
Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8006

FUNCTIONAL COHESION METRIC FOR OBJECT-ORIENTED

SYSTEMS

1OLUBUKOLA D. ADEKOLA, 2SUNDAY A. IDOWU, 3SAMUEL O. OKOLIE, 4JONAH V.
JOSHUA, 5ADEWALE O. ADEBAYO, 6ADERONKE O. OLUSOGA

1, 2, 3, 4, 5Babcock University, Ilisan-Remo, Ogun State, Nigeria
 6Independent Researcher, 309 Clareview Station Drive Edmonton, Canada

E-mail: 1adekolao@babcock.edu.ng, 2idowus@babcock.edu.ng, 3okolies@babcock.edu.ng,
4joshuaj@babcock.edu.ng, 5adebayoa@babcock.edu.ng, 6aderonkeolusoga@gmail.com

ABSTRACT

Controlling software development process aids ensuring the quality of the output, but this is dependent upon
availability of means of measurement. A major concern that makes software difficult to maintain or reuse is
the complexity of the internal design and the most common to Object-Oriented Design (OOD) are cohesion
and coupling. Traditional metrics could not scale in measuring cohesion in object oriented systems. Existing
static cohesion metrics (for OOD) using variable-method and method-method interactions are satisfactory,
but neglect semantic aspects of the software. On the other hand, existing semantic and joint static and
semantic cohesion metrics fall short by relying on analysis of identifiers and comments, which are
unstructured data with known setbacks. This study, therefore, developed a static and semantic functional
cohesion metric that employed data hiding and object behaviour as a representation of OOD domain concept.

Keywords: Attribution, Cohesion, Coupling, Maintainability, Metrics, Reusability

1. INTRODUCTION

 Software desirable characteristics include
adaptability, maintainability, reliability, reusability
and understandability. Increase in software
complexity inadvertently reduces these
characteristics [1]. The desire to control and manage
complexity leads to the development of metrics.
Generally, high cohesion and low coupling enhances
good- design ([2, 3]), and coupling can be intuitively
reduced by improving cohesion [4]. Cohesion in
object-oriented paradigm is how elements or
members of a module (or a class) are related or
connected to one another. Coupling refers to the
dependency among different modules or classes
(that is, how much a class knows about or uses the
inner elements of another). Cohesion measures
connectedness of members of a single class, which
indicates extent of relationship within a module
(internal strength). It also indicates whether a class
represents single abstraction or multiple
abstractions. Multiple abstractions result in low
cohesion. Low cohesion indicates monolithic
(difficult to change single large block) classes that
are difficult to maintain, understand, and reuse.

 Maintainability of software includes the
effort required to use, modify, correct or improve the
quality of its design and more. It is estimated that
maintenance takes up to 80% of the total cost of
producing software applications [5]. Invariably, any
engineering efforts or techniques that can improve
maintainability should not be an afterthought [6].
The crux of the argument is that it is superior for
software maintainers to enhance the product without
having to rebuild a major part of it. In this quest,
consideration should be given to researches that
could enhance internal design such as cohesion [7].
Benefits of maintainable software include (i) having
products that are easy to update and enhance, (ii)
propensity for reuse, which would reduce the cost of
update time, and (iii) ease of correcting faults found
in software.

 Reusability is the probability of using an
existing design, artefact, product or knowledge to
build a new system, with the expectation of
achieving more reliable, quicker time-to-market, and
possibly easier maintainable systems. Extant
findings revealed that 40% to 60% of code is
reusable, 60% of design and code are reusable in
business applications, 75% of program functions are

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8007

common to more than one program, and only 15%
of the code found in most systems is unique and new
to a specific application [8]. Notable in systematic
reuse environment are program libraries, design
patterns, component based development, program
generator, and aspect-oriented development
paradigms. A known potent weapon in the design of
reuse elements or reusable components is how to
reduce dependency and increase cohesion [9].
Objects put for reuse should have good cohesion,
preferably functional. Figure 1 simply depicts
cohesion and coupling. The lines connecting the
stared-alphabets indicate cohesion and the broken
lines indicate coupling.

.

 Figure 1: Cohesion and Coupling (adapted from: [10])

 Many programs are written to run without
considering internal design structure. In object-
oriented design, one of the most common internal
attributes that reveals a convoluted design (difficult
to maintain) is cohesion. Developing metrics to
measure cohesion in software is a proactive
approach to ensuring software maintainability and
reusability properties, in appropriately informing
practitioners about design decision they need to
make. Traditional metrics could not scale in
measuring cohesion in object-oriented systems.
Existing static OOD cohesion metrics majorly
depend on measuring attribute-method
interactions which do not appropriately represent
what the designers of object-oriented software
system often think of a class. To a designer, a class
is regarded as a set of responsibilities that
approximate the concept from the problem domain
and also that information hiding has conceptual
meaning in a class make-up. Therefore, the extant
static metrics neglect semantic aspects of the
software. Also, existing semantic and joint static
and semantic cohesion metrics fall short by relying
on analysis of identifiers and comments; codes that

falter in commenting rules and attribution would
not benefit well from these models of metrics. There
is tendency for inaccurate computations for
cohesion. The limitations of available semantic and
variable-method interaction based cohesion
metrics contribute immensely to code maintenance
difficulties and consequently adversely affects the
utility of developed software. This study, therefore,
aimed at developing a static and semantic functional
cohesion metric that employed data hiding and
object behaviour which promotes measuring the
degree of single abstraction as a representation of
OOD domain concept. The specific objectives were
to develop a mathematical model and algorithm of
an improved functional cohesion metric that
captures varying strength of cohesion and makes
efficient use of data hiding and abstraction, to design
and develop an automated metric tool of the
mathematical model, and to evaluate the behaviour
of the developed metric tool.

