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ABSTRACT 
 

Conjugate Gradient Method (CG) is one of the well-developed gradient based method in solving 
optimization problems. It been widely used in solving large scale optimization problems due to its low 
computational cost and high efficiency in locating optimization solution. However, this method often fails 
to obtain global optimum solution when solving multimodal nonconvex optimization problems because 
once this method obtained a local optimum solution, it unable to move to another valley to obtain a better 
optimum solution. In this paper, ABCED Conjugate Gradient Method which consist of a series of enhanced 
conjugate gradient methods have been introduced to solve multimodal nonconvex optimization problems. 
The new developed methods have been tested with several benchmark problems. The numerical results had 
proved the effectiveness of the ABCED Conjugate Gradient Methods. The results showed the ABCED 
Conjugate Gradient with Fletcher-Reeves formula able to globally solve 80.95% of the selected benchmark 
test function. Then, ABCED Conjugate Gradient with Hestenes-Stiefel and Dai-Yuan formula had globally 
solved 76.19% of selected benchmark test function. However, ABCED Conjugate Gradient with Polak-
Ribiere only able to solve one third of the selected benchmark test function.  

Keywords: Gradient Based Method, Conjugate gradient method, Artificial Bees Colony (ABC), 
Multimodal Non-convex Optimization, Global Optimization 

 
1. INTRODUCTION  
 

Mathematicians believe that every daily 
problem that we face can be modeled into 
mathematical model entirely. In mathematical 
terms, the goal of solving those models in the 
“best” way is called as optimization. These might 
mean maximize profit, minimize loss, maximize 
efficiency or minimize the risk in running business; 
minimize weight or maximize strength in designing 
a bridge and minimize the time or fuel use in 
selecting an aircraft flight plan. 

There are several gradient based 
optimization techniques have been proposed to 
solving those mathematical models, such as 
steepest descent method, conjugate gradient 
method and quasi-Newton method. These methods 
are well-performed to determined local solution or 
once say globally determined the solution when 
solving convex optimization problems, in which 

there have only one local solution and can also 
called as global solution. 

  However, most our daily problem happens 
as non-convex optimization problem, which may 
contain multi local optimum solution. Most of the 
time, the local solution is greatly different and 
meaningless when compare to the global one. 
Therefore, the most important objective and 
challenges in solving these non-convex 
optimization problems is how to determine the 
optimum value among all the local optimum 
solution in the domain or we call it as global 
optimum solution. By the way, those well-
performed methods which mentioned above always 
lose their efficiency when applied to the global 
minimizer for non-convex problems.  

Artificial Bee Colony (ABC) algorithm is 
one of the most recent swarm intelligent based 
algorithm which proposed by Dervis Karaboga in 
year 2005 [1]. It is a biological-inspired 
optimization algorithm. ABC is inspired by the 
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foraging behavior of honey bee swarm. The process 
of the swarm of bees searching for food source is 
the process used to find optimal solution [1].  The 
exploration and exploitation are two important 
mechanisms in ABC. Exploitation process starts 
when the employed bees approach to the food 
sources. After determining the nectar amounts of 
the food sources by the employed bees, the 
onlooker bees will go to the highest probability 
value of source and determine the nectar amount. 
When the source is exhausted, it indicated the end 
of the exploitation process. Meanwhile, exploration 
process begins when scouts are sent to search for 
new food sources randomly. However, there are 
some insufficiencies regarding the ABC. ABC 
perform better during exploration stage but weaker 
at exploitation stage. [2][3][4]. 

Goh et. al. [5] introduced a Simplexed 
ABC algorithm that improve the accuracy and 
efficiency of the ABC in solving global 
optimization problems. The success of Goh et. al. 
[5] lead this research to the new direction of 
investigation. The Nelder-Mead simplex method is 
a derivative free approach which order of 
convergent is much slower compare to the gradient 
based method. However, the enhancement of 
Simplexed ABC has indicated that even with less 
number of colony involvement, its accuracy of the 
obtained optimum solution is much more better 
than original ABC. Therefore, this research has led 
to a new path which will enhanced the original 
ABC with a series of Conjugate Gradient Methods. 

In this paper, we have introduced a series 
of conjugate gradient methods so called ABCED 
Conjugate Gradient Method (ABCED CG) which 
its algorithm is hybrid from the several variants of 
conjugate gradient methods into the Artificial Bees 
Colony (ABC) algorithm for solving general global 
optimization problems. The main idea of the 
ABCED CG method is replacing the exploitation 
process in original ABC with any variants of 
conjugate gradient method. The performance of the 
exploitation process will be improved by the 
efficiency of the conjugate gradient methods. 
Besides that, via this hybridization process the 
ability of conjugate gradient method also improved 
to able to determine the global optimization 
solution for non-convex optimization problems. 

