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ABSTRACT 
 

The topological structure of the graph-based models constructed for a wide range of the real-world complex 
systems is characterized by the clear presence of the rich-club organization. Conceptually, such 
organization implies the tendency of the most important (in accordance to the prescribed metric) vertices to 
be tightly interconnected with each other and form the cohesive communities referred to as the rich-clubs. 
Recently, the rich-club ordering has attracted a considerable attention of investigators due to its impact on 
the robustness and performance of the modeled system as well as the regime of its functioning. At the same 
time, the prior studies in this direction are entirely limited to the case of simple graphs. This, in turn, points 
to the existence of the fundamental research gap associated with the need to develop the method for 
detecting the rich-club organization in multihypergraphs (i.e. hypergraphs allowing the presence of the 
parallel hyperedges). With a view to bridging the identified gap, this work introduces the family of the 
original metrics providing the formal way for determining whether the submultihypergraph induced by the 
most important nodes of multihypergraph could be properly regarded as its rich-club. The proposed metrics 
are designed to exhaustively capture the complex nature of relationships established in the considered 
submultihypergraph and, accordingly, take into account not only the number of its hyperedges but also their 
cardinality and role in ensuring the connectivity of vertices. Furthermore, the paper elaborates the scheme 
of normalizing the introduced metrics with respect to the reference ensemble of random multihypergraphs 
possessing the same sequences of vertex degrees and hyperedge cardinalities as the multihypergraph under 
investigation. Such normalization allows discovering the intentionally emerged rich-club ordering in 
multihypergraphs that does not follow merely from the structural restrictions imposed by the local 
properties of vertices and hyperedges. Finally, the paper illustrates the descriptive potential of the 
developed method by constructing the multihypergraph-based representation of the scientific co-authorship 
hypernetwork extracted from the IEEE Xplore database and performing the rigorous experimental analysis 
of its rich-club organization. 

Keywords: Rich-Club Organization, Rich-Club Coefficient, Multihypergraph, Simple Hypergraph, 
Multigraph, Co-Authorship Hypernetwork. 

 
1. INTRODUCTION  

 
The generalization of notions initially introduced 

for the simple graphs to the more abstract incidence 
structures serves as one of the most actual and 
challenging research directions in the field of 
combinatorial mathematics. The crucial need for 
producing the new knowledge in this direction 
stems from the conceptual inadequacy of applying 
the simple graphs for handling the structure of the 
hypernetworks defined as embodying the grouping 
(i.e. non-pairwise) interactions among the 
homogeneous objects or many-to-many relationship 

established between the objects of two 
fundamentally different types (referred to as the 
actors and entities) [1]. At the same time, the 
structural organization underlying a number of real-
world complex systems is naturally represented in 
terms of hypernetworks [2]. For example, the non-
stellar bodies in the galaxy could be viewed as the 
objects of the hypernetwork in which they are 
grouped into the planetary systems associated with 
the corresponding host stars or star systems. 
Moreover, the complexity classes could be 
interpreted as the groupings of the computational 
problems and, in this sense, serve as forming the 
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hypernetwork on them [3, 4]. In turn, the 
hypernetworks realizing the many-to-many 
relationship between the actors and entities 
commonly occur at the design of the relational 
databases and are known for the necessity of 
introducing the auxiliary table in order to ensure the 
consistency of data. One concrete example is the 
scientific co-authorship hypernetwork representing 
the many-to-many relationship established between 
the articles and their authors [5, 6]. Meanwhile, the 
modeling of the hypernetworks with preserving 
their structural information relies on the concept of 
multihypergraph formulated in the following way: 

 
Definition 1. An arbitrary multihypergraph 

 ˆ , ,H V E m    is represented by the vertex set V  

equipped with the multiset  ,E m   composed of the 

(possibly repeating) non-empty subsets of V  
referred to as hyperedges. Here the underlying set 

   \E V  P , where  VP  denotes the power 

set constructed on V , comprises all distinct (i.e. 
given by the non-identical subsets of vertices) 

hyperedges of Ĥ . In turn, :m E  N  is the 

multiplicity function mapping every e E   into the 
number of its copies (standing for the parallel 

hyperedges) existing in  ,E m  . Remark that an 

arbitrary vertex v V  and hyperedge  ,e E m    in 

Ĥ  are referred to as incident if and only if v e  . 

In this context, any simple hypergraph  ,H V E   

is represented by the multihypergraph with the 
multiplicity function fixed to the constant 

 1: 1E   . For its part, any multigraph 

 ˆ , ,G V E m  is defined as the multihypergraph 

with the multiset of hyperedges  ,E m  having the 

underlying set       , ,E v w v w V v w     at 

an arbitrary multiplicity function :m E  N . For 

clarity, the items comprising  ,E m  are 

additionally mentioned as edges. Finally, any 
simple graph  ,G V E  is represented by the 

multigraph with the constant multiplicity function 
 1: 1E  . 

 
With a view to supporting the subsequent 

manipulations by the introduced mathematical 
structures, let us adopt the notations Ĥ , H , 

Ĝ , and G  for the classes containing all possible 

instances of multihypergraphs, simple hypergraphs, 
multigraphs, and simple graphs, respectively. 
Notice that these classes meet the following system 
of relationships: ˆH H   , ˆ ĤG   , and 

ˆG H G    . 

 
Conceptually, the representation of the structure 

underlying any hypernetwork in terms of the 
multihypergraph instance involves representing 
every particular grouping of its objects or collection 
of actors associated with the concrete entity by the 
corresponding hyperedge. For example, in the 
multihypergraph-based model of the co-authorship 
hypernetwork, all authors are putted in one-to-one 
correspondence with vertices, while every article is 
reflected by exactly one hyperedge incident to all 
nodes depicting its authors. Remark that the 
descriptive power of multihypergraphs in the 
lossless structural representation of hypernetworks 
follows from the absence of any restrictions on the 
cardinality and uniqueness of their hyperedges [7]. 

 
At the same time, the complex combinatorial 

nature of multihypergraphs significantly 
complicates the extraction of their topological 
properties (i.e. such properties that are inherent to 
the overall class of multihypergraphs obtained from 
the examined one by relabeling its vertices). 
Thereby, the researchers are forced to use less 
accurate models of simple graphs when 
investigating the structure of hypernetworks, which 
could potentially result in deducing the wrong 
conclusions [8]. In this light, the further 
advancement of knowledge regarding the structure 
of complex systems requires generalizing the 
existing approaches to mining the topology of 
simple graphs to the wider class of 
multihypergraphs in order to provide the 
opportunity to use the more adequate models in the 
process of investigation. 

 
Conceptually, the problem of mining the 

multihypergraph’s topology lies in detecting the 
presence or absence of the special substructures 
revealing the important properties of the modeled 
system. Serving as one of such substructures, the 
rich-class organization implies the tendency of the 
most important (according to the prescribed metric) 
vertices to form the tightly interconnected “elite” 
communities [9, 10]. The prior works were focused 
on studying such organization only for the 
particular case of simple graphs based on the 
formal instruments of the rich-club coefficient 
given by the density of the subgraph induced by the 
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subset of the most important vertices and its 
normalized version [11, 12]. Remark that the 
density of any simple graph  , GG V E   is 

defined as the ratio between the actual number of 
its edges and their maximum possible number on 

V  nodes, i.e.     2 1G E V V   . At the 

same time, the rich-club organization in the more 
general incidence structures of multihypergraphs 
still lacks the formal instruments for assessment 
largely due to the ambiguity of determining the 
tightness of interconnections among their vertices, 
which clearly points to the presence of the research 
gap. In turn, the objective of this work lies in filling 
the identified gap by introducing the family of 
coefficients ensuring the detection and evaluation 
of the rich-club organization in multihypergraphs 
tailored to their complex combinatorial nature. 
Moreover, the paper illustrates the application of 
the proposed coefficients for mining the topology 
of the multihypergraph-based model constructed for 
the real-world co-authorship hypernetwork. 

 
2. CONCEPTUAL APPROACHES AND 

FORMAL METRICS FOR 
CHARACTERIZING THE TIGHTNESS 
OF INTERCONNECTIONS AMONG THE 
VERTICES OF MULTIHYPERGRAPHS 

 
The generalization of the simple graph density 

 G  to the Ĥ  class multihypergraphs is 

precluded by the absence of the upper bound on the 
number of their hyperedges at the finiteness of the 
vertex set. This issue along with an arbitrary 
cardinality of each hyperedge acts as the 
fundamental impediment to the detection and 
proper assessment of the cohesive communities in 
such incidence structures. In fact, the multigraphs 
comprising the subclass Ĝ  also require 

formulating the conceptual substitute of density due 
to their potential capability of accommodating the 
countably infinite number of edges on any pair of 
vertices. With a view to addressing this challenge, 
let us introduce the following topological metric 
that, by adequately capturing the nature of both 
multihypergraphs and multigraphs, provides the 
most straightforward quantitative description for 
the tightness of interconnections among their 
nodes: 

 
Definition 2. The hyperedge-to-vertex ratio 

 Ĥ  of any non-null (i.e. containing at least one 

node) multihypergraph  ˆ , ,H V E m    lies within 

the range  0,  and is formally given by 

   ˆ ,H E m V    , where    ,
e E

E m m e


 
     

denotes the cardinality of the multiset  ,E m  . 

 

For brevity, the ratio  Ĝ  associated with the 

multigraph Ĝ  is also called without the prefix 
“hyper”.  At the same time, the loop hyperedges 
(i.e. having the cardinality of one), by definition, 
are deprived of any role in linking the 
multihypergraph’s nodes. For example, in the 
context of the above-discussed model of the 
scientific co-authorship hypernetwork, all loops 
serve as the representations of the solely authored 
articles that do not contribute to the formation of 
the inter-researcher collaboration scheme. This 
consideration points to the crucial need for the 

appropriate correction of the metric  Ĥ . 

Accordingly, let us define the loop removal 
function ˆ ˆ: H H     mapping an arbitrary input 

multihypergraph   ˆ
ˆ , , HH V E m    into the 

corresponding loopless multihypergraph 

  ˆ
ˆ , , E HH V E m   

   equipped with the 

modified multiset of hyperedges  , EE m  
   given 

by the underlying set   \E E v v V     and the 

multiplicity function :Em E 
  N   obtained by 

restricting m  to the domain E E   . Remark that 
while being surjective, the function   is non-

injective since all multihypergraph instances 
comprising its image ˆ ˆH H    are required to 

include exclusively the non-loop hyperedges. This 
background, in turn, allows introducing the 

derivative metric     ˆ ˆH H     intended to 

estimate the concentration of hyperedges in the 

multihypergraph Ĥ  at the discounted influence of 
loops. 