 A mathematical model, capturing variable-
method interaction, method-method interaction and
hidden data access, adequately representing the
domain concept of OOD and indicating varying
strength of cohesion, was developed leveraging on
Mal and Rajnish metrics for its variable-method
static part. The algorithm representing the
mathematical model, which used three major factors,
namely variable-method interaction, method-
method interaction and hidden data access, was
subsequently created. An automated cohesion metric
tool, StaSem_C, was developed using Java Compiler
Compiler (JavaCC), adopting regular expression
used in formal language theory to analyse and
classify sequence of symbols sought within a source
code. It uses Backus-Naur Form production to
analyse token sequence and determine the structure
of the program. Different source codes, from student
projects and open source software projects as data
sets, were used to empirically validate the
StaSem_C. The behaviour of StaSem_C was
evaluated using purposefully selected source codes
that were also deliberately re-factored for cohesion.
No difficulty of being an ethical researcher was
encountered.

2. RESEARCH QUESTIONS

The research questions are:
a) What design attributes are worth giving stern

consideration in engineering maintainable and
reusable software?

b) What should characterize a cohesion metric
model suitable for OOD?

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8008

c) What metric model holistically captures
structure and domain concept of object oriented
systems

3. OUTCOMES

3.1 Functional Cohesion Metric Mathematical
Model

 This subsection describes the developed
mathematical model, a functional cohesion metric.
Figure 2 illustrates class variable-method and
method-method interactions.

.
Figure 2 : Class Variable-Method and Method-Method
Interactions

 The circles represent member variables (I),
the rectangles member methods (M), and the lines
(edges) joining them, members’ interactions. This is
complemented with measurement for hidden data
access, which semantically represents a class design
as a set of responsibilities that approximate the
domain concept. This directly represents the concept
of the problem and solution domains of OOD. The
support for security invariably increases single
abstraction. Measuring the degree of single
abstraction, therefore, gives an adequate report of
cohesion. In addition to consideration for member
interactions, hidden data inherently bind a class
together and control object behaviours.

Consider a class C having methods M =
{M1, M2, M3,…, Mn} and a set of variables I = { I1,
I2, I3,…, Im} accessed or used by Mi. The cohesion
metric value α is a ratio scale ranging between 0 and
1 (α ϵ [0, 1]). α = 0 means no cohesion, and α ϵ [0.5,
1] indicates cohesion progressively.
A.
Cohesion value of variable Ii (CV(Ii)) is:

 CV(Ii) = n(MIi) (1)
 n(M)
where n(MIi) = Number of methods sharing or
using variable Ii, and n(M) = Total number of
methods in the class.

Mean Cohesion Value (CC) of all variables for a
class, therefore, is

 CC ൌ
∑ CVሺ𝐼𝑖ሻ

೙
భ

௡ሺூሻ
 (2)

where n(I) = total number of variables present in
the class; n(I) > 0.

A class with no relationship between variables and
methods gives CC = 0.

Cohesion value of method-method interaction
(CMinv) is:

 CMinv ൌ
௡ሺெ௜௡௩ሻ

௡ሺெሻ
 (3)

where n(Minv) = number of method invocations
within the class, exclusive of coupling.

Moreover, complementing the structural
analysis through capturing the domain concept, a
measure of data hiding rate and a report of varying
strength of cohesion are done. A computation of the
cohesion value for hidden data access yields:

 CVh ൌ
௡ሺு஺ሻ

௡ሺூሻ
 (4)

where 𝑛ሺ𝐻𝐴ሻ ൌ
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑐𝑐𝑒𝑠𝑠.

Combining static and semantic view together,
cohesion measure combines equations (2), (3), and
(4) to have a normalized metric (for a class):

 𝑆𝑡𝑎𝑆𝑒𝑚_𝐶 ൌ
஼஼ ା ஼ெ௜௡௩ ା ஼௏௛

௙
 (5)

where f = 2 when CMinv = 0 or
f = 3 when CMinv > 0 in a class.

The divisor, f, is the number of factors in
consideration (variable-method interaction, method-
method interactions, and number of hidden data
access supported).

If StaSem_Ci symbolizes cohesion value for class i,
the cohesion value of a program having k total
number of classes (CoS) is:

 CoS = StaSem_C1 + StaSem_C2 + . . . + StaSem_Ck
 k

 which is the same as:

෍

௞

௜ୀଵ

 StaSem_Ci

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8009

 (6)

The cohesion metric value of a program comprising
a number of classes is the sum of the cohesion metric
values of the classes divided by the total number of
classes.

3.2 The Cohesion Metric Tool

This subsection presents the software
representation of the functional cohesion metric
mathematical model, StaSem_C. which acts as a
parser and a metric calculator. It takes as input
typical Java source code and analyse it using regular
expression productions to identify different tokens in
the code. The program keeps track of how many
methods used a particular variable, how many
methods are called within a class which are methods
of the class, and how many data are hidden. This is
aggregated and normalized as metric value using
ratio scale.

A typical source code input is translated
into a compilation unit, which is an object
representation of an abstract syntax tree (AST). This
provides a convenient mechanism to navigate the
tree to identify pertinent patterns in source code. The
following is an example of how a typical code is
analysed to discover useful patterns:

 int sum(){
 …….. //code(s) to do something
 return 0;
 }

The code construct is broken into tokens of the
following sequence:

“int”, “ ”, “sum”, “(”, “)”,
“ ”, “{”, “\n”, “\t”, “return”
“ ”, “0”, “ ”, “;”, “\n”,
“}”, “\n”, “”

It identifies the kind of each token as follows:

KWINT, SPACE, ID, OPAR, CPAR,
SPACE, OBRACE, SPACE, SPACE,
KWRETURN,
SPACE, VALCONST, SEMICOLON,
SPACE,
CBRACE, EOF

This sequence is sent to the parser to

determine the structure of the program. Token
SPACE is ignored. The analyser employs regular
expression production to identify and classify valid
tokens. The parser specification also consists of
Backus–Naur form (BNF) production which
specifies the legitimate sequences of tokens of error-
free input.

