𝑞 
c) Signature is ሺ𝑟, 𝑠ሻ 

4. Signature verification follows this procedure. 
a) 𝑤 ൌ 𝑠ିଵ 𝑚𝑜𝑑 𝑞 
b) 𝑢ଵ ൌ ሾ𝐻ሺ𝑀ሻ𝑤ሿ 𝑚𝑜𝑑 𝑞 
c) 𝑢ଶ ൌ 𝑟𝑤 𝑚𝑜𝑑 𝑞 
d) 𝑣 ൌ ሾ𝑔௨భ𝑦௨మ 𝑚𝑜𝑑 𝑝ሿ 𝑚𝑜𝑑 𝑞 
e) Signature is valid if 𝑣 ൌ 𝑟 

2.2. Baby-step Giant-step 
Baby-step Giant-step is a method proposed by 

Shank to solve discrete logarithm problem [7]. This 
method is known to have time complexity of 𝑂൫√𝑛൯ 
by having time-space tradeoff with space complexity 
of 𝑂൫√𝑛൯. This method works as shown in algorithm 
1 
 

Algorithm 1 Baby-step Giant-step 
Input: Four integers: 𝑔, 𝑦, 𝑜 and 𝑚 where 𝑜 is the 
multiplicative order modulo 𝑚 of 𝑔 
Output: An integer 𝑒 that satisfies 𝑔௘ ≡
𝑦 ሺ𝑚𝑜𝑑 𝑚ሻ or "Not Exist" 
1 Let 𝕋 be a set of tuples in form of 
 ⟨𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑙𝑢𝑒⟩ 
2 for 𝑖 ← 0 to 𝑜 െ 1 do 
3  𝐺 ← 𝑔௜√௢ሺ𝑚𝑜𝑑 𝑚ሻ 
4  𝕋 ← 𝕋 ∪ ൻ𝑖√𝑜, 𝐺ൿ 
5 end for 
6 for 𝑗 ← 0 to 𝑜 െ 1 𝒅𝒐 
7  𝑌 ← 𝑦 ∗ 𝑔௝ ሺ𝑚𝑜𝑑 𝑚ሻ 
8  Find a tuple 𝒕 ∈ 𝕋 where 𝒕. 𝑣𝑎𝑙𝑢𝑒 ൌ 𝑌 
9  if such t exist then 
10   return ሺ𝒕. 𝑖𝑛𝑑𝑒𝑥 െ 𝑗ሻ 𝑚𝑜𝑑 𝑚 
11  end if 
12 end for 
13 return ”Not Exist” 



Journal of Theoretical and Applied Information Technology 
31st December 2018. Vol.96. No 24 

 © 2005 – ongoing  JATIT & LLS     

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
8475 

 

Implementation of this algorithm may require 
effective searching method to do line 8. In fact, 
poor choice searching algorithm may worsen the 
time complexity of Baby-step Giant-step. One well 
known good method is to use binary search, a 𝑂൫√𝑛൯ 
speed searching method, with some overhead cost to 
sort the table resulted from step 2–5. When this 
algorithm is used, the search is to be done on the 
index. 

Another way to do the searching is using hash 
table, with 𝑂ሺ1ሻ for searching. The hash table uses 
the value as the hash key, and the index as the hash 
value. Algorithm 2 illustrates how it is done. This 
version of Baby-step Giant-step is used during 
testing. 
 

Algorithm 2 Baby-step Giant-step 
Input: Four integers: 𝑔, 𝑦, 𝑜 and 𝑚 where 𝑜 is the 
multiplicative order modulo 𝑚 of 𝑔 
Output: An integer 𝑒 that satisfies 𝑔௘ ≡
𝑦 ሺ𝑚𝑜𝑑 𝑚ሻ or "Not Exist" 
1 Let ℍ be a hash table 
2 for 𝑖 ← 0 to 𝑜 െ 1 do 
3  𝐺 ← 𝑔௜√௢ሺ𝑚𝑜𝑑 𝑚ሻ 
4  Store 𝑖√𝑜 to ℍ with 𝐺 as its hash key 
5 end for 
6 for 𝑗 ← 0 to 𝑜 െ 1 𝒅𝒐 
7  𝑌 ← 𝑦 ∗ 𝑔௝ ሺ𝑚𝑜𝑑 𝑚ሻ 
8  Check whether ℍ has an entry whose its 
  key is Y 
9  if such t exist then 
10   return ሺℍሾ𝑌ሿ െ 𝑗ሻ 𝑚𝑜𝑑 𝑚 
11  end if 
12 end for 
13 return ”Not Exist” 

2.3. Pollard Rho 
Pollard Rho method is originally designed to solve 

integer factorization problem [8]. A slight 
modification of Pollard Rho's element can be done 
so that this method can solve discrete logarithm. This 
method has expected time complexity of 𝑂൫√𝑛൯ [7]. 
2.3.1. Pollard Rho’s Component 

Pollard Rho consists of several element. 
1. A random function 𝑓ሺ𝑥ሻ. This function can be 

set arbitrarily with certain limitation so as to 
make sure the value produced by 𝑓ሺ𝑥ሻ 
seemed random [7]. 