 

Intuitively, the higher value of  Ĥ  indicates 

that the vertices of Ĥ  share the larger number of 
distinct hyperedges and, from this viewpoint, are in 
the more cohesive relationship. Notice that the 
usefulness of such approach consists in the 
interpretation of hyperedges as the separate 
indivisible entities with the preservation of their 
original conceptual sense, which is necessary in 
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many contexts. For example, in the case of the 

multihypergraph Ĥ  abstracting the scientific co-

authorship hypernetwork, the metric  Ĥ  

characterizes the cohesiveness of the considered 
group of researchers based on the number of 
actually existing multi-author works serving as the 
documentary evidences of collaboration. 

 
However, while being entirely focused on 

treating the hyperedges as conceptually self-

sustainable objects, the quantitative metric  Ĥ  

completely ignores the heterogeneity of their 
contributions to joining the multihypergraph’s 
nodes. In particular, the number of vertex pairs 
linked by the non-loop hyperedge grows with the 
increase in its cardinality 2k   as the quadratic 

function  1 / 2k k  . These remarks stimulate us to 

consider the following mathematical structure 
characterizing the whole multihypergraph by 
summarizing the local configurations of all its 
hyperedges: 

 
Definition 3. The hyperedge cardinality 

sequence associated with an arbitrary non-empty 
(i.e. such that E   ) multihypergraph 

 ˆ , ,H V E m    is represented in the form 

        1 2
ˆ ˆ ˆ ˆ, ,..., VH H H H     , where each 

item  ˆ
i H  gives the number of hyperedges with 

the cardinality of i  in  ,E m  , i.e. 

   
 

      ˆ ;   .i
e E i

H m e E i e e E e i


     


        

The examination of the sequence  Ĥ  allows 

making fruitful conclusions regarding the 
dominating patterns of interaction among the 

vertices of Ĥ . In particular, the ratio  ˆ
i H V  

calculated for the multihypergraph Ĥ  modeling 
the co-authorship hypernetwork indicates the 
likelihood of having i  authors listed on the 
randomly picked article and, in this way, 
strengthens understanding the collective behavior 
of researchers. Based on this background, let us 

introduce the scalar metric  Ĥ  derived from 

both V  and  Ĥ  according to the following 

expression: 

     
2

2

1 1ˆ ˆ ,
22

V

i
e E i
e

ie
H m e H

V V
 


 
    

  
 





   

where the symbol 
a

b




 
 denotes the binomial 

coefficient defined as 
 

!

! !

a

b a b
 if 0a b   and 

zero otherwise. 
 

Conceptually, the value of this metric could be 
interpreted as the cumulative number of the direct 
(i.e. established through only one hyperedge) 

pairwise connections among the nodes of Ĥ  
divided by the cardinality of the vertex set V . In 

this regard,  Ĥ  serves as the useful additional 

criterion for quantifying the cohesiveness of the 

multihypergraph Ĥ  in terms of the total vertex 
linking effect produced by all its hyperedges. For 

example, if Ĥ  describes the structural design of 

the co-authorship hypernetwork, the value of  Ĥ  

reflects the tightness of relationships among the 
researchers from the viewpoint of the number of 
times when two of them appear as authors on the 
same article. Moreover, the meaning enclosed in 

the metric  Ĥ  could be vividly illustrated based 

on the transition to the projection of Ĥ  on the class 
of multigraphs Ĝ  driven by the following 

function: 
 
Definition 4. The hyperedge splitting 

function ˆ ˆ: H G     transforms any argument 

multihypergraph   ˆ
ˆ , , HH V E m    into the 

output multigraph   ˆ
ˆ ˆ , , GG H V E m       

constructed on the same vertex set V  and holding 

the multiset of edges  ,E m   given by the 

underlying set      , , ,E v w E v w     

along with the multiplicity function defined as 

      , ,
,

e E v w
m v w m e


 

   for all 

 ,v w E . In these expressions, the auxiliary 

notation         , , ,E v w e e E v w e         

stands for the subset of E  composed of all its 
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hyperedges e  serving as the supersets for the given 

edge  ,v w . For clarity, ˆ ˆG H    is referred to as the 

multigraph approximation of Ĥ . 
 
In simple terms, the number of edges joining any 

two vertices of ˆ ˆG H    is determined as the number 

of hyperedges shared by them in Ĥ . Notice that 
the function   is non-invertible since, in general, 

the structure of hyperedges existing in Ĥ  as well 

as the cardinality of its multiset  ,E m   could not 

be unambiguously recovered from the information 

encapsulated in ˆ ˆG H   . At the same time, the 

number of edges in ˆ ˆG H    serves as the upper 

bound on the number of non-loop hyperedges in 

Ĥ . The metric  Ĥ , in turn, represents the 

topological property of ˆ ˆG H    and comes down to 

its edge-to-vertex ratio, i.e.     ˆ ˆH H    . 

 
Conceptually, the non-loop hyperedges 

comprising the underlying set E  associated with 

the multihypergraph Ĥ  could be viewed as 
embodying the collective groupings of actors 
abstracted by the vertices of V  that are established 
at the formation of entities reflected by the items of 

the multiset  ,E m  . For example, revisiting the 

model of the co-authorship hypernetwork, the 

hyperedges of   \E v v V  depict the distinct 

collectives of researchers each of which includes 
two or more members and plays a role of the 
unordered author list for at least one document 
within the considered corpus. In turn, the metric 
relying on the number of such collective groupings 

per vertex as the measure for the tightness of Ĥ  is 

naturally expressed as     ˆ ˆH H    , where 

 ˆ /H E V   . 

 
Definition 5. The hyperedge deduplication 

function ˆ: HH     produces the simple 

hypergraph approximation  ˆ , HH H V E    
  

for an arbitrary initial multihypergraph 

  ˆ
ˆ , , HH V E m    by replacing its multiplicity 

function m  with the constant  1: 1E   . 

Since     ˆ ˆH H     and     ˆ ˆH H     , 

both  Ĥ  and  Ĥ  could be viewed as 

characterizing the topology of Ĥ  through its 
projection on the class of simple hypergraphs H  

in the form of the approximation ˆH H   . At the 

same time, the number of hyperedges contained in 

any simple hypergraph  , HH V E   is 

bounded above by   1V P , where   2VV P . 

It is worth noticing that the given bound takes into 
account the forbiddance of the empty hyperedge 
deprived of the incident vertices. This discussion 
clearly shows that the simple hypergraphs, in 
contrast to both multihypergraphs and multigraphs, 
could be properly characterized by the concept of 
density adapted in the following original manner: 

 
Definition 6. The density  H  of any 

non-null simple hypergraph  ,H V E   is formally 

given by the expression    / 2 1VH E    and 

indicates the actual number of hyperedges existing 
in H  as the fraction of their maximum possible 
number on V  nodes in the H  class incidence 

structures. In turn, the loopless density  H  

defined for every H  having at least two vertices 
additionally implies the exclusion of the loop 
hyperedges from the consideration and is calculated 

as       \ / 2 1VH E v v V V      .  

 
The denominator of the above-stated expression 

for  H  stems directly from the ability of H  to 

accommodate up to V  loops anchored to the 

distinct nodes. In order to keep the conceptual 
consistency, let us define the complete simple 

hypergraph nKH  on n N  vertices as having the 

density   1nKH  . Notice that the topological 

organization of nKH  is entirely determined by n , 

while the number of hyperedges incident to each its 

node equals 
1

1

1

n

i

n

i

 
  

 , where every summand 

represents the number of such hyperedges with the 
cardinality of i . 
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By definition, both introduced density metrics 

 H  and  H  take values within the range 

 0,1 . Apart from that, compared to the ratios 

 H  and  H , they provide the conceptually 

different and non-trivially related viewpoint on the 
concentration of hyperedges in H  by adopting 
another reference levels (placed in the 
denominators of their formulas). These 
considerations eventually prompt us to define the 

metrics     ˆ ˆH H     and     ˆ ˆH H     

characterizing the density of the approximation 
ˆH H    constructed for the multihypergraph Ĥ  

and, thereby, providing an additional insight into its 

topology. Moreover, the value of  Ĥ  could be 

interpreted as the percentage of all possible 
collective groupings constructed from the nodes of 

Ĥ  that are realized in the hyperedges of E . In this 

regard,  Ĥ  represents an important instrument 

supplementing  Ĥ  in reporting on the 

cooperative behavior of the multihypergraph’s 
vertices. 

 
Another fundamental approach for assessing the 

cohesiveness of the multihypergraph Ĥ  implies 
mining its projection on the class of simple graphs 

G  representing the result of applying the function 

composition ˆ: GH      (or, equivalently, 

ˆ: GH       ) to Ĥ  and defined in the 

following way: 
 
Definition 7. The simple graph 

approximation  ˆ , GG H V E      of an 

arbitrary multihypergraph   ˆ
ˆ , , HH V E m    is 

constructed by replacing its multiset  ,E m   with 

the set of edges     , ,E v w e E v w e         

(i.e. two nodes are adjacent in ˆG H    only if they 

have at least one common hyperedge in Ĥ ). 
 
Despite having more reduced descriptive 

potential compared to both ˆ ˆG H    and ˆH H   , the 

approximation ˆG H    encapsulates in the easy-to-

process form the basic properties of the hyperpath 

structure underlying the interaction of vertices in 

Ĥ . With a view to establishing the formal 
background needed for understanding these 

properties, let us define the hyperwalk in Ĥ  as the 
ordered sequence  1 1 2 1, , , ..., , ,b k k ev e v e v e v    

composed of the alternating nodes and hyperedges 
satisfying the conditions 1bv e  , e kv e  , and 

1i i iv e e     for every  1,2,..., 1i k  . Here bv  

and ev  represent the terminating vertices of 

hyperwalk, while its length k  is determined as the 
number of visited hyperedges. The hyperpath, for 
its part, is given by the hyperwalk traversing the 
pairwise distinct nodes 1 1, ,..., ,b k ev v v v  (and, 

thereby, passing exclusively through the non-loop 
hyperedges). Remark that under such definition, the 
hyperpaths in the incidence structures belonging to 

ˆ ˆ\H G   could visit the duplicating hyperedges. 

