
Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7415

VULNERABILITY ANALYSIS ON THE IMAGE-BASED
AUTHENTICATION: THROUGH THE WM_INPUT MESSAGE

1KYUNGROUL LEE, 2KANGBIN YIM
1R&BD Center for Security and Safety Industries (SSI), Soonchunhyang University, Asan, South Korea

2Department of Information Security Engineering, Soonchunhyang University, Asan, South Korea

E-mail: 1carpedm@sch.ac.kr, 2yim@sch.ac.kr

ABSTRACT

We verified the exposure of the mouse data using the WM_INPUT message handler that extracts the
mouse-inputted data to analyze the vulnerability of the image-based authentication. Consequently, the
mouse data were exposed on most of the banking and payment sites of South Korea. Therefore, we proved
that the safety of the authentication information is vulnerable, even when image-based authentication is
applied.

Keywords: Vulnerability analysis, Mouse data, Image-based authentication, WM_INPUT message

1. INTRODUCTION

The mouse, one of the input devices,
facilitates a user application with more convenience
and a greater editing capability compared with the
keyboard [1]. Previously, the identification
(ID)/password-based authentication was mainly
used whereby the user inputs the password using
the keyboard. The keyboard information, however,
can be exposed by attackers, thereby causing a
keyboard security problem [11, 12] furthermore,
the password can be guessed [10]. As the problem
of the keyboard-data exposure has been
consequently revealed, more secure authentication
methods have been required.

Image-based authentication has emerged
as a way of solving the previously described
problem. The image-based authentication is an
authentication method that uses the specific
coordinates of screen-displayed clicked image as
the authentication information [13]. This method
solves the problem of the ID/password-based
authentication because the authentication
information is not inputted from the keyboard;
accordingly, the image-based authentication
method is increasingly applied.

Nevertheless, the mouse data can also be
exposed, and this occurs in the same way as the
keyboard-data problem. The first emergence of the
mouse-information exposure is due to the easy
online attainment of mouse loggers. Moreover, the
problem regarding the highest-level attack is the
exposure of the mouse coordinates through the

usage of the GetCursorPos() function which is one
of the Windows application programming
interfaces (APIs). That is, it appears the image-
based authentication overcomes the problem of
keyboard-information exposure based on the
ID/password-based authentication, but this method
is also problematic due to the corresponding
exposure of the mouse authentication information
[14].

Therefore, an analysis of the vulnerability
posed by the tracing of the mouse position for
which the WM_INPUT message handler [15], one
of the keyboard and mouse messages supported by
the Microsoft Windows operating system (OS), is
used was performed for this paper. Further, a
demonstration of the mouse-data safety is presented
based on the high-priority services such as the e-
commerce and Internet-banking services, whereby
the proof-of-concept tool is implemented.

2. RELATED WORK

2.1 Image-based authentication
The image-based authentication utilizes

the click information of a screen-displayed image
as the password. This authentication is mostly used
for e-commerce and Internet-banking services
where sensitive user information is inputted. For
this reason, the displayed image and the mouse
position that constitute the most important
information must be protected [2, 3].

This authentication method is provided by
various types depending on the displayed image,

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7416

and the representative types are the virtual
keyboard and keypad.

Figure 1: Example of the mage-based authentication

As shown in Figure 1, the user inputs the

password by clicking on the letter or number
corresponding to the registered password based on
the screen-displayed image. Namely, the image-
based authentication is closely related to the image
and the clicked mouse information. Nevertheless,
the corresponding researches on the information
security are insufficient. Consequently, this paper
presents an assessment of the security of the image-
based authentication that was conducted based on
the mouse information.

2.2 Existing attack techniques of the mouse
data exposure

The mouse logger, which is a compound
word comprising he mouse and the logger, displays
the mouse movements as coordinates, and records
the history of specific features such as the click
information [4].

The information that is obtained from the
usage of the mouse logger includes the coordinate
position, cursor confirmation, and input window,
and it is possible to decide whether or not the
information is exposed in a comprehensive manner.
The coordinate position denotes the position of the
mouse coordinate, and the cursor confirmation and
the input window denote the cursor output and the
input-window output, respectively, at the post-
recording replay time. Therefore, if this information
is exposed, the user-inputted mouse information is
also exposed, thereby neutralizing the image-based
authentication.