2. Two pointers, 𝑝ଵ and 𝑝ଶ. To avoid 
misconception, the term pointer used here is 
not the same as the term used in programming 
(i.e. a variable storing a memory address). 
When pointer is stated, it means a value 𝑓ሺ𝑥ሻ 
for some  𝑥. 

3. A step function 𝑠𝑡𝑒𝑝ሺ𝑥ሻ. This function 
determines how the pointer will behave for 
every iteration. This function is different than 
the random function 𝑓ሺ𝑥ሻ. Each pointer will 
have one step function i.e. 𝑠𝑡𝑒𝑝௣భ

ሺ𝑥ሻ and 
𝑠𝑡𝑒𝑝௣మ

ሺ𝑥ሻ. 
 
2.3.2. General Pollard Rho Algorithm 

Algorithm 3 shows how Pollard Rho works in 
general. 

Line 9 might seem undetailed. This is intentional 
due to how Pollard Rho can achieve various thing 
depending on how it is implemented. The detail of 
line 9 will follow later on. Also notice on line 2 that 
a value n	is used. This value can be set to whatever 
value desired. It functions as the initial value for both 
pointer. 
 

Algorithm 3 Pollard Rho – Generic  
1  Let 𝑝ଵ and 𝑝ଶ be two different pointers 
2  Let n	be an arbitrary value 
3  𝑝ଵ ← 𝑛	
4  𝑝ଶ ← 𝑛	
5  repeat 
6   𝑝ଵ ← 𝑠𝑡𝑒𝑝௣భ

ሺ𝑝ଵሻ 
7   𝑝ଶ ← 𝑠𝑡𝑒𝑝௣మ

ሺ𝑝ଶሻ 
8  until 𝑝ଵ ൌ 𝑝ଶ 
9  Infer the desired information from 𝑝ଵand 𝑝ଶ 

 
Algorithm 3 shows how step function and the 

pointer interacts, but not the random function. In 
fact, algorithm 3 does not state about the random 
function at all. The explanation of random function 
will follow because its detail relies on how Pollard 
Rho is implemented. 
2.3.3. Random Function 

Since the Pollard Rho method is going to be 
used to solve discrete logarithm problem, the random 
function used is as follow. 
 

𝑓ሺ𝑥ሻ ൌ ቐ
ሺ𝛽 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ∈ 𝑆ଵ

ሺ𝑥 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ∈ 𝑆ଶ
ሺ𝛼 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ∈ 𝑆ଷ

 ሺ1ሻ 

 
Consequently, f(x) can be written as (2). 

 
𝑓ሺ𝑥ሻ ൌ 𝛼௔ ∗ 𝛽௕ 𝑚𝑜𝑑 𝑚 for arbitrary 𝑎 and 𝑏 ሺ2ሻ 

 
The value of 𝛼 and 𝛽 will be explained later on. 

Also as seen in (1), there are three sets stated: 𝑆ଵ, 𝑆ଶ, 
and 𝑆ଷ. These sets are the subsets of ℤ i.e. integers, 
and in practice, can be defined arbitrarily with 
limitation that the three sets must have roughly same 
cardinality, disjoint to each other, and 1 ∉ 𝑆ଶ ሾ7ሿ. 
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During implementation, the three sets are defined 
using the explanation in Handbook of Cryptography 
[7]. 

 
𝑆ଵ ൌ ሼ𝑥 ∶ 𝑥 ≡ 1 𝑚𝑜𝑑 3ሽ
𝑆ଶ ൌ ሼ𝑥 ∶ 𝑥 ≡ 0 𝑚𝑜𝑑 3ሽ
𝑆ଷ ൌ ሼ𝑥 ∶ 𝑥 ≡ 2 𝑚𝑜𝑑 3ሽ

 

 
Therefore, (2) can be written into (3). 

 

𝑓ሺ𝑥ሻ ൌ ቐ
ሺ𝛽 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 1 𝑚𝑜𝑑 3
ሺ𝑥 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 0 𝑚𝑜𝑑 3
ሺ𝛼 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 2 𝑚𝑜𝑑 3

 ሺ3ሻ 

 
2.3.4. Brent’s Cycle Detection 

Pollard in his original paper uses Floyd's cycle 
detection as the cycle detection method [9], [8]. 
Later on 1980, Brent improves Pollard Rho's speed 
up to 24% by implementing different cycle detection 
[8]. This paper will utilize Brent's cycle detection. 
His method works as follow. 
 

Algorithm 4 Baby-step Giant-step 
1  Let 𝑠	and 𝑡	be two different pointers 
2  Let 𝑖	be iteration counter 
3  Let 𝑙𝑖𝑚𝑖𝑡	be current iteration limit 
4  𝑖 ← 0 
5  𝑙𝑖𝑚𝑖𝑡 ← 𝑞଴ 
6  repeat 
7   if 𝑖 ൌ 𝑙𝑖𝑚𝑖𝑡	then 
8    𝑡 ← 𝑠	
9    𝑖 ← 0 
10    𝑙𝑖𝑚𝑖𝑡 ← 𝑙𝑖𝑚𝑖𝑡 ∗ 𝑞	
11   else 
12    𝑖 ൌ 𝑖 ൅ 1 
13   end if 
14   𝑠 ← 𝑓ሺ𝑠ሻ 
15  until 𝑠 ൌ 𝑡 

 
Algorithm 4 speaks about how two pointers 

behave. Basically, it has a pointer (e.g. s) to do the 
step process for every iteration (line 14), and another 
pointer (e.g. t) to do the step process for roughly 
every 𝑞௫ iteration with increasing 𝑥	(line 7–13). 

