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ABSTRACT 
 

In this work we present a study on the performance of signal similarity measures under non-Gaussian noise. 
Pink noise has been considered, with 1/f power spectral density. This kind of noise has been generated by 
filtering Gaussian noise through an FIR filter. One-dimensional and two-dimensional signals have been 
considered. We tested 2D image similarity using the well-known similarity measures: Structural Similarity 
Index Measure (SSIM), modified Feature-based Similarity Measure (MFSIM), and Histogram-based 
Similarity Measure (HSSIM). Also, we tested 1D similarity measures: Cosine Similarity, Pearson 
Correlation, Tanimoto similarity, and Angular similarity.  Results show that HSSIM and MFSIM 
outperform SSIM in low PSNR under pink noise and Gaussian noise. For 1D similarity, it is shown that 
Cosine Similarity and Pearson Correlation outperform other 1D similarity, especially at low SNR. 
Keywords: Gaussian Noise, Pink Noise, FM, SSIM, HSSIM, MFSIM, Image Similarity, Cosine Similarity, 

Tanimoto Similarity, Angular Similarity, Pearson Coefficient. 
 
1. INTRODUCTION  

Signal similarity plays a significant role in 
many applications like Pattern recognition, Face 
recognition, Signal detection etc. There are many 
measures for one-dimensional (1D) signals, most 
important are cosine similarity, Tanimoto 
similarity, angular similarity and Pearson 
correlation. For 2D signals (images), there are 
many similarity measures like SSIM [1], HSSIM 
[2], and FSIM [3].  

The similarity is the amount that mirrors the 
connection quality among the two components. The 
measures of similarity have a coefficient range 
from 0 to 1 [4]. 

Image similarity measures enable 
categorized into statistical and information theoretic 
[2]. Statistical Methods worthy information can be 
acquired from the image by calculating statistical 
sizes such as mean, variance and standard 
deviation. This information can be utilized to 
calculate image similarity [1]. The information-
theoretic method is targeted to find the similarity 
among images affording to their content (intensity 
values) [5]. 

 In this work, we will investigate the 
performance of 1D and 2D similarity measures 
under 1/f Noise. This kind of noise is very 
important because it used in electronics and audio 

[6], several physical systems such as 
communication channels [7], electronic 
components and semiconductors devices [8,9], 
natural phenomena (e.g., rivers, ocean flows, 
average seasonal temperature, rainfall) [10], 
financial markets [11], image [12], acoustics and 
music [13].  

The study of pink noise as an entity began in 
the first half of the 20th century. In 1925, Johnson 
found frequency dependent noise whose spectral 
density increased with decreasing frequency [14]. 

 Colored noise denotes to any broadband 
noise with a non-white Spectrum. Also, a white 
noise transient done a channel is “Colored” by the 
form of the channel spectrum. Two classic changes 
of colored noise are named as pink noise and brown 
noise [15]. 

Pink noise is the name given to irregular 
signals that contain steady power per rate 
bandwidth for all frequencies [16]; pink noise can 
be generated by passing white Gaussian noise 
through FIR filter. The main feature of 1/f noise is 
that its power spectrum increases with decreasing 
frequency down to the lowest possible frequencies 
for conducting measurements [17]. The basic 
distinction between 1/f and white Gaussian noise is 
the interdependence between samples: for white 
noise samples are uncorrelated even at short time 
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distance, for 1/f noise samples are strongly 
correlated even at long time distance.  

The paper is ordered as follows: Section 2 
deals with similarity measures. Section 3 presents a 
generated and analysis of pink noise. In Section 4 
test environment performance measures over two 
type noise. Finally, in Section 5 conclusions of this 
study. 

2. RATIONALE 

Pink noise has been under attention of researchers 
in the last two decades due its major effects on 
electronic systems for signal and image processing 
[6,16,17]. To the best of our knowledge, there is no 
work so far that focuses on evaluating similarity 
measures under 1/f pink noise. Hence, we handled 
this task for 1D and 2D signal similarity measures. 

3. SIMILARITY MEASURES 

In this section we review some of the most effective 
signal similarity measures for 1D and 2D signals. 
 