This paper is organized as follows. In 
Section 2, we define several basic definitions of 
global optimization and the properties of gradient 
type method which must be understood before 
discussing the CG method in more detail. In 
Section 3, the ABCED CG method is introduced 
and its algorithm also has been show in the same 

section. The numerical results which reflect the 
effectiveness of the SS method in solving general 
global optimization problems have been presented 
in Section 4. Finally, the conclusion which ends 
this paper is discussed in Section 5. 

 
2. CONJUGATE GRADIENT METHOD 
 

Gradient based methods [6][7][8][9] are 
motivated by the fact that f  decreases most 

rapidly at a point in the direction of f . 

Consequently, the iterative  ( )kx  which converges 

to the minimizer *x  of f  are computed by an 

iterative procedure of the form  
 

( 1) ( ) ( ) ( )k k k kx x d                   (2.1) 
 

where 1R   is the positive step length scalar and 
( )k nd R  is the searching direction. 

The success of the gradient based method 
is depending on the effective choices of the 
direction ( )kd  and the step length ( )k . Most 
gradient based method required the search direction 

( )kd  to be a descent direction (for minimization), in 
which the search direction should satisfy the 
property 

 

 ( ) ( )( ) 0k kd f x

  .                          (2.2) 

 
This property can guarantee that the value of 
function f  can be reduced along the direction. 

Moreover, the search direction of the gradient 
based methods usually has the forms 
 

      1( ) ( )kk kd f x M
 

                (2.3) 

 
where ( )kM  is a symmetric and nonsingular 
matrix.  
In the steepest descent (SD) method, ( )kM  is 

simply the identity matrix I , while in Newton’s 

method ( )kM  is the exact Hessian  2 ( )kf x . In 

quasi-Newton method, ( )kM  is an approximation 
to the Hessian that is updated at every iteration by 
mean of a low-rank formula. To make sure the ( )kd  
which defined in (2.3) is a descent direction, we 
required the ( )kM  to be positive definite, so that 
we can have  

      1( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 0.
T Tk k k k kd f x f x M f x


     
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Conjugate-direction methods at first was 
developed for solving quadratic optimization 
problem like Newton’s Method and are then 
extended to the general optimization problem. For a 
quadratic problem, convergence is achieved in a 
finite number of iterations. Conjugate-direction 
methods have been found to be very effective in 
many types of problems and have been used 
extensively in the past.  Generally, conjugate 
gradient method is a useful technique for solving 
large-scale problems because it avoids the 
computation and storage of some matrices 
associated with Hessian of objective functions.  
The conjugate gradient method is designed by the 
following definition and concept. 
 
Definition 2.1 [Conjugacy]  

Let n nQ �  be symmetric and positive definite. 

We say that the vectors x, y \{0}n� are Q-

conjugate (or Q-orthogonal) if 0.T Q x y  

 
Proposition [Conjugacy implies Linear 
Independence]  

If n nQ �  is positive definite and the set of 

nonzero vectors d0, d1, . . . , dk are (pairwise) Q-
conjugate, then these vectors are linearly 
independent. 
 

Let   1

0

n

i i
d




 be a set of nonzero Q-

conjugate vectors. For any 0
nx  �  the sequence 

 kx  generated according to  

1 , 0k k k kx x d k      

with   : arg min ( ) :k k kf x d    � converges 

to the unique solution, *x  of P after n steps, that is 
xn = x∗. 

Similar to steepest descent method the 
conjugate gradient method also has the 

form 1 .k k k kx x d    But the direction kd  is 

calculate using the conjugate direction as follows: 
  

 
1

, 1,

, 2,
k

k
k k k

g if k
d

g d if k 

 
   

 (2.4)

  
where k  is a parameter that determines the 

variants of conjugate gradient methods. For 
example, well-known choices of k  can be taken 

from Hestenes-Stiefel (HS), Fletcher-Reeves (FR), 
Polak-Ribiere (PR), Fletcher-Conjugate Decent 
(CD) and Dai-Yuan (DY) formulas.  

The fundamental assumption is made that 
if a steady reduction is achieved in the objective 
function in successive iterations, the neighborhood 
of the solution will eventually be reached. If H is 
positive definite near the solution, then 
convergence will, in principle, follow in at most n 
iterations. For this reason, conjugate-direction 
methods, like the Newton method, are said to have 
quadratic termination. In addition, the rate of 
convergence is quadratic, that is, the order of 
convergence is two. 

The use of conjugate-direction methods 
for the solution of nonquadratic problems may 
sometimes be relatively inefficient in reducing the 
objective function, if the initial point is far from the 
solution. In such a case, unreliable previous data 
are likely to accumulate in the current direction 
vector, since they are calculated based on past 
directions. Under these circumstances, the solution 
trajectory may wander through suboptimal areas of 
the parameter space, and progress will be slow. 
This problem can be overcome by re-initializing 
these algorithms periodically, say, every n 
iterations, in order to obliterate previous unreliable 
information, and in order to provide new vigor to 
the algorithm through the use of a steepest-descent 
step. Most of the time, the information accumulated 
in the current direction is quite reliable and 
throwing it away is likely to increase the amount of 
computation. Nevertheless, this seems to be a fair 
price to pay if the robustness of the algorithm is 
increased.  