Notice the difference between the pointers on 
how they do the step process. At line 14, pointer 
s	uses a random function to move, whereas at line 
8 pointer t	move by setting its value with pointer s. 
Additionally, each time t	moves, the time needed for 
t	to move next increases. 

Algorithm 4 uses one additional information, 
namely q. Brent in his paper stated that 𝑞	 is a free 
parameter i.e. it can be chosen with any value. 𝑞 is 
also utilized to determine the initial value (𝑞଴) using 

𝑞଴ ൌ 𝑞௨ for 𝑢 ∈ ሾ0,1ሻ, 𝑢	 is chosen using uniform 
distribution. Commonly these parameter would be 
set to 𝑞 ൌ 2 and 𝑢 ൌ 0 [8]. This paper will follow 
said parameter but with 𝑢 ൌ  1. That means, t	will 
step for every 2௫ iteration with 𝑥	begins at 1 and 𝑥	
increases overtime. 
2.3.5. Step function 

Combining algorithm 3 and 4, the Pollard Rho’s 
step function this paper will use is as follow. 
 

𝑠𝑡𝑒𝑝௣భ ൌ 𝑓ሺ𝑝ଵሻ ሺ4ሻ 
 

𝑠𝑡𝑒𝑝௣మ ൌ ൜ 
𝑝ଵ 𝑐 ൌ 𝑙
𝑝ଶ otherwise

ሺ5ሻ 

 
𝑠𝑡𝑒𝑝௣మ has to remember at least two states to 
function: 
 

1. Current iteration, namely 𝑐. 
2. 𝑙 ൌ 2௜ for given 𝑖	and 𝑖	increases overtime. 

 
Additionally, one might want to memorize 𝑖, 

although it can be avoided. 
2.3.6. Value of 𝜶	and 𝜷 

In line 9 of algorithm 3, the information that will 
be inferred is the discrete logarithm. To do so, 𝛼	and 
𝛽	in (1) and (2) will be set to 𝑔	and 𝑦	respectively. 
That means (2) and (3) can be rewritten into (6) and 
(7) 
 
𝑓ሺ𝑥ሻ ൌ 𝑔௔ ∗ 𝑦௕ 𝑚𝑜𝑑 𝑚 for arbitrary 𝑎 and 𝑏 ሺ6ሻ 

 

𝑓ሺ𝑥ሻ ൌ ቐ
ሺ𝑦 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 1 𝑚𝑜𝑑 3
ሺ𝑥 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 0 𝑚𝑜𝑑 3
ሺ𝑔 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 2 𝑚𝑜𝑑 3

 ሺ7ሻ 

 
Equation (6) implies that two pointers will be in 

form of (8) and (9) 
 

𝑝ଵ ൌ 𝑔௔೛భ ∗ 𝑦௕೛భ  𝑚𝑜𝑑 𝑚 ሺ8ሻ 
𝑝ଶ ൌ 𝑔௔೛మ ∗ 𝑦௕೛మ  𝑚𝑜𝑑 𝑚 ሺ9ሻ 

 
Then, the inference can be done using equation 

(10) 
 

log୥ሺ𝑦ሻ ൌ
𝑎௣భ െ 𝑎௣మ

𝑏௣మ െ 𝑏௣భ

൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ ሺ10ሻ 

where 𝑜𝑟𝑑௠ሺ𝑔ሻ is multiplicative order modulo m	of 
g. 

While there is no certain restriction on how to 
initialize 𝑝ଵ and 𝑝ଶ, in this paper both pointer will be 
set to 1 at first. That means for both pointer,𝑎 ൌ 0 
and 𝑏 ൌ 0. It is worth of note however, that Pollard 

Rho method may fail when 𝑏௣భ ൌ 𝑏௣మ or gcd ቀ𝑏௣మ െ
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𝑏௣భ, 𝑜𝑟𝑑௠ሺ𝑔ሻቁ ൐ 1, causing (10) to be unsolvable. 

In such scenario, the Pollard Rho method will be 
redone but using different initial value. The 
reinitialization is done in the following manner. 
 

𝑝ଵ ൌ 𝑝ଶ ൌ 𝑔௔ ∗ 𝑦௕ 𝑚𝑜𝑑 𝑚 ሺ11ሻ 
 
for 𝑎 and 𝑏 are integers, 𝑎 ∈ ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ and 𝑏 ∈
ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯, both chosen randomly. 
2.3.7. Implementable Algorithm 

Algorithm 5 sums up all stated explanation. In 
algorithm 5, 𝑝ଶ will move at iteration 2, 4, 8, … . 
While this is correct, in practice this paper uses a 
slightly modified version of algorithm 5 where 𝑝ଶ 
moves at iteration 2, 2, 4, 8, 16, …. Said modification 
is considered minor. 
 

