
Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7599

QUERYING RDF DATA

1,* ATTA-UR-RAHMAN, 2FAHD ABDULSALAM ALHAIDARI
1,*Department of Computer Science, 2Department of Computer Information System

College of Computer Science and Information Technology,
Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam,

Kingdome of Saudi Arabia.
Email: aaurrahman,faalhaidari}@iau.edu.sa

ABSTRACT

Resource Description Framework (RDF) is a data model to represent and store the web contents and their
association in the form of a graph. This will enable the web (semantic web) to answer queries in a meaningful
way as compared to the current web of keyword locator. Querying is required to retrieve any information
from the semantic web (RDF data). In this context several algorithms have been proposed which can be
classified in different categories. There are mainly two ways to query RDF data, one ‘on the fly’ and the other
is ‘index query’. The indexing method requires lot of offline work on RDF data to make the query run faster
over it but at the cost of increased space. On the other hand, the ‘on the fly query’ algorithms’ takes more
time to execute. In this research, an algorithm with reduced time and space complexity is proposed. The data
graph is being stored in an Adjacency Matrix and Adjacency List. Our algorithm tries to match the query
graph with the data graph (graph pattern matching) with lesser cost. By comparing the results, it is observed
that proposed technique’s results are more accurate with reduced complexity.

Keywords: RDF, Graph Data Query, Semantic Web

1. INTRODUCTION

RDF (Resource Description Framework) is a basic
data model used to represent resources and to
represent information of resources in the web. The
RDF can be representing in graph form and has
attracted the attention of many researchers. Hence,
many researchers have devised different methods to
store and query RDF data. Some of the techniques
store RDF data in Relational Databases i.e. (Y. Yan,
2009) [1] used the triple stores to store the RDF
triples and has reduced the join cost, (Akiyoshi
Matono, 2005) [2] gave the idea of path queries and
handled the RDF schema as well, (Shady Elbassuoni,
2011) [3] gave the idea of keyword queries. There
are also RDF databases to store and query RDF, one
of the RDF database that base on indexing scheme is
the HPRD (High performance RDF database)
(Baolin Lui, 2010) [4]. The one of other indexing
scheme is use of Suffix Array (A. Matono, Sept.
2003) [5] (Kim, Sept. 2009) [6], the Suffix Array is
used to index the all paths and then the query is
applied. Rest of the paper is organized as follows.
Section 2 contains the related work, section 3
explains the proposed work. Section 4 contains case
studies to show performance of the proposed scheme
and section 5 concludes the paper.

2. RELATED WORK

This section contains the review of some well-

known techniques for querying the RDF data with
their features.

2.1 Path Based Relational RDF Database

Matono et al. introduced a Path-based scheme for
storing and retrieving RDF data (Akiyoshi Matono,
2005)[5]. To store RDF data the relational Database
has been used. This scheme has resolved the two
problems in already existing conventional RDF
databases i.e. inability to discriminate between
schema data and instance data (some handle only
statement based queries so can’t answer schema
based queries and the one handle schema based
queries can’t handle RDF data having no schema)
and poor performance over path based queries (need
to perform a join operation per each path step). For
the solution of the problems, a path-based relational
RDF database has been proposed. In this scheme,
relational schema is designed in such a way that it is
independent of RDF schematic information, and can
make the distinction between instance data and
schema data. Hence, this scheme can handle schema-
less RDF data along with RDF data with schema and
can also perform path queries.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7600

2.2 Graph Partitioning in RDF Triple Stores
 Yan et al. (Y. Yan, 2008) [7][1] introduced a new

method to store, index and query RDF data. In this
technique the focus is on the graph form of RDF
data. The mature Relational database has been used,
called triple store (Anon., 2013) [8] to store the RDF.
Firstly, they partition triples of RDF Graph into
overlapped sub graphs and add one more column that
represents Group ID in triple table. Group ID, is used
to identify sub graph represented by an integer value.
Then, the partitioned triples are stored in the table
according to grouping, the Group ID column tell
about in which group the desire triple resides. The
advantage for doing this is that now the SPARQL
query (Anon., 2013) (Hutt, 2005) [9] be applied
group wise on the table hence decreasing the join
cost much. A query is first divided into multiple
simpler queries and then applied over the table to
RDF groups.