Figure 3 is an example of object
representation of a typical code viewed as an AST.
The nodes on the tree are the elements, such as
methods, in the program. As the tree is traversed, it
becomes easy to collect methods that use a particular
variable, methods that interact with another and the
proportion of hidden data access. The developed
tool, StaSem_C, uses those to compute the metric.

Figure 3: Typical Source Code Translation into AST

3.2.1 Architecture of major system
component

Figure 4 represents major components of
the StaSem_C design.

CoS =

k

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8010

Figure 4: Architecture of major components of StaSem_C

Design

3.2.2 Algorithm development
Algorithms of StaSem_C, performing

source code parsing and metric calculations, are
presented in this subsection. Major tasks are to: (i)
identify each method in a class, keep track of
variables used, and report the number of methods
that use a particular variable divided by the total
methods in the class, (ii) find the intersection of all
the methods in the class, and the entire method calls
to compute method-method interactions within the
class (ignoring coupling), and (iii) account for
hidden data in a class compared to the total data
present. The results of the three factors are summed
up, and then averaged as the functional cohesion
metric of a class. The following is the presentation
of step-by-step flow of the program:

Algorithm 1 Identifying and Collecting Variable to
method interaction in the code:

Algorithm 2 Identifying and Collecting Method to
method interaction:

Algorithm 3 Identifying and Collecting Hidden
Data Access:

Algorithm 4 Getting Metric Computation for
Variable to Method Interaction:

Algorithm 5 Getting Metric Computation for
Method to Method Interaction:

Step 1: Get java file path location
Step 2: Get root folder
Step 3: Get current level
Step 4: Parse files with “.Java” extension
Step 5: Convert each java file into Abstract Syntax Tree
Step 6: Get global variables and store in ArrayList
Step 7: Visit Class Node from each file
Step 8: Get and store Class Name
Step 9: Visit Method nodes from each class
Step 10: Store method names in ArrayList
Step 11: Store method names and method in
 HashMap
Step 12: Define Compilation Unit
Step 13: For each method in Hashmap

13.1: Get Map Value
13.2: Convert Method to Abstract Syntax Tree
13.3: Iterate over tree nodes
13.4: Store each variable referenced in Method
 in HashMap(String, List)

Step 14: Remove duplicate variable references
Step 15: Store New list in HashMap(String, List)
 with method name

Step 1: Get java file path location
Step 2: Get root folder
Step 3: Get current level
Step 4: Parse files with “.Java” extension
Step 5: Convert each java file into Abstract Syntax

Tree
Step 6: Visit Class Node from each file
Step 7: Get and store Class Name
Step 8: Visit Method nodes from each class
Step 9: Store Method Names in List
Step 10: For each Method

10.1: Get Method calls
10.2: Store Each call in a HashMap(String, List)
 and the corresponding method referenced

Step 11: Remove duplicate method calls form List
Step 12: Find and Retain the intersection of calls and

all methods existing in the class
Step 13: Store New list in HashMap(String, List)

Step 1: Get java file path location
Step 2: Get root folder
Step 3: Get current level
Step 4: Parse files with “.Java” extension
Step 5: Convert each java file into Abstract Syntax

Tree
Step 6: Get Global variables and store in ArrayList
Step 7: Get variables with private modifier
Step 8: Store variables with private modifiers in a list

Step 1: If no methods or global variables exist,
cohesion metric  0

Step 2: Parse each method select variables
referenced in method

2.1 Remove Identical variables that appear
more than once in a method

2.2 Total number of methods that referenced a
variable divided by the total number of
methods

2.3 Add result of each method to a list
Step 3: Sum result of each method in the list
Step 4: Divide the sum (in Step 3) by the total

number of global variable
Step 5: Final output multiplied by 100 is variable to

method metrics (represented in %)

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8011

Algorithm 6 Getting Metric Computation for
Hidden Data Access:

Algorithm 7 Getting Metric Computation for Total
Cohesion:

3.3 Evaluation of the Behaviour of StaSem_C

The results of validation and evaluation of
the behaviour of StaSem_C are presented in this
subsection. Section 3.3.1 presents sample code
analysis results and section 3.3.2 the dataset
requiring maintenance efforts (candidates for re-
factoring) results.

3.3.1 Sample code analysis results

Some datasets, described as category A
data (classes carefully chosen for exhibiting high
cohesion), were used to test StaSem_C. They are (i)
Calculator.java, (ii) Rectangle.java, (iii) Circle.java,
(iv) Clock.java, and (v) BankAccount.java. Figure 5
presents an output of StaSem_C identifying code
attributes and behaviours during cohesion analysis.
Table 1 shows category A Mal and Rajnish static and
semantic cohesion characteristics results.