Consequently, the attacker can trace the
mouse movements using the mouse logger, so the

mouse-data exposure has been researched using a
mouse logger that is easy to obtain from the
Internet. As a result, this research verified that,
regarding many Internet-banking services, the
passwords can be stolen through the exposing of
the mouse data [5]. As shown in Table 1, four
representative mouse loggers were used to evaluate
mouse-data exposure for six Internet-banking
services. In terms of the evaluation, one mouse
logger did not obtain the coordinate position;
however, the remaining mouse loggers extracted
the cursor confirmation and the input window as
well as the coordinate position, thereby making it
possible to expose the password.

The Microsoft Windows OS provides
various APIs to manage and support the mouse
position, and the GetCursorPos() function provides
the current mouse position in the form of the x and
y coordinates. Thus, if the attacker collects the x
and y coordinates by calling the GetCursorPos()
function periodically, he or she can trace the user-
inputted mouse movements. The detailed attack
process, also shown in Figure 2, is described as
follows:

Phase 1: The attacker captures the screen.

Phase 2: The periodically calling of the

GetCursorPos() function to extract the coordinates.

Phase 3: The click information is extracted

by the event handler to show the clicked-image
coordinates.

Phase 4: The attacker can steal the user-

inputted authentication information by aggregating
the extracted screen image, mouse coordinates, and
clicked position.

As a result, this study verified the

password exposure by exposing the mouse data on
a real e-commerce site [6].

Table 1: Result of the mouse-logger mouse-data exposure

Mouse
Loggers

Company A Company B Company C Company D Company E Company F

Logger A O O O X O O

Logger B O O O X O O

Logger C X X X X O O

Logger D O O O O O O

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7417

Figure 2: Attack scenario using GetCursorPos() function

Figure 3: Defense scenario using SetCursorPos() function

2.3 Existing defense techniques of the mouse
data exposure

As previously mentioned, the attack
techniques has been for the neutralization of the
image-based authentication for which the calling of
the GetCursorPos() function in enacted have been
researched.

This attack is exploits a vulnerability that
can be obtained using the onscreen x and y
coordinates in the calling of the GetCursorPos()
function. To counteract this vulnerability, a defense
technique that can prevent the mouse position
exposure has been studied [6]. This technique is the
disturbance of the attacker by the random
generation of arbitrary coordinates, but it does not
prevent the extraction of the mouse position so the
attacker cannot know the correct coordinates. The

detailed defense process, also shown in Figure 3, is
described as follows:

Phase 1: The protection program displays

the screen image for the password selection.

Phase 2: The current mouse position,

which is the start position, is stored to track the
actual mouse position.

Phase 3: The protection program generates

ransom mouse coordinates by calling the
SetCursorPos() function to prevent the attacker
from stealing the real mouse positions.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7418

Phase 4: Lastely, the protection program
obtains the real mouse positions by self-filtering the
generated random coordinates.

Accordingly, it is possible to protect

against the attack without exposing the mouse
position.

3. VULNERABILITY ANALYSIS

As described previously, the image-based
authentication has problems that are related to the
exposure of the mouse data. The password is stolen
through the replaying of the mouse coordinates for
which the mouse logger, which records the
coordinates, is used. In particular, mouse loggers
can be easily obtained from the Internet, making
this type of attack a serious vulnerability, because
the attacker does not need to implement attack tools.
The Windows OS manages the mouse position to
create the events according to the user mouse input,
and the mouse position is obtained by calling the
GetCursorPos() function in the event handler.
Therefore, the attacker can track the mouse
movements by calling this function periodically,
thereby enabling the theft of the user-inputted
password.

For the GetCursorPos() function attack
counteraction, a defensive method that hides the
real mouse position by generating random positions
has been researched. The Windows OS provides the
SetCursorPos() function to set the mouse position,
and it can set random mouse positions by calling
this function. This technique prevents the mouse-
position exposure by mingling the real and random
mouse positions.