2.3 Indexing Approach using Suffix Array

Matono et al. (A. Matono, Sept. 2003) proposed
an indexing approach to store RDF data and RDF
Schema by using Suffix Array (Manber, 1993) [10]
to process the path queries. Suffix Arrays, are the
known data structure used for textual search. It is a
one-dimensional character string that contains only
indices of the textual data. In this paper, Firstly, from
the RDF data four DAGs (Directed Acyclic Graphs)
have been extracted and then all paths expressions
have been extracted from DAGs and Suffix Array for
all extracted path expressions has been created. The
used an algorithm to extract path expressions. This
algorithm traverses every root vertex of RDF Graph
and gives all possible path expressions. The Time
Complexity of this algorithm is O (|R| |E|) time.

2.4 Processing of Path Queries Using Suffix
Array

In this paper (Kim, Sept. 2009) [6], Kim proposed
an improved indexing and query processing
approach to improve the performance of Matono’s
approach (A. Matono, Sept. 2003). In this paper
some of the problems in the (A. Matono, Sept. 2003)
has been highlighted and fixed. The one of the major
problems was, Matono et al. deleted the repeated
suffixes due to which many of the backward queries
missed some results. To handle this problem Kim
suggests not deleting the repeated suffixes. Further
Kim has proposed new indexing approach and
computed the LCP (Longest Common Prefix) along
each suffix to reduce the repeated pattern matching.
Kim has created several Suffix Arrays instead of one
by separating them according to their start value and
store these start values in separate array called

‘keywords’. The keywords Array is connected to two
arrays, one Suffix Array and another LCP Array.
Now the path expression of the query will be
searched in keywords Array with reduced cost
instead of whole Suffix Array as in Matono’s
approach. The LCP Array is used to search for the
other suffixes that are same as path expression. As it
contained the common prefix of last Suffix Array of
itself, hence there is no need to perform repeated
pattern matching over first matched Suffix Array.
This reduced the cost of time consuming pattern
matching. To process the Query an algorithm
devised that can return the query result in O(log n)
time.

2.5 High Performance RDF database (HPRD)

Baolin Liu [4] & Bo Hu [20] has introduced a
high-performance storage system for RDF data in
HPRD. They have used indexing approach and
worked of query evaluation. HPRD combines
different techniques of other databases. Three types
of indices Triple index, Path index, and Context
index have been used in HPRD. In HPRD the nodes
of RDF Graph are index with increasingly
monotonically assigned OIDs (Object Identifiers),
this makes the processing over nodes (e.g.
comparison) easy and saves time (as OIDs are
smaller than nodes labels itself). Triple index has
been used for the efficient retrieval of the triples.
The RDF Graph is divided into four subgraphs to
manage the semantic information and maintain
indexing for each subgraph, i.e., schema graph, class
graph, property graph, general resource subgraph.
For each subgraph the indexing is maintained e.g.
Schema index for schema data to answer the class
and property based queries, Class index for hierarchy
of class, Property index for hierarchy of property etc.
A heuristic based algorithm is used to select for a
specific strategy, a join order selection is needed.
The algorithm tries to make the interval result set
against the join processing as small as possible
through statistical analysis over triple patterns.

2.6 Summary

All the schemes introduced have their own pros
and cons in terms of problem dividing and
computational complexity. However, all the schemes
don’t take into consideration the nature of data being
queried. Hence, if a technique offers a better space
complexity, computational complexity is
compromised and vice versa. Proposed scheme
optimizes the querying based on the data nature, that
is dense or sparse. Consequently, the proposed
algorithms offer a reduced space and time
complexity.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7601

3. PROPOSED WORK

A new method to store and query RDF data is
proposed, depending on the nature of data (if graph
is dense then the Adjacency Matrix and if graph is
sparse then Adjacency Lists). To get an efficient
solution to the problem of Querying RDF data, we
have gone through different stages, described next.