An effective method for the generation of 
conjugate directions proposed by Hestenes and 
Stiefel [10] is the so-called conjugate-gradient 
method. In this method, directions are generated 
sequentially, one per iteration. The Hestenes-Stiefel 
formula is defined by 

1
T

HS k k
k T

k k

g y

d y
                      (2.5) 

 
where, kd  is search direction and 1 .k k ky g g   

Fletcher-Reeves formula is defined by 
2

1

2
,kFR

k

k

g

g
                      (2.6) 

 
where kg  and 1kg   are the gradients ( )kf x  and 

1( )kf x   of f(x) at the point kx  and 

1kx  respectively,   denotes the Euclidian norm 

of vectors. This formula is called the Fletcher 
Reeves formula. Another formula for k  is defined 

by 
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 1 1

2
.

k

T
k k kPR

k

g g g

g
   

                    (2.7) 

 
This formula generalizes to the non-quadratic case 
and is called the Polak-Ribiere formula. 

Fletcher formula that we denote by 
conjugate decent is defined as follows 

  
1 1

.
k

T
CD k k

T
k k

g g

d g


 

         (2.8) 

  
Dai-Yuan proposed formula to compute k  as 

follows. 
2

1

k

kDY
T

k k

g

d y
         (2.9) 

 
where, again kd  is search direction and 

1 .k k ky g g    

To be standardize among all gradient 
based method, all gradient based approaches in this 
section will be using Armijo line search for their 
step size computational. The Armijo line search 
rule is described as follows. Given  
 

0s  , (0,1)  , (0,1)   and 

 2max{ , , , }k s s s      

such that 
 ( ) ( ) .T

k k k k k k kf x d f x g d         (2.10) 

 
Algorithm 2.1 (Conjugate Gradient method with 
Armijo line search) 
 
Input: Initial point 0 ,nx  �  Function to be 

minimized : ,nf � �  and Tolerance . �   

1. 0k   
2. k kd g   

3. while  kd   do 

4. 2,k  0.618,  0.8   

5. while  ( ) ( ) T
k k k k k k kf x d f x g d     

do 
6. .k k    

7. 1 .k k k kx x d    

8. 1.k k   
9. Compute k using any equation (2.2) – 

(2.6) 
10. 1k k k kd g d     

11. kx  is a minimizer. 

3. ARTICIFIAL BEES COLONY (ABC) 
 

Valery Tereshko and Andreas Loengarov 
[11] had started to solve problems by using honey 
bee foraging dynamics. They were interested in 
seeing how the exchanging information interactions 
between the individual leads to globally intelligent 
selection of the food sources in an unpredictable 
environment. Hence, they started to develop a 
model which will able to quickly search for the 
“best” food source by considering the bee colony as 
dynamic system. The system consisted of three 
essential components, which are the food sources, 
employed bees and unemployed bees. Meanwhile, 
the leading modes of the foraging behavior of the 
bees are recruitment to a nectar source and 
abandonment of the source.  

In the same year, Dervis Karaboga, who 
was inspired by this idea and initiated Artificial Bee 
Colony (ABC) which is also an algorithm which 
adapt to the honey bee swarm’s foraging behavior. 
Similarly, the model included the three essentials 
components as mentioned above. According to 
Dervis Karaboga [1], ABC is very simple and 
flexible compare to the existing swarm based 
algorithms.  Recently, ABC algorithm had been 
reviewed by many professional researchers.  

In year 2010, Guopo Zhu and Sam Kwong 
[12] did some modifications on the ABC into 
Global best-guided ABC (Gbest ABC). The 
modification of ABC into Gbest ABC was inspired 
by population-based optimization algorithms 
(PSO), which, in order to improve the exploitation 
process, took advantage of the information of the 
global best solution, by modifying the equation  

 

                  
( )ij ij ij ij kjv x x x                      (3.1) 

 
 to be 

( ) ( )ij ij ij ij kj ij j ijv x x x x x     
    

(3.2) 

 
where xj is the jth element of global best solution, 

ij  is the uniform random number in [0,c] and c is 

the non-negative constant. When the number c is 
increased, the efficiency of the exploitation process 
will be improved. At the same time, the number c 
cannot be too large because it weakens the 
exploitation process, at the same time causing the 
Gbest term (3.2) driving the new candidate solution 
moves over the global best solution ([12]. However, 
after some experiments had been carried out by 
both researchers, noticed that, GABC outperformed 
the original ABC in most of the experiments when 
c = 1.5. Therefore, this shows that GABC can 
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perform better than the original ABC with 
appropriate parameter applied.    