The SetCursorPos() function defense
technique, however, is a high-level defense
technique. For this reason, if the attacker traces the
mouse data that are inputted using the mouse
device, instead of the OS-managed mouse location,
additional vulnerabilities can be revealed that lead
to the mouse-data exposure, and these new
vulnerabilities can neutralize the image-based
authentication. Therefore, for this paper, an analysis
of this vulnerability was performed through a
verification of the mouse-data exposure using the
WM_INPUT message handler, which is the
keyboard and mouse messages that are supported
by the Microsoft Windows OS.

3.1 Attack scenario

The Microsoft Windows OS provides the
WM_INPUT message to support the user-inputted
keyboard data and the mouse position [7]. When
the WM_INPUT message handler is registered, the

handler receives the information that is inputted
from the keyboard and mouse in the form of the
RAWINPUT structure [8]. The RAWINPUT
structure that is shown in Figure 4 shares the data
of the mouse, keyboard, and human interface
device (HID). The transferred mouse data in the
form of the RAWMOUSE structure is shown in
Figure 5 [9]. The usButtonFlags in the
RAWMOUSE structure denotes the status of the
mouse buttons, and the lLastX and lLastY denote
the relative mouse-position coordinates. Therefore,
the attacker can trace the mouse position by
periodically collecting the lLastX and lLastY after
the registration of the WM_INPUT message
handler. Figure 3 shows an attack scenario, and the
detailed attack process is described as follows:

Figure 4: RAWINPUT structure

Figure 5: RAWMOUSE structure

Phase 1: The attack program registers the

WM_INPUT event handler that is provided by the
Windows OS. As previously described, in this
handler the OS handles the data received from the
input device, such as the keyboard and the mouse,
and passes the results to the higher-level application.
In the case of the mouse, the device generally
transfers the relative coordinates, depending on the
configured state. That is, the attack program
registers the WM_INPUT message handler, and
then the program receives the relative coordinates
corresponding to the current position from the OS.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7419

When the attacker starts the attack, the attack
program captures the displayed image and obtains
the current mouse position. Accordingly, if the
relative coordinates that are transmitted by the OS
via the handler are collected based on the obtained
current position, the mouse-position movements
can be tracked.

Phase 2: The user moves the mouse device

to choose a position corresponding to the registered
password in the screen-displayed image. In this
movement process, the relative coordinates, which
are the mouse data, are transferred from the mouse
device to the OS. The relative coordinates include
the screen-relative x and y coordinates. The number
of the x coordinate is positive during the right-
direction movement, and negative during the left-
direction movement. The number of y coordinate is
negative during the upward movement, and it is
positive during the downward movement.

Phase 3: When the OS receives the data

from the mouse device, the system processes the
received data that are to be system-managed. In this
process, the OS calculates the mouse coordinates
that are to be managed, and carries out the process
to transfer the mouse data to the application
program.

Phase 4: The OS transfers the handled
mouse data to the attack program that registered the
WM_INPUT message event.

Phase 5: The attack program receives the

relative coordinates from the OS. The program
traces the mouse movements by calculating the
relative coordinates based on the absolute
coordinates. Because the absolute coordinate are
called current coordinates, they are stored in the
phase 1.

Based on the attack scenario, an analysis

of the possibility of the mouse-data exposure in the
image-based authentication was performed. The
analysis result shows that the user-inputted mouse
data can be captured, and the mouse movements
can be successfully tracked. It is necessary,
however, to analyze the attack vector in the
situations where the defense technique using the
SetCursorPos() function described in the section 2.3
is applied.

3.2 Analysis of the attack vectors

In this paper, the three attack vectors that
are shown in Figure 7 are defined as follows: the
no-defense technique, the running-defense
technique, and the mouse input between the
random-coordinate generation.

Figure 6: Attack scenario using WM_INPUT message

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7420

Figure 7: Analysis of the attack vector between the mouse, the defense technique using the SetCursorPos() function,

and the attack technique using the WM_INPUT message

The no-defense technique is a vector in

which the proposed attack technique steals the
coordinates when the mouse data are inputted in the
case of an inactive defense program. In this vector,
the OS enacts the WM_INPUT event upon the
transferal of the mouse data (Xr1, Yr1), and then the
event handler receives the inputted mouse data (Xr1,
Yr1). Therefore, the attacker succeeds using this
vector.