3.1 Storing RDF data using Adjacency Matrix

Firstly, the RDF data is stored in the form of
Adjacency Matrix (Morin, 2012) [11]. The
Adjacency Matrix is a nxn matrix (where n is number
of nodes), with rows and columns labeled by graph
vertices. Adjacency Matrix describes a graph by
representing which vertices are adjacent to which
other vertices, the cell of Adjacency Matrix is filled
with the label of the edge. There are already ways to
store RDF data (David C. FAYE, 2012) [12].
3.1.1 Creating Adjacency Matrix

We have considered a small RDF Graph given in
Figure 1, as an example to show the functioning of
our technique. This RDF Graph is a representation
of RDF data, where nodes represent the ‘Subjects’ &
‘Objects’ and edges’ label represent ‘Property’. The
ovals in graph in Figure 1 are resources and the
square are the literals. This small RDF Graph when
stored in Adjacency Matrix is shown in the Figure 2.
As there are 9 nodes in graph hence Adjacency
Matrix create against it is a 9×9 square matrix. We
put nodes on the both sides of Matrix. To fill
Adjacency Matrix, the name of nodes at row and
column is checked. If nodes are connected then the
label of the edge is written in the corresponding
matrix’s cell, else “0” is written. For our
convenience 0’s is omitted for clarity.

Figure 1: RDF Graph

Consider the Query given in the Figure 3, in the
RDQL format (Seaborne, 2004) [13]. This query will
retrieve all those resources which are reachable from
a given path pattern given in the query in the form of
series of triples. The Path Pattern is the condition in
the ‘where clause’ of the above query that is,
'r1.p3.r5.p5.?x'.

Figure 2: Adjacency Matrix of RDF Graph

Figure 3: Query

The path pattern can be represented with the graph
and is called Query Graph. The Query Graph for the
above query is given in the Figure 4. As the last node
is unknown i.e. what resource is it (it will be
retrieved by processing the query) so it is left blank
to make prominent.

Figure 4: Query Graph

The Adjacency Matrix for the Query Graph can be
created in the same way as for RDF Graph. First, the
number of nodes are extracted, as there are 3 nodes
and hence 33 matrix will be created and filled
accordingly. The Adjacency Matrix for the Query
Graph is shown in the Figure 5.

Figure 5: Query Adjacency Matrix

3.1.2 Query Processing
The Adjacency Matrix of the Query (given in

Figure 5) will be matched with the Adjacency Matrix
of the RDF Graph (given in Figure 2). If the
corresponding cells of both matrices (having same
values) are matched then the value of last cell in the
Adjacency Matrix of Query Graph will be extracted

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7602

not yet compared and its corresponding nodes will be
searched from the Adjacency Matrix of RDF. These
nodes will be the answer to the query. The Algorithm
shown in the Figure 6 is used for answering the
query. Two 1-D Arrays are used to store the nodes
of RDF and Query Graph. As seen in Figure 7, r [9]
is used to store nodes of RDF Graph (Figure 1) and
q [3] is used to store the nodes of Query graph
(Figure 4). The q [], stores all the nodes of query
graph and r [] stores the nodes of RDF Graph. The
Algorithm1 (Figure 6) has three parts. First part
compares r [] & q [] and stores the index of r [] in M
[], a matched Array. For example, for r [] & q [] given
in Figure 7 the Matched Array is shown in Figure 8.

Figure 6: Algorithm for Query Processing

The second part of Algorithm 1 uses these indices
of M[] to compare R[][] and Q[][] (2-D arrays to
store RDF Graph and Query Graph respectively).
The Algorithm exit when query’s triple is not found.
The third part of the Algorithm is used to find out the
resulting resource. This part uses a for loop and

iterate through every node of RDF Graph to find out
the desired resource.

3.1.3 Time and Space Complexity
The Time Complexity of this algorithm is O(m×n)

but the Space Complexity is O(n2), where m is the
number of nodes of Query Graph and n is the number
of nodes in RDF Graph. This Algorithm handles the
path queries (Forward Path Query). Path query is
such a query in which a path is given in the form
series of triples and a part of it needs to be found.
Considering the first part of the algorithm, there is
loop run over the all nodes of the RDF Graph. If the
graph is large then this will take more time to search
the relevant node. To find out the index (of matched
resource) in the RDF nodes, we can apply hashing
which will give index of the desired node in constant
time. However, an extra space will be used there but
efficiency will be improved a lot. The collisions will
not occur as Minimal Perfect Hash Function (Anon.,
2012) [14-18] is used (each key can be retrieved
from the table with a single probe). Hence, this will
save the storage and decrease the Time Complexity,
too.