Moreover, for clarity of discussion, the hyperwalks 
and hyperpaths in the Ĝ  class multigraphs are 

referred to simply as walks and paths. These 
preliminary concepts allow defining the topological 
distance  ˆ ,Hd v w  between the distinct nodes v  

and w  in Ĥ  as the length of the shortest hyperpath 
terminating in them or infinity if such hyperpath 
does not exist. Additionally, to ensure the identity 
of indiscernibles, let the topological distance 

 ˆ ,Hd v v  from any vertex v  in Ĥ  to itself be 

equal to zero. With respect to the metric 

ˆ :Hd V V  N  defined in such way, the 

multihypergraph Ĥ  could be viewed as inducing 

the metric space  ˆ, HV d  on its vertex set V . In 

turn, let us introduce the distance matrix  ĤD  

collecting the topological distances between all 

pairs of nodes in Ĥ  and, thereby, providing the full 

specification of its space  ˆ, HV d . Taking into 

account that the vertices of Ĥ  are labeled as 

 1 2, ,..., nV v v v ,  ĤD  is given in the form of 

the symmetric n n  array filled with the entries 

   ˆ
ˆ ,i jHij

H d v v   D  and zeros on the main 

diagonal. 
 
At the same time, for every hyperpath 

 1 1 2 1, , , ..., , ,b k k ev e v e v e v    in Ĥ , ˆG H    should 

contain the corresponding path 
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 1 1 2 1, , , ..., , ,b k k ev e v e v e v    passing through the 

same nodes in the identical order and including the 
edges i ie e    for each  1,2,...,i k , and vice 

versa. Finally, these considerations along with the 
fact that the presence of the parallel hyperedges 
does not affect the length of the shortest hyperpaths 
lead to the conclusion that the distance matrix 

 ĤD  serves as the invariant under the reductions 

to the approximations ˆG H   , ˆ ˆG H   , and 

ˆH H   , i.e. 

       ˆˆ ˆ ˆ ˆ .H G H G H H H            D D D D  

Meanwhile, the restrictions imposed on the 
structure of the simple graphs allow deducing the 
following fundamental statement regarding the 
sensitivity of their distance matrices to the 
elementary modification of the edge set: 

 
Theorem 1. Considering an arbitrary non-

empty simple graph  , GG V E   on n  

vertices, let the operation of removing any single 
edge e E  from G  result in increasing the 

topological distance between  ,f G e  pairs of its 

nodes. Then  ,f G e  is sharply bounded (i.e. in 

such way that there does not exist any greater lower 
bound or smaller upper bound) as follows: 

   
2

2

4 if  is even;
1 ,

1 4 if  is odd.

n n
f G e

n n

  


 

▲ For convenience, let us adopt the auxiliary 
notations  ,s te v v  for the endpoints of the 

deleted edge and   , \G e V E e   for the 

resulting graph containing the remaining edges. 
With a view to providing the formal proof for the 
upper bound on  ,f G e , let us without losing the 

generality associate the edge e  with the induced 
bisection of the vertex set V  of the initial graph G  
into the disjoint non-empty subsets defined as 
follows: 

              \ , , , , ;     \ .s s t G s G t G tS v v v V v v d v v d v v d v v T V S       

In more plain words, sv S  and tv T , while 

the division of all other nodes is based on their 
global topological position with respect to the 
endpoints of e . In particular,  \ sS v  contains the 

vertices that are located closer to sv  than to tv  or 

are equidistant or unreachable from them, while the 
nodes included in  \ tT v  have strictly smaller 

distance to tv  than to sv . Remark that for any 

bisection constructed in such manner, the subgraph 

 ,T TG T E  equipped with the edge set 

      ,TE E v w v T w T     is connected 

(i.e. its distance matrix is deprived of the infinite 
entries). Furthermore, let us define the bisection of 
V  induced by e  as balanced if S T  for even n  

and 1S T   for odd n . 

 
Conceptually, the removal of e  from G  affects 

the topological distance between two its distinct 
nodes only if e  lies on the shortest path between 
them (necessary condition) and there does not exist 
any alternative shortest path that joins these nodes 
bypassing e  (sufficient condition). In order to 

derive the restriction on the maximum possible 
number of vertex pairs complying with these 
conditions, let us consider an arbitrary shortest path 

 ,..., , , ,...,s tP v v e v w  linking the nodes ,v w V  

in G  with the involvement of e . Due to the 
property of optimal substructure, any consecutive 
subsequence of P  terminating in vertices 
represents the nested shortest path in G , which 

implies that    , , 1G t G sd v v d v v   and 

   , , 1G s G td w v d w v  . These observations 

indicate that the shortest path including e  could 
exist exclusively between a pair of nodes belonging 

to       ,v w v S w T     . Moreover, e  lies 

on the shortest paths between all S T    such 

vertex pairs only if both topological configuration 
of G  and position of e  satisfy two mandatory 

requirements. Firstly, the subgraph  ,S SG S E  

having the edge set 

      ,SE E v w v S w S     should be 

connected (which entails the connectedness of the 
whole G ). Secondly, playing a role of bridge, e  
should be the only edge between the vertices of S  
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and T  (since the presence of any additional edge 

 ,s te v v    such that sv S   and tv T   would 

inevitably exclude e  from the participation in the 
shortest path at least between sv  and tv ). Remark 

that the last requirement directly precludes the 
existence of at least one walk linking the nodes of 
S  and T  without the traversal of e . Eventually, 
this discussion allows concluding that if all vertex 
pairs  ,v w   meet the necessary condition for 

having the mutual distance    , ,G G ed v w d v w , 

then they also satisfy the sufficient one. 
 
Accordingly, the proof of the upper bound on 

 ,f G e  comes down to the maximization of 

S T  at an arbitrary fixed n . Let us confine the 

consideration area to even n  and express S  and 

T  as 2n x  and 2n x , where 

  0, 1,..., 2 1x n    . Under such 

representation, the product S T  depends on x  

as    2 22 2 4n x n x n x     and reaches the 

peak value of 2 4n  only at the balanced bisection 

corresponding to 0x  . By analogy, the case of 

odd n  could be handled by writing S  and T  as 

 1 2n y   and  1 2n y   for 

    1 2,..., 1,0,1,..., 3 2y n n     . In this 

light, S T  takes the form of 

       2 21 2 1 2 1 4n y n y n y y         

and maximizes to  2 1 4n   at the balanced 

bisections associated with 0y   and 1y   .  

The positivity of the lower bound on  ,f G e  

could be proved in the trivial way by taking into 
account that the exclusion of e  from G  inevitably 
leads to the increase in the topological distance 
between the nodes sv  and tv  at least by one edge 

due to the inevitable loss of their adjacency, i.e. 

   , , 1G e s t G s td v v d v v   . Remark that, by 

definition,  , 1G s td v v  . Moreover, taking into 

account the optimal substructure of the shortest 
paths,  , 1f G e   if and only if, for each vertex 

 \ ,s tu V v v ,  , su v E  implies  , tu v E  or 

the existence of such  \ , ,s tl V v v u  that 

   , , , tu l l v E , while  , tu v E , for its part, 

implies  , su v E  or the existence of such 

 \ , ,s tl V v v v  that    , , , su l l v E   . On the 

other hand,  , 2f G e   if and only if there exists 

such node that, being adjacent to only one endpoint 
of e , is linked to its another endpoint by only one 
two-length path (traversing e ). 

 
These observations allow claiming that 

 , 1f G e   at the removal of every e  from any 

such G  that contains at least 

     1 2 3g n n n n     edges. The formal 

proof for this claim could be elegantly constructed 
by contradiction. Let us start by assuming the 
opposite, i.e. that G  with  g n  or more edges 

could have at least one e  giving  , 2f G e  . 

Then any such e  should imply the non-emptiness 

of the union  P Q , where: 

         \ , , , 2 ;s t s G e tP p p V v v p v E d p v       

         \ , , , 2 .s t t G e sQ q q V v v q v E d q v       

Obviously, the condition  , 2G e td p v   could 

be reduced to the system of 2n   constraints given 

by  , tp v E  and    , , , ,t tE E p r v E p r v , 

where       , , , , ,t tE p r v p r r v , for every 

 \ , ,s tr V v v p . Here each pair of edges 

 , , tE p r v  represents the two-length path between 

p  and tv  that avoids e  and involves r  as the 

intermediate vertex. Due to the need for satisfying 
all these constraints, the inclusion of at least one 
node in P  requires G  to have 2n   or more 

missed edges out of  1 2n n   maximum possible 

ones. By analogy, the condition  , 2G e sd q v   

could be transformed into the similar system of 
2n   constraints imposed on the edge set, which 

allows deducing that the non-emptiness of Q  also 

requires the non-adjacency of at least 2n   vertex 
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pairs in G . Consequently, the presence of  g n  or 

more edges in G  inevitably leads to P Q    for 

every e . This conclusion, eventually, reduces to 
absurdum the assumption regarding the satisfaction 
of the condition  , 2f G e   by at least one e  in 

any G  having not less than  g n  edges and, 

thereby, proves the statement claimed at the 
beginning of the previous paragraph.  ▼ 

 
In the context of the most general class Ĥ , the 

operation of removing any single hyperedge e E   
from an arbitrary non-empty multihypergraph 

  ˆ
ˆ , , HH V E m    implies the exclusion of one 

item from its multiset  ,E m   and is formally 

defined as the transformation of Ĥ  into 

     

   
\, \ , if 1;

ˆ

, , if 1.

E e

e

V E e m m e
H e

V E m m e

      
 


 



    


   

 

Here  \E em  
  stands for the restriction of m  to 

the domain  \E e  , while :em E  N
  is given 

by     1em e m e       for e e   and    em e m e      

for every  \e E e   . Notice that such definition is 

consistent with the interpretation of the parallel 
hyperedges as reflecting the independent entities 
and serves as the formal background needed for 
extending Theorem 1 to the wider classes of 
incidence structures. 