The running-defense technique is a vector
that bypasses the defense technique by filtering
generated random coordinates of the defense
program while the defense program is running. In
the case of the vector of the no-defense technique,

even though the mouse-device coordinates are
successfully received, if the generated random
coordinates of the defense program are not filtered,
the attack is not successful, because the attack
program does not receive the mouse-inputted real
coordinates. In this vector, the attack program does
not invoke the WM_INPUT event that receives the
mouse data from the operating system when the
defense program generates random coordinates.
That is, the proposed attack technique bypasses the
defense technique using the SetCursorPos()
function in this vector because the attack program
does not receive the generated random coordinates
of the defense program.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7421

The mouse-input vector between the
generated random coordinates is a vector that
obtains the coordinates when the coordinates are
transferred from the mouse device during
generation of the random coordinates. When the
defense program generates the random coordinates,
such as the vector of the running-defense technique,
the OS does not invoke the WM_INPUT event that
receives the mouse data. At this point, if the mouse
data (Xr2, Yr2) is inputted, the attack program
receives the inputted mouse data (Xr2, Yr2) from the
registered WM_INPUT message handler. Therefore,
the attacker succeeds using this vector.

3.3 Experiment result

The proof-of-concept tool that traces the
mouse position using the WM_INPUT message
handler was implemented based on the previously
described attack scenario and the attack vector of
the no-defense technique, and Figure 8 shows the
experiment result. The result shows the exposure of
the mouse data in terms of a virtual keyboard that
has been applied on a real e-commerce website, and
Table 2 shows that the proposed attack technique
was used to evaluate mouse-data exposure to six
Internet-banking services. As a result, the mouse
data ware exposed on the all websites.

Figure 8: Experiment result

Table 2: The exposure result of mouse data using the
WM_INPUT MESSAGE

Company Exposure result
Company A O
Company B O
Company C O
Company D O
Company E O
Company F O

The experiment result according to the
attack vectors shows that the vector of the no-

defense technique is the same as the result shown in
Figure 8. Here, all the user-inputted mouse data
were exposed.

The experiment result of the vector of the
running-defense technique is shown in Table 3. The
result shows the collection of the WM_INPUT
events and the received coordinates upon the
generation of the random coordinates of 10, 100,
1000, 10000, and 100000. Consequently, all the
cases do not invoke any events or received
coordinates.

The experiment result of the vector of the
mouse input between the generations of the random
coordinates, for which a total of 10 tests was
experimented with, is shown in Table 4. To analyze
the correlation between the generated random
coordinates and the received coordinates, the
number of the generated random coordinates, the
number of the filtered coordinates, the number of
the invoked WM_INPUT events, and the number of
the received coordinates from the event handler
were collected, and the random coordinates were
generated every 5ms.

The overall result shows a difference
between the number of the filtered coordinates and
the number of the coordinates that were received
from the WM_INPUT message handler. The
corresponding reason is the difference between the
attainments of the current coordinates every 5ms in
the defense technique and the number of the
coordinates that were transferred from the mouse.

In the comparison of the number of the
coordinates that were received from the
WM_INPUT event handler and the number of the
invoked WM_INPUT events, all of the 10 tests are
the same. Therefore, the attack program receives all
WM_INPUT messages invoked from the OS,
meaning the attacker can track the mouse
movements.

Table 3: Experiment result according to the attack vector of the running defense technique

Number of generated
random coordinates

Number of invoked
WM_INPUT events

Number of received coordinates from
the event handler

10 0 0
100 0 0

1,000 0 0

10,000 0 0

100,000 0 0

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7422

Table 4: Experiment result according to the attack vector of the mouse input between the generation of the random
coordinates

Index

Defense technique using the
SetCursorPos() function

Attack technique using the WM_INPUT
message

Number of
generated random

coordinates

Number of filtered
coordinates

Number of invoked
WM_INPUT

events

Number of received
coordinates from
the event handler

Test 1 637 139 843 843

Test 2 1001 592 4282 4282

Test 3 1195 295 1924 1924

Test 4 943 708 5274 5274

Test 5 1360 60 435 435

Test 6 1486 82 621 621

Test 7 544 29 211 211

Test 8 870 145 2189 2189

Test 9 1702 253 1802 1802
Test 10 801 157 1151 1151

4. CONCLUSION

The exposure of the mouse data from the
usage of the WM_INPUT message handler, which
extracts the mouse data to analyze the vulnerability
of the image-based authentication, has been verified
in this paper. As a result, the mouse data were
exposed on most of the Internet-banking and e-
commerce sites of South Korea. Therefore, it has
been proven that the safety of the authentication
information is not ensured even if the image-based
authentication is applied, and the corresponding
attack countermeasures will be studied in the future.