Figure 5: Screen shot of tool identifying class members
such as methods and identifier in source code

Table 1: Reflection of Category A Static and Semantic

Cohesion Characteristics

S/N Carefully written
class reflective of
static and semantic
cohesion

Mal and
Rajnish
Static
cohesion
experiment
(Range:
0..1)

StaSem_C;
static and
semantic
cohesion
metric
(Range:
0..1)

1 Calculator.java 1.00 1.00
2 Rectangle.java 0.67 0.83
3 Circle.java 0.67 1.00
4 Clock.java 0.47 0.75
5 BankAccount.java 0.22 0.50

Step 1: If no methods or global variables
exist, cohesion metric  0

Step 2: Get and Count number of hidden
variables in class

Step 3: Get and count total number of
variables in class

Step 4: Divide total number of hidden
variables in class by the total
number of global variables in class

Step 5: Final output multiplied by 100
 Hidden data cohesion metrics

Step 1: Add Final output of Variable to method,
 method to method and Hidden Data Access
 in a list as Total cohesion cumulative and set
 f 3
Step 2: If Variable to method result is equal to 0,

Then Total cohesion  0
 Else If method to method is equal to 0, Then

Total cohesion divided by f-1
 Else Total cohesion divided by all
 the factors, f
 EndIf

 EndIf
Step 3: Display Total cohesion (StaSem_C)
Step 4: Stop

Step 1: If no methods or global variables exist,
cohesion metric  0

Step 2: Get all methods in class in a list
Step 3: Remove duplicate methods
Step 4: Remove duplicate method calls or

references in class
Step 5: Get total number of methods in class
Step 6: Get total number of method calls or

references in class
Step 7: Do an intersect between method calls in

class and the methods in class, output is a
 list method calls in found in that class (to

eliminate computing for coupling)
Step 8: Divide the total number of method

calls(without duplicates) in class by the
total Number of methods in that class

Step 9: Final output multiplied by 100 is method to
method cohesion metrics (in %)

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8012

The results show that Mal and Rajnish
static metric gives less importance to semantic and
domain idea for OOD idiosyncrasy.

Figure 6 presents an output of StaSem_C
cohesion metric tool on a particular source code.
Table 2 shows cohesion reports of Mal and Rajnish
static and StaSem_C metrics using open source
project (AccountingSoftware folder containing an
entire project downloaded as open source software
from www.github.com) as data set.

Figure 6: Screen Shot of StaSem_C Result of
Cohesion Analysis of a Typical Java Source Code

Table 2: Cohesion Reports of Static and StaSem_C
Metrics Using Open Source Project as Data Set

S/
N

Carefully written
class reflective of
static and semantic
cohesion

Mal and
Rajnish
Static
cohesion
Experimen
t (Ratio
used: 0..1;
0-worst, 1-
best)

StaSem_C;
static and
semantic
cohesion
metric
(ratio; 0..1)

1 BankAccountDAO.jav
a

0.20634922 0.3650794

2 BankTransactionDAO.
java

0.20634922 0.3650794

3 CapitalAccountDAO.ja
va

0.20634922 0.3650794

4 CapitalTransactionDA
O.java

0.20634922 0.3650794

5 CashTransactionDAO.j
ava

0.20634922 0.3650794

6 ConnectionManager.ja
va

0.25 0.38888893

7 CustomerDAO.java 0.20634922 0.3650794
8 InventoryItemDAO.jav

a
0.0 0.0

9 ProductCategoryDAO.
java

0.16666667 0.24722223

10 ProductDAO.java 0.20634922 0.3650794
11 PurchaseOrderDAO.ja

va

0.20634922 0.3650794

12 PurchaseOrderDetailD
AO.java

0.22916666 0.41805553

13 SalesOrderDAO.java 0.20634922 0.5555556
14 SalesOrderDetailDAO.

java
0.1964286 0.38492063

15 SupplierDAO.java 0.20634924 0.5555556
16 ProductCategoryDAO.

java
0.16666667 0.24722223

The AccountingSoftware, comprising 16

files, is an arbitrary open source project collected
from github.com to further evaluate the behaviour of
the developed metric tool (StaSem_C) and a typical
static metric. Note that the tool has earlier been
tested with deliberate dataset to ensure the output
tallies with expected result.

3.3.2 Dataset requiring maintenance efforts -
Candidates for re-factoring

A set of poorly cohesive classes were
considered. These classes were re-factored to
increase their potential maintainability and
reusability properties. Effort expended, described as
maintenance effort, is measured by the number of
changed lines per class (that is addition, deletion or
modification made). The following is an example
sample code (Person.java class) that was
subsequently re-factored and analysed for cohesion:

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8013

\

In Person.java, the responsibilities appear
logical, but have different nature. The Person class
is better split into two, which make it more reusable
and maintainable. Email validation is not connected
with Person behaviour. It is better to have email
validation class separated to achieve single
responsibility. This will make future modification or
reuse easy. The critical question is ‘how do we reuse
Validate email feature without visiting Person
class?’ The following is the Maintenance Efforts on
Person.java: removing the responsibility of email
validation from the Person class and creating a new
Email class:

A new Email class is created to handle validation:

The summary of efforts expended is counted as:
effort =11. Increasing cohesion results into a system
that is easy to create, maintain and reuse. Table 3
presents StaSem_C’s behaviour with five re-factored
classes.

class Person {
 public String name;
 public String surname;
 public String email;
 public int yearOfBirth;

 public Person (String name, String surname, String
email, int yearOfBirth)
 {
 this.surname = surname;
 this.name = name;
 this.yearOfBirth = yearOfBirth;
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }
 }
 public boolean validateEmail(String email) {
//validate email lines
 return test;
 }

 public int calculateAge(int currentYear) {
 return currentYear - this.yearOfBirth;
 }
}// end of Person class

// set or initialize effort = 0
class Person { //effort = 0;
 public String name;
 public String surname;
 public Email email; //declare Email reference
type;(++effort); effort=1;
 public int yearOfBirth;
 public Person (String name, String surname, Email
email, int yearOfBirth) // effort = 2
 {
 this.email = email;

 this.name = name;
 this.surname = surname;
 this.yearOfBirth = yearOfBirth;
 // delete validation test; effort = effort + 5;
//effort = 7
 }
 public int calculateAge(int currentYear) {
 return currentYear - this.yearOfBirth;
 }
 }

class Email { //create a new class called Email;
//effort = 8
 public String email; // move instance variable
//here; effort = 9
 public Email(String email){ // move the
//validation here effort = 10
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }
 }
 public boolean validateEmail(String email) {
//move validate functionality here effort =11
 //validate email lines
 return test;
 }
}

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8014

Table 3: StaSem_C’s Behaviour with Re-
factored Classes

It is revealed that each of the listed sample

programs costs notable maintenance efforts to
enhance their potentials for maintainability and
reuse. The metric tool indicates their cohesion status,
before and after re-factoring.