Anan Banharnsakun and his fellow 
researchers [3] had initiated Best-so-far ABC in 
year 2011, by adding three things to the 
modification of ABC that are, best-so-far method, 
adjustable search radius and objective-value-based 
comparison method.  

In the original ABC algorithm, all the 
onlookers choose a food source based on the 
probability of respective fitness function explored 
by a single employed bee and the new solutions are 
generated by using equation (3.1). In the contrary, 
in the best-so-far method, the onlookers make 
decision on a new food sources by making use of 
all the information from all employed bees so that 
they can compare all the information that are 
available and are able to select the best-so-far food 
position. The modified equation to generate new 
food source is: 

 

                    
( )id ij k ij kjv x f x x                (3.3) 

 
where fk is the fitness value of the best food source 

so far; kjx  is the best-so-far food source selected 

dimension j. This method can improve the local 
search ability compared to the original ABC 
algorithm.  

The second modification in this modified 
algorithm is the adjustable search radius, which is 
especially for the scout bee. The scout bee will 
randomly generate a new food source by using 
equation (3.4) whenever the solution stagnates in 
the local optimum. 

max max min[ ( )]ij ij ij ij

iteration
v x x

MCN
           (3.4) 

 

ijv  is a new feasible solution of a scout bee that is 

modified from the current position of an abandoned 

food source, ijx  and ij  is the random number 

between [-1,1]. The value max  and min  represent 

the maximum and minimum percentage of the 
position adjustment for the scout bee [3].  
 The third modification is the objective-
value-based comparison method, which had made 
changes to the finding of the fitness value.  
 

1
( ) 0

1 ( )( ( ))

1 ( ) ( ) 0

if f x
f xFitness f x

f x if f x

   
  

    (3.5) 

 

According to the results from numerical 
experiments conducted by Anan Banharnsakun and 
his fellow researchers [3], Best-so-far ABC 
obtained a better convergence rate than the original 
ABC. A smaller rate of convergence indicates that 
less iteration is needed for a function to converge to 
the optimal solution. Results showed that Best-so-
far ABC can produce the optimal solution more 
quickly on almost all benchmark functions.  
 At the same time, GuoQiang Li and 2 
other researchers [2] proposed an improved ABC 
called I-ABC and another PS-ABC with the ability 
of prediction and selection. The latter is the 
combination of the bright sides from ABC, GABC 
and I-ABC. Before knowing what is PS-ABC, best-
so-far solution, inertia weight and acceleration 
coefficients are introduced to modify the searching 
process in I-ABC. I-ABC could not only find the 
global optimal values for many numerical 
functions, but also own an extremely fast 
convergence speed. Yet, in some cases, I-ABC 
traps in local optimal and therefore not able to find 
better solutions than ABC or GABC. The equation 
is modified as the following form:  
 

 

1

2

2( 0.5)( )

( )

ij ij ij ij ij kj

ij j kj

v x w x x

x x

 

 

   

       (3.6) 

 

ijw is the inertia weight which controls impacts of 

the previous solution ijx . jx is the jth element of 

global best solution ij , and ij  are random 

numbers between [0,1], 
1  and

2 are positive 

parameters that could control the maximum step 
size. Somehow, when the global fitness is very 
large, bees are further away from optimal solutions. 

To further improve the search efficiency of 
the bees, the researchers had modified the 
parameters that are involved in equation (3.6). The 
inertia weight and acceleration coefficient are 
defined as follows:  

      1

1

(1 exp( ( ) / ))ijw
fitness i ap

 
 

    (3.7) 

 

2

1
employed bee

1
onlooker

(1 exp( ( ) / ))fitness i ap



 
  

 (3.8) 

 
where ap is the fitness value found in first iteration 
[2]. After all, I-ABC is able to perform better in 
terms of convergence ability as well in finding a 
better optimal solution.  
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For producing high efficient ABC 
algorithm with the abilities to predict and select, the 
researchers produced the PS-ABC by gathering all 
the bright sights of ABC, GABC and I-ABC to 
form a hybrid ABC algorithm. The main difference 
between PS-ABC and any of ABC, GABC, and I-
ABC is how to determine the candidate solutions 
process. In PS-ABC, the employed bees will firstly 
work out 3 possible solutions with 3 types of search 
equations and then choose and determines the best 
one as the candidate solution.  
 