DISCLOSURE:

A part of this paper was presented at
International Workshop on Convergence
Information Technology (IWCIT), December 21-23,
Busan, South Korea.

ACKNOWLEDGMENTS:

This research was supported by the Basic
Science Research Program through the National
Research Foundation of Korea (NRF) that is funded
by the Ministry of Education (NRF-
2015R1D1A1A01057300).

REFERENCES:
[1] Wikipedia, “Computer Mouse”, 03/05/2018,

retrieved from
https://en.wikipedia.org/wiki/Computer_mouse

[2] Wikipedia, “Virtual Keyboard”, 03/05/2018,
retrieved from
https://en.wikipedia.org/wiki/Virtual_keyboard

[3] Ankit Parekh, Ajinkya Pawar, Pratik Munot,
and Piyush Mantri, “Secure authentication using
anti-screenshot virtual keyboard”, International
Journal of Computer Science Issues, Vol. 8, No.
5, 2011, pp. 534-537.

[4] Z. Minchev, G. Dukov, and S. Georgiev, “EEG
spectral analysis in serious gaming: An ad hoc
experimental application”, International
Journal BIO Automation, Vol. 13, No. 4, 2009,
pp. 79-88.

[5] Hyeji Lee, Yeunsu Lee, Kyungroul Lee, and
Kangbin Yim, “Security Assessment on the
Mouse Data using Mouse Loggers”,
International Conference on Broad-Band
Wireless Computing, Communication and
Applications (BWCCA), November 5-7, 2016,
pp.387-393.

[6] Kyungroul Lee, Insu Oh, and Kangbin Yim, “A
Protection Technique for Screen Image-based
Authentication Protocols Utilizing the
SetCursorPos function” World conference on
Information Security Applications (WISA),
August 23-25, 2018.

[7] MSDN, “WM_INPUT message”, 03/05/2018,
retrieved from https://msdn.microsoft.com/ko-
kr/library/windows/desktop/ms645590(v=vs.85)
.aspx

[8] MSDN, “RAWINPUT structure”, 03/05/2018,
retrieved from https://msdn.microsoft.com/ko-

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7423

kr/library/windows/desktop/ms645562(v=vs.85)
.aspx

[9] MSDN, “RAWMOUSE structure”, 03/05/2018,
retrieved from https://msdn.microsoft.com/ko-
kr/library/windows/desktop/ms645578(v=vs.85)
.aspx

[10] Cheng-Chi Lee, Li-Hua Li, and Min-Shiang
Hwang, “A Remote User Authentication
Scheme Using Hash Functions”, ACM SIGOPS
Operating Systems Review, Vol. 36, No. 4, 2002,
pp. 23-29.

[11] Kyungroul Lee, Youngtae Choi, Hyeungjun
Yeuk, and Kangbin Yim, “Password Sniff by
Forcing the Keyboard to Replay Scan Codes”,
Joint Workshop on Information Security (JWIS),
Aug. 5-6, 2010, pp. 9.

[12] Kyungroul Lee and Kangbin Yim, “Keyboard
Security: A Technological Review”,
International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing
(IMIS), Jun. 30 – Jul. 2, 2011, pp. 9-15.

[13] Takada Tetsuji and Hideki Koike, “Awase-E:
Image-based authentication for mobile phones
using user’s favorite images”, International
Conference on Mobile Human-Computer
Interaction, Sep. 8-11, 2003, pp. 347-351.

[14] R. E. Newman, P. Harsh, and P. Jayaraman,
“Security analysis of and proposal for image-
based authentication”, International Carnahan
Conference on Security Technology (CCST),
Oct. 11-14, 2005, pp. 141-143.

[15] Kyungroul Lee and KangbinYim,
“Vulnerability Analysis on the Image-based
Authentication: through the WM_INPUT
message”, International Workshop on
Convergence Information Technology (IWCIT),
Dec. 21-23, 2017, pp. 1-4.