4 CONCEPTUAL FRAMEWORK

 Quality implies the inherent characteristics
of an object, which may set it apart from others.
Quality may also mean some degree of excellence.
External attributes such as maintainability and
reusability are described as developer-oriented
quality attributes [11]. The relationship between
internal essential attributes (e.g. cohesion and
coupling) and external quality attributes is intuitive;
for instance, a more complex system would be more
difficult to maintain [12]. This section discusses
characteristics, types of cohesion, strength and
weaknesses of existing cohesion metrics, direction
for improvement and relevance to software
community.

4.1 Cohesion

Cohesion, from illustration of a class,
indicates the degree to which a class has a single,
well-focused purpose [13]. Cohesion implies that a
component or class encapsulates only attributes and
operations that are closely related to one another and
to the class or component. Figure 7 and 8 are unified
modelling language (UML) class diagram examples
of cohesion. Figure 7 depicts low cohesion in that
these functionalities appear logical but do not
particularly belong together. The Staff class is not
the appropriate class to include checkMail or

validate emails. These functionalities should be
separated into Email class to improve cohesion.

Figure 7: Low cohesion

Figure 8: High cohesion

Conversely, the Staff class in Figure 8
contains only proper information for setting and
getting Staff related data. It does not perform actions
that should be managed by another class.

4.1.1 Cohesion views

There are a number of perspectives to
cohesion in software. Static and Semantic
perspectives are paramount.

(a) Static View

The task of static metrics is to measure or
predict what happens when execution of program
takes place, and the quantity and complexity of
different features of the source code. This is based
on the structure, appearance or organization of code
elements.

(b) Semantic View

This means externally notable concept that
assesses whether the abstraction represented by the
module (class in object-oriented concept) can be

S
/
N

Carefully
selected
low
cohesion
classes

StaSem
_C
cohesion
Experi
ment

StaSem_
C
cohesion
After
Refactori
ng

Maintenance
Effort;
working with
StaSem_C
(count
variable:
effort)

1 UserSettin
gService.j
ava

0.45 0.54 5

2 Person.jav
a

0.68 0.83 11

3 FooBar.ja
va

0.67 1.00 9

4 Rectangle
Class.java

0.83 1.00 6

5 CGPA.jav
a

0.45 0.89 4

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8015

considered to be semantically whole. The advantage
is that it makes cohesion measures more meaningful.

4.1.2 Types of cohesion
The following are the different types of cohesion:

i. Functional Cohesion: This means parts of the
module or component are grouped because they
all contribute to the module’s single well-
focused task. On an ordinal scale, this is the best
type of cohesion because it fully supports the
principle of locality.

ii. Sequential Cohesion: This is when the
parts of modules are grouped because
the output from one part is the input to
the other - X output  Y input; X, Y €
same Module.

iii. Communication Cohesion: In this case, parts of
the module are grouped because they operate on
the same data or contribute to the same data.
Sequence is not important in this case.

iv. Procedural Cohesion: This occurs when parts of
the module are grouped because a certain
sequence of execution is followed by them. The
elements of methods are connected by some
control flow.

v. Temporal Cohesion: Here, instructions that are
executed during the same time span are grouped
together.

vi. Logical Cohesion: This is when the module’s
parts are grouped because they are categorized
logically to do the same work, even though they
all have different nature.

vii. Coincidental Cohesion: This type is seen in a
component whose parts are unrelated to one
another. The entity is responsible for a set of
tasks which have no good reason for being
together except for something like convenience.
This is more or less the worst degree of
cohesion. It is an indication of poor design [14].

Generally for functional cohesion, each of

the methods of a class would manipulate one or more
variables. When cohesion is high, it means that the
methods and variables of the class are co-dependent
and form a logical whole. Highly cohesive classes
are much easier to maintain and less frequently
changed. Such classes are more usable than others as
they are designed with a well-focused purpose.
Figure 9 is a diagrammatic description of cohesion
occurrence flow modelled from cohesion types.

Figure 9: Flow of Occurrence of Cohesion

4.2 Coupling

Coupling is the interaction or relationship
between modules. Increase in cohesion intuitively
reduces coupling [15]. The more coupled modules
are, the harder it is to replace them. For instance, a
change in class B breaks class A if class B is tightly
coupled to class A, which should not necessarily
happen. Refactoring highly coupled design is
difficult. The goal of a good design is to eliminate
unnecessary coupling. This makes maintenance of
the system much easier. Loosely coupled systems
are made up of components which are highly
independent. Loose coupling eases understanding of
one class without learning about its neighbours. A
class could be changed in isolation with little or no
effect on others, thereby improving maintainability.
Coupling, also referred to as dependency, has the
following important consequences:

a) If a class A depends on a class B, and a system
that reuses class A is to be built, class B would be
included in the system together with class A,
whether or not it serves any purpose.

b) If a class A depends on a class B, and class B is
modified. Class A would probably require
modification as well. It is indicated that
dependencies should be intentionally minimized.