 
Theorem 2. Let the removal of any single 

edge e E  from an arbitrary non-empty  

multigraph   ˆ
ˆ , , GG V E m   on n  vertices lead 

to the increase in the topological distance between 

 ˆ ,f G e  pairs of its nodes. Then  ˆ ,f G e  is 

sharply bounded as follows: 

   
2

2

4 if  is even;
ˆ0 ,

1 4 if  is odd.

n n
f G e

n n

  
  

▲  The distance matrix of any Ĝ  class multigraph 

Ĝ  does not depend on its multiplicity function m  
due to the homogeneity of all parallel edges 
following from the absence of the weighted 

coefficients associated with them. Therefore, in 

contrast to  ,f G e ,  ˆ ,f G e  has zero lower 

bound, which is achieved if and only if the single 

edge e  removed from Ĝ  has the multiplicity of 

  1m e  . Revisiting the proof of Theorem 1, the 

upper bound on  ,f G e  originates from the 

fundamental limitation on the number of such 
vertex pairs  ,v w V  that e  occurs in the 

shortest path between v  and w  (i.e. satisfying the 
necessary condition). Since the allowance of the 
parallel edges does not affect such limitation, the 
upper bound on  ,f G e  holds also for              

 ˆ ,f G e . ▼ 

 
Theorem 3. Let the removal of any single 

hyperedge e E   from an arbitrary non-empty 

simple hypergraph  , HH V E   on n  nodes 

cause the increase in the topological distance 

between  ,f H e  pairs of its vertices. Then 

 ,f H e  is sharply bounded as follows: 

   1
0 , .

2

n n
f H e


   

▲  Obviously, zero lower bound of  ,f H e  is 

tight if the removed hyperedge e  constitutes a loop 

or if, for every pair of its vertices  ,v w e  , the 

set of remaining hyperedges  \E e   contains such 

e  that  ,v w e  . At the same time, in the 

complete simple hypergraph nKH , each pair of 

nodes serves as the subset of 
2

2

2

n

k

n

k

 
  

  

hyperedges. Accordingly, if H  has at least 

 
2

2
2 1

2

nn
k

n
h n

k

 
     

  hyperedges, then the 

removal of any single one among them produces no 
influence on the entries of its distance matrix 
 HD . This observation, in turn, allows 

introducing the critical density 

     2 1n
c n h n    such that  , 0f H e   for 

every e  in any H  meeting the condition 

   cH n    (i.e. having the density that equals 

to or exceeds the critical level at the corresponding 



Journal of Theoretical and Applied Information Technology 
15th December 2018. Vol.96. No 23 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
8054 

 

n ). The in-depth analysis shows that  c n  

monotonically decreases with the increase in n  and 
asymptotically approaches 0.75  as n  goes to 
infinity. 
 

On the other hand, the upper bound on  ,f H e  

equals the overall number of above-diagonal entries 
in the distance matrix of H  (i.e. the number of 
possible ways to arrange the vertex set V  into 
pairs). Furthermore, this bound is attained at only 
one configuration characterized by e  having the 
maximum possible cardinality of n  and such H  
that does not contain any another non-loop 
hyperedge (i.e. equipped with the set E  satisfying 

the condition      \E e v v V    ). ▼ 

 

Remark that the sharp bounds on  ,f H e , in 

contrast to ones on  ,f G e  and  ˆ ,f G e , leave 

the largest possible variability gap of  1 2n n   

vertex pairs and, in this sense, are not affected by 
the restriction on the form of the inter-vertex 
relationship underlying the formal definition of the 

H  class incidence structures. Thereby, as a 

corollary of Theorem 3, in the general case of an 
arbitrary non-empty multihypergraph 

  ˆ
ˆ , , HH V E m    with V n , the number 

 ˆ ,f H e  of such pairs of nodes  ,v w V  that the 

topological distance between v  and w  increases 

after the removal of any single hyperedge e E   is 

also sharply bounded as    ˆ0 , 1 2f H e n n   . 

 
At the same time, the expression sharply 

bounding both  ,f G e  and  ˆ ,f G e  above 

approaches half the number of all possible 
combinations of n  vertices into pairs as n  tends to 
infinity and emanates from the limitation allowing 
any edge in the multigraphs to join only two nodes. 
In turn, the positive lower bound on  ,f G e  

represents the distinctive property of the simple 
graphs that is lost at the transition to the wider 
classes of incidence structures Ĝ , H , and Ĥ . 

Conceptually, this property points to the 
unavoidable expansion and contraction of the 
metric space  , GV d  induced by every GG  in 

result of, respectively, removing and adding any 
single edge. In view of these considerations, the 

closeness of vertices in the space  ˆ, HV d  

associated with an arbitrary multihypergraph Ĥ  is 
more strongly related with the cardinality of the 

edge set in its simple graph approximation ˆG H    

than with the number of edges in ˆ ˆG H    or with 

the number of hyperedges in Ĥ  or ˆH H   . This 

conclusion shows the reasonableness for 

introducing the metrics      ˆ ˆH H      and 

     ˆ ˆH H      describing the cohesiveness 

of Ĥ  in terms of, respectively, the edge-to-vertex 
ratio and density of the corresponding 

approximation ˆG H   . For example, every edge in 

the projection ˆG H    constructed for the 

multihypergraph Ĥ  representing the co-authorship 
hypernetwork joins the pair of researchers that 
share the credit for at least one article as its joint 
authors and, thereby, are likely to be aware of each 

other. In this context,  Ĥ  and  Ĥ  report on 

the number of such pairs normalized by their 
maximum possible number and the overall quantity 
of investigators within the considered group, 
respectively. 
 
3. FUNDAMENTAL FORMS OF THE RICH-

CLUB ORDERING IN 
MULTIHYPERGRAPHS AND 
PROPOSED METHOD FOR THEIR 
DETECTION AND ANALYSIS 

 
Conceptually, the vertices contained in the 

multihypergraph Ĥ  could be ranked based on 
specifying the richness (or importance) metric in 
the form of function ˆ :Hr V  R . In particular, the 

degree ˆ :Hdeg V  N  plays a role of the canonical 

vertex richness metric, which is expressed as the 

mapping of every node v V  in Ĥ  into the sum of 
the multiplicity scores associated with all 
hyperedges e E   including v , i.e. 

   Ĥ v e E
deg v m e

 
 

  . For example, the degree 

of any vertex in the multihypergraph model 
constructed for the co-authorship hypernetwork 
reflects the number of the separate scientific 
documents authored by the corresponding 
researcher. Let us formally define the ranking 
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function 
ˆ

:
Hr

rank V  N  induced by the metric 

Ĥr  as matching each node v V  with its (possibly 

non-unique) ranking position defined as the 
increased by one number of vertices having the 
strictly larger richness than v  according to Ĥr , i.e. 

         ˆ ˆ ˆ1
Hr H Hrank v v v V r v r v       . It 

is worth noting that such approach fully reproduces 
the strategy of the standard competition (or “1224”) 
ranking widely adopted in the existing literature 
and extensively used in the practical applications. 
In order to more vividly illustrate the ideas 
underlying the ranking produced by 

Ĥr
rank , let us 

associate the pair  ˆ, HV r  with the ordered 

sequence of the non-empty subsets 

      ˆ ˆ ˆ1 2, ,..., wH H HV r V r V r  meeting the 

requirements      ˆ ˆ ˆ1 2 ... wH H HV V r V r V r    , 

   ˆ ˆH Hr v r v  for every  ˆ, i Hv v V r  at any 

 1,2,...,i w , and    ˆ ˆH Hr v r v  for each 

 ˆi Hv V r  and  ˆj Hv V r  such that i j . In the 

context of such representation, all vertices assigned 

to the subset  ˆi HV r  occupy the same position 

 1
ˆ1

1
i

k Hk
V r




  in the entire ranging outputted 

by 
Ĥr

rank . 

 
Due to the constraints on the structure of the 

ranking positions, the number of all possible non-
identical standard competition rankings of 2n   
items (or, equivalently, the number of the distinct 
functions 

Ĥr
rank  defined over the set V  

containing n  vertices) is strictly lower than nn , 
and, moreover, is determined by the following 
fundamental combinatorial law originally derived 
in this work: 

 
    

 
 1 1 2 1 2 1 1 2 2

1 2 3 1

,0 ,1, ,2, , , 1, , ,..., , 2, , ,...,

1 2 1
0 0 0 0 0

... ... , , ,..., ;
k n

k n

n n u n u u n k u u u n n u u u

n
u u u u u

n X n u u u
 



      


    

      
 

      
1 1 1

1 2 1
1 1 1

, , ,..., 1, , 1 !;
n i n

n i j i
i j i

X n u u u Y i u n u j n u i
  


  

  
       
  
   

     

 
  

 

1

1
1 2 0

1
if 1

, , , ,..., ;     , , .
1

1 if 0

h
u

i
i

h i

n u i p i k
u

n h u u u Y k u p k
h

u






 
                  

  
  




Notice that here     stands for the floor 

function. The allowance of the equally ranked items 
serves as the primary reason underlying the 
significant complication of the above analytical 
expression. For clarity,  1 2 1, , ,..., nX n u u u   gives 

the number of such non-identical rankings of n  
items that satisfy the parameterized limitation 
formulated as follows: for every  1,2,..., 1k n  , 

there exist exactly (i.e. not less and not more than) 

ku  ranking positions each of which is occupied 

exactly by 1k   items. In turn,  n  is calculated 

by summarizing the values of  1 2 1, , ,..., nX n u u u   

for all possible limitations 1 2 1, ,..., nu u u  . Remark 

that such summarization is organized in the form of 
1n   nested sums whose upper bounds ensure 

considering only such 1 2 1, ,..., nu u u   that 

 1 2 1, , ,..., 0nX n u u u   . 