Figure 7: Arrays used to store nodes of Graph and Query

0 4=M[2]

[0] [1]

Figure 8: Matched Array

3.1.4 Improving Algorithm by Adding
Hashing

The Algorithm-1 has been improved by using the
Hash Table to search out the index of query resource
in Graph. The Algorithm shown in Figure 9, uses the
Hash Map array (as shown in Figure 10) to find out
the index of the resource. Hence, it can be observed
that the Time Complexity has been reduced. In fact,
it will increase the Space Complexity to some extent
but it can be compromised due to the achievement of
constant search time. For doing this another
advantage is that there is no need to produce
Adjacency Matrix for the Query and will save space,
too. Now, triples can be searched directly from
query. As it can be seen in the lines 1 to 4, where
each query’s Triple will be extracted and its index
from the Hash Map [] will be extracted. Now, there
is no need of the first part of algorithm 1.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7603

Figure 9: Algorithm using Hash Map

Figure 10: Hash Map

The time complexity of the algorithm 2 is O(m×n),
where m is the number of Query Triples and n is the
number of nodes in the RDF Graph. In the procedure
findresource(), the Algorithm 2 iterates through all
the nodes of the RDF Graph to find out the missing
object of the triple (this Time Complexity is in worst
case). As the RDF Graph is made up of millions of
nodes and to search for a specific property against
each node will have to search for the all the nodes of
the Graph and will take time. Hence there is a dire
need for such a solution that can reduce this search.
The solution to this problem is to use another
Adjacency Matrix for the property, which is further
discussed in the next session.
3.1.5 Improving by using Property Adjacency
Matrix

Algorithm-2 there is another extra for loop being
used to search for the desired resource (line 17 to 22).
This loop will run number of RDF Graph’s nodes
times in worst case. To handle the issue of Time
Complexity, one more Adjacency Matrix for
properties will be used shown in Figure 11. At its
row side the properties are placed and the subject of
property will be given on the column side. The
Adjacency Matrix will be filled with the object of
property (that can be approached through that
property). In this way the desired node can be
answered in constant time. To implement this

approach, we must create one more Hash Table is
created that is for properties, to find the index of
desire property at Adjacency Matrix. We named the
Adjacency Matrix of property as P [] [] and Hash
Table as Hash Map Pro [] as shown in Figure 12.

Figure 11: Adjacency Matrix for property

Figure 12: Hash Table for Properties

Now a new algorithm has been developed (see
Figure 13) in which there is no extra for loop is used
and the relevant resource or node can be searched in
constant time. We should only extract the index of
property and subject first and then by extract its
object from the Matrix in constant time. But there is
an issue that much of the space is being wasted.

Figure 13: Algorithm using Adjacency Matrix of

Property

The time complexity is reduced to O(m) where m
is the number of triples in Query. Now it comes to

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7604

notice that Time Complexity has reduced to its most
extent. Now to search for the specific object
connected with property it does not need to iterate
through all the nodes. The Adjacency Matrix of
property will provide the missing object. No doubt,
this has increased the Space Complexity. Space
Complexity has doubled the Space Complexity of
Algorithm-2. Here it can be seen that much of the
cells of the Adjacency Matrix are not used as with a
specific property there can’t be very large number of
nodes. Further, it can also be noticed that most of the
cells are not being used and high space is used for a
simple RDF Graph. Considering the real time RDF
Graph then lot of space would be required. As a
solution to this aspect, Adjacency Lists are used.

