
Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8473

PERFORMANCE COMPARISON BETWEEN BABY-STEP
GIANT-STEP METHOD AND POLLARD RHO WITH BRENT

CYCLE DETECTION METHOD IN CAUSING TOTAL BREAK
TOWARD DIGITAL SIGNATURE ALGORITHM SCHEME

1RULLY SOELAIMAN, 2MUHAMMAD GHAZIAN
1Lecturer, Department of Informatics, Faculty of Information Technology and Communication, Institute of

Technology Sepuluh Nopember, Surabaya, Indonesia

2Student, Department of Informatics, Faculty of Information Technology and Communication, Institute of
Technology Sepuluh Nopember, Surabaya, Indonesia

E-mail: 1rully@if.its.ac.id, 2muhghazian@gmail.com

ABSTRACT

This paper compares the speed of Baby-step Giant-step method and Pollard Rho with Brent Cycle Detection
method to cause Total Break, which in turn is used to attack Digital Signature Algorithm i.e. forging a
signature. This paper also finds out how the free parameter of Digital Signature Algorithm can affect the
performance of the two method. This paper will present an empirical result on how the two method would
perform under signature forgery scenario. Furthermore, an analysis of how close both method's performance
is presented. Also, this paper provides an analysis regarding how the size of free parameter of DSA may
affect the overall performance of the two methods. These analysis can provide useful basis for DSA’s
parameter security analysis. Moreover, the result presented in this paper can extend to other discrete logarithm
problem.

Keywords: Cryptography, DSA, Discrete Logarithm, Number Theory, Security

1. INTRODUCTION

Digital Signature is a protocol mainly used as
means to protect from source repudiation. In other
words, it protects from a sender denying that he is
the one who send a certain message. Digital
Signature plays an important role in many practical
aspect. Take for example, banking.

There has been several digital signature algorithm,
such as ElGamal Digital Signature and Schnorr
Digital Signature. One particular digital signature
algorithm is published by NIST as a standard with
the name Digital Signature Algorithm. This
algorithm uses asymmetric key to work. What makes
this algorithm enticing is that this algorithm uses the
hardness of discrete logarithm problem as its security
measure. Digital Signature Algorithm (DSA)
follows a certain parameter specification.

Goldwasser et al. has made a work to determine
the secureness of digital signature scheme against
adaptive-chosen message attacks [1]. In the same
work, Goldwasser et al stated four kind of attacks
against digital signature scheme—one of them is
called total break where the user's private key is

compromised. This paper is interested to dwelve
deeper into this type of attack.

The idea of total break is to find out the private
key from the cryptosystem. Various algorithm has
been developed to solve discrete logarithm. There
are two general-purpose algorithm that can be
utilized, namely Baby-step Giant-step and Pollard
Rho. These two algorithms have very broad
application due to both can be used for any algebraic
structure and not only for integer domain. Due to this
fact, these algorithms are very good candidate as the
method to cause total break.

It has been noted that there are plentiful of
research that revolves around Pollard Rho method.
Many are interested in improving the performance
either via specific hardware utilization (for example,
[2], [3], and [4]) or by finding more efficient
approach (for example, [5]). Combined with ever-
developing hardware evolution, the improvement
would be cumulative. With this fruitful
development, it would be interesting to know where
such improvement has taken us since it would
definitely impact how security protocols, including
DSA, might get compromised.

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8474

This paper is interested in finding out how free
parameter in DSA can affect the performance in
causing total break. As stated before, Baby-step
Giant-step and Pollard Rho is a potential means to
cause total break, so the two method is to be used as
a control method. The two method is to be run with
various values following the DSA's specification,
and see how well both method can tackle the chosen
parameters.

1.1. Contribution
The outcome of this research is two fold.

1.1.1. Empirical evidence of how DSA's
parameter may affect two method's
performance

This research will introduce the effect of various
DSA parameter towards the time needed for Baby-
step Giant-step and Pollard Rho method to cause
total break. This research focuses on as many free
DSA parameter as possible, following the standard
protocol. While there are many works, especially
student guidebook, which already explained a certain
DSA parameter's effect to the two method's
performance, this research is to give an empirical
result of what effect they would produce. Hopefully,
this can serve as a good basis for future work
regarding the secureness of DSA.
1.1.2. Provide a comparison between two

method on classical computer in term of
causing total break

This paper is interested in discovering how Baby-
step Giant-step and Pollard Rho would compare in
term of their speed in causing total break when faced
with Digital Signature Algorithm—one of the digital
signature scheme. And as such, both method will be
used to simulate signature forgery, the type of attack
which Digital Signature Algorithm can fall victim
into. The knowledge of how DSA can fall vulnerable
to each method can serve as starting point for further
development of DSA.

While this is the main objective, the finding
resulted from this research can be extended to any
context, as long they are related to discrete logarithm
problem, ran on classical computer.

2. THEORETICAL REFERENCE

In this paper, two methods will be introduced.
1. Baby-step Giant-step.
2. Pollard Rho (using Brent Cycle Detection).
Along these two methods, a Digital Signature

Algorithm explanation also will be presented.