 
With a view to explaining the manner of deriving 

the formula for  1 2 1, , ,..., nX n u u u  , let us, without 

the loss of generality, assume that the ranked items 
are explicitly labeled as  1 2, ,..., nL l l l . In 

addition, let us use the auxiliary notation 

 1 2 1, , ,..., nLR L u u u   for the set containing all such 

rankings :lr L N  of the items in L  that, for 

every  1,2,..., 1k n  , there are exactly ku  values 

(representing the ranking positions) each of which 
serves as the image of exactly 1ku   items under 

lr . In the context of such representation, the value 
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of  1 2 1, , ,..., nX n u u u   could be viewed as the 

cardinality of  1 2 1, , ,..., nLR L u u u  . Let us 

consider the set  1 2 1, , ,..., nLC L u u u   containing 

all such combinations of 
1

1

n
ii

u

  disjoint subsets 

of L  that, for each  1,2,..., 1k n  , ku  of them 

have the cardinality of 1k  . Note that there exists 

the surjective mapping from  1 2 1, , ,..., nLR L u u u   

to  1 2 1, , ,..., nLC L u u u   associating every ranking 

 1 2 1, , ,..., nlr LR L u u u   with one and only one 

combination in  1 2 1, , ,..., nLC L u u u   whose every 

subset is composed of such items that have the 
same image under lr  (i.e. are equally ranked). In 
turn, the left multiplier (represented by the product 
of 1n   terms) in the formula of 

 1 2 1, , ,..., nX n u u u   gives the cardinality of 

 1 2 1, , ,..., nLC L u u u  . At the same time, any 

ranking  1 2 1, , ,..., nlr LR L u u u   should have 

1

1

n
ii

u

  non-unique (i.e. occupied by two or more 

items) ranking positions. Since all these positions 

are assigned to   1

1
1

n
ii

u i



  items in total, only 

  1

1
1

n
ii

n u i



   remaining items hold the 

unique positions in ranking. Therefore, the overall 
number of the distinct ranking positions in any 

 1 2 1, , ,..., nlr LR L u u u   (or the number of values 

in the image of L  under lr ) is given by 

 1

1

n
ii

n u i



  . In this light, there are 

  1

1
!

n
ii

n u i



   times more rankings in 

 1 2 1, , ,..., nLR L u u u   than combinations in 

 1 2 1, , ,..., nLC L u u u  , which is reflected in the 

right multiplier in the formula of 

 1 2 1, , ,..., nX n u u u  . Notice that the calculation of 

 1 2 1, , ,..., nX n u u u   relies on the auxiliary 

expression  , ,Y k u p  giving the number of the 

combinations of u  disjoint subsets containing by 
k  items selected from the set containing p  items if 

1u   and one otherwise. 
 
For clarity, let us illustrate the application of the 

proposed expression for calculating the number of 
all possible distinct standard competition rankings 
of four items: 

           4 4,0,0,0 4,0,0,1 4,0,1,0 4,1,0,0 4,2,0,0 81;X X X X X      
 

       4,0,0,0 2,0,4 3,0,4 4,0,4 4! 24;X Y Y Y       

         4,0,0,1 2,0,4 3,0,4 4,1,4 4 3 ! 1;X Y Y Y        

         4,0,1,0 2,0,4 3,1,4 4,0,1 4 2 ! 8;X Y Y Y        

         4,1,0,0 2,1,4 3,0,2 4,0,2 4 1 ! 36;X Y Y Y        

         4,2,0,0 2,2,4 3,0,0 4,0,0 4 2 ! 12;X Y Y Y        

       2,0,4 3,0,4 4,0,4 4,1,4 1;Y Y Y Y      

     3,1,4 4;     2,1,4 2,2,4 6.Y Y Y     

Conceptually, the analysis of the rich-club 

organization in Ĥ  with respect to the richness 
metric Ĥr  lies in determining whether the vertices 

ranked higher (i.e. having lower ranking positions) 
according to 

Ĥr
rank  tend to be more tightly 

interconnected with each other. At the same time, 
the multihypergraphs, due to their complex 
combinatorial nature, allow introducing two 
following non-equivalent notions extending the 

concept of the vertex-induced subgraph defined for 
the simple graphs: 

 
Definition 8. Let us consider an arbitrary 

multihypergraph   ˆ
ˆ , , HH V E m    and the 

subset of its vertices A V . The weak 

submultihypergraph of Ĥ  induced by A  is given 

by   ˆ
ˆ , ,

AA A P HH A E m   , where 
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  ;A AE e A e P      

    AP e e E e A       .  

Conversely, the strong submultihypergraph of Ĥ  
induced by A  is represented in the form of 

ˆ
ˆ , ,

A
A A HE

H A E m 
    

 
  , where 

    .AE e e E e A         

Note that 
APm   and 

AE
m   stand in the above 

expressions for the restrictions of the multiplicity 

function m  to the domains AP E   and A AE P   , 

respectively. 
 

Remark that the substructures ˆ
AH  and ˆ

AH   

provide the conceptually different and 
complementary viewpoints on the relationships 
established among the nodes of A  via the 

hyperedges of the overall multihypergraph Ĥ . In 

particular, the strong submultihypergraph ˆ
AH  , in 

contrast to the weak one ˆ
AH , is formed without the 

modification of the individual hyperedges 
contained in E  and encapsulates only such 

relationships among the nodes of A  in Ĥ  that do 
not involve the participation of the vertices 
belonging to \V A . The natural consequence 
following from these considerations lies in the need 
for distinguishing the weak and strong forms of the 
rich-club organization in multihypergraphs 
depending on the type of submultihypergraphs used 
for representing the relationships among the richest 
nodes. 

 
For convenience of the subsequent discussion, let 

us introduce the auxiliary notation 

       ˆ ˆ,H HV r t v v V r v t V      for the 

subset comprising such vertices of Ĥ  whose 
richness score according to the generic metric Ĥr  

equals to or exceeds the threshold value t . 

Additionally, let us denote by    ˆ
ˆ ,

ˆ ˆ,
H

H V r t
H r t H  

and    ˆ
ˆ ,

ˆ ˆ,
H

H V r t
H r t H  , respectively, the weak 

and strong submultihypergraphs of Ĥ  induced by 

 ˆ ,HV r t . In terms of such notation, the problem of 

discovering and analyzing the weak and strong 

forms of the rich-club organization in Ĥ  (with 
respect to the prescribed richness metric Ĥr ) is 

reduced to examining the corresponding families of 
the weak and strong submultihypergraphs 

      ˆ ˆ ˆ1
ˆ ˆ ˆ, , , ,..., ,H H HF H r T H r t H r t  and 

      ˆ ˆ ˆ1
ˆ ˆ ˆ, , , ,..., ,H H HF H r T H r t H r t  

 . Here 

 1,...,T t t  represents the indexing set 

containing the richness thresholds, while its 
cardinality   determines the granularity of the 
analysis. 

 
At the same time, due to the normalization by the 

number of vertices or within the range  0,1 , all 

metrics  ,  ,  ,  ,  , and   introduced in the 

previous section are suitable for tracing and 
comparing the cohesiveness of the 
submultihypergraphs comprising the families 

 ˆ ˆ
ˆ , , r

H HF H r T  and  ˆ ˆ
ˆ , , r

H HF H r T . Moreover, 

since these metrics report on the tightness of inter-
vertex relationships from the conceptually different 
viewpoints, the multihypergraphs, as opposed to the 
simple graphs, allow introducing multiple natural 
notions of the rich-club coefficient for both weak 
and strong forms of the rich-club organization. 
These considerations, in turn, lead to the 
formulation of the following formal definitions: 

 
Definition 9. The ordinary  -,  -,  -,  -, 

 -, and  -coefficients characterizing the weak 

form of the rich-club ordering in any 

multihypergraph Ĥ  are expressed respectively as 

    ˆ ˆ
ˆ ˆ, , , ;w H HH r t H r t  

 

    ˆ ˆ
ˆ ˆ, , , ;w H HH r t H r t    

    ˆ ˆ
ˆ ˆ, , , ;w H HH r t H r t    

    ˆ ˆ
ˆ ˆ, , , ;w H HH r t H r t  

 

    ˆ ˆ
ˆ ˆ, , , ;w H HH r t H r t   

 

    ˆ ˆ
ˆ ˆ, , , .w H HH r t H r t    

Definition 10. The ordinary  -,  -,  -,  -, 

 -, and  -coefficients characterizing the strong 
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form of the rich-club ordering in any 

multihypergraph Ĥ  are defined respectively as 

    ˆ ˆ
ˆ ˆ, , , ;s H HH r t H r t  

 

    ˆ ˆ
ˆ ˆ, , , ;s H HH r t H r t  

 

    ˆ ˆ
ˆ ˆ, , , ;s H HH r t H r t    

    ˆ ˆ
ˆ ˆ, , , ;s H HH r t H r t  

 

    ˆ ˆ
ˆ ˆ, , , ;s H HH r t H r t   

 

    ˆ ˆ
ˆ ˆ, , , .s H HH r t H r t    

Since every hyperedge of the strong 

submultihypergraph  ˆ
ˆ ,HH r t  also exists in the 

weak one  ˆ
ˆ ,HH r t  (while the reverse is not always 

true), the introduced coefficients should meet the 
following system of constraints: 

   ˆ ˆ
ˆ ˆ, , , , ;w sH HH r t H r t  

 

   ˆ ˆ
ˆ ˆ, , , , ;w sH HH r t H r t  

 

   ˆ ˆ
ˆ ˆ, , , , ;w sH HH r t H r t  

 

   ˆ ˆ
ˆ ˆ, , , , ;w sH HH r t H r t  

 

   ˆ ˆ
ˆ ˆ, , , , ;w sH HH r t H r t   

 

   ˆ ˆ
ˆ ˆ, , , , .w sH HH r t H r t     

Moreover, in view of the relationships 

     ˆ ˆ ˆH H H       and    ˆ ˆH H    

established between the multihypergraph 
cohesiveness metrics underlying the formal 
definition of the proposed coefficients, we could 
deduce the additional limitation formulated as 
follows: 

     ˆ ˆ ˆ
ˆ ˆ ˆ, , , , , , ;w w wH H HH r t H r t H r t    

 

   ˆ ˆ
ˆ ˆ, , , , ;w wH HH r t H r t  

     ˆ ˆ ˆ
ˆ ˆ ˆ, , , , , , ;s s sH H HH r t H r t H r t      

   ˆ ˆ
ˆ ˆ, , , , .s sH HH r t H r t    

At the specified metric Ĥr , any individual 

ordinary rich-club coefficient is considered as 
attesting to the presence of the ordinary rich-club 

phenomenon in Ĥ  if it demonstrates the growing 
tendency with the increase in t  and reaches the 
peak value at the threshold t  exceeding the 
richness score for the vast majority of vertices in 

Ĥ . Moreover, if all six coefficients given in 
Definition 9 (Definition 10) are characterized by 

such behavior, Ĥ  is referred to as exhibiting the 
complete weak (strong) ordinary rich-club 
phenomenon with respect to Ĥr . On the other hand, 

if only from one to four of the coefficients 
formulated in Definition 9 (Definition 10) 

excepting  ˆ
ˆ , ,w HH r t  (  ˆ

ˆ , ,s HH r t ) demonstrate 

the above-described behavior, Ĥ  is referred to as 
expressing the partial weak (strong) ordinary rich-
club phenomenon with respect to Ĥr .  