From original ABC,  

( )ij ij ij ij kjv x x x    

From I-ABC, 

 1 22( 0.5)( ) ( )ij ij ij ij ij kj ij j kjv x w x x x x          

From GABC,  
( ) ( )ij ij ij ij kj ij j ijv x x x x x       

 
Both the I-ABC and PS-ABC were tested 

with 13 classical functions comparing to the 
solutions from the ABC and GABC. It was found 
that I-ABC obtained faster convergence speed than 
ABC or GABC for most functions although it did 
not achieve better optimality ability than the ABCs 
in few of the functions. The results showed that the 
convergence and searching ability generated by 
using PS-ABC is better than the other methods for 
almost all functions. In PS-ABC, the global search 
ability had increased, and convergence ability of 
this algorithm had been enhanced at the same time. 
This shows that there is no specific algorithm to 
substantially achieve the best solutions for all the 
optimization problems. Some algorithm gives best 
solutions in some cases and some not. Hence, 
researchers nowadays try to search for a well 
improved or new optimization method [2].  

Fei Kang, Junjie Li and Zhenyue Ma [13] 
are the initiators of the Rosenbrock Artificial Bee 
Colony Algorithm (RABC). This method is 
proposed to improve the exploitation process of the 
original ABC. The researchers modified the 
Rosenbrock’s rotational direction method (RM) at 
the termination criteria of the two loops and the 
step sizes of the RM. The step sizes are not reset 
after orthonormal basis is updated and this is the 
intention to reduce the number of iterations needed 
to reset the step size at every stage.  

After the modification of the original RM, 
the modified RM is added into the original ABC as 
an exploitation tool. The rank-based fitness 
transformation is adopted to replace the original 
fitness equation from ABC:  

 

       2( 1)( 1)
2 1i

i

SP r
fit SP

NS

 
        (3.9) 

 

Where, ir  is the position solution i  in the entire 

population after ranking, [1.0, 2.0]SP  is the 

selection pressure. The appropriate value of SP will 
be 1.5.  

Therefore, there are two phases in RABC, 
which are the exploration phase from the ABC and 
exploitation by the RM. Results shown that, RABC 
have reliable performances, whereby it has 
demonstrated strong competitive capabilities in 
terms of robustness, efficiency and accuracy by 
comparing with others algorithm including ABC 
[13].   

In year 2012, a simulated annealing based 
artificial bee colony algorithm (SAABC) is created. 
This method makes use of the idea from annealing 
process of solids which is a process of heating 
solids at a very high temperature and cooling it 
gradually to allow crystallize. The experimental 
results shows that SAABC able to outperform ABC 
and Gbest ABC in most of the experiments. ABC 
exhibits the slowest convergence rate to locate a 
local optimal, GABC and SAABC have the similar 
convergence speed, yet, GABC locates a local 
optimal whereas the SAABC locates the global 
optimal result [14]. In general, SAABC often offers 
the most robust solutions compare to the results 
obtained from ABC and GABC.  

Bahriye Akay together with Dervis 
Karaboga [15], the first who introduce the original 
artificial bee colony algorithm, had proposed a 
modified artificial bee colony algorithm for real-
parameter optimization in year 2012. They 
modified the original ABC algorithm by 
introducing a control parameter, modification rate 
(MR). A uniformly distributed random number 
(0 1)ijR   is produced for each parameter of 

ijx and if the random number is less than MR, then 

the equation of the model is modified as follow:  
 
                   
(3.10) 
 

 
Besides, there is another modification 

which is about the ratio of the variance operator of 
the original ABC algorithm. A scaling factor (SF), 

[-SF, SF] is added to replace ij , [-1, 1] in basic 

ABC algorithm which acts as the control parameter 

for the random perturbation ( )ij kjx x . The SF value 

( ) , ,

,
ij ij ij kj ij

ij
ij

x x x if R MR
v

x Otherwise

  


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is set before running the algorithm and it may 
change automatically during the search because the 
large SF causing slow convergence while small SF 
reduces the capability of the exploitation process. 
This is called the adaptive SF (ASF), which is 
conducted by using the Rechenberg’s 1/5 mutation 
rule which states that the ratio of successful 
mutations to all mutations should be 1/5 [16]. 
Therefore, the step size is changing according to 
1/5 rule in every cycles.  
 

 

( )*0.85 ( ) 1/5,

( )
( 1) ( ) 1/5,

0.85
( ) 1/5.

SF t if m

SF t
SF t if m

SF t if m








  




      (3.11) 

 
From the experimental results, the 

modified ABC algorithm produces promising 
results on hybrid functions compared to state-of-
the-art algorithms where the original ABC 
algorithm can efficiently solve basic functions [15].  

After the introduction of global best ABC 
by Guopu Zhu and Sam Kwang [12], Weifeng Gao 
and fellow researchers did the similar modification 
as the Gbest ABC [17]. The differences is the initial 
population and scout bees are generated by 
combining chaotic systems with opposition-based 
learning method and the solution search is based on 
that each bee searches only around the best solution 
of the previous iteration to improve the 
exploitation. 