2.1. Digital Signature Algorithm
Digital Signature Algorithm is a standard digital

signature method issued by NIST as the first version

of Digital Signature Standard [6]. Digital Signature
Algorithm works as follow. Given a hashed message
𝐻ሺ𝑀ሻ:

1. Determine the global public key component.
a) A prime number 𝑝	where 2௅ିଵ ൑ 𝑝 ൑

2௅ for 512 ൏ 𝐿 ൏ 1024 and 𝐿 is a
multiple of 64.

b) A prime number where 𝑞|ሺp െ 1ሻ and
2ଵହଽ ൏ 𝑞 ൏ 2ଵ଺଴.

c) A generator g	that can be obtained using
𝑔 ൌ ℎሺ௣ିଵሽ/௤ 𝑚𝑜𝑑 𝑝. ℎ can be set
arbitrarily where 1 ൏ ℎ ൏ ሺ𝑝 െ 1ሻ

2. Determine the keypair
a) An integer 𝑥 determined randomly with

0 ൏ 𝑥 ൏ 𝑞
b) An integer 𝑦 where 𝑦 ൌ 𝑔௫ 𝑚𝑜𝑑 𝑝

3. Signature generation follows this procedure.
a) 𝑟 ൌ ሺ𝑔௞𝑚𝑜𝑑 𝑝ሻ 𝑚𝑜𝑑 𝑞
b) 𝑠 ൌ ሾ𝑘ିଵሺ𝐻ሺ𝑀ሻ ൅ 𝑥𝑟ሻሿ 𝑚𝑜𝑑 𝑞
c) Signature is ሺ𝑟, 𝑠ሻ

4. Signature verification follows this procedure.
a) 𝑤 ൌ 𝑠ିଵ 𝑚𝑜𝑑 𝑞
b) 𝑢ଵ ൌ ሾ𝐻ሺ𝑀ሻ𝑤ሿ 𝑚𝑜𝑑 𝑞
c) 𝑢ଶ ൌ 𝑟𝑤 𝑚𝑜𝑑 𝑞
d) 𝑣 ൌ ሾ𝑔௨భ𝑦௨మ 𝑚𝑜𝑑 𝑝ሿ 𝑚𝑜𝑑 𝑞
e) Signature is valid if 𝑣 ൌ 𝑟

2.2. Baby-step Giant-step
Baby-step Giant-step is a method proposed by

Shank to solve discrete logarithm problem [7]. This
method is known to have time complexity of 𝑂൫√𝑛൯
by having time-space tradeoff with space complexity
of 𝑂൫√𝑛൯. This method works as shown in algorithm
1

Algorithm 1 Baby-step Giant-step
Input: Four integers: 𝑔, 𝑦, 𝑜 and 𝑚 where 𝑜 is the
multiplicative order modulo 𝑚 of 𝑔
Output: An integer 𝑒 that satisfies 𝑔௘ ≡
𝑦 ሺ𝑚𝑜𝑑 𝑚ሻ or "Not Exist"
1 Let 𝕋 be a set of tuples in form of
 ⟨𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑙𝑢𝑒⟩
2 for 𝑖 ← 0 to 𝑜 െ 1 do
3 𝐺 ← 𝑔௜√௢ሺ𝑚𝑜𝑑 𝑚ሻ
4 𝕋 ← 𝕋 ∪ ൻ𝑖√𝑜, 𝐺ൿ
5 end for
6 for 𝑗 ← 0 to 𝑜 െ 1 𝒅𝒐
7 𝑌 ← 𝑦 ∗ 𝑔௝ ሺ𝑚𝑜𝑑 𝑚ሻ
8 Find a tuple 𝒕 ∈ 𝕋 where 𝒕. 𝑣𝑎𝑙𝑢𝑒 ൌ 𝑌
9 if such t exist then
10 return ሺ𝒕. 𝑖𝑛𝑑𝑒𝑥 െ 𝑗ሻ 𝑚𝑜𝑑 𝑚
11 end if
12 end for
13 return ”Not Exist”

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8475

Implementation of this algorithm may require
effective searching method to do line 8. In fact,
poor choice searching algorithm may worsen the
time complexity of Baby-step Giant-step. One well
known good method is to use binary search, a 𝑂൫√𝑛൯
speed searching method, with some overhead cost to
sort the table resulted from step 2–5. When this
algorithm is used, the search is to be done on the
index.

Another way to do the searching is using hash
table, with 𝑂ሺ1ሻ for searching. The hash table uses
the value as the hash key, and the index as the hash
value. Algorithm 2 illustrates how it is done. This
version of Baby-step Giant-step is used during
testing.

Algorithm 2 Baby-step Giant-step
Input: Four integers: 𝑔, 𝑦, 𝑜 and 𝑚 where 𝑜 is the
multiplicative order modulo 𝑚 of 𝑔
Output: An integer 𝑒 that satisfies 𝑔௘ ≡
𝑦 ሺ𝑚𝑜𝑑 𝑚ሻ or "Not Exist"
1 Let ℍ be a hash table
2 for 𝑖 ← 0 to 𝑜 െ 1 do
3 𝐺 ← 𝑔௜√௢ሺ𝑚𝑜𝑑 𝑚ሻ
4 Store 𝑖√𝑜 to ℍ with 𝐺 as its hash key
5 end for
6 for 𝑗 ← 0 to 𝑜 െ 1 𝒅𝒐
7 𝑌 ← 𝑦 ∗ 𝑔௝ ሺ𝑚𝑜𝑑 𝑚ሻ
8 Check whether ℍ has an entry whose its
 key is Y
9 if such t exist then
10 return ሺℍሾ𝑌ሿ െ 𝑗ሻ 𝑚𝑜𝑑 𝑚
11 end if
12 end for
13 return ”Not Exist”

2.3. Pollard Rho
Pollard Rho method is originally designed to solve

integer factorization problem [8]. A slight
modification of Pollard Rho's element can be done
so that this method can solve discrete logarithm. This
method has expected time complexity of 𝑂൫√𝑛൯ [7].
2.3.1. Pollard Rho’s Component

Pollard Rho consists of several element.
1. A random function 𝑓ሺ𝑥ሻ. This function can be

set arbitrarily with certain limitation so as to
make sure the value produced by 𝑓ሺ𝑥ሻ
seemed random [7].

2. Two pointers, 𝑝ଵ and 𝑝ଶ. To avoid
misconception, the term pointer used here is
not the same as the term used in programming
(i.e. a variable storing a memory address).
When pointer is stated, it means a value 𝑓ሺ𝑥ሻ
for some 𝑥.