 
Remark that due to the presence of the 

exponential functions in their denominators, the 

coefficients  ˆ
ˆ , ,w HH r t  and  ˆ

ˆ , ,s HH r t  

demonstrate the catastrophic growth with the 
increase in t  at the sparsity (i.e. close to zero 
loopless density) of the simple hypergraph 

approximation ˆH H    constructed for Ĥ . 

Thereby, these coefficients are ignored in the 
formal definition of the partial ordinary rich-club 
phenomenon given above. 

 
Considering such two thresholds t  and t  such 

that t t  ,    ˆ ˆ, ,H HV r t V r t  , and 

 ˆ , 2HV r t   , we could impose the following 

restrictions on the behavior of the  -,  -,  -, and 

 -coefficients characterizing the weak and strong 

forms of the rich-club ordering in Ĥ : 

 
       ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ, , , , , , , , ;w w w wH H H HH r t H r t H r t H r t            

       ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ, , , , , , , , ;s s s sH H H HH r t H r t H r t H r t            

       ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ, , , , , , , , ;w w w wH H H HH r t H r t H r t H r t            
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       ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ, , , , , , , , .s s s sH H H HH r t H r t H r t H r t            

Remark that here the symbol   should be read 
as “implies that”. For clarity, let us provide the 
proof for the first statement by using the auxiliary 

notations x  and x  for  ˆ ,HV r t   and  ˆ ,HV r t , 

respectively. In addition, let us denote the number 
of edges contained in the simple graph 
approximations constructed for the weak 

submultihypergraphs  ˆ
ˆ ,HH r t  and  ˆ

ˆ ,HH r t   

respectively by y  and y .  
 
This background allows conveniently expressing 

   ˆ ˆ
ˆ ˆ, , , ,w wH HH r t H r t      in the form 

     2 1 2 1y x x y x x        . By multiplying 

both sides of this inequality by   1 2x x    

(which is positive over the whole considered 
domain bounded by 2 x x   ), we could get 

     1 1y y x x x x        .  

 

Since      1 1x x x x x x         for 

2 x x   , we could deduce that y y x x     . 

Moreover, by dividing both sides of the obtained 
inequality by any positive x , we could rewrite it 
as y x y x    , which reproduces the expression 

   ˆ ˆ
ˆ ˆ, , , ,w wH HH r t H r t     in terms of the 

adopted notation and eventually completes the 
proof. Notice that the second statement could be 
proved by analogy.  

 
When dealing with the third statement, let us 

introduce the additional notations z  and z  
standing for the number of the non-loop hyperedges 
in the simple hypergraph approximations of 

 ˆ
ˆ ,HH r t  and  ˆ

ˆ ,HH r t  , respectively. In this 

light,    ˆ ˆ
ˆ ˆ, , , ,w wH HH r t H r t      is given by the 

inequality    2 1 2 1x xz x z x         . In 

turn, the multiplication of both its sides by any 

positive 2 1x x    allows obtaining 

   2 1 2 1x xz z x x         .  

 

Since    2 1 2 1x xx x x x          for 

2 x x   , we could conclude that, over the 

considered domain, z z x x      and 

z x z x    . The last inequality reproduces the 

expression    ˆ ˆ
ˆ ˆ, , , ,w wH HH r t H r t    , which 

clearly proves the validity of the implication. The 
proof of the fourth statement could be given based 
on the same principles. Conceptually, all 
formulated statements allow viewing the ordinary 
 - and  -coefficients as embodying the more 

strict (i.e. fulfilled at the fewer topological 
configurations) criteria compared to the 

corresponding ordinary  - and  -coefficients 

when assessing the presence of the ordinary rich-

club phenomenon in Ĥ . 
 
In sum, under the proposed approach, the Ĥ  

class multihypergraphs are assessed by twelve non-
equivalent ordinary rich-club coefficients. At the 
same time, with the restriction of the consideration 
area to the subclasses H , Ĝ , and G , some of 

these coefficients collapse into the identical 
notions. In particular, for any simple hypergraph 
H  belonging to H , we would have 

   H H    , which implies that 

   , , , , ;w H w HH r t H r t    

   , , , ,s H s HH r t H r t   . 

Therefore, the simple hypergraphs are described by 
only ten non-equivalent ordinary rich-club 
coefficients. For its part, the case of an arbitrary 

multigraph ˆ
ˆ

GG  is characterized by the 

equalities    ˆ ˆG G   ,    ˆ ˆG G   , and 

   ˆ ˆG G   . Additionally, let us consider the pair 

of the weak ˆ
AG  and strong ˆ

AG  

submultihypergraphs of Ĝ  induced by any subset 

of its vertices A . Obviously, ˆ
ˆ

A HG   and 

ˆ
ˆ

A GG  , while ˆ
AG  could differ from ˆ

AG  only by 

the presence of the loop hyperedges, which are 
ignored by all metrics  ,  ,  ,  ,  , and  . 

Thereby, in the particular case of the Ĝ  class 

multigraphs, the weak and strong forms of the rich-
club organization could be viewed as collapsing 
into the single one, which allows writing the next 
equalities: 
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   
   

ˆ ˆ

ˆ ˆ

ˆ ˆ, , , ,

ˆ ˆ, , , , ;

w wG G

s sG G

G r t G r t

G r t G r t

   

   
 

   
   

ˆ ˆ

ˆ ˆ

ˆ ˆ, , , ,

ˆ ˆ, , , , ;

w wG G

s sG G

G r t G r t

G r t G r t

   

      

   
   

ˆ ˆ

ˆ ˆ

ˆ ˆ, , , ,

ˆ ˆ, , , , .

w wG G

s sG G

G r t G r t

G r t G r t

   

   



   

In this light, the multigraphs are characterized by 
only three non-equivalent ordinary rich-club 
coefficients. Furthermore, the restrictions imposed 
on the structure of any simple graph GG  

produce the equalities        G G G G         

and    G G    underlying the most significant 

collapse of the ordinary rich-club coefficients given 
as follows: 

     
     

   

, , , , , ,

, , , , , ,

, , , , ;

w G w G w G

w G s G s G

s G s G

G r t G r t G r t

G r t G r t G r t

G r t G r t

     

     

   

 

   
   
, , , ,

, , , , .

w G w G

s G s G

G r t G r t

G r t G r t

   

   




 

Therefore, any simple graph G  is described by 
only two non-equivalent ordinary rich-club 
coefficients reduced to the edge-to-vertex ratio 

  ,GG r t  and density .   ,GG r t
.
 of its 

strong submultihypergraph  ,G GG r t   induced 

by the subset of vertices having the richness score 
of t  or more according to the specified metric Gr . 

 
Meanwhile, the origin of the ordinary rich-club 

phenomenon attested by the ordinary coefficients 
given in Definitions 9 and 10 could lie not entirely 
in the self-organizing behavior of the hypernetwork 

modeled by Ĥ  but also in the local properties of its 
constituent actors and entities reflected in the 
degrees and cardinalities of the corresponding 
nodes and hyperedges. In turn, the analysis of the 
rich-club organization at the discounted influence 
of such effects requires formulating the 
appropriately corrected coefficients. Above all, by 
analogy to the hyperedge cardinality sequence, let 
us introduce the following integrative characteristic 

summarizing the degrees of all multihypergraph’s 
vertices: 

 
Definition 11. The vertex degree sequence of 

an arbitrary non-null multihypergraph 

 ˆ , ,H V E m    is represented in the form 

         1 2 ˆ 1
ˆ ˆ ˆ ˆΞ , ,...,

H
H H H H 

    
 

. Here 

   ˆ ,H E m     stands for the largest possible 

degree of vertex in the multihypergraph with 

 ,E m   hyperedges, while the size of  Ĥ  is 

determined as  ˆ 1H  . In turn, every item 

 ˆ
i H  for   ˆ1,2,..., 1i H    represents the 

number of nodes with the degree of 1i   in Ĥ , i.e.  

       ˆ
ˆ 1i HH v v V deg v i      . 

Based on this background, let us associate the 

examined multihypergraph Ĥ  with the reference 

ensemble  Ĥ  represented by the set composed 

of the multihypergraphs following strictly the same 

sequences of vertex degrees  Ĥ  and hyperedge 

cardinalities  Ĥ  as Ĥ . At the same time, the 

construction of such ensembles needs designing the 
algorithm of generator producing the random 
multihypergraph with the prescribed sequences of 
vertex degrees and hyperedge cardinalities, while 
ensuring the proper level of stochasticity (i.e. 
uniformity in the probabilities of forming all 
allowed configurations). Remark that, in the prior 
findings, the problem of generating the random 
simple graphs and multigraphs having the given 
sequence of vertex degrees was extensively 
researched due their popularity as the reference 
models in analyzing the topological organization of 
the complex networks [13]. In particular, the article 
[14] deals with the overview of main ideas 
underlying the existing generators of such 
structures. However, the above-stated problem of 
generating the random multihypergraph with the 
fixed sequences of vertex degrees and hyperedge 
cardinalities still constitutes the gap in knowledge 
and is the much more challenging since the 
produced structures should exactly fulfill the 
requirements to not one but two sequences. 
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Conceptually, such generator could be elaborated 
in accordance to either one of two fundamental 
paradigms. Looking into detail, the first paradigm 
consists in performing the series of such elementary 
random modifications of the initial multihypergraph 

Ĥ  that, while keeping its sequences of vertex 
degrees and hyperedge cardinalities unaffected, 
allow obtaining the new multihypergraph equipped 
with the randomized multiset of hyperedges. The 
most naive example of such modification lies in 

choosing two hyperedges e  and e  in Ĥ  such that 
\e e     and \e e     with the subsequent 

swapping the pair of vertices \v e e    and 
\v e e     such that \v e e    and \v e e     between 

the single copies of these hyperedges (i.e. without 
influencing the parallel hyperedges). In simple 
terms, v  is placed instead of v  in the single 
instance of e , while v  occupies the place of v  in 
the single instance of e . Conversely, the second 
paradigm implies the direct construction of the 
random multihypergraph possessing the desired 
characteristics from the set of isolated nodes by the 
successive addition of hyperedges. Notice that the 
second paradigm, in contrast to the first one, 
precludes the dependence of the output produced by 
the generator on the particular hypergraph used as 
initial and, thereby, could potentially lead to the 
formation of the more qualitative reference 

ensembles  Ĥ . Accordingly, the algorithm for 

generating the random multihypergraph with the 
prescribed sequences of vertex degrees and 
hyperedge cardinalities designed in this work 
implements the second paradigm. 