3.1 Structure Similarity Index Measure 

Structure Similarity Index Measure (SSIM) 
is a statistical measure using statistical image 
parameters such as mean, variance, co-variance, 
and standard deviation [1, 18]; it is defined in 
Equation (1)                                                            

 

(1) 

where   is the similarity metric between 
images  and , while   , ,   and   are the 
statistical means and variances of  and , 
respectively;  is the covariance of  and , and 
lastly the constants  and  are injected to avoid 
unstable results that may be reached due to division 
by zero, and are defined as =   and  
= , with  and  are tiny small positive 
constants and  (extreme pixel value). 
3.2 HSSIM Measure 
       One of the effective image similarity measures 
is based on information-theoretic properties via the 
histogram is the Histogram-based similarity 
measure (HSSIM) [2, 19]. It is proposed to deal 
with the problem that SSIM measure can't perform 
well under significant noise. HSSIM depends on 
information-theoretic properties by using the joint 
histogram. HSSIM utilizes a normalized form of 
joint histogram [2, 19]. Equation (2) explains this 
measure. 

 

(2) 

     where   is the HSSIM measure,  
is the original image histogram,  is the joint 
histogram, and  is a small positive constant to 
keep away from division by zero. 
 
3.3 Feature Similarity Index Measure 
             Feature Similarity Index Measure (FSIM) 
is a quality assessment measure relying upon 
human vision system (HVS) which understands an 
image in a general sense. The phase congruency 
(PC) is used as the primary property. 

 PC is a dimensionless measure to quantify 
the importance of a neighborhood structure; while 
the gradient magnitude (GM) is utilized as the 
subordinate property [20]. The calculation of the 
FSIM involves two steps. In the first step, the PC 
and GM characteristics will be isolated using 
gradient operators, the Prewitt operator, the Sobel 
operator, and the Scharr operator [21]. The 
similarity measure for PC rates SPC(x) and GM 
values  SG(x)  are well-defined in Equations (3) and 
(4) below: 

     (3) 

 

            (4) 

             The second step is to calculate the  as 
follows: 

       

                        
(5) 

where  means the whole image spatial 
domain. 

Finally, one calculates the  as 
Equation (6): 

                            

     
                       

(6) 
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            However, FSIM gives non-zero values for 
non-similar images, therefore we propose a  
modification called MFSIM as follows: 

(7) 

 
 
 
3.4 Cosine Measure 

Cosine similarity has been commonly 
utilized for the similarity measurement between 
two 1D signals [22]. Cosine similarity measure is 
defined as the internal product of two signals 
divided by the product of their lengths [23, 24]. The 
cosine similarity between two signals  is 
defined in Equation (8) [22]: 

                          
(8) 

3.5 Tanimoto Measure 
The computation of similarity between two 

signals is then an issue of quantifying, by some 
suitable measure, the similarity between their 
particular features. One of the most commonly 
utilized similarity measures using geometric 
properties is the Tanimoto coefficient [25, 26]. It 
has been normally used as a genuine measure of 
intermolecular comparability. Given two signals A 
and B, Tanimoto measure is defined as follows: 

(9)

where  stands for the dot product. 

3.6 Angular Measure   
The angular distance between two signals 

can be utilized to measure similarity. The angular 
measure is defined as follows: 

         (10)

                                                                              

The angular distance which measures the 
orientation change between two signals is a 
significant measure of their similarity [27, 28]. 

3.7 Pearson Correlation Coefficient Measure 
         The Pearson correlation coefficient of two 
signals  and  is accurately described as the 
covariance of the two factors divided by their 
standard deviations (which works as a 

normalization factor); it can be suitably described 
by [29]: 

 

 

(11)

where           

    (12)

and    

               (13)

     

where  is the signal length. The coefficient  
ranges from 0 to 1 and it is invariant to direct 
changes of the two signals. The  gives a sign 
on the direct relation between the two arbitrary 
signals  and . If the signals are directly related 
the sign of the correlation coefficient is positive. 
If ,   and are said to be unrelated [30].  

4. GENERATION OF 1/f PINK NOISE  

Pink noise is the name given to random 
signals that contain constant power per percentage 
bandwidth for all frequencies [31]. Pink noise can 
be quantified as a signal with power spectral 
density inversely proportional to the frequency of 
the signal. In science the term pink noise can 
loosely be used to represent any signal with power 
spectral density following Equation (14) with range 
of constant (α) between zero and two ( ), 
where we get white noise for ,  pink noise 
with , and brown noise with , where f 
represents frequency content of noise [6].  

 

 

(14)

The name for this type of noise comes from the fact 
that visible light with this power spectrum will 
appear pink in color. This is also why signals with a 
flat spectral density are called white noise. In 
electronics, pink noise is often named as flicker 
noise while white noise is called shot noise [6].  
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The main feature of 1/f noise is that its 
power spectrum increases with decreasing 
frequency f down to the lowest possible frequencies 
[32, 33]. 