3. A step function 𝑠𝑡𝑒𝑝ሺ𝑥ሻ. This function
determines how the pointer will behave for
every iteration. This function is different than
the random function 𝑓ሺ𝑥ሻ. Each pointer will
have one step function i.e. 𝑠𝑡𝑒𝑝௣భ

ሺ𝑥ሻ and
𝑠𝑡𝑒𝑝௣మ

ሺ𝑥ሻ.

2.3.2. General Pollard Rho Algorithm

Algorithm 3 shows how Pollard Rho works in
general.

Line 9 might seem undetailed. This is intentional
due to how Pollard Rho can achieve various thing
depending on how it is implemented. The detail of
line 9 will follow later on. Also notice on line 2 that
a value n	is used. This value can be set to whatever
value desired. It functions as the initial value for both
pointer.

Algorithm 3 Pollard Rho – Generic
1 Let 𝑝ଵ and 𝑝ଶ be two different pointers
2 Let n	be an arbitrary value
3 𝑝ଵ ← 𝑛	
4 𝑝ଶ ← 𝑛	
5 repeat
6 𝑝ଵ ← 𝑠𝑡𝑒𝑝௣భ

ሺ𝑝ଵሻ
7 𝑝ଶ ← 𝑠𝑡𝑒𝑝௣మ

ሺ𝑝ଶሻ
8 until 𝑝ଵ ൌ 𝑝ଶ
9 Infer the desired information from 𝑝ଵand 𝑝ଶ

Algorithm 3 shows how step function and the

pointer interacts, but not the random function. In
fact, algorithm 3 does not state about the random
function at all. The explanation of random function
will follow because its detail relies on how Pollard
Rho is implemented.
2.3.3. Random Function

Since the Pollard Rho method is going to be
used to solve discrete logarithm problem, the random
function used is as follow.

𝑓ሺ𝑥ሻ ൌ ቐ
ሺ𝛽 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ∈ 𝑆ଵ

ሺ𝑥 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ∈ 𝑆ଶ
ሺ𝛼 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ∈ 𝑆ଷ

 ሺ1ሻ

Consequently, f(x) can be written as (2).

𝑓ሺ𝑥ሻ ൌ 𝛼௔ ∗ 𝛽௕ 𝑚𝑜𝑑 𝑚 for arbitrary 𝑎 and 𝑏 ሺ2ሻ

The value of 𝛼 and 𝛽 will be explained later on.

Also as seen in (1), there are three sets stated: 𝑆ଵ, 𝑆ଶ,
and 𝑆ଷ. These sets are the subsets of ℤ i.e. integers,
and in practice, can be defined arbitrarily with
limitation that the three sets must have roughly same
cardinality, disjoint to each other, and 1 ∉ 𝑆ଶ ሾ7ሿ.

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8476

During implementation, the three sets are defined
using the explanation in Handbook of Cryptography
[7].

𝑆ଵ ൌ ሼ𝑥 ∶ 𝑥 ≡ 1 𝑚𝑜𝑑 3ሽ
𝑆ଶ ൌ ሼ𝑥 ∶ 𝑥 ≡ 0 𝑚𝑜𝑑 3ሽ
𝑆ଷ ൌ ሼ𝑥 ∶ 𝑥 ≡ 2 𝑚𝑜𝑑 3ሽ

Therefore, (2) can be written into (3).

𝑓ሺ𝑥ሻ ൌ ቐ
ሺ𝛽 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 1 𝑚𝑜𝑑 3
ሺ𝑥 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 0 𝑚𝑜𝑑 3
ሺ𝛼 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 2 𝑚𝑜𝑑 3

 ሺ3ሻ

2.3.4. Brent’s Cycle Detection

Pollard in his original paper uses Floyd's cycle
detection as the cycle detection method [9], [8].
Later on 1980, Brent improves Pollard Rho's speed
up to 24% by implementing different cycle detection
[8]. This paper will utilize Brent's cycle detection.
His method works as follow.

Algorithm 4 Baby-step Giant-step
1 Let 𝑠	and 𝑡	be two different pointers
2 Let 𝑖	be iteration counter
3 Let 𝑙𝑖𝑚𝑖𝑡	be current iteration limit
4 𝑖 ← 0
5 𝑙𝑖𝑚𝑖𝑡 ← 𝑞଴
6 repeat
7 if 𝑖 ൌ 𝑙𝑖𝑚𝑖𝑡	then
8 𝑡 ← 𝑠	
9 𝑖 ← 0
10 𝑙𝑖𝑚𝑖𝑡 ← 𝑙𝑖𝑚𝑖𝑡 ∗ 𝑞	
11 else
12 𝑖 ൌ 𝑖 ൅ 1
13 end if
14 𝑠 ← 𝑓ሺ𝑠ሻ
15 until 𝑠 ൌ 𝑡

Algorithm 4 speaks about how two pointers

behave. Basically, it has a pointer (e.g. s) to do the
step process for every iteration (line 14), and another
pointer (e.g. t) to do the step process for roughly
every 𝑞௫ iteration with increasing 𝑥	(line 7–13).

Notice the difference between the pointers on
how they do the step process. At line 14, pointer
s	uses a random function to move, whereas at line
8 pointer t	move by setting its value with pointer s.
Additionally, each time t	moves, the time needed for
t	to move next increases.

Algorithm 4 uses one additional information,
namely q. Brent in his paper stated that 𝑞	 is a free
parameter i.e. it can be chosen with any value. 𝑞 is
also utilized to determine the initial value (𝑞଴) using

𝑞଴ ൌ 𝑞௨ for 𝑢 ∈ ሾ0,1ሻ, 𝑢	 is chosen using uniform
distribution. Commonly these parameter would be
set to 𝑞 ൌ 2 and 𝑢 ൌ 0 [8]. This paper will follow
said parameter but with 𝑢 ൌ 1. That means, t	will
step for every 2௫ iteration with 𝑥	begins at 1 and 𝑥	
increases overtime.
2.3.5. Step function

Combining algorithm 3 and 4, the Pollard Rho’s
step function this paper will use is as follow.