 
As input, the proposed algorithm takes two 

sequences  Ĥ  and  Ĥ . For brevity, let us 

denote the number of all their items respectively as 
1k   and n . In turn, the description of the 

algorithm could be arranged in the following way: 
 
Step 1:  Initialize two empty sequences ()VS   

and ()ES  . Traverse all items of  Ĥ  in the 

decreasing order of their index (i.e. starting from 

the tail of  Ĥ ) and, for every considered 

 ˆ 0i H  , append  ˆ
i H  elements with the value 

of 1i   to the tail of VS . Similarly, traverse all 

items of  ˆΩ H  in the order of decreasing their 

index and, for each considered  ˆω 0i H  , update 

ES  by appending  ˆωi H  elements with the value 

of i  to its tail. Remark that, in result of such 
operations, both VS  and ES  should represent the 
non-increasing sequences. Additionally, initialize 
the zero-filled sequence VS   whose size (i.e. 
number of items) is equal to n . Apart from that, 

construct the sets  1,2,...,TS k  and FS   . 

Finally, initialize the sequence  1 2, ,..., kC C C C  

containing k  empty sets, i.e. iC    for 

 1,2,...,i k  and set 1p  . 

 
Step 2:  If p n , go to the step 3. Otherwise, 

the construction of the desired random 
multihypergraph is complete. 

 
Step 3:  If p pTS vs vs  , proceed to the 

step 4. Otherwise, go to the step 8. 
 
Step 4:  If p pvs vs  , go to the step 5. 

Otherwise, set 1p p   and return to the step 2. 

 
Step 5:  Generate the random natural number 

er  lying within the range from 1 to k . 
 
Step 6:  If erp C  and er TS , proceed to the 

step 7. Otherwise, return to the step 5 and generate 
another er . 

 

Step 7:  Perform the operation  er erC C p   

and set 1p pvs vs   . If er erC es , 

 \TS TS er , and  FS FS er  . Return to the 

step 4. 
 
Step 8:  Randomly select the pair of numbers 

u TS  and w FS . Proceed to the step 9. 
 
Step 9:  If \w uC C   , return to the step 8 and 

generate another u  and w . Otherwise, proceed to 
the step 10. 

 
Step 10:  Pick randomly \w uq C C  and update 

the sets uC  and wC  by performing the operations 

 u uC C q   and     \w wC C q p  . Set 

1p pvs vs   . If u uC es ,  \TS TS u  and 

 FS FS u  . Go to the step 3. 
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Notice that the random multihypergraph 
outputted by this generator has n  nodes labeled by 
the natural numbers within the range from 1 to n . 
In turn, its hyperedges (including possibly the 
parallel ones) are represented by the sets 
comprising the sequence C . 

 
Let us provide the brief commentary of the main 

ideas underlying the proposed algorithm. The 
generating process is driven by the non-increasing 
sequence VS  whose each item ivs  gives the degree 

of the vertex i  in the multihypergraph to be 
constructed (i.e. the nodes are labeled in the non-
increasing order of their degrees). For p  (meaning 

the currently considered vertex) going from 1 to k  
(i.e. the nodes with larger degrees are considered 
earlier), the generator adds p  to pvs  distinct sets 

in C  (which means the inclusion of the vertex in 
the hyperedges). At the same time, the cardinality 
of every set iC  for  1,2,...,i k  in C  could not 

exceed the value of ies , which allows reproducing 

the specified sequence of the hyperedge 
cardinalities. For convenience, the set FS  contains 
the indexes i  of all such sets iC  in C  that are 

fully filled to their cardinality limit ies . 

Conversely, TS  includes the indexes i  of such sets 

iC  in C  that have the vacant places for 

accommodating the new numbers. Remark that the 
steps 3 and 8 – 10 are required for escaping the 
generating process from the deadlock situation in 
which the number of the remaining non-filled sets 
in C  (i.e. the cardinality of TS ) is lower than the 
number of sets to which the currently considered 
vertex p  should be added in order to meet the 

degree requirement. 
 
Let us consider the metric Ĥr  explicitly defined 

by the underlying strategy (i.e. the fundamental 

system of rules) of mapping every vertex in Ĥ  into 

its richness score based on the topology of Ĥ  
(such as the degree Ĥdeg ). In this case, for every 

multihypergraph R̂  belonging to the ensemble 

 Ĥ , there exists such metric R̂r  that realizes 

exactly the same topology-based strategy in 
assigning the richness scores to its vertices, which 
allows introducing the following families of the 
normalized rich-club coefficients: 

 

Definition 12. The normalized  -,  -,  -, 

and  -coefficients characterizing the weak form of 

the rich-club ordering in any multihypergraph Ĥ  
are calculated respectively as 

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , ,

1 ˆ, ,
ˆ

w Hn
w H

w R
R H

H r t
H r t

R r t
H 


  





 

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , ,

1 ˆ, ,
ˆ

w Hn
w H

w R
R H

H r t
H r t

R r t
H 


  





  

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , ,

1 ˆ, ,
ˆ

w Hn
w H

w R
R H

H r t
H r t

R r t
H 


  





  

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , , .

1 ˆ, ,
ˆ

w Hn
w H

w R
R H

H r t
H r t

R r t
H 


 





  

Definition 13. The normalized  -,  -,  -, 

and  -coefficients characterizing the strong form 
of the rich-club ordering in any multihypergraph 

Ĥ  are calculated respectively as 

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , ,

1 ˆ, ,
ˆ

s Hn
s H

s R
R H

H r t
H r t

R r t
H 


  





 

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , ,

1 ˆ, ,
ˆ

s Hn
s H

s R
R H

H r t
H r t

R r t
H 


  





  

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , ,

1 ˆ, ,
ˆ

s Hn
s H

s R
R H

H r t
H r t

R r t
H 


  





  

   

   
 

ˆ
ˆ

ˆ
ˆ ˆ

ˆ , ,
ˆ , , .

1 ˆ, ,
ˆ

s Hn
s H

s R
R H

H r t
H r t

R r t
H 


 





  

Remark that the numerator of the expression for 
every normalized rich-club coefficient is 
represented by the corresponding ordinary 
coefficient, while its denominator gives the average 
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value of such ordinary coefficient over the 

multihypergraphs R̂  of the ensemble  Ĥ  at the 

respective richness metrics R̂r . Conceptually, any 

individual normalized rich-club coefficient could be 
interpreted as attesting to the presence of the 

normalized rich-club phenomenon in Ĥ  at the 
specified richness metric Ĥr  and the threshold t  if 

its value at all these parameters exceeds one.  
 
In turn, if all four (only from one to three) 

conditions  ˆ
ˆ , , 1n

w HH r t  ,  ˆ
ˆ , , 1n

w HH r t  , 

 ˆ
ˆ , , 1n

w HH r t  , and  ˆ
ˆ , , 1n

w HH r t   are 

satisfied, Ĥ  is referred to as demonstrating the 
complete (partial) weak normalized rich-club 
phenomenon at the richness metric Ĥr  and its 

threshold value t , while the corresponding weak 

submultihypergraph  ˆ
ˆ ,HH r t  is called the 

complete (partial) weak normalized rich-club of 

Ĥ . Conversely, if all four (only from one to three) 

conditions  ˆ
ˆ , , 1n

s HH r t  ,  ˆ
ˆ , , 1n

s HH r t  , 

 ˆ
ˆ , , 1n

s HH r t  , and  ˆ
ˆ , , 1n

s HH r t   are fulfilled, 

Ĥ  is referred to as exhibiting the complete 
(partial) strong normalized rich-club phenomenon 
at the richness metric Ĥr  and its threshold value t , 

while the corresponding strong submultihypergraph 

 ˆ
ˆ ,HH r t  represents the complete (partial) strong 

normalized rich-club of Ĥ . 
 

4. EXPERIMENTAL ANALYSIS OF THE 
RICH-CLUB ORGANIZATION IN THE 
SCIENTIFIC CO-AUTHORSHIP 
HYPERNETWORK BASED ON THE 
APPLICATION OF THE PROPOSED 
METHOD 

 
The role of this section consists in illustrating the 

descriptive potential of the introduced rich-club 
coefficients for discovering the hidden forms of the 
topological ordering underlying the cooperative 
behavior of the actors in the real-world complex 
hypernetworks. As the basis for constructing the 
experimental sample of the multihypergraph model 
reflecting the co-authorship hypernetwork, this 
work uses the open-access dataset [15] containing 
the detailed records of 2 867 scientific articles in 
the field of information visualization extracted from 
the IEEE Xplore database. Notice that this dataset 

stores the many-to-many relationship between the 
papers and their authors in the form of two columns 
matching the unique identifiers of papers with the 
corresponding lists of author names (delimited by 
semicolons). Thereby, the representation of this 
relationship in terms of the multihypergraph model 
requires performing the preliminary processing of 
data. Firstly, the set of all individual researchers 
engaged in the considered relationship was 
constructed by collecting the items obtained after 
spitting the author list of every article by 
semicolons with the subsequent deletion of all 
duplicates. This operation has resulted in the 
extraction of 5 086 individual researches depicted 
by the vertices in the multihypergraph model. The 
next stage of the model construction consisted in 
representing every article covered in the considered 
dataset by the corresponding hyperedge containing 
all vertices depicting the researchers included in the 
author list of this article. For convenience, 
throughout the remainder of this section, the 

notation Ĥ  refers to the particular multihypergraph 
sample constructed in such manner. 