Algorithm 5 Baby-step Giant-step 
Input: Four integers: 𝑔, 𝑦, 𝑜 and 𝑚 where 𝑜 is the 
multiplicative order modulo 𝑚 of 𝑔 
Output: An integer 𝑒 that satisfies 𝑔௘ ≡
𝑦 ሺ𝑚𝑜𝑑 𝑚ሻ or "Not Exist" 
1  Let 𝑝ଵ be a pointer in form of ⟨𝑎, 𝑏, 𝑣𝑎𝑙𝑢𝑒⟩ 
2  Let 𝑝ଶ be a pointer in form of ⟨𝑎, 𝑏, 𝑣𝑎𝑙𝑢𝑒⟩ 
3  Let 𝑖	be iteration counter 
4  Let 𝑙𝑖𝑚𝑖𝑡	be current iteration limit 
5  𝑖 ← 0 
6  𝑙𝑖𝑚𝑖𝑡 ← 2 
7  𝑝ଵ ← ⟨0,0,1⟩ 
8  𝑝ଶ ← ⟨0,0,1⟩ 
9  repeat 
10   if 𝑖 ൌ 𝑙𝑖𝑚𝑖𝑡	then 
11    𝑝ଶ ← 𝑝ଵ 
12    𝑖 ← 0 
13    𝑙𝑖𝑚𝑖𝑡 ← 𝑙𝑖𝑚𝑖𝑡 ∗ 2 
14   else 
15    𝑖 ൌ 𝑖 ൅ 1 
16   end if 
17   if 𝑝ଵ 𝑚𝑜𝑑 3 ≡ 1 then 
18    𝑝ଵ. 𝑏 ← 𝑝ଵ. 𝑏 ൅ 1 
19    𝑝ଵ.value ← ሺ𝑝ଵ.value ∗ 𝑦ሻ 𝑚𝑜𝑑 𝑚	
20   else if 𝑝ଵ 𝑚𝑜𝑑 3 ≡ 0 then 
21    𝑝ଵ. 𝑎 ← 𝑝ଵ. 𝑎 ∗ 2 
22    𝑝ଵ. 𝑏 ← 𝑝ଵ. 𝑏 ∗ 2 
23    𝑝ଵ.value ← ሺ𝑝ଵ.value ∗ 𝑝ଵ.valueሻ 𝑚𝑜𝑑 𝑚	
24   else 
25    𝑝ଵ. 𝑎 ← 𝑝ଵ. 𝑎 ൅ 1 
26    𝑝ଵ.value ← ሺ𝑝ଵ.value ∗ 𝑔ሻ 𝑚𝑜𝑑 𝑚	
27   end if 
28  until 𝑝ଵ ൌ 𝑝ଶ 
29  if gcdሺ𝑝2. 𝑏 െ 𝑝1. 𝑏, 𝑜ሻ ൐ 1 or 𝑝ଵ. 𝑏 ൌ 𝑝ଶ. 𝑏	
then 
30   Let 𝑠 ∈ ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ 

Algorithm 5 Baby-step Giant-step (cont.) 
31   Let 𝑡 ∈ ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ 
32   𝑝ଵ ← ⟨𝑠, 𝑡, ሺ𝑔௦ ∗ 𝑦௧ሻ 𝑚𝑜𝑑 𝑚⟩ 
33   𝑝ଶ ← 𝑝ଵ 
34   Get back to line 9 
35  end if 
36  Let 𝑏ᇱ ← ሺ𝑝ଶ. 𝑏 െ 𝑝ଵ. 𝑏ሻିଵ 𝑚𝑜𝑑 𝑜 
37 return ሾሺ𝑝ଵ. 𝑎 െ 𝑝ଶ. 𝑎ሻ ∗ 𝑏ᇱሿ 𝑚𝑜𝑑 𝑜 

3. RESEARCH METHODOLOGY 

This section will present a detailed explanation of 
how the research is done. 

3.1. Dataset Preparation 
Every dataset is designed to follow the parameters 

given in Digital Signature Algorithm. Each 
dataset will contain seven values; five comes from 
following the Digital Signature Algorithm, and the 
extra two are the free parameters. 

1. 𝑁, a free parameter denoting how long 
parameter 𝑞	will be in bit. 

2. 𝐿, a free parameter denoting how long 
parameter 𝑝	will be in bit. 

3. 𝑞, a public key component. 𝑞	must be a prime 
and must be a divisor to ሺ𝑝 െ 1ሻ. 

4. 𝑝, a public key component. 𝑝	must be a prime. 
5. 𝑔, a public key component. 𝑔	will serve as the 

generator of the exponentiation. 
6. 𝑦, a public key component. 𝑦	is obtained by 

𝑦 ൌ 𝑔௫ ሺ𝑚𝑜𝑑 𝑝ሻ where 𝑥	is the user’s private 
key. 