In this section we generate pink noise by 
passing white Gaussian noise through FIR filter. 
Filter order can be used to change the bandwidth of 
the colored noise and has an effect on performance.  

 
4.1 Gaussian-Distributed Noise’  

Gaussian noise is equitably disseminated 
over the signal [34]. This means that every pixel in 
the noisy image is the totality of the actual pixel 
value and an arbitrary Gaussian distributed noise 
value. This kind of noise has a Gaussian 
distribution, which has a probability distribution 
function described in Equation (15) [35]: 

 

(15)

 
where represents the grey level,   is 
the mean value and  is the standard deviation. 

4.2 Finite Impulse Response (FIR) Digital Filter 
 

In FIR digital filters their impulse response 
 has a limited number of non-zero samples. In 

a digital system, the function of the causal FIR 
filter is given by the following difference equation 
[36], also shown Figure (1): 

  (16)

 

 

where  represents  for simplicity. Taking the 
z-transform of both sides we get: 

(17)
 

Hence, the transfer function is given by Equation 
(19): 

(18)

 

From the difference Equation or from the transfer 
function  we can implement causal finite 

impulse response filter by utilizing delay elements 
and digital multipliers as in Figure 1.  

If FIR filter coefficients are symmetric,  

 

then the filter will have linear phase, a feature that 
is desirable to avoid any signal distortion. 

A linear-phase FIR filter can be designed by 
minimizing the weighted integrated squared error 
between an ideal piecewise linear function and the 
magnitude response of the filter over a set of 
desired frequency bands. On MATLAB, this 
process is done using firls function. 

 
Figure 1: Implementation of FIR filter. 

 

4.3 Effect of FIR filter on White Noise 

When a random signal enters a system , 
the output signal would also be random, with power 
spectral density (PSD) = input PSD multiplied by 
the power transfer function of the system, which is 

  Now assume white noise input  with 
constant PSD entering an FIR filter. The output 
noise PSD is given by: 

 

(19)

4.4 Pink Noise Generation: 

We modeled and analyzed colored pink noise (1/f) 
as follows: 

1. Specify the power of the additive white 
Gaussian noise (AWGN), number of 
realizations,  number of samples, 
normalized frequency step, and 
normalized frequency vector (v=0:1).  

2. Design the FIR-filter coefficients required 
to produce the necessary pink noise, where 
need some parameter such as filter order 
(n) with n+1 coefficients and magnitude 

response of  , where s is a 
small number to avoid division by zero. 
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3. We used Least squares FIR design, 
supported by MATLAB function firls: 
b=firls(n,v,am). 

4. Generate additive white Gaussian noise 
(AWGN) by using the MATLAB function  
randn: u=randn (1, N). 

5. Pass the AWGN noise ( ) through the 
FIR-filter by using the “filter” function in 
MATLAB, which convolves the signal  
with the impulse response  of the filter: 

 , with a=1, performing 
the convolution: 

 
6. Make pink noise have zero mean: subtract 

from it the value   . 
7. For this noise, make variance equal =1: 

divide by . 
8. Assign the power P to the generated noise 

via  . 
9. To find the spectrum ,  apply Fourier 

transform to noise . 
 
After generating pink noise, it is added to signals to 
test similarity between two signals using different 
measures under pink noise. 
 
5. TEST ENVIRONMENT 

Two types of noise have been considered in 
testing and simulation: white Gaussian noise, which 
is one of the most common noise types encountered 
in communication systems; and pink noise, which 
is common in image processing and signal 
processing systems. To test the performance of 
similarity measures under pink noise (as compared 
with Gaussian noise), different categories of images 
have been considered, also different categories of 
signals have been considered: linear FM (LFM) and 
quadratic FM (QFM). 

Frequency-Modulated (FM) Signals         
A signal whose frequency is variating with 

time is called FM signal, where FM manner is 
imprinting data (digital or analog) onto wave which 
has alternating-current (AC) and no data by varying 
instantaneous frequency (IF) of this carrier wave. 
According to the type of data, there are digital 
modulation and analog modulation [37]. 
The instantaneous frequency IF is the principal 
property that characterizes nonstationary signals 
(fundamental data passed on). Hence, forth IF 

estimation is of essential significance in getting 
data from these signals [38]. 

We use two types of frequency modulation 
are a linear frequency modulation (LFM) and 
quadratic frequency modulation (QFM). In this 
work, the LFM signal is a law [37,38]. 