𝑠𝑡𝑒𝑝௣భ ൌ 𝑓ሺ𝑝ଵሻ ሺ4ሻ

𝑠𝑡𝑒𝑝௣మ ൌ ൜
𝑝ଵ 𝑐 ൌ 𝑙
𝑝ଶ otherwise

ሺ5ሻ

𝑠𝑡𝑒𝑝௣మ has to remember at least two states to
function:

1. Current iteration, namely 𝑐.
2. 𝑙 ൌ 2௜ for given 𝑖	and 𝑖	increases overtime.

Additionally, one might want to memorize 𝑖,

although it can be avoided.
2.3.6. Value of 𝜶	and 𝜷

In line 9 of algorithm 3, the information that will
be inferred is the discrete logarithm. To do so, 𝛼	and
𝛽	in (1) and (2) will be set to 𝑔	and 𝑦	respectively.
That means (2) and (3) can be rewritten into (6) and
(7)

𝑓ሺ𝑥ሻ ൌ 𝑔௔ ∗ 𝑦௕ 𝑚𝑜𝑑 𝑚 for arbitrary 𝑎 and 𝑏 ሺ6ሻ

𝑓ሺ𝑥ሻ ൌ ቐ
ሺ𝑦 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 1 𝑚𝑜𝑑 3
ሺ𝑥 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 0 𝑚𝑜𝑑 3
ሺ𝑔 ∗ 𝑥ሻ 𝑚𝑜𝑑 𝑚 𝑥 ≡ 2 𝑚𝑜𝑑 3

 ሺ7ሻ

Equation (6) implies that two pointers will be in

form of (8) and (9)

𝑝ଵ ൌ 𝑔௔೛భ ∗ 𝑦௕೛భ 𝑚𝑜𝑑 𝑚 ሺ8ሻ
𝑝ଶ ൌ 𝑔௔೛మ ∗ 𝑦௕೛మ 𝑚𝑜𝑑 𝑚 ሺ9ሻ

Then, the inference can be done using equation

(10)

log୥ሺ𝑦ሻ ൌ
𝑎௣భ െ 𝑎௣మ

𝑏௣మ െ 𝑏௣భ

൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ ሺ10ሻ

where 𝑜𝑟𝑑௠ሺ𝑔ሻ is multiplicative order modulo m	of
g.

While there is no certain restriction on how to
initialize 𝑝ଵ and 𝑝ଶ, in this paper both pointer will be
set to 1 at first. That means for both pointer,𝑎 ൌ 0
and 𝑏 ൌ 0. It is worth of note however, that Pollard

Rho method may fail when 𝑏௣భ ൌ 𝑏௣మ or gcd ቀ𝑏௣మ െ

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8477

𝑏௣భ, 𝑜𝑟𝑑௠ሺ𝑔ሻቁ ൐ 1, causing (10) to be unsolvable.

In such scenario, the Pollard Rho method will be
redone but using different initial value. The
reinitialization is done in the following manner.

𝑝ଵ ൌ 𝑝ଶ ൌ 𝑔௔ ∗ 𝑦௕ 𝑚𝑜𝑑 𝑚 ሺ11ሻ

for 𝑎 and 𝑏 are integers, 𝑎 ∈ ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯ and 𝑏 ∈
ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯, both chosen randomly.
2.3.7. Implementable Algorithm

Algorithm 5 sums up all stated explanation. In
algorithm 5, 𝑝ଶ will move at iteration 2, 4, 8, … .
While this is correct, in practice this paper uses a
slightly modified version of algorithm 5 where 𝑝ଶ
moves at iteration 2, 2, 4, 8, 16, …. Said modification
is considered minor.

Algorithm 5 Baby-step Giant-step
Input: Four integers: 𝑔, 𝑦, 𝑜 and 𝑚 where 𝑜 is the
multiplicative order modulo 𝑚 of 𝑔
Output: An integer 𝑒 that satisfies 𝑔௘ ≡
𝑦 ሺ𝑚𝑜𝑑 𝑚ሻ or "Not Exist"
1 Let 𝑝ଵ be a pointer in form of ⟨𝑎, 𝑏, 𝑣𝑎𝑙𝑢𝑒⟩
2 Let 𝑝ଶ be a pointer in form of ⟨𝑎, 𝑏, 𝑣𝑎𝑙𝑢𝑒⟩
3 Let 𝑖	be iteration counter
4 Let 𝑙𝑖𝑚𝑖𝑡	be current iteration limit
5 𝑖 ← 0
6 𝑙𝑖𝑚𝑖𝑡 ← 2
7 𝑝ଵ ← ⟨0,0,1⟩
8 𝑝ଶ ← ⟨0,0,1⟩
9 repeat
10 if 𝑖 ൌ 𝑙𝑖𝑚𝑖𝑡	then
11 𝑝ଶ ← 𝑝ଵ
12 𝑖 ← 0
13 𝑙𝑖𝑚𝑖𝑡 ← 𝑙𝑖𝑚𝑖𝑡 ∗ 2
14 else
15 𝑖 ൌ 𝑖 ൅ 1
16 end if
17 if 𝑝ଵ 𝑚𝑜𝑑 3 ≡ 1 then
18 𝑝ଵ. 𝑏 ← 𝑝ଵ. 𝑏 ൅ 1
19 𝑝ଵ.value ← ሺ𝑝ଵ.value ∗ 𝑦ሻ 𝑚𝑜𝑑 𝑚	
20 else if 𝑝ଵ 𝑚𝑜𝑑 3 ≡ 0 then
21 𝑝ଵ. 𝑎 ← 𝑝ଵ. 𝑎 ∗ 2
22 𝑝ଵ. 𝑏 ← 𝑝ଵ. 𝑏 ∗ 2
23 𝑝ଵ.value ← ሺ𝑝ଵ.value ∗ 𝑝ଵ.valueሻ 𝑚𝑜𝑑 𝑚	
24 else
25 𝑝ଵ. 𝑎 ← 𝑝ଵ. 𝑎 ൅ 1
26 𝑝ଵ.value ← ሺ𝑝ଵ.value ∗ 𝑔ሻ 𝑚𝑜𝑑 𝑚	
27 end if
28 until 𝑝ଵ ൌ 𝑝ଶ
29 if gcdሺ𝑝2. 𝑏 െ 𝑝1. 𝑏, 𝑜ሻ ൐ 1 or 𝑝ଵ. 𝑏 ൌ 𝑝ଶ. 𝑏	
then
30 Let 𝑠 ∈ ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯

Algorithm 5 Baby-step Giant-step (cont.)
31 Let 𝑡 ∈ ൣ1, 𝑜𝑟𝑑௠ሺ𝑔ሻ൯
32 𝑝ଵ ← ⟨𝑠, 𝑡, ሺ𝑔௦ ∗ 𝑦௧ሻ 𝑚𝑜𝑑 𝑚⟩
33 𝑝ଶ ← 𝑝ଵ
34 Get back to line 9
35 end if
36 Let 𝑏ᇱ ← ሺ𝑝ଶ. 𝑏 െ 𝑝ଵ. 𝑏ሻିଵ 𝑚𝑜𝑑 𝑜
37 return ሾሺ𝑝ଵ. 𝑎 െ 𝑝ଶ. 𝑎ሻ ∗ 𝑏ᇱሿ 𝑚𝑜𝑑 𝑜

3. RESEARCH METHODOLOGY

This section will present a detailed explanation of
how the research is done.

3.1. Dataset Preparation
Every dataset is designed to follow the parameters

given in Digital Signature Algorithm. Each
dataset will contain seven values; five comes from
following the Digital Signature Algorithm, and the
extra two are the free parameters.

1. 𝑁, a free parameter denoting how long
parameter 𝑞	will be in bit.

2. 𝐿, a free parameter denoting how long
parameter 𝑝	will be in bit.

3. 𝑞, a public key component. 𝑞	must be a prime
and must be a divisor to ሺ𝑝 െ 1ሻ.

4. 𝑝, a public key component. 𝑝	must be a prime.
5. 𝑔, a public key component. 𝑔	will serve as the

generator of the exponentiation.
6. 𝑦, a public key component. 𝑦	is obtained by

𝑦 ൌ 𝑔௫ ሺ𝑚𝑜𝑑 𝑝ሻ where 𝑥	is the user’s private
key.

7. 𝐻ሺ𝑚ሻ, a hashed message.

Since this paper is interested in comparing the

speed of Baby-step Giant-step and Pollard Rho
towards achieving total break in Digital Signature
Algorithm, there will be two group of datasets.

1. Dataset group which have fixed 𝑁	 and
increasing L. There will be in total 475
datasets that fall in this group. There will be
at most 10 different datasets for every distinct
L. The 𝑁	parameter is to be set at 10 and 𝐿	is
designed to not exceed 60.

2. Dataset group which have fixed 𝐿	 and
increasing 𝑁. There will be in total 480
datasets that fall in this group. There will be
10 different datasets for every distinct 𝑁. The
𝐿	 parameter is to be set at 60 and 𝑁	 is
designed not to exceed 57.

Other parameter (i.e. 𝑝, 𝑞, 𝑔, and 𝑦) in every dataset
will adhere to given 𝑁	and 𝐿. For 𝐻ሺ𝑚ሻ, it will be
set to have the same value for all dataset.

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8478

3.2. Testing
There will be two versions of the program that

will be executed. One with Baby-step Giant-step
implementation, and one with Pollard Rho with
Brent cycle detection implementation. Each program
is to be run with the two group of datasets as the
input. Each dataset group is to be run separately.
That is, there will be four executions: (1) Baby-step
Giant-step with fixed 𝑁	 datasets, (2) Baby-step
Giant-step with fixed 𝐿	 datasets, (3) Pollard Rho
with fixed 𝑁	datasets, and (4) Pollard Rho with fixed
𝐿	datasets.

Each execution will be run in the following
manner.

1. Receive a dataset from the corresponding
group.

2. Note down the time prior to forgery.
3. Forge a signature.
4. Note down the time after forgery.
5. Output the running time by taking the

difference between two times.
When handling the dataset group with fixed N,

some adjustment needs to be done. Due to the time
needed to do the forgery using dataset with fixed N	
is very small, step 3 is to be repeated 10000 times to
magnify the result.

3.3. Result Evaluation
The running time for each dataset is to be

aggregated according to their non-fixed free
parameter. For example, in group with fixed 𝑁, the
results which come from the dataset with the same 𝐿	
will be aggregated together. The results will be
aggregated to their mean and standard deviation.

The result will be presented according to the
dataset group. First, the graphic representation of
each method performance is to be presented. Then
the explanation regarding the graphic will follow.
The evaluation will be ended with graphic
comparison of both method, along with few
comments concluding the explanation in the section.

4. RESULT

This section will discuss and evaluate the result of
the research. This section will be mostly separated
into two parts: (1) the result of methods using
datasets with fixed 𝑁	as the input, and (2) the result
of methods using datasets with fixed 𝐿	as the input.

4.1. Fixed N	Datasets
4.1.1. Baby-step Giant-step

Figure 1: Running time mean of Baby-step Giant-step

with fixed N datasets

Figure 1 shows that as 𝐿	 increase, so does the
expected time needed. The increase happens
linearly, though by minuscule factor i.e. around 0.01
second. When 𝐿	reaches 50 and beyond however, the
increase seemed to happen with slightly bigger
factor.