7. 𝐻ሺ𝑚ሻ, a hashed message. 
 
Since this paper is interested in comparing the 

speed of Baby-step Giant-step and Pollard Rho 
towards achieving total break in Digital Signature 
Algorithm, there will be two group of datasets. 

1. Dataset group which have fixed 𝑁	 and 
increasing L. There will be in total 475 
datasets that fall in this group. There will be 
at most 10 different datasets for every distinct 
L. The 𝑁	parameter is to be set at 10 and 𝐿	is 
designed to not exceed 60. 

2. Dataset group which have fixed 𝐿	 and 
increasing 𝑁. There will be in total 480 
datasets that fall in this group. There will be 
10 different datasets for every distinct 𝑁. The 
𝐿	 parameter is to be set at 60 and 𝑁	 is 
designed not to exceed 57. 

Other parameter (i.e. 𝑝, 𝑞, 𝑔, and 𝑦) in every dataset 
will adhere to given 𝑁	and 𝐿. For 𝐻ሺ𝑚ሻ, it will be 
set to have the same value for all dataset. 
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3.2. Testing 
There will be two versions of the program that 

will be executed. One with Baby-step Giant-step 
implementation, and one with Pollard Rho with 
Brent cycle detection implementation. Each program 
is to be run with the two group of datasets as the 
input. Each dataset group is to be run separately. 
That is, there will be four executions: (1) Baby-step 
Giant-step with fixed 𝑁	 datasets, (2) Baby-step 
Giant-step with fixed 𝐿	 datasets, (3) Pollard Rho 
with fixed 𝑁	datasets, and (4) Pollard Rho with fixed 
𝐿	datasets. 

Each execution will be run in the following 
manner. 

1. Receive a dataset from the corresponding 
group. 

2. Note down the time prior to forgery. 
3. Forge a signature. 
4. Note down the time after forgery. 
5. Output the running time by taking the 

difference between two times. 
When handling the dataset group with fixed N, 

some adjustment needs to be done. Due to the time 
needed to do the forgery using dataset with fixed N	
is very small, step 3 is to be repeated 10000 times to 
magnify the result. 

3.3. Result Evaluation 
The running time for each dataset is to be 

aggregated according to their non-fixed free 
parameter. For example, in group with fixed 𝑁, the 
results which come from the dataset with the same 𝐿	
will be aggregated together. The results will be 
aggregated to their mean and standard deviation. 

The result will be presented according to the 
dataset group. First, the graphic representation of 
each method performance is to be presented. Then 
the explanation regarding the graphic will follow. 
The evaluation will be ended with graphic 
comparison of both method, along with few 
comments concluding the explanation in the section. 

4. RESULT 

This section will discuss and evaluate the result of 
the research. This section will be mostly separated 
into two parts: (1) the result of methods using 
datasets with fixed 𝑁	as the input, and (2) the result 
of methods using datasets with fixed 𝐿	as the input. 

4.1. Fixed N	Datasets 
4.1.1. Baby-step Giant-step 
 

 
Figure 1: Running time mean of Baby-step Giant-step 

with fixed N datasets 

Figure 1 shows that as 𝐿	 increase, so does the 
expected time needed. The increase happens 
linearly, though by minuscule factor i.e. around 0.01 
second. When 𝐿	reaches 50 and beyond however, the 
increase seemed to happen with slightly bigger 
factor. 

 
Figure 2: Running time standard deviation of Baby-step 

Giant-step with fixed N datasets 

Similar phenomenon can be seen in figure 2. This 
figure shows that the uncertainty which Baby-step 
Giant-step method has increases as 𝐿	increase. The 
increase happens linearly by factor of about 0.01 per 
10 𝐿	increment. 
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4.1.2. Pollard Rho–Brent 

 
Figure 3:Running time mean of Pollard Rho with fixed N 

datasets 

Figure 3 shows that as 𝐿	 increase, so does the 
Pollard Rho’s expected running time. The increase 
happens in linearly fashion. The increase factor is 
higher than Baby-step Giant-step i.e. around 0.1 
second per 10 𝐿. Also, the increase is not really stable 
as can be seen when 𝐿	reaches 50: some point peaks 
very high. 

 
Figure 4: Running time standard deviation of Pollard 

Rho with fixed N datasets 

When fed with fixed 𝑁	 datasets, Pollard Rho’s 
standard deviation (figure 4) have similar property 
with its mean, that is, both scatters considerably 
although the standard deviation seems more 
irregular. It is difficult determine whether the 
standard deviation has linear growth function or 

quadratic growth function. As such, its growth 
function is yet to be determined. 
4.1.3. Remark 

 
Figure 5: Running time mean of both method with fixed N 

datasets 

Both method shows that as L increase, the time 
needed to solve the problem also increases in linearly 
fashion, albeit with different reliability. Baby-step 
Giant-step method has tendency to solve the problem 
with running time near the mean, whereas Pollard 
Rho has more randomness toward the time needed. 

 
Figure 6:Running time standard deviation of both method 

with fixed N datasets 

 
Figure 5 and 6 shows the mean and standard 

deviation comparison of both method respectively. 
From figure 6 it can be seen that the standard 
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deviation of Pollard Rho method is strikingly high 
compared to Baby-step Giant-step. 