3.2 Storing RDF data using Adjacency List

Due to Adjacency Matrix lot of space is used,
hence as a solution Adjacency Lists are used.
3.2.1 Creating Adjacency List

By using the Adjacency Matrix, the Path queries
in a linear time can be answered but there is lot of
space used in it. To save the space Adjacency Lists
[19] have been used. The example graph stored in
Adjacency List shown in the Figure 14. Adjacency
List of graph properties is also produced in a way
that, Master List of all the properties is produced and
the Subjects and Objects adjacent to those Properties
are stored in next Adjacent List (in Figure 15).
3.2.2 Query Processing

It is quicker to find out if there is an edge between
two vertices using an Adjacency Matrix (only should
look at one item), but in an adjacency list we must
look at all items in a node’s next list to see if there is
an edge to another node. Hence, as we have reduced
the space but the Time Complexity will be lost (but
little). One more for loop to find the desired property
in the node’s adjacent lists will have to be used,
which will make the Time Complexity to two nested
for loop, but these two for loop are not much longer.
The Algorithm shown in the Figure 16 is used to
answer the query. It extracts each triple and then
extract subject, predicate and object of the triple and
start searching the path query. For each triple, it first
finds the subject in Master Adjacency List. To
quickly find the subject the Hash Table will be used
and the in that desired subject it will find the object
over the whole next list of that subject and return
property. The property will be matched to the
property of query. If the properties match it will go
to the next triple. For the unknown Object it will
search it in the property Adjacency List and search
for the desired object and output that.

Figure14: Storage of Graph using Adjacency Matrix

Figure 15: Adjacency List of Properties

Figure 16: Algorithm for Adjacency List

The Time Complexity of the Algorithm 4 is
O(m×l), where m is the number of triples in query

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7605

and l is the number of objects adjacent to the property
(elements in next list). As the Time Complexity has
increased, but there is lot of Space Complexity
reduced. But, if the graph is dense then this storage
mechanism will take more space than Adjacency
Matrix. To save space Time Complexity a little
compromise can be made. If one node does not have
much Adjacent nodes (i.e. sparse graph) then this
mechanism will take very less time to find out either
triple of query existed in the triples of RDF Graph
exists or not, as the inner loop will run just the
number of time the objects or subjects adjacent to the
subject of triple.
3.2.3 Using Property Adj. Lists with Adj. Matrix

First, Adjacency Matrix is used makes aware that
it wastes space in case we have sparse graph and
suggests for the Adjacency Lists, which saves space
but increases the Time Complexity. In case of
Adjacency Matrix, two Adjacency Matrices have
been used, one for resources and one for property.
The Property Adjacency Matrix take lot of space and
many of its cells are not used, as for a given property
there can’t be much resources add. Hence, it’s not
good approach to use Adjacency Matrix. As a
solution we can use Adjacency List for property
along with Adjacency Matrix approach. Taking the
example graph and its equivalent Adjacency Matrix,
instead of creating the Adjacency Matrix of
properties an Adjacency List can be created as shown
in Figure 15. The Figure 17 shows the scenario all
together.

p1 p2 p3 p4 p5 p6 n1 n2 n3

[0] [1] [2] [3] [4] [5] [6] [7] [8]

=Hash Map Pro[]r1 r2 r3 r4 r5 r6 kr jp cn

[0] [1] [2] [3] [4] [5] [6] [7] [8]

=Hash Map[]

a) RDF graph

b) Query c) Adjacency Matrix d) Property Adjacency List

e) Hash Map of Adjacency Matrix f) Hash Map of Property Adjacency List

Figure 17: Adjacency Matrix with Adjacency List

Now the query can be answered by increasing a
Time Complexity little bit by saving lots of space.
The Algorithm to answer the query is given in the
Figure 18. Firstly, the subject, property and object
are extracted from Triple. Then for whole triples
(having subject, property & object known) of query,
the Adjacency Matrix is searched out to check either
query triple matched graph triple or not. When such

triple extracted that is having missing object, the
Algorithm search it in the Adjacency List of
Property. Here one more for loop is needed, which
iterates the number of object’s or subject’s times that
are connected with the property (not very long for
loop). The Time Complexity of this Algorithm is
also O(m×l), where m is the number of triples in
query and l is the number of objects adjacent to the
property. But as compared to Adjacency List there is
no first for loop is need for each of the triple to find
that either the triple exists in the RDF Graph or not,
it will find this in constant time O(1).

Figure 18: Algorithm

3.3 Creating Adjacency Matrix directly from
Triples

The Adjacency Matrix can be created directly
from the Triples. There is no need for Graph
representation of the RDF data (made up of number
of Triples). Instead of creating Graph first and then
creating Adjacency Matrix or list, we can directly
create the Adjacency Matrix of the RDF data. This
will save lots of space; almost half of the one
discussed in previous section.