4.3 Software Complexity and
 Measurements
 What determines a software product
complexity is the internal attributes. Most internal
attributes metrics are development concept
dependent (for example traditional or object-
oriented concepts).

4.3.1 Traditional measures of complexity

These are metrics used in traditional

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8016

software development. Notable examples include:

(a) Source Lines of Code (SLOC)

This is typically used to estimate the
amount of effort that is required to develop a
program. SLOC is a count of non-blank, non-
comment lines in the text of the program's source
code. This metric is sensitive to logically irrelevant
formatting and programming style conventions.

(b) McCabe’s Cyclomatic Complexity

This metric measures the number of
linearly independent paths through a program
module [16]. It indicates complexity of a program
and is computed via the control flow graph of a
program. Functions with higher Cyclomatic
complexity values from 10 and above are hard to
understand and maintain. However, this metric
could not be used to measure abstractions in OOD.
Figure 10 depicts a control flow construct
representing independent paths in a typical code.

Figure 10 - Control flow construct representing
independent paths in a typical code

The complexity of the illustrated code could be
computed using the following:

V (G) = e – n + 2 (7)

Such that:
V(G) = Cylomatic Complexity Graph G
e = number of edges on graph G, and
n = number of nodes on graph G (the nodes represent
vertices on a typical graph) ([17]).
In this example,
e = 3 (that is A-C; A-B; B-C)
n = 3 (that is A, B, C), and
V(G) = e – n + 2 = 3 – 3 + 2 = 2

The Cyclomatic complexity is, therefore, 2.
In fact, physically tracing the independent paths in

the above, we have A-B-C and A-C control flows as
the basic paths.

4.3.2 Object-Oriented measures of

Complexity (Metrics)
Traditional metrics like cyclomatic

complexity (one of the best indicators for system
reliability) would not scale well in handling object-
oriented software [18]. Traditional approaches
emphasize a function-oriented view, where data and
procedures are separated. However, modelling the
real world in terms of its objects views data and
procedure as a single bound unit. However, as
object-oriented techniques become more prevalent
there is an increasing need for metrics that could
correctly evaluate their peculiar properties. Notable
metrics are as follows:

(a) Chidamber and Kemerer (CK)
 metric suite

CK metrics suite is widely known as good
indicator of fault proneness [19]. This originally
consists of six metrics created to test some specific
system characteristics, which are:

(i) Weighted Method per Class (WMC): WMC is
useful in predicting maintenance and testing effort.
Consider a Class C, with methods m1,m2,…, mn that
are defined in the class. Let c1, c2,..., cn be the
complexity of the methods such that ci is the
complexity of the method associated in the ith class.
The WMC is given as
WMC = ∑ 𝑐௜

௡
௜ୀଵ , for i = 1 to n (8)

(ii) Depth of Inheritance Tree (DIT): DIT is
calculated as the maximum length of path from a
class to the root class of the inheritance tree. The
greater the opportunity of inheriting more methods,
the poorer the chance of predicting behaviour.
(iii) Number of Children (NOC): NOC is the number
of immediate sub-classes subordinate to a class in
the class hierarchy. It is an indicator of the potential
influence a class could have on the design.
(iv) Coupling between Objects (CBO): CBO for a
class is a count of the number of other classes to
which it is coupled. A measure of coupling is useful
in determining how complex the testing of various
parts of the design would be.
(v) Response for a Class (RFC): RFC is a set of
methods that can potentially be executed in response
to a message received by an object of that class, and
(vi) Lack of Cohesion in Methods (LCOM): LCOM
attempts to find the degree of similarity of methods
[19]. Consider a Class C1 with n methods M1, M2,
…, Mn. Let { Ii } be the set of instance variables

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8017

accessed by method Mi. There are n such sets: {I1 ,
I2,…,In }.

Then the following sets are defined:

Let A = { (Ii, Ij) | Ii  Ij =  }, (9)

B = { (Ii, Ij) | Ii  Ij ≠  } (10)

If all n sets {I1 , I2,…, In } are  then let A = 

LCOM is defined by:

LCOM = |A| - |B|, if |A| > |B| or 0 otherwise (11)

LCOM = 0 implies that the class is cohesive, and
LCOM > 0 implies that the class is not cohesive.

LCOM is an inverse cohesion measure.
LCOM metric counts the number of pairs of methods
that do not share instance variables. The higher the
LCOM, the worse the cohesion of the design,
indicating need for refactoring. This means that such
a class design should be broken down into two or
more classes to promote maintainability or
reusability. Chidamber and Kemerer LCOM metric
for object-oriented software is effective in
identifying the most non-cohesive classes, but is not
effective in distinguishing between partially
cohesive classes. This means it is not discriminating
enough to reveal varying strength of cohesion in
classes.

A variation of LCOM by Henderson-
Sellers, Constantine, and Graham ([20]) also
presented a mathematical model for functional
cohesion as follows:

LCOM = ቀ
ଵ

௩
 ∑ 𝑚ሺ𝑉𝑖ሻ௩

௜ୀଵ ቁ െ 𝑚 (12)

 1 - 𝑚

If no variables are accessed, the equation becomes:

LCOM=ቀ
ଵ

௩
 ∑ 𝑚ሺ𝑉𝑖ሻ௩

௜ୀଵ ቁ െ 𝑚 ൌ
ି௠

ଵି௠

 1– 𝑚

ൌ 1 ൅
ଵ

௠ିଵ
 (13)

where -

m = number of methods

v = number of variables (attributes)

m(Vi) = number of methods that access variable i
(Vi).

LCOM is undefined for m = 1.