4.2. Fixed L	Datasets 
4.2.1.  Baby-step Giant-step 

 
Figure 7: Running time mean of Baby-step Giant-step 

with fixed L datasets 

Figure 7 shows that the expected running time 
grows with polynomial growth function. The growth 
becomes apparent when N goes over 40. 

 
Figure 8: Running time standard deviation of Baby-step 

Giant-step with fixed L datasets 

The standard deviation (figure 8) also follow the 
same growth function as the expected running time 
i.e. polynomial. The standard deviation starts to 
grow considerably when N goes over 40. 

4.2.2. Pollard Rho–Brent 

 
Figure 9: Running time mean of Pollard Rho with fixed L 

datasets 

Pollard Rho with Brent cycle detection has 
expected running time that follows polynomial 
growth function as seen in figure 9. Just like its 
mean, its standard deviation also has polynomial 
growth function (figure 10). 

 

 
Figure 10: Running time standard deviation of Pollard 

Rho with fixed L datasets 

On both figure, the growth starts to be noticeable 
once N	reaches slightly below 40 and after that point 
the graphic pikes considerably. 
4.2.3. Remark 
It has been shown that both method has polynomial 
growth function for their mean and standard 
deviation. Even so, Baby-step Giant-step has higher 
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expected running time than Pollard Rho, but has 
significantly lower standard deviation compared to 
Pollard Rho. 

 
Figure 11: Running time mean of both method with fixed 
L datasets 

Figure 11 and 12 shows the mean and standard 
deviation comparison of both method respectively. It 
can be seen that both method’s mean have relatively 
similar growth function and that Pollard Rho’s 
standard deviation rockets quicker than Baby-step 
Giant-step.

 
Figure 12: Running time standard deviation of both 

method with fixed L datasets 

4.3. Coefficient of Variation’s Comparison 
The dispersion of running times which has been 

previously obtained is highly variable. It was taken 
into account that a different data distribution could 
have the same degree of dispersion, and to quantify 

this degree of dispersion, Coefficient of Variation is 
deemed to be able to handle this issue very well. 

As a way to illustrate how close the performance 
of the two methods, Coefficient of Variations value 
will be calculated. This section will briefly explain 
about how Coefficient of Variation is calculated, and 
then how two method’s Coefficient of Variation 
would compare. 
4.3.1. Coefficient of Variation 
The Coefficient of Variation is calculated using 
the following formula. 
 

𝑐௩ෝ ൌ
𝑠
�̅�

 ሺ12ሻ 

 
where 𝑠	is the data’s standard deviation and �̅�	is the 
data’s mean. 
4.3.2. Coefficient of Variation for Fixed L 

Dataset 
Table 1 provides tabular result of the 𝑐௩ෝ 	for fixed 

L dataset. 
 
Table 1: Coefficient of Variation - Fixed L Dataset 

N BSGS Brent N BSGS Brent 

10 NA NA 32 0.119 0.667 

11 3.162 NA 33 0.117 0.448 

12 NA 3.162 34 0.067 0.76 

13 NA NA 35 0.038 0.594 

14 NA NA 36 0.049 0.491 

15 NA NA 37 0.021 0.436 

16 NA NA 38 0.036 0.371 

17 NA 3.162 39 0.022 0.441 

18 NA NA 40 0.033 0.453 

19 3.162 3.162 41 0.029 0.759 

20 NA 2.108 42 0.02 0.67 

21 2.108 3.162 43 0.024 0.755 

22 3.162 2.108 44 0.033 0.516 

23 2.108 1.292 45 0.026 0.534 

24 1.292 1.292 46 0.03 0.552 

25 1.292 0.862 47 0.029 0.654 

26 1.055 0.627 48 0.023 0.718 

27 0.691 0.796 49 0.018 0.568 

28 0.364 0.492 50 0.021 0.713 

29 0.175 0.572 51 0.024 0.682 

30 0.276 0.54 52 0.023 0.542 

31 0.317 0.657 53 0.024 0.567 
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Notice there are few NAs in the table. This was 
obtained due to these entries have 𝑠 ൌ 0 and �̅� ൌ 0. 
That means these entries have very small running 
time that the obtained result records the running time 
as 0. 

Values in table 1 are presented graphically on 
figure 13. In the figure, the NAs are not plotted 
which explains why there are gaps on few first N. 
From the figure, both method’s 𝑐௩ෝ  converges very 
quickly somewhere near 𝑁 ൐ 30. At that point, both 
method’s 𝑐௩ෝ  is relatively stable with Pollard Rho’s 𝑐௩ෝ  
being slightly higher than Baby-step Giant-step’s. 

 
Figure 13: Coefficient of Variation plotting for fixed L 

dataset 

The reason values with 𝑁 ൏ 26 have very high 𝑐௩ෝ 	

is that the score it derived from is very low, 
accompanied with the fact that the recorded result do 
not have enough precision. This in turn caused the 
score to be discretized into a score with lower 
precision. These values are considered as outlier. 