To understand this idea let us take an example
RDF data as shown in the Figure 19. Here we are just
showing the Triples in the RDF data (where first
elements are subject, second are property & last are
the objects). To create the Adjacency Matrix of this
data we will follow some steps. Firstly, all the
distinct subjects i.e. <stu> <Thesis> and <pro> will
be extracted in this case. Then we will extract all of
the distinct objects i.e. <MS(CS)> < Thesis> <rdf
data> <pro> and <dean>.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7606

Figure 19: Example RDF data

Now create Adjacency Matrix by taking subjects
on the row side and objects on the column side and
filling it with the property between subject and
object. The Adjacency Matrix of the Example RDF
data in the Figure 19 is shown in the Figure 20. The
roughly estimated Space Complexity of the
Adjacency Matrix is 15 cells (rows = 3 and columns
= 5, hence 5 × 3 = 15). For clarity purpose, the cells
have been kept vacant that have no property instead
of filling it with zeros.

Figure 20: Adjacency Matrix of RDF data

If the Graph representation of RDF data is taken
and made its Adjacency Matrix then it will take more
space. This can be better understood
diagrammatically. The graph representation of the
RDF data in the Figure 19 is shown in the Figure 21.
Now when storing this graph in Adjacency Matrix
more space will be used which measured in cells will
be 36 (rows = 6 and columns = 6, hence 6 × 6 = 36).

Figure 21: Graphical representation of RDF data

Figure 22: Adj. Matrix of graph

Hence, it can be concluded that lots of space can
be reduced if the Adjacency Matrix will be created
directly from the triples. If we first convert RDF data
into graph and then produce Adjacency Matrix of
graph it will wasted lots of space as many of the
subjects and objects will be repeated for none.

The Algorithm used to create Adjacency Matrix
from RDF data has been shown in the Figure 23. It
first extracts all distinct subjects and objects and then
declares Adjacency Matrix of number of distinct
subjects and objects. It then populates the matrix by
traversing all the triples of RDF data.

Figure 23: Algorithm for creating Adjacency Matrix

In the Adjacency Matrix now it is apparent that
there are different subjects and different objects at
the dimensions of the Adjacency Matrix. Therefore,
there is need of two Hash tables (separately for
subjects and Objects). The two Hash Tables for
subjects and objects are shown in the Figure 24 and
25.

Figure 24: Hash Table for Subjects

Figure 25: Hash Table for Objects

Now, a slight change needs to be made in the
Algorithm 5 in the lines # 6 and 7. As separate Hash
Tables for Subjects and Objects have been created,
therefore the index from these arrays can be created.
The new Algorithm is shown in the Figure 26. When
the Query will be posed, the indices of the subjects
and objects will be extracted from the Hash Map Sub
[] and Hash Map Obj [] and then will be searched
in the Adjacency Matrix.

3.4 Creating Adjacency List directly from Triples
To create Adjacency List directly from triples, we

will first extract all the subjects from the triples and
then we will create Hash Table of it as shown in
Figure 24. Next, we will create Master Adjacency
List for each subject. Now, we will traverse each
triple one by one and if it has the subject match with
the subject of Master list, we add its property and

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7607

object in the next list of the subject in Master
Adjacency List.

Figure 26: Revised Algorithm

3.4.1 Handling Backward Path Queries
The query as shown in the Figure 3 is a Forward

Path Query, firstly the triples are given and at the last
triple the object is unknown. There are also
Backward Path Queries, in which at the start the
subject is not given. The one of the examples of such
Query is given in the Figure 27. In this query, in the
first triple the subject is unknown and subject is to be
found out which has a path in forward direction
(given in the next triples of where clause). All
resources (subjects) are to be found out that precede
the path pattern given in a query. The sequence of
triples made up the path pattern. To answer the
Backward Path Queries we have develop another
Algorithm as shown in the Figure 28.