After that, Weifeng Gao and Sanyang Liu 
together designed a modified aritificial bee colony 
in the same year. In this algorithm, they proposed a 
new framework without probabilistic selection 
scheme and scout bee phase [18]. In addition, they 
combine the chaotic systems with opposition-based 
learning method to generate the initial population. 
This method enhanced the global convergence. 
Therefore, both the global best ABC and modified 
ABC by Weifeng Gao with fellow researchers 
outperforms the original ABC and GABC 
algorithms. 

Chen et al. [19] reported that the 
generation of scout bees from a standard initial 
population provides strong diversity but may 
deprive of solution quality. Therefore, they 
proposed an improved ABC algorithm that provides 
a balance between exploration and exploitation. 
Compared results showed that, improved ABC 
algorithm outperformed others metaheuristics 
approaches and original ABC in terms of diversity, 
convergence, and effectiveness. Bacanin et al. [20] 
applied ABC to constrained portfolio optimization 

problem with an efficient constraint handling 
method. They compared ABC algorithm with GA 
and pointed out ABC algorithm's potential on 
effectively solving portfolio optimization problems. 
Suthiwong and Sodanil [21], to improve the 
exploitation capability of employed bee phase, 
proposed an ABC algorithm inspired by PSO that 
takes advantage of the information of the global 
best solution to guide the search. Ge [22] proposed 
another promising ABC algorithm that outperforms 
standard ABC. Kumar and Mishra [23] proposed a 
powerful co-variance guided ABC algorithm for 
portfolio optimization with cardinality constraints 
and investment limit constraints and tested on 
benchmark data sets from OR-library confirming its 
capability of handling real life portfolio 
management tasks. Kalayci et al. [24] proposed a 
novel methodology based on ABC algorithm, 
confirming its superior performance on benchmark 
data sets from OR-Library, with feasibility 
enforcement and infeasibility toleration procedures 
that handles boundary constraints and cardinality 
constraints efficiently. 
 
4. ABCED CONJUGATE GRADIENT 
 

Artificial Bee Colony algorithm (ABC) is 
inspired by the foraging behaviors of honey bee 
swarm. In fact, bees are divided into two groups: 
employed and unemployed (onlookers and scouts). 
At first, the bees will be searching for a food source 
and become employed bee when the bee manage to 
bring the nectars back to their hives. The employed 
bees can either go back to her discovered source 
site or spread it to the onlookers by performing a 
dance on dancing area. The onlookers will select 
one profitable source by watching the dance 
advertising according to the quality of the source. 
When a source is exhausted or abandoned, the 
employed bees will become a scout and start to 
randomly search for a new source [15]. 

This mechanism is applied in ABC 
algorithm. First of all, randomly distributed initial 
food source positions, which generated by the 
objective function values of the sampled point from 
each employed bee. The process can be represented 
by ( ), , {1, 2,3,..., }.D

i if x x R i SN   ix  is a position 

of food source as D-dimensional vector, where D is 
the number of optimization parameter in the model. 

( )if x  is the objective function which determines 

the quality of the solution, and SN is the number of 
food sources. After the initialization, the population 
is subjected to repeated cycles of the three major 
steps that are updating feasible solutions, selecting 
feasible solutions and avoiding suboptimal 
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solutions (Anan Banharnsakun, 2011). In order to 
test the fitness value, fiti of the new food source, the 
employed bee could produce a modification on the 
solution in its memory. 

 
( )ij ij ij ij kjv x x x                      (4.1) 

 
In equation (3.1), ijv is the new feasible 

solution and SN is the size of food source which 
generated, ij is the random number between [0, 1] 

which is used to randomly adjust the old solution 
become the new solution in the next iteration. 
k {1, 2, …, SN}  and j {1, 2, …, D}  are 

random generated indexes but k must different from 
i. When the different between ijx  and kjx  

decreases, the perturbation of the position also 
decreases. Thus, the step size reduced when the 
search approaches to the optimum solution in the 
search space [2].  

 

   

1
( ) 0

1 ( )

1 ( ( )) ( ) 0

i
ii

i i

if f x
f xfit

abs f x if f x

   
  

    (4.2) 

 
The fitness value is proportional to the 

nectar amount of the food source in the ith position. 
If the fitness value is better than the previous one, 
the employed bee would memorize the new food 
position and forget the old one. Otherwise, it keeps 
the current food position in its memory. 
Information about nectar amount and positions of 
food will be shared by the employed bees when all 
of them completed the searching process to the 
onlookers. The onlookers will then evaluate the 
nectar information by all the employed bees and 
chooses a food source according to the probability 
which is related to the nectar amount. Therefore, 
during onlooker bees phase, new solution ijv  is 

produced for the solutions x by means of their 

fitness values by using the formula of the 
probability of the fitness. The onlookers can 
produce a modification on the position in its 
memory as what employed bees do. The onlookers 
check the nectar amount of the candidate source. If 
the nectar amount is better than that of the previous 
one, the bee would memorize the new position 
instead of the previous one. An onlooker chooses a 
food source completely according to the probability 
value associated with the food source, pi where fiti, 
the fitness value of the ith solution is: 