 
All non-zero items comprising the vertex degree 

sequence  ˆΞ H  of Ĥ  are concentrated within the 

range of indexes 2 61i   and, as shown in 
Fig. 1a, exhibit almost monotonically decaying 
behavior with the increase in i . The additional 
inspection has resulted in concluding that the 

behavior of  ˆ
i H  over whole this range is 

accurately approximated by the power-law function  

    2.3328ˆ 3598.5111 1i H i      

(at which both coefficient of determination and its 
adjusted version exceed 0.99995, thereby, pointing 
to the extreme goodness of the fit). In turn, all non-
zero items of the hyperedge cardinality sequence 

 Ĥ  associated with Ĥ  have the indexes 

1 17i  . Figure 1b illustrates that the value of 

 ˆ
i H  depends on i  in the more complicated way 

with the presence of the sharp peak at 2i   (caused 
by the rarity of the solely authored articles within 
the considered dataset). Moreover, the smooth 
fragment of this dependence at 3 14i   is 
appropriately approximated by the power-law 
function  

    17 5.0542ˆ 0.0014+4.7825 10i H i
     
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(with both coefficient of determination and its 
adjusted version of more than 0.9991). The rest of 
this section gives the results of analyzing the rich-

club organization in Ĥ  with respect to the degree 
as the richness metric and the accompanying 

discussion. Remark that only five nodes in Ĥ  have 
the degree exceeding 38, while the weak 
submultihypergraph induced by them contains one 
non-loop hyperedge. Thereby, we limit the 
consideration area to the indexing set of the degree 

thresholds  1,2,...,39 . Remark that due to the 

absence of vertices with no incident hyperedges in 

Ĥ  (since every researcher within the considered 
dataset serves as the author of at least one article), 

the submultihypergraphs  ˆ
ˆ ,HH deg t  and 

 ˆ
ˆ ,HH deg t  extracted at the degree threshold t  of 

one are identical to the whole Ĥ . 
 

 

Figure 1: Vertex degree  Ĥ  (a) and hyperedge cardinality  Ĥ  (b) sequences of the multihypergraph model Ĥ  

representing the co-authorship hypernetwork given along with the results of their approximation by the power-law 
functions (refer text for details). 

Figure 2 shows that the ordinary rich-club 

coefficients  ˆ
ˆ , ,w HH deg t ,  ˆ

ˆ , ,w HH deg t , 

 ˆ
ˆ , ,w HH deg t , and  ˆ

ˆ , ,w HH deg t  

monotonically increase at low t , reach the global 
maximum, and then demonstrate the falling 
tendency with the formation of multiple local 
maxima and minima. Remark that the non-smooth 
decline of these coefficients at high t  is caused by 
the enhanced influence of fluctuations following 
from the extreme reduction in the number of 
vertices contained in the corresponding weak 

submultihypergraphs  ˆ
ˆ ,HH deg t . At the same 

time, the coefficient  ˆ
ˆ , ,w HH deg t  achieves the 

global maximum at the degree threshold 4t  , 

while the global maxima of  ˆ
ˆ , ,w HH deg t  and 

 ˆ
ˆ , ,w HH deg t  are shifted to the right and 

registered at 8t  . In turn,  ˆ
ˆ , ,w HH deg t  has 

the most right-shifted global maximum at 12t  . 
Another important difference between the 
considered dependences consists in the rate of their 
growth before reaching the global maximum. 
Looking into detail, at 3t  , the numerical 
derivatives of these dependences (calculated based 
on applying the two-point estimation method) are 
arranged in the decreasing order of their values as 
follows:  

   

   

ˆ ˆ

ˆ ˆ

ˆ ˆ, , , ,

ˆ ˆ, , , ,
.

w wH H

w wH H

d H deg t d H deg t

dt dt

d H deg t d H deg t

dt dt

 
 

 
 

 

On the contrary, at 4 8t  ,  ˆ
ˆ , ,w HH deg t  

becomes the most rapidly growing dependence. 
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Figure 2: Dependences of the ordinary  -,  -,  -, and  -coefficients characterizing the weak form of the rich-club 

organization in the multihypergraph model Ĥ  of the co-authorship hypernetwork with respect to the metric of degree 

Ĥdeg  on the threshold value t . 

 

Figure 3: Dependences of the ordinary  - and  -coefficients characterizing the weak form of the rich-club 

organization in the multihypergraph model Ĥ  of the co-authorship hypernetwork with respect to the metric of degree 

Ĥdeg  on the threshold value t .
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In turn, Fig. 3 illustrates that the  ˆ
ˆ , ,w HH deg t  

undergoes the catastrophic growth stemming from 

the loopless density   1528ˆ 2.29310 10H H     
  

of ˆH H   , while  ˆ
ˆ , ,w HH deg t  almost 

monotonically increases over 25t   with the 
subsequent series of jumps associated with the 
influence of fluctuations. In sum, all these results 

allow viewing the constructed model Ĥ  as 
exhibiting the complete weak ordinary rich-club 
phenomenon with respect to the metric of degree 

over 4t   (the submultihypergraph  ˆ
ˆ ,4HH deg  

contains less than 10% of vertices existing in Ĥ ). 

Moreover, Ĥ  could be interpreted as preserving 
the partial form of such phenomenon at all higher 
thresholds t  selected for the consideration (with 
four attesting coefficients over 5 8t  , two over 
9 12t  , and only one otherwise). 

On the other hand, as illustrated in Figs. 4 and 5, 
the dependences of the coefficients 

 ˆ
ˆ , ,s HH deg t ,  ˆ

ˆ , ,s HH deg t ,  ˆ
ˆ , ,s HH deg t , 

 ˆ
ˆ , ,s HH deg t , and  ˆ

ˆ , ,s HH deg t  on the 

threshold t  do not have any intervals of the well-
expressed growth. The only exception is the 

standalone peak of  ˆ
ˆ , ,s HH deg t  at high t , 

which could be dismissed as originating from the 
fluctuations. In turn, the coefficient 

 ˆ
ˆ , ,s HH deg t , similarly to  ˆ

ˆ , ,w HH deg t , 

demonstrates the meaningless catastrophic growth 
and almost reproduces the exponential function 
included in its denominator. These observations 
allow concluding that neither complete nor partial 
strong ordinary rich-club phenomenon with respect 

to the metric of degree is present in Ĥ  to the 
significant extent. 

 
Figure 4: Dependences of the ordinary  -,  -,  -, and  -coefficients characterizing the strong form of the rich-

club organization in the multihypergraph model Ĥ  of the co-authorship hypernetwork with respect to the metric of 
degree Ĥdeg  on the threshold value t .

At the next stage of experiment, the calculation 
of the normalized rich-club coefficients was 

performed based on the reference ensemble  Ĥ  

filled with one hundred random multihypergraphs 
produced by the generating algorithm proposed in 
the previous section. In particular, Fig. 6 shows that 

among the coefficients  ˆ
ˆ , ,n

w HH deg t , 

 ˆ
ˆ , ,n

w HH deg t ,  ˆ
ˆ , ,n

w HH deg t , and 

 ˆ
ˆ , ,n

w HH deg t , the value of one is exceeded only 

by  ˆ
ˆ , ,n

w HH deg t  and only at 2 14t  . 
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Thereby, over this relatively wide range of 

thresholds, the model Ĥ  satisfies the formal 
criterion for being viewed as exhibiting the partial 

weak normalized rich-club phenomenon with 
respect to the metric of degree. 

 

Figure 5: Dependences of the ordinary  - and  -coefficients characterizing the strong form of the rich-club 

organization in the multihypergraph model Ĥ  of the co-authorship hypernetwork with respect to the metric of degree 

Ĥdeg  on the threshold value t . 

 
Figure 6: Dependences of the normalized  -,  -,  -, and  -coefficients characterizing the weak form of the rich-

club organization in the multihypergraph model Ĥ  of the co-authorship hypernetwork with respect to the metric of 
degree Ĥdeg  on the threshold value t . 
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At the same time, the dependences of the 

coefficients  ˆ
ˆ , ,n

s HH deg t ,  ˆ
ˆ , ,n

s HH deg t , 

 ˆ
ˆ , ,n

s HH deg t , and  ˆ
ˆ , ,n

s HH deg t  on t  

illustrated in Fig. 7 are, in general, characterized by 
the more sharp decline compared to the 

dependences given in Fig. 6. Only  ˆ
ˆ , ,n

s HH deg t  

demonstrates the small peak and exceeds the value 

of one at 2t  . However, both extreme narrowness 
and low absolute value of this peak allow 
dismissing it as the anomaly. Along with this 
remark, all obtained results point to the absence of 
the strong normalized rich-club phenomenon with 
respect to Ĥdeg  manifested to the considerable 

extent in the examined multihypergraph Ĥ . 

 
Figure 7: Dependences of the normalized  -,  -,  -, and  -coefficients characterizing the strong form of the 

rich-club organization in the multihypergraph model Ĥ  of the co-authorship hypernetwork with respect to the metric 
of degree Ĥdeg  on the threshold value t . 

5. CONCLUSIONS 
 
The method for detecting and assessing the rich-

club organization in an arbitrary multihypergraph 

ˆ
ˆ

HH   designed in this work is based on 

introducing the family of twelve ordinary and eight 
normalized rich-club coefficients. In particular, the 
ordinary coefficients embody all possible 
combinations of six metrics  ,  ,  ,  ,  , and 

  characterizing the tightness of interconnections 

among the multihypergraph’s vertices and two non-
equivalent types of submultihypergraphs (weak and 
strong). For its part, the normalized coefficients 
represent the results of correcting the corresponding 
ordinary coefficients with respect to the reference 
ensemble of random multihypergraphs possessing 
the same sequences of vertex degrees and 

hyperedge cardinalities as the examined 
multihypergraph.  

 
The experimental analysis of the 

multihypergraph-based model constructed for real-
world co-authorship hypernetwork has attested the 
descriptiveness of all introduced coefficients, 

excepting  ˆ
ˆ , ,w HH r t  and  ˆ

ˆ , ,s HH r t . In total, 

the proposed method allows discovering eight 
fundamental forms of the rich-club phenomenon in 
multihypergraphs (i.e. all combinations of 
complete/partial, weak/strong, and 
ordinary/normalized). At the same time, even the 
most basic substructures of simple graphs (such as 
cycles) are known to have multiple non-equivalent 
conceptual generalizations to the cases of simple 
hypergraphs and multihypergraphs. Thereby, a 



Journal of Theoretical and Applied Information Technology 
15th December 2018. Vol.96. No 23 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
8069 

 

variety of rich-club coefficients and forms of the 
rich-club phenomenon in multihypergraphs 
introduced in this work serves as the natural 
implication of their complex underlying 
combinatorial nature. 

 
For comparison, in view of their applicability 

only to the class of simple graphs, the concepts of 
the non-normalized and normalized rich-club 
coefficients reported in the existing literature [11, 
12] allow organizing only the indirect assessment 

of the rich-club ordering in the multihypergraph Ĥ  

through analyzing its approximation ˆG H   . The 

fundamental limitation of such approach consists in 
the impossibility of detecting all natural forms of 

the rich-club phenomenon in Ĥ  classified in this 
article, which clearly points to the conceptual 
novelty of the proposed method and its enhanced 
descriptive potential. 
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