(b) Robert Martins Metric Suite

This metrics suite is commonly called
package metrics [21]. It attempts to reflect ideal
models of dependency and abstraction. It captures
some good design principles and also gives a clear
description of stable software. It consists of the
following:

i) Efferent Coupling (Ce): The number of classes
inside the package that depend upon classes outside
this package.

ii) Afferent Coupling (Ca): The number of classes
outside the package that depend upon classes within
the package.

iii) Instability (I): I = Ce / (Ce + Ca) (14)

It implies the package's adaptability to change. The
range is [0, 1], I = 0 means absolutely stable package,
and I = 1 means absolutely instable package.

iv) Abstractness (A): Abstractness is the ratio of the
number of abstract classes (and interfaces) to the
total number of classes in the evaluated package.

A = abstract Classes / total Classes (15)

The range is [0, 1]. A = 0 signifies an absolute
concrete package, and A = 1 signifies an absolute
abstract package.

v) Normalized Distance from Main Sequence (D):
Normalized Distance from Main Sequence is the
perpendicular distance of a package from the
idealized line. It is given as

D = A+ I – 1 (16)

D = 0 depicts a package that is coincident
with the main sequence, and

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8018

 D = 1 represents a package which is far away
from the main sequence.

4.4 Characterization of Cohesion Metrics in OOD

A summary of extant literature towards
improved measures of class cohesion is presented in
succeeding subsections.

4.4.1 Basic Static Cohesion metrics and their
Scope

The relationship between class cohesion
and size was empirically investigated [22]. The
metric does not account for connectivity established
through user-defined constructors. A class cohesion
metric that ignored responsibility assessment of
classes was proposed [23]. The inability of
Chidamber and Kemerer metric was addressed to
yield normalized values [24]. The metric only
indicates absence of cohesion but do not present
varying strength. A metric that benefited large
systems the more was proposed [25]. A static metric
that reports the presence of cohesion was also
proposed [26]. However, other characteristic
interactions e.g. method-method interaction that
exist within a class context were not incorporated
and also the static metrics do not have capacity to
capture the semantics of OO designs.

4.4.2 Basic Semantic Cohesion metrics

A metric that captures domain concepts

encoded in comments and identifiers was proposed
[14]. A conceptual metric that combined static and
semantic views finding textual coherence by
analysing textual information expressed in
comments and identifiers was implemented [27].
Conceptual Cohesion of Classes (C3) metric
analysing comments and identifiers classified to
reflect concepts from the domain of the software
system was developed [28]. A set of evaluation
metrics to measure cohesion for semantic web
towards achieving understandability was proposed
[29]. Basing cohesion measurement on analysis of
comments is insufficient and biased especially for
improperly documented software.

4.4.3 Summary of Research Gaps from
Literature

It is revealed that static metrics considered
majorly variable-method interactions, which do not
conceptually represent a class design as a set of
responsibilities that approximate the domain
concept. The extant semantic metrics and its hybrid

leveraged on extracting information from comments
and identifiers to represent concepts of the problem
and solution domains. However, this is plagued with
the assumption that commenting rules are followed
in code. Then, if there is problem of comment
attribution in codes, the extant metrics would
underperform ([28, 29, 27]). Therefore, this study
proposed to complement the existing static cohesion
metrics by introducing measurement for hidden data
attributes (as opposed to studying comments), which
semantically represents a test for a conceptually
cohesive class that stands as a clear indicator for
good abstraction.

5. CONCLUSION AND

RECOMMENDATIONS

In conclusion, the developed metric model,
which captures structure and the domain concept of
object-oriented design, provides a quantitative
means to adequately measure and control product
quality. Researcher would find the mathematical
model as a useful inspiring construct. StaSem_C is
recommended for developers to proactively manage
design complexity, which would increase software
maintainability and reusability.

5.1 Contributions to Knowledge

This work carried out a thorough empirical
evaluation of how cohesion affects the
maintainability property of software. Static cohesion
is considered insufficient and the existing semantic
cohesion assumed that comments would always be
available for analysis of cohesion in software. This
study combined static and semantic views such that
the semantic aspect finds the degree of support for
data hiding and single abstraction which greatly
promotes the idiosyncrasy of object-oriented design.
This study contributed to the academic discourse as
follows:

i. Development of an improved mathematical
model for functional cohesion metric that
represents a measurement based on the set
of responsibilities and domain concept a
class exhibits rather than only variable-
method interactions.

ii. Development of an automated cohesion
metric tool that could be used by developers
to predict software maintainability and
reusability properties.

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8019

5.2 Further Work

Future research efforts could be directed
towards confirming and refining coupling and
cohesion measures and models. Pattern of
interaction among software elements could be
further considered.

REFERENCES:

[1] B. Isong and E. Obeten, “A systematic review

of the empirical validation of object-oriented
metrics towards fault-proneness prediction”,
International Journal of Software Engineering
and Knowledge Engineering, Vol. 23, No. 10,
2013, pp. 1513–1540.

[2] E. U. Okike and A. Osofisan, “An evaluation
of Chidamber and Kermerer’s lack of cohesion
in methods metric using different
normalization approaches”, Afr. J. comp. &
ICT, Vol. 1, No. 2, 2008, pp. 35- 43.

[3] E. U. Okike and M. Rapo, “Using cohesion and
capability maturity model integration (cmmi)
as software product and process quality
criteria: A case study of Software Engineering
practice in Botswana”, International Journal
of Computer Science and Information Security
(IJCSIS), Vol. 13, No. 12, 2015, pp. 140-149.