 
  (20) 

                                                                                                   
Where  is the amplitude, and  is the angle 
function for the LFM signal which can be used to 
calculate the instantaneous frequency of our signal:  

   

and   radians/sec. 
 
This means that the instantaneous frequency in 
Hertz can be given by: 
 

    (21)

which leads us to set the angle function as follows:  
 

 

(22)

where 𝛼 is the modulation index. This results in the 
final LFM function is given below: 
 

 

(23)

For quadratic frequency modulation (QFM) the 
angle function is given as follows:  

 

(24)

where 𝛼 refers to slope parameter of QFM signal 
(linear modulation index) and  refers to the 
quadratic modulation index of the FM signal. 

This results in the final QFM function given by: 

 

(25)

6. RESULTS AND DISCUSSION 

Noise type and similarity measure has been 
simulated and tested using MATLAB. Pink noise 
and white Gaussian noise tested on images and FM 
signals. Results are shown in Figures. Table 1 
shows a comparison between the SSIM, MFSIM, 
and HSSIM under pink noise. Table 2 shows a 
comparison between the SSIM, MFSIM, and 
HSSIM under white Gaussian noise.  
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Figure 2: Frequency response of the FIR (magnitude and 

phase). 

 
Figure 3: Pink noise versus time. 

 
Figure 4: Spectrum of pink noise. 

 

6.1 Performance of 2D Similarity Measures 
under Noise 

First, we consider the performance of image 
similarity measures (SSIM, MFSIM and HSSIM) 
under pink noise. A comparison is shown in Table 
1. 

 
In Table 1, MFSIM is better than SSIM and 
MFSIM improves when m (filter order) goes more 
than 120. HSSIM gives better more similarity than 
MFSIM, hence information-theoretic measures are 
more powerful. 

Second, we consider the performance of image 
similarity measures (SSIM, MFSIM and HSSIM) 
under white Gaussian Noise. Table 2 shows a 
numerical comparison. 

In Table 2, MFSIM and HSSIM are better than 
SSIM, HSSIM is better than MFSIM. 
 
A complete comparison under pink noise is shown 
in Figure 5, while Figure 6 shows a comparison 
under Gaussian noise. 

Figures 7 and 8 show the performance of SSIM, 
MFSIM and HSSIM using similar images (coins 
image from MATLAB) under pink noise for 
different FIR orders (m=150, 50). 

Figure 9 shows the performance comparison under 
Gaussian noise. 

Note that in the legends of these figures, the letter p 
will refer to pink noise, while g refers to Gaussian. 

Table 1: SSIM, MFSIM and HSSIM versus PSNR under 
pink Noise (filter order = m=130; image is peppers from 

MATLAB). 

PSNR (dB) 
Similarity measures 

SSIM MFSIM HSSIM 

30 0.3707 0.9674 0.9990 

20 0.1351 0.7903 0.9548 

0 0.0062 0.0935 0.2433 

-10 0.0015 0.0267 0.0805 

 

Table 2: SSIM, MFSIM and HSSIM versus PSNR under 
white Gaussian noise (filter order = m=130; image is 

peppers from MATLAB). 

PSNR 
(dB) 

Similarity measures 

SSIM MFSIM HSSIM 

30 0.3613 0.9498 0.9990 

20 0.1294 0.7207 0.9556 

0 0.0059 0.0676 0.2482 

-10 0.0016 0.0166 0.0826 
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                                              (a) 

 
(b) 

Figure 5: (a) Original image and noisy one with pink 
noise image (PSNR=30 dB), (b) Performance 
Comparison of SSIM, MFSIM and HSSIM using similar 
images (peppers image) under pink noise.  
Note: In the legends of these figures, p will refer to pink 
noise, while g refers to Gaussian. 

(a) 

 

 
(b) 

 
Figure 6: (a) Original image with white Gaussian noise 
image (PSNR=30 dB), (b) SSIM, MFSIM and HSSIM 
using similar images (peppers image) under white 
Gaussian noise. 

 
 

 
 
Figure 7: Performance Comparison of SSIM, MFSIM 
and HSSIM using similar images (coins image) under 
pink noise (m=150). 

 

 
 
 
 
Figure 8: Performance Comparison of SSIM, MFSIM 
and HSSIM using similar images (coins image) under 
pink noise (m=50). 
 

 
Figure 9: Performance Comparison of SSIM, MFSIM 
and HSSIM using similar images (coins image) under 
white Gaussian noise. 