Figure 14 shows the boxplot diagram for values 
in table 1. The median of Pollard Rho with Brent 
Cycle Detection’s 𝑐௩ෝ  is slightly higher than Baby-
step Giant-step’s. It is as expected since Pollard Rho 
is a probabilistic algorithm. Also, the Pollard Rho 
with Brent Cycle Detection’s upper hinge and lower 
hinge is higher compared to Baby-step Giant-step’s. 
Overall, different N	 parameter contributes to 
dispersion 10 for a small factor, just about less than 
1 
4.3.3. Coefficient of Variation for Fixed N 

Dataset 
Table 2 shows the 𝑐௩ෝ  for all tested L	parameter 

and N	parameter being constant.  A major difference 
between these values with those of L	fixed dataset’s 
𝑐௩ෝ  is that these values does not have NAs. These 
values then are considered to have no outlier. 

 
Figure 14: Coefficient of Variation boxplot for fixed L 

dataset 

 
Table 2: Coefficient of Variation - Fixed N Dataset 

L BSGS Brent L BSGS Brent 

13 0.116 0.558 37 0.125 0.514 

14 0.072 0.483 38 0.081 0.541 

15 0.113 0.494 39 0.147 0.427 

16 0.094 0.542 40 0.148 0.428 

17 0.07 0.363 41 0.107 0.415 

18 0.1 0.449 42 0.122 0.266 

19 0.101 0.406 43 0.105 0.523 

20 0.127 0.531 44 0.145 0.388 

21 0.084 0.147 45 0.151 0.152 

22 0.065 0.56 46 0.135 0.771 

23 0.104 0.591 47 0.148 0.319 

24 0.128 0.477 48 0.099 0.591 

25 0.088 0.719 49 0.09 0.478 

26 0.102 0.527 50 0.1 0.544 

27 0.1 0.696 51 0.156 0.629 

28 0.106 0.591 52 0.12 0.447 

29 0.113 0.653 53 0.119 0.353 

30 0.115 0.739 54 0.115 0.507 

31 0.112 0.358 55 0.113 0.576 

32 0.122 0.374 56 0.115 0.341 

33 0.121 0.53 57 0.106 0.437 

34 0.13 0.5 58 0.128 0.637 

35 0.147 0.568 59 0.1 0.488 

36 0.109 0.531 60 0.142 0.521 
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The values in table 2 is presented graphically in 
figure 15. The figure shows that most of the time 
Pollard Rho with Brent Cycle Detection’s 𝑐௩ෝ  is 
higher than Baby-step Giant-step. 

 
Figure 15: Coefficient of Variation plotting for fixed N 

dataset 

Figure 16 gives insight on how the 𝑐௩ෝ  illustrated 
in figure 15 is distributed. The boxplot of Baby-step 
Giant-step’s 𝑐௩ෝ  is lower than Pollard Rho with Brent 
Cycle Detection. It is interesting to notice that Baby-
step Giant-step boxplot has significantly smaller size 
than Pollard Rho with Brent Cycle Detection, both 
the box and the whiskers. This shows how reliable 
Baby-step Giant-step is with regard to various L	
parameter 

 
Figure 16: Coefficient of Variation plotting for fixed N 

dataset 

4.3.4. Remark 
It has been shown that both method has relatively 

low degree of dispersion i.e. 𝑐௩ෝ ൏ 1. Even so, Pollard 
Rho with Brent Cycle Detection has higher 𝑐௩ෝ  than 
Baby-step Giant-step. Unfortunately, due to small 
sample size, deriving conclusion using these 𝑐௩ෝ  is a 
risky task as they could be a biased estimator. 
However, it can be narrowed down that on average, 
the Pollard Rho with Brent Cycle Detection’s 𝑐௩ෝ  is 
higher than Baby-step Giant-step with factor of at 
least 0.2. 

Another thing worth of note is that 𝑁	parameter 
gives Baby-step Giant-step method minuscule 
degree of dispersion compared to 𝐿	parameter. The 
𝑁 and 𝐿	 parameter gives a comparable degree of 
dispersion towards Pollard Rho with Brent Cycle 
Detection method with both parameter seemed to 
contributes equally. 

5. CONCLUSION 

The finding can be narrowed into two points. 

5.1. The Effect of DSA Parameter 
Two parameter of interest is the length of a prime 

modulus 𝑝, and the multiplicative order of the 
generator 𝑞. From the observation, the length of 𝑞	
contributes to both method’s running time in linearly 
fashion with expected gradient less than 1 second for 
both method, whereas the length of 𝑝	contributes to 
both method’s running time in polynomial fashion. 

Unsurprisingly, the length of 𝑝	contributes higher 
than the length of 𝑞. After the length of 𝑝	hits 50, the 
expected time difference between 𝑝	 and 𝑝 ൅ 1 is 
very noticable: about over 50 seconds. For DSA’s 
security interest, increasing the size of 𝑝 would be 
very desirable. 