 

1

i
i SN

j
j

fit
p

fit





                                        (4.3) 

 
The food source which is exhausted or 

abandoned by the bees would be replaced with a 
new food source found by scout bees. The function 
values will be identified as abandoned values when 
they had been undergo a specific number of trials 
and the solutions cannot be improved. Then, a new 
solution will be generated randomly to replace with 
the abandoned one. The new random position 
chosen will be calculated by using the equation 
below: 

min max min(0,1)( )j j j j
ix x rand x x       (4.4) 

 

where jxmax is the upper bound of the food source 

position in dimension j while min
jx  is the lower 

bound of the food source position in dimension j. 
The boundaries act as one of the constraints of the 
algorithm. When is parameters generated exceeds 
the boundaries, they will be shifted onto the 
boundaries. Besides that, rand(0,1) represents the 
random number between [0, 1] and the maximum 
number of cycle (MCN) is used to control the 
number of iterations and it acts as a termination 
criterion. 

 
4.1 Algorithm of ABCED Conjugate Gradient Method  
 

Initialize the population of solutions ijx , i=1, 2...SB, j= 1, 2...n, trial= 0 is the non-improvement number of 

the solution ijx , used for abandonment 

Evaluate the population 
Set Cycle= 1 
Repeat  

{Produce a new food source population for employed bees} 
for i=1 to SN do 

Produce a new food source iv  for the employed bee of the food source ix with algorithm 2.1 
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Apply a greedy selection process between iv and ix and select the better one.  

If  solution ix  does not improve triali= triali + 1, otherwise, triali + 1=0 

end for 
Calculate the probability values pi by equation (4.3) with the fitness values in equation (4.2) 
 
{Produce a new food source population for onlooker bees} 
t=0, i=1 
repeat 

if random<pi then 

                                      Produce a new iv food source by algorithm 2.1 for onlooker bee 

                                      Apply a greedy selection process between iv and ix and select the better one 

                                      If solution ix does not improve triali= triali + 1, otherwise triali= 0, t= t+1 

                       end if 
             until (t=SN) 
             
             {Determine scout} 
                          if max (triali)> limit then 

Replace ix with a new randomly produced solution by  

min max min(0,1)( )j j j j
ix x rand x x    

end if 
Memorize the best solution achieved so far 
cycle= cycle+1 

until (cycle= Maximum Cycle Number) 
 
5. NUMERICAL RESULTS 

The algorithm ABCED Conjugate 
Gradient Methods with 5 different of popular 
conjugate direction equations have been 
programmed into C++ and tested to the selected 
21 global optimization problems as listed in Table 
5.1. The numerical results have been presented in 
Table 5.2. Since the ABCED Conjugate Gradient 
methods is hybridized from a Metaheuristic 
approach, each problems have been run for 20 
times. Then, only the mean value of the global 
optimum takes into counter. This is to make sure 
the efficiency of the method won’t be misjudging 
for some misconduct in its heuristic behavior. The 
numerical results show that not all ABCED 
Conjugate Gradient Methods are able to globally 
solve all the selected global optimization 
problems. In the Table 5.2, those results shaded 
mean that method globally solved that particular 
problem. According to the numerical results, it 
seem that ABCED Conjugate Gradient with 
Fletcher-Reeve (ABCED-CGFR) equation 
globally solved 80.95% of the selected global 
optimization problems possess the best 
performance among five different conjugate 
direction equations. Another two ABCED 
Conjugate Gradient Methods with Hestenes-

Stiefel equation (ABCED-CGHS) and Dai Yuan’s 
equation (ABCED-CGDY) both globally solved 
76.19% of the tested global optimization 
problems, retain as the second-best performer 
among five selected ABCED Conjugate Gradient 
methods. However, the performance of ABCED-
CGHS in several global optimization problems 
indicated ‘Fail’ in Table 5.2 is because the it 
totally fails to locate even one global optimum in 
its 20 runs. So, ABCED-CGDY should be the 
second best of ABCED Conjugate Gradient 
Methods. 

The rest of the failure that still recorded 
their global optimum value is because among 20 
runs, the respective method still able to obtain at 
least 5 global optimums out of 20 runs. Then, 
those shaded boxes are obtained at least more than 
18 global optimums out of 20 runs.  