From the above results we conclude the following: 

1- MFSIM performs better than SSIM under 
white Gaussian noise. It can detect 
similarity at lower PSNR than SSIM. 
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2- Under pink noise, SSIM and MFSIM 
perform the same as white Gaussian noise, 
for m<120, m is order of FIR filter. 

3- For m>120, MFSIM performs better, 
while SSIM stays the same. 

4- HSSIM is the best in all cases (white 
Gaussian noise or pink noise). 

 

6.2 Performance of 1D Similarity Measures 
using Noisy FM Signals 

Here we consider performance of similarity 
measures using frequency-modulated signals.  

Linear Frequency Modulation (LFM) 

Performance of cosine, Pearson correlation, angular 
and Tanimoto measures for LFM under pink noise 
is shown in Figures 10 and 11 for different FIR 
lengths. 

Figure 10: Performance of cosine, Pearson Correlation, 
angular and Tanimoto, 10 realizations using similar 
LFM signal under pink noise (m=10). 

 
Figure 11: Performance of cosine, Pearson Correlation, 
angular and Tanimoto, 10 realizations using similar 
LFM signal under pink noise (m=130). 

Performance cosine, Pearson Correlation, angular 
and Tanimoto measures for LFM under white 
Gaussian noise is shown in Figure 12.   

Figure 12: Performance of cosine, Pearson Correlation, 
angular and Tanimoto, 10 realizations using similar 
LFM signal under Gaussian noise. 

Quadratic Frequency Modulation (QFM) 
Performance of cosine, Pearson Correlation, 
angular and Tanimoto measures for QFM under 
pink noise is shown in Figures 13 and 14 for 
different FIR lengths.  

Figure 13: Performance of cosine, Pearson Correlation, 
angular and Tanimoto, 10 realizations using similar 
QFM signal under pink noise (m=10). 

Figure 14: Performance Comparison of cosine, Pearson 
Correlation, angular and Tanimoto, 10 realizations 
using similar QFM signal under pink noise (m=130). 
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Performance of cosine, Pearson Correlation, 
angular and Tanimoto measures for QFM under 
white Gaussian noise is shown in Figure 15. 

 Figure 15: Performance Comparison of cosine, Pearson 
Correlation, angular and Tanimoto, 10 realizations using 
similar QFM signal under white Gaussian noise. 

Future directions will involve testing similarity 
measures over modern engineering systems, 
especially wireless channels as in [39, 40,41] and 
chaotic communication systems as in [42,43]. 

7. CONCLUSION: 

We presented a detailed study on the performance 
of 1D and 2D similarity measures under 1/f pink 
noise. It is shown that 1D and 2D similarity 
measures exhibit different performance under 1/f 
pink and Gaussian noise. Pink noise has been under 
attention in the recent years due its influence on 
various signal processing systems, while to the best 
of our knowledge there is no work in the literature 
to evaluate similarity measures under such kind of 
noise. It appeared that entropic features of 2D 
signals (images) are more stable under all kinds of 
noise than correlative properties. Hence, 
information-theoretic measures (e.g., the recently-
proposed histogram signal similarity, HSSIM) 
outperforms the standard structural similarity SSIM 
or the feature-based similarity (FSIM). As FSIM 
exhibits non-zero similarity for non-similar images, 
we introduced the modified FSIM (MFSIM), which 
has a performance similar to that of FSIM, except 
for exhibiting a balanced similarity range from 0 
(for different images) to 1 (for identical images) 
instead of giving spurious non-zero similarity for 
different images. We presented a method to 
generate pink noise with 1/f power spectral density 
using FIR filter with least-squares and linear phase 
design methods. The condition of linear phase is 
common in speech processing systems to avoid 
phase distortion. However, phase distortion could 
be a future research attempt. We conclude the 
following about 1D similarity under 1/f pink noise: 

1. For any filter order m: Pearson correlation 
and cosine similarity outperform Tanimoto 
and angular similarity (they can detect 
similarity at lower signal-to-noise ratio, 
SNR by giving higher similarity for the 
noisy version of an image at low SNR). 

2. At high filter order (e.g., m=130): Pearson 
correlation performs better under 1/f pink 
noise at low SNR than its performance 
under Gaussian noise. This means that 
Gaussian noise has more degrading effect 
than 1/f pink noise. 

3. At moderate order (e.g., m=10): Pearson 
Correlation shows the same performance 
under pink or Gaussian at low SNR.  
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