[4] S. Tiwari and S. S. Rathore, “Coupling and
cohesion metrics for object-oriented software:
a systematic mapping study”, ISEC’18:
Innovations in Software Engineering
Conference, Hyderaba. ACM, New York, NY,
USA, 2018, Retrieved from https://doi.org/10.

[5] Y. Ahn, J. Suh, S. Kim, and H. Kim, “The
software maintenance project effort estimation
model based on function points”, Journal of
Software Maintenance Evolution: Research
and Practice, Vol. 15, 2003, pp. 71-85.

[6] J. Viljanen, “Measuring software
maintainability”, Master’s Thesis, Aalto
University School of Science, Espoo,
August10, 2015.

[7] T. Tahir, G. Rasool, and C. Gencel, “A
systematic literature review on software
measurement programs. Information and
Software Technology, Vol. 73, 2016, pp. 101–
121.

[8] M. Ezran, M. Morisio, and C. Tully, “Practical
Software Reuse”, Springer, 2002, 374.

[9] J. A. Wang, ”Towards component-based
software engineering”, Department of
Computer Science and Information Systems
University of Nebraska, Kearney, 2000.

[10] J. Dhanvani, “Difference between cohesion
and coupling”, 2013, Retrieved from
http://freefeast.info/difference-
between/difference-between-cohesion-and-
coupling-cohesion-vs-coupling/

[11] P. Berander., L. Damm, J. Eriksson,, T.
Gorschek, K. Henningsson, P. Jönsson, S.
Kågström, D. Milicic, F. Mårtenssonn, K.
Rönkkö, and P. Tomaszewski, “Software
quality attributes and trade-offs”, Blekinge
Institute of Technology. 2005.

[12] M. Ribeiro, R. Q. Reis, and A. J. Abelalm,
“How to automatically collect object oriented
metrics: A study based on systematic review”,
Latin American Computing Conference
(CLEI), 2015, 1–12.

[13] R. C. Martin, “Clean code: A handbook of
agile software craftsmanship (1st ed.).” Upper
Saddle River, NJ, Boston: Prentice Hall, 2012.

[14] S. M. Chandrika, E. S. Babu, and N. Srikanth,
“Conceptual cohesion of classes in object
oriented systems”, International Journal of
Computer Science and Telecommunications,
Vol. 2, No. 4, 2011.

[15] H. Izadkhah, and M. Hooshyar, “Class
cohesion metrics for software engineering: A
critical review”, Computer Science Journal of
Moldova, Vol. 25, No. 1, 2017, pp. 44-74.

[16] R. M. Redin, M. F. Oliveira, L. Carro, L. C.
Lamb, and F. R. Wagner, “Software quality
metrics and their impact on embedded
software”, Budapest, 2008, pp. 68-77.

[17] A. H. Watson, and T. J. McCabe, “Structured
testing: A testing methodology using the
cyclomatic complexity metric”, NIST Special
Publication 500-235 Computer Systems
Laboratory National Institute of Standards and
Technology, Gaithersburg, 1996, Retrieved
from www.mccabe.com /pdf/mccabe-
nist235r.pdf.

[18] M. Kaur, and R. Kaur, “Improving the design
of cohesion and coupling metrics for aspect
oriented software development”, International
Journal of Computer Science and Mobile
Computing, IJCSMC, Vol. 4, No. 5, 2015, pp.
99 – 106.

[19] S. R. Chidamber, and C. F. Kemerer, “A
metrics suite for object oriented design”, IEEE
Transactions on Software Engineering, Vol.
20, No. 6, 1994, pp. 476-493.

[20] B. Henderson-Sellers, L. Constantine, and I.
Graham, “Coupling and cohesion: Towards a

Journal of Theoretical and Applied Information Technology
15th December 2018. Vol.96. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8020

valid metrics suite for object-oriented analysis
and design”, Object Oriented Systems, 3, 1996,
143-158.

[21] R. C. Martin, “Object oriented design metrics”,
1994, Retrieved from
http://www.objectmentor.com/rescources/artic
les/oodmetric.pdf

[22] M. F. Shumway, “Measuring class cohesion in
java, (Masters Dissertation)”, Computer
Science Department, Colorado State
University, Technical Report CS-97-113,
1997.

[23] L. Badri, and M. Badri, “A proposal of a new
class cohesion criterion: An empirical study”,
Journal of Object Technology, Chair of
Software Engineering, JOT, ETH Zurich
Publishing. Vol. 3, No. 4, 2004.

[24] E. U. Okike, “A proposal for normalized Lack
of Cohesion in Method (LCOM) metric using
field experiment”, IJCSI International Journal
of Computer Science Issues, Vol. 7, No. 4, 5,
2010.

[25] J. Michura, M. Capretz, and S. Wang,
“Extension of object-oriented metrics suite for
software maintenance”, Hindawi Publishing
Corporation ISRN Software Engineering,
(276105), Vol. 14, 2013.

[26] S. Mal, and K. Rajnish, (2014). “New class
cohesion metric: An empirical view”,
International Journal of Multimedia and
Ubiquitous Engineering, Vol. 9, No. 6, 2014,
pp. 367-376.

[27] K. Rakesh, and S. Sushumna,
“Implementation of measuring conceptual
cohesion”, International Journal of Computer
Science and Information Technologies,
(IJCSIT), Vol. 3, No. 3, 2012, pp. 4237-4243.

[28] K. K. Girish, “Conceptual Cohesion of
Classes (C3) Metrics”, International Journal
of Science and Research (IJSR), Vol. 3, No.
4, 2014, pp. 2319-7064.

[29] L. Liao, G. Shen, Z. Huang and F. Wang,
“Cohesion metrics for evaluating semantic
web ontologies”, International Journal of
Hybrid Information technology, Vol. 9, No.
11, 2016, 369 -380.