Figure 2: Running time standard deviation of Baby-step

Giant-step with fixed N datasets

Similar phenomenon can be seen in figure 2. This
figure shows that the uncertainty which Baby-step
Giant-step method has increases as 𝐿	increase. The
increase happens linearly by factor of about 0.01 per
10 𝐿	increment.

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8479

4.1.2. Pollard Rho–Brent

Figure 3:Running time mean of Pollard Rho with fixed N

datasets

Figure 3 shows that as 𝐿	 increase, so does the
Pollard Rho’s expected running time. The increase
happens in linearly fashion. The increase factor is
higher than Baby-step Giant-step i.e. around 0.1
second per 10 𝐿. Also, the increase is not really stable
as can be seen when 𝐿	reaches 50: some point peaks
very high.

Figure 4: Running time standard deviation of Pollard

Rho with fixed N datasets

When fed with fixed 𝑁	 datasets, Pollard Rho’s
standard deviation (figure 4) have similar property
with its mean, that is, both scatters considerably
although the standard deviation seems more
irregular. It is difficult determine whether the
standard deviation has linear growth function or

quadratic growth function. As such, its growth
function is yet to be determined.
4.1.3. Remark

Figure 5: Running time mean of both method with fixed N

datasets

Both method shows that as L increase, the time
needed to solve the problem also increases in linearly
fashion, albeit with different reliability. Baby-step
Giant-step method has tendency to solve the problem
with running time near the mean, whereas Pollard
Rho has more randomness toward the time needed.

Figure 6:Running time standard deviation of both method

with fixed N datasets

Figure 5 and 6 shows the mean and standard

deviation comparison of both method respectively.
From figure 6 it can be seen that the standard

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8480

deviation of Pollard Rho method is strikingly high
compared to Baby-step Giant-step.

4.2. Fixed L	Datasets
4.2.1. Baby-step Giant-step

Figure 7: Running time mean of Baby-step Giant-step

with fixed L datasets

Figure 7 shows that the expected running time
grows with polynomial growth function. The growth
becomes apparent when N goes over 40.

Figure 8: Running time standard deviation of Baby-step

Giant-step with fixed L datasets

The standard deviation (figure 8) also follow the
same growth function as the expected running time
i.e. polynomial. The standard deviation starts to
grow considerably when N goes over 40.

4.2.2. Pollard Rho–Brent

Figure 9: Running time mean of Pollard Rho with fixed L

datasets

Pollard Rho with Brent cycle detection has
expected running time that follows polynomial
growth function as seen in figure 9. Just like its
mean, its standard deviation also has polynomial
growth function (figure 10).

Figure 10: Running time standard deviation of Pollard

Rho with fixed L datasets

On both figure, the growth starts to be noticeable
once N	reaches slightly below 40 and after that point
the graphic pikes considerably.
4.2.3. Remark
It has been shown that both method has polynomial
growth function for their mean and standard
deviation. Even so, Baby-step Giant-step has higher

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8481

expected running time than Pollard Rho, but has
significantly lower standard deviation compared to
Pollard Rho.

Figure 11: Running time mean of both method with fixed
L datasets

Figure 11 and 12 shows the mean and standard
deviation comparison of both method respectively. It
can be seen that both method’s mean have relatively
similar growth function and that Pollard Rho’s
standard deviation rockets quicker than Baby-step
Giant-step.

Figure 12: Running time standard deviation of both

method with fixed L datasets

4.3. Coefficient of Variation’s Comparison
The dispersion of running times which has been

previously obtained is highly variable. It was taken
into account that a different data distribution could
have the same degree of dispersion, and to quantify

this degree of dispersion, Coefficient of Variation is
deemed to be able to handle this issue very well.

As a way to illustrate how close the performance
of the two methods, Coefficient of Variations value
will be calculated. This section will briefly explain
about how Coefficient of Variation is calculated, and
then how two method’s Coefficient of Variation
would compare.
4.3.1. Coefficient of Variation
The Coefficient of Variation is calculated using
the following formula.

𝑐௩ෝ ൌ
𝑠
�̅�

 ሺ12ሻ

where 𝑠	is the data’s standard deviation and �̅�	is the
data’s mean.
4.3.2. Coefficient of Variation for Fixed L

Dataset
Table 1 provides tabular result of the 𝑐௩ෝ 	for fixed

L dataset.

Table 1: Coefficient of Variation - Fixed L Dataset

N BSGS Brent N BSGS Brent

10 NA NA 32 0.119 0.667

11 3.162 NA 33 0.117 0.448

12 NA 3.162 34 0.067 0.76

13 NA NA 35 0.038 0.594

14 NA NA 36 0.049 0.491

15 NA NA 37 0.021 0.436

16 NA NA 38 0.036 0.371

17 NA 3.162 39 0.022 0.441

18 NA NA 40 0.033 0.453

19 3.162 3.162 41 0.029 0.759

20 NA 2.108 42 0.02 0.67

21 2.108 3.162 43 0.024 0.755

22 3.162 2.108 44 0.033 0.516

23 2.108 1.292 45 0.026 0.534

24 1.292 1.292 46 0.03 0.552

25 1.292 0.862 47 0.029 0.654

26 1.055 0.627 48 0.023 0.718

27 0.691 0.796 49 0.018 0.568

28 0.364 0.492 50 0.021 0.713

29 0.175 0.572 51 0.024 0.682

30 0.276 0.54 52 0.023 0.542

31 0.317 0.657 53 0.024 0.567

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8482

Notice there are few NAs in the table. This was
obtained due to these entries have 𝑠 ൌ 0 and �̅� ൌ 0.
That means these entries have very small running
time that the obtained result records the running time
as 0.