5.2. Two Method Comparison 
From the finding, it can be concluded that both 

method has the same growth function. Even so, there 
is a high chance that Baby-step Giant-step takes time 
longer compared to Pollard Rho. The main factor 
that causes Baby-step Giant-step to be slower is the 
multiplicative order of the generator (i.e. 𝑞). In this 
experiment, it is when the multiplicative order of the 
generator is on around 40-bit long (i.e. 𝑁 ൌ 40) that 
Pollard Rho’s expected run time begins to seemed 
better. 

In term of their reliability, Baby-step Giant-step 
wins without contest. Baby-step Giant-step provides 
stable solution to signature forgery. Pollard Rho 
might seem unreliable due to how it could take 
significantly higher time at occasions. On the other 
hand, Pollard Rho also has the possibility to do the 
task way faster than expected. 
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The two method is also compared in term of how 
close their performance are. One characteristic that 
is inspected is the degree of dispersion. From 
observation, both method has degree of dispersion of 
less than 1, with Pollard Rho with Brent Cycle 
Detection is placed slightly higher than Baby-step 
Giant-step. The expected degree of dispersion’s 
difference between the two method is over 0.2, i.e. 
Δ𝑐௩ෝ ൐ 0.2. This degree of dispersion is consistent 
when the length of prime modulus 𝑝	is constant, and 
when the length of multiplicative order of the 
generator 𝑞	is constant. 

This comparison provides an insight on how a 
variant of Pollard Rho would match to Baby-step 
Giant-step. As expected, Pollard Rho (specifically 
with Brent Cycle Detection) is outmatched. 
However, the difference between the two does not 
deemed to be that far. It is believed that for other 
variant of Pollard Rho, the difference between them 
and Baby-step Giant-step would be even smaller.  

The author suggested that it would be interesting 
for future work to suppress the difference between 
Pollard Rho and Baby-step Giant-step as small as 
possible. The difference dimension used in this work 
can be utilized as a reference for further 
improvement in Pollard Rho’s development. 

It is worth to note however, that in this paper, the 
size of the value used is considered small in 
cryptography context. For future work, it might be 
interesting to see the behavior for even bigger 
number and find out how the growth of the execution 
time looks like. 

6. ADDENDUM 

6.1. Proof for equation (10) 
It has been stated that given two pointers, namely 

p1 and p2 where  
 

𝑝ଵ ൌ 𝑔௔೛భ ∗ 𝑦௕೛భ  𝑚𝑜𝑑 𝑚 
𝑝ଶ ൌ 𝑔௔೛మ ∗ 𝑦௕೛మ  𝑚𝑜𝑑 𝑚 

if 𝑝ଵ ൌ 𝑝ଶ, the discrete logarithm of y	can be known. 
The procedure to infer the discrete logarithm is as 
follow. 
 

𝑝ଵ ≡ 𝑝ଶ ሺ𝑚𝑜𝑑 𝑚ሻ 
𝑔௔೛భ ∗ 𝑦௕೛భ ≡ 𝑔௔೛మ ∗ 𝑦௕೛మ  ሺ𝑚𝑜𝑑 𝑚ሻ 

𝑦௕೛భ

𝑦௕೛మ
≡

𝑔௔೛మ

𝑔௔೛భ
 ሺ𝑚𝑜𝑑 𝑚ሻ 

𝑦௕೛భି௕೛మ ≡ 𝑔௔೛మି௔೛భ  ሺ𝑚𝑜𝑑 𝑚ሻ 
 
 

Then apply logg	to both side. 𝑚𝑜𝑑 𝑚	will turn to 
𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ because of this. 
 

log௚൫𝑦௕೛భି௕೛మ ൯ ≡ log௚ሺ𝑔௔೛మି௔೛భ ሻ ൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ 
൫𝑏௣భ െ 𝑏௣మ൯ log௚ 𝑦 ≡ 𝑎௣మ െ 𝑎௣భ ൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ 

𝑙𝑜𝑔௚𝑦 ≡
𝑎௣మ െ 𝑎௣భ

𝑏௣భ െ 𝑏௣మ

൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ 

∎ 
 

According to Euler’s Theorem, the following 
equation holds if a	and n	is coprime. 
  

𝑎மሺ୬ሻ ≡ 1 ሺ𝑚𝑜𝑑 𝑛ሻ 
 

Since the multiplicative inverse of 𝑏௣భ െ 𝑏௣మ 
needs to be found, the Euler's Theorem has to apply. 
As the consequence, 𝑏௣భ െ 𝑏௣మ needs to be coprime 
with 𝑜𝑟𝑑௠ሺ𝑔ሻ. This raises an implicit constraint 

from equation log௚ 𝑦 ≡
௔೛మି௔೛భ

௕೛భି௕೛మ
൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ 

that gcd ቀ𝑏௣భ െ 𝑏௣మ, 𝑜𝑟𝑑௠ሺ𝑔ሻቁ ൌ 1. Therefore, 

before solving the equation, it has to be checked 

whether or not gcd ቀ𝑏௣భ െ 𝑏௣మ, 𝑜𝑟𝑑௠ሺ𝑔ሻቁ ൌ 1 

holds. In case of 𝑏௣భ െ 𝑏௣మ ൌ 0, the equation will 
also deemed unsolvable. 
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