Among all the selected ABCED 
Conjugate Gradient methods, the one using Polak-
Ribiere’s equation is the worst performer. It’s only 
able to globally solve one third of the tested global 
optimization problems. Lastly, the ABCED 
Conjugate Gradient method with proposed by 
Fletcher (ABCED-CGCD) able to globally solve 
two third of the tested global optimization 
problems. 
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Table 5.1 List of the Benchmark Multimodal Optimization Problems 

No. Problem 
1 Griewank  
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xxf  
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5
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4

1

222
1 )1()(100)(

i
iii xxxxf  

4 
Rastrigin function (5 variables)  




5

1

2 )2cos(1050)(
i
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Table 5.2 Numerical Results of ABCED Conjugate Gradient Methods 
No Problem CGDY CGCD CGFR CGPR CGHS 
1 Griewank function 0.03169107 0.01299987 0.01899957 0.07204749 0.004241837 
2 Sphere function 4.130516e-012 1.534866e-012 2.167668e-012 1.037357 1.339346e-012 
3 Rosenbrock  5.289350e-7 0.01534409 2.073671e-006 2.207111 Fail 
4 Rastrigin function (5 variables) 4.521959 5.621514 6.865650 11.26486 5.024540 
5 Rastrigin function (2 variables) 1.072989e-009 9.949591e-002 5.771485e-002 8.337036e-001 9.949591e-002 
6 Ackley's function 2.934435e-004 4.976581e-003 6.544239e-002 5.390010e-001 6.146079e-006 
7 Beale's function 3.306578e-011 3.292605e-004 2.892012e-010 4.361799e-003 Fail 
8 Goldstein–Price function 3.000000 3.000000 3.000000 3.098475 Fail 
9 Booth's function  1.500000e-001 2.075949e-010 1.557476e-011 2.964338e-002 2.140854e-011 
10 Matyas function 7.500000e-003 4.528473e-006 3.579961e-012 1.373807e-009 1.842513e-010 
11 Lévi function N.13 3.956416e-010 5.923011e-006 7.659820e-005 3.411834e-002 3.686733e-009 
12 Three-hump camel function 2.251716e-011 2.961625e-007 3.560178e-012 1.039893e-002 1.112625e-011 
13 Easom function -1.000000 -1.000000 -1.000000 -0.9983190 Fail 
14 adjiman function -4.951813 -5.053946e -4.814400e -4.896541e -5.004011 
15 bird function -107.0121 -107.0172 -106.7645 -105.5517 -106.7645 
16 Bohachevsky 1 Function 5.946584e-011 1.407258e-010 4.315649e-009 9.405638e-002 1.016121e-010 
17 Bohachevsky 2 Function 0.18 0.18 0.18 0.2579728 0.18 
18 Bohachevsky 3 Function 0.009 0.009001557 5.219617e-010 0.03441181 1.061773e-010 
19 Branin RCOS function 1 0.3978874 0.3983374 0.3978874 0.4412183 0.3978874 
20 Branin RCOS function 2 -9.538853 -9.558770 -9.558770 -9.235987 -9.558770 
21 Bukin 2 function -412.8628 -369.9772 -370.8660 -371.2948 -424.1500 

 Percentage of Success 76.19% 66.67% 80.95% 33.33% 76.19% 

 
6. CONCLUSION AND DISCUSSION 

 
In this paper, the enhancements had 

produced a new gradient-based method called 
ABCED Conjugate Gradient Methods. The 
numerical results show that not all ABCED 
Conjugate Gradient Methods are able to globally 
solve all the selected global optimization 
problems.  

In the Table 5.2, those results shaded 
mean that method globally solved that particular 
problem. According to the numerical results, it 
seem that ABCED Conjugate Gradient with 
Fletcher-Reeve (ABCED-CGFR) equation 
globally solved 80.95% of the selected global 
optimization problems possess the best 
performance among five different conjugate 
direction equations. Another two ABCED 
Conjugate Gradient Methods with Hestenes-
Stiefel equation (ABCED-CGHS) and Dai Yuan’s 
equation (ABCED-CGDY) both globally solved 
76.19% of the tested global optimization 
problems, retain as the second-best performer 
among five selected ABCED Conjugate Gradient 
methods. However, the performance of ABCED-
CGHS in several global optimization problems 
indicated ‘Fail’ in Table 5.2 is because the it 
totally fails to locate even one global optimum in 
its 20 runs. So, ABCED-CGDY should be the 
second best of ABCED Conjugate Gradient 
Methods. 

The rest of the failure that still recorded 
their global optimum value is because among 20 
runs, the respective method still able to obtain at 

least 5 global optimums out of 20 runs. Then, 
those shaded boxes are obtained at least more than 
18 global optimums out of 20 runs.  

Among all the selected ABCED 
Conjugate Gradient methods, the one using Polak-
Ribiere’s equation is the worst performer. It’s 
only able to globally solve one third of the tested 
global optimization problems. Lastly, the ABCED 
Conjugate Gradient method with proposed by 
Fletcher (ABCED-CGCD) able to globally solve 
two third of the tested global optimization 
problems. 
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