Values in table 1 are presented graphically on
figure 13. In the figure, the NAs are not plotted
which explains why there are gaps on few first N.
From the figure, both method’s 𝑐௩ෝ converges very
quickly somewhere near 𝑁 ൐ 30. At that point, both
method’s 𝑐௩ෝ is relatively stable with Pollard Rho’s 𝑐௩ෝ
being slightly higher than Baby-step Giant-step’s.

Figure 13: Coefficient of Variation plotting for fixed L

dataset

The reason values with 𝑁 ൏ 26 have very high 𝑐௩ෝ 	

is that the score it derived from is very low,
accompanied with the fact that the recorded result do
not have enough precision. This in turn caused the
score to be discretized into a score with lower
precision. These values are considered as outlier.

Figure 14 shows the boxplot diagram for values
in table 1. The median of Pollard Rho with Brent
Cycle Detection’s 𝑐௩ෝ is slightly higher than Baby-
step Giant-step’s. It is as expected since Pollard Rho
is a probabilistic algorithm. Also, the Pollard Rho
with Brent Cycle Detection’s upper hinge and lower
hinge is higher compared to Baby-step Giant-step’s.
Overall, different N	 parameter contributes to
dispersion 10 for a small factor, just about less than
1
4.3.3. Coefficient of Variation for Fixed N

Dataset
Table 2 shows the 𝑐௩ෝ for all tested L	parameter

and N	parameter being constant. A major difference
between these values with those of L	fixed dataset’s
𝑐௩ෝ is that these values does not have NAs. These
values then are considered to have no outlier.

Figure 14: Coefficient of Variation boxplot for fixed L

dataset

Table 2: Coefficient of Variation - Fixed N Dataset

L BSGS Brent L BSGS Brent

13 0.116 0.558 37 0.125 0.514

14 0.072 0.483 38 0.081 0.541

15 0.113 0.494 39 0.147 0.427

16 0.094 0.542 40 0.148 0.428

17 0.07 0.363 41 0.107 0.415

18 0.1 0.449 42 0.122 0.266

19 0.101 0.406 43 0.105 0.523

20 0.127 0.531 44 0.145 0.388

21 0.084 0.147 45 0.151 0.152

22 0.065 0.56 46 0.135 0.771

23 0.104 0.591 47 0.148 0.319

24 0.128 0.477 48 0.099 0.591

25 0.088 0.719 49 0.09 0.478

26 0.102 0.527 50 0.1 0.544

27 0.1 0.696 51 0.156 0.629

28 0.106 0.591 52 0.12 0.447

29 0.113 0.653 53 0.119 0.353

30 0.115 0.739 54 0.115 0.507

31 0.112 0.358 55 0.113 0.576

32 0.122 0.374 56 0.115 0.341

33 0.121 0.53 57 0.106 0.437

34 0.13 0.5 58 0.128 0.637

35 0.147 0.568 59 0.1 0.488

36 0.109 0.531 60 0.142 0.521

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8483

The values in table 2 is presented graphically in
figure 15. The figure shows that most of the time
Pollard Rho with Brent Cycle Detection’s 𝑐௩ෝ is
higher than Baby-step Giant-step.

Figure 15: Coefficient of Variation plotting for fixed N

dataset

Figure 16 gives insight on how the 𝑐௩ෝ illustrated
in figure 15 is distributed. The boxplot of Baby-step
Giant-step’s 𝑐௩ෝ is lower than Pollard Rho with Brent
Cycle Detection. It is interesting to notice that Baby-
step Giant-step boxplot has significantly smaller size
than Pollard Rho with Brent Cycle Detection, both
the box and the whiskers. This shows how reliable
Baby-step Giant-step is with regard to various L	
parameter

Figure 16: Coefficient of Variation plotting for fixed N

dataset

4.3.4. Remark
It has been shown that both method has relatively

low degree of dispersion i.e. 𝑐௩ෝ ൏ 1. Even so, Pollard
Rho with Brent Cycle Detection has higher 𝑐௩ෝ than
Baby-step Giant-step. Unfortunately, due to small
sample size, deriving conclusion using these 𝑐௩ෝ is a
risky task as they could be a biased estimator.
However, it can be narrowed down that on average,
the Pollard Rho with Brent Cycle Detection’s 𝑐௩ෝ is
higher than Baby-step Giant-step with factor of at
least 0.2.

Another thing worth of note is that 𝑁	parameter
gives Baby-step Giant-step method minuscule
degree of dispersion compared to 𝐿	parameter. The
𝑁 and 𝐿	 parameter gives a comparable degree of
dispersion towards Pollard Rho with Brent Cycle
Detection method with both parameter seemed to
contributes equally.

5. CONCLUSION

The finding can be narrowed into two points.

5.1. The Effect of DSA Parameter
Two parameter of interest is the length of a prime

modulus 𝑝, and the multiplicative order of the
generator 𝑞. From the observation, the length of 𝑞	
contributes to both method’s running time in linearly
fashion with expected gradient less than 1 second for
both method, whereas the length of 𝑝	contributes to
both method’s running time in polynomial fashion.

Unsurprisingly, the length of 𝑝	contributes higher
than the length of 𝑞. After the length of 𝑝	hits 50, the
expected time difference between 𝑝	 and 𝑝 ൅ 1 is
very noticable: about over 50 seconds. For DSA’s
security interest, increasing the size of 𝑝 would be
very desirable.

5.2. Two Method Comparison
From the finding, it can be concluded that both

method has the same growth function. Even so, there
is a high chance that Baby-step Giant-step takes time
longer compared to Pollard Rho. The main factor
that causes Baby-step Giant-step to be slower is the
multiplicative order of the generator (i.e. 𝑞). In this
experiment, it is when the multiplicative order of the
generator is on around 40-bit long (i.e. 𝑁 ൌ 40) that
Pollard Rho’s expected run time begins to seemed
better.

In term of their reliability, Baby-step Giant-step
wins without contest. Baby-step Giant-step provides
stable solution to signature forgery. Pollard Rho
might seem unreliable due to how it could take
significantly higher time at occasions. On the other
hand, Pollard Rho also has the possibility to do the
task way faster than expected.

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8484

The two method is also compared in term of how
close their performance are. One characteristic that
is inspected is the degree of dispersion. From
observation, both method has degree of dispersion of
less than 1, with Pollard Rho with Brent Cycle
Detection is placed slightly higher than Baby-step
Giant-step. The expected degree of dispersion’s
difference between the two method is over 0.2, i.e.
Δ𝑐௩ෝ ൐ 0.2. This degree of dispersion is consistent
when the length of prime modulus 𝑝	is constant, and
when the length of multiplicative order of the
generator 𝑞	is constant.

This comparison provides an insight on how a
variant of Pollard Rho would match to Baby-step
Giant-step. As expected, Pollard Rho (specifically
with Brent Cycle Detection) is outmatched.
However, the difference between the two does not
deemed to be that far. It is believed that for other
variant of Pollard Rho, the difference between them
and Baby-step Giant-step would be even smaller.

The author suggested that it would be interesting
for future work to suppress the difference between
Pollard Rho and Baby-step Giant-step as small as
possible. The difference dimension used in this work
can be utilized as a reference for further
improvement in Pollard Rho’s development.

It is worth to note however, that in this paper, the
size of the value used is considered small in
cryptography context. For future work, it might be
interesting to see the behavior for even bigger
number and find out how the growth of the execution
time looks like.

6. ADDENDUM

6.1. Proof for equation (10)
It has been stated that given two pointers, namely

p1 and p2 where

𝑝ଵ ൌ 𝑔௔೛భ ∗ 𝑦௕೛భ 𝑚𝑜𝑑 𝑚
𝑝ଶ ൌ 𝑔௔೛మ ∗ 𝑦௕೛మ 𝑚𝑜𝑑 𝑚

if 𝑝ଵ ൌ 𝑝ଶ, the discrete logarithm of y	can be known.
The procedure to infer the discrete logarithm is as
follow.

𝑝ଵ ≡ 𝑝ଶ ሺ𝑚𝑜𝑑 𝑚ሻ
𝑔௔೛భ ∗ 𝑦௕೛భ ≡ 𝑔௔೛మ ∗ 𝑦௕೛మ ሺ𝑚𝑜𝑑 𝑚ሻ

𝑦௕೛భ

𝑦௕೛మ
≡

𝑔௔೛మ

𝑔௔೛భ
 ሺ𝑚𝑜𝑑 𝑚ሻ

𝑦௕೛భି௕೛మ ≡ 𝑔௔೛మି௔೛భ ሺ𝑚𝑜𝑑 𝑚ሻ

Then apply logg	to both side. 𝑚𝑜𝑑 𝑚	will turn to
𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ because of this.

log௚൫𝑦௕೛భି௕೛మ ൯ ≡ log௚ሺ𝑔௔೛మି௔೛భ ሻ ൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯
൫𝑏௣భ െ 𝑏௣మ൯ log௚ 𝑦 ≡ 𝑎௣మ െ 𝑎௣భ ൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯

𝑙𝑜𝑔௚𝑦 ≡
𝑎௣మ െ 𝑎௣భ

𝑏௣భ െ 𝑏௣మ

൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯

∎

According to Euler’s Theorem, the following
equation holds if a	and n	is coprime.

𝑎மሺ୬ሻ ≡ 1 ሺ𝑚𝑜𝑑 𝑛ሻ

Since the multiplicative inverse of 𝑏௣భ െ 𝑏௣మ
needs to be found, the Euler's Theorem has to apply.
As the consequence, 𝑏௣భ െ 𝑏௣మ needs to be coprime
with 𝑜𝑟𝑑௠ሺ𝑔ሻ. This raises an implicit constraint

from equation log௚ 𝑦 ≡
௔೛మି௔೛భ

௕೛భି௕೛మ
൫𝑚𝑜𝑑 𝑜𝑟𝑑௠ሺ𝑔ሻ൯

that gcd ቀ𝑏௣భ െ 𝑏௣మ, 𝑜𝑟𝑑௠ሺ𝑔ሻቁ ൌ 1. Therefore,

before solving the equation, it has to be checked

whether or not gcd ቀ𝑏௣భ െ 𝑏௣మ, 𝑜𝑟𝑑௠ሺ𝑔ሻቁ ൌ 1

holds. In case of 𝑏௣భ െ 𝑏௣మ ൌ 0, the equation will
also deemed unsolvable.

REFERENCES

[1] S. Goldwasser, S. Micali and R. L. Rivest, "A
Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks," Society
for Industrial and Applied Mathematics, vol.
17, 1988.

[2] Bailey et al., "The Certicom Challenges ECC2-
X".

[3] Bos et al., "PlayStation 3 computing breaks 2଺଴

barrier 112-bit prime ECDLP solved," [Online].
Available:
https://lacal.epfl.ch/articles/112bit_prime/.
[Accessed 14 November 2018].

[4] Bernstein et al., "Faster elliptic-curve discrete
logarithms on FPGAs," 2016.

[5] P. C. van Oorschot and M. J. Wiener, "Parallel
Collision Search with Cryptanalytic
Applications," 1996.

[6] W. Stallings, "Digital Signatures," in
Cryptography and Network Security Principles
and Practice, 5th Edition, 5th ed., 2011.

[7] A. Menezes, P. var Oorschot and S. Vanstone,
"Number Theoretic Reference Problems," in
Handbook of Applied Cryptography, CRC
Press, 1996.

Journal of Theoretical and Applied Information Technology
31st December 2018. Vol.96. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8485

[8] R. P. Brent, "An Improved Monte Carlo
Factorization Algorithm," BIT Numerical
Mathematics, vol. 20, 1980.

[9] J. M. Pollard, "A Monte Carlo Method for
Factorization," BIT, vol. 15, 1975.