Figure 27: Backward Path Query

It is same as the Algorithm for Forward path query
(Figure 28) except the second part of Algorithm. In
the second part when the subject of the triple is not
known, the algorithm checks in the Property
Adjacency List. It first extracts the object of the
query triple and searches it in the next adj. list of
property. Where the object is matched against that
object it extracts the subject. That extracted subject
is the desired answer of the query. As shown in the

Query (given in Figure 27), the first triple has
missing subject. This subject is found by this
Algorithm.

Figure 28: Algorithm for Backward Query using

Adjacency Matrix

If the data is dense, means for subjects and objects
there are many properties then the data will be stored
in form of Adjacency Matrix and will use the
Algorithm 6. But if the data is sparse, then using
Adjacency Matrix lots of space would be wasted and
data is to be stored in Adjacency List. To answer the
query when data is stored in Adjacency List then the
new algorithm would be needed that is given in the
Figure 29. It works same as the above algorithm the
only difference is in the first part. The complete
triples are searched in the Adjacency lists and when
there came any triple with missing subject then the
second part would be used to search for the relevant
subject. The Time Complexity of both algorithms is
same discussed earlier.

3.5 Discussion
Both above techniques proposed will be used but

depending on the situation. When the graph
representation of RDF data is sparse then the
Adjacency List will be used to store the RDF data
and if the representation is dense then Adjacency
Matrix will be used for storing the RDF data. The
Adjacency Matrix for dense graph is used because

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7608

there can be high number of properties between the
subjects and objects and hence, many of the cells will
be filled and there will be very less cells having ‘0’.
Therefore, it will be good option to use the
Adjacency Matrix instead of Adjacency List. As in
this case the Adjacency List will take space almost
equal to the Adjacency Matrix (Space Complexity
becomes high) and having low efficiency. Hence,
Adjacency Matrix will suit more than the Adjacency
List. But when the graph is sparse i.e. there are very
less properties between subjects and objects then the
Adjacency Matrix will waste space and Adjacency
List as storage mechanism will suit more.

Figure 29: Algorithm Backward Query using Adjacency
Lists

In both cases either the Adjacency Matrix or the
Adjacency List, the Property Adjacency Lists has
been used because if store it in Adjacency Matrix
then it will waste lot of space as there are always not
very much nodes connected with properties in both
situations (dense or sparse graphs). In many of the
situations the some of the properties can have same
objects and same subject then it will not be possible
both and one will be over write. Hence in both

storing methods the Property Adjacency List would
be used.

Secondly, by using a new method to create the
Adjacency Matrix a lot of the space can be saved. In
RDF Graph the subjects and objects have properties
which can be considered and only the subjects and
objects which have the properties need to be used to
create the Adjacency Matrix not the whole of the
subjects and objects need to be considers in each
dimension of the Matrix.

4. RESULTS AND DISCUSSION

In this section, various example case studies are
taken to investigate the performance of proposed
scheme.

4.1 Example 1
Consider Example RDF data at the Figure 30. The

graphical representation of this data as shown in
Figure 31 is sparse and the number of properties
between nodes is not very high.
4.1.1 Storing the RDF data using Adjacency
Matrix

Now, to store this data, we have used both
techniques Adjacency Matrix and Adjacency Lists
(as proposed). Firstly, the data is stored in
Adjacency Matrix directly from the RDF data
instead of its graphical representation. We created
Adjacency Matrix by using Algorithm at Figure 23
which is shown in the Figure 32. Firstly, all the
distinct subjects and objects are extracted from the
RDF data (Figure 30) are shown in the Figure 32. We
have created hashing over the subjects and Objects
such that they can be stored in the Adjacency Matrix
according to indices of Hash Tables. The Adjacency
Matrix is created by taking subject at row side and
objects at column side (shown at Figure 33).

Figure 30: Example RDF data 1

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7609

Figure 31: Graphical Representation of Example 1

Figure 32: Extracted Subjects and Objects from Example
RDF data 1

Figure 33: Adjacency Matrix of Example 1

The subjects and objects are stored according to
indices of Hash Table. We can see that for example
‘stu 1’ has index ‘[0]’ in the Hash Map Sub [] and in
the Adjacency Matrix it is put on the same index. We
did this to retrieve the indices of subject and object
(of Triple) in constant time. After storing data, to
answer the query, we also need Adjacency List of
properties. The Adjacency List of properties is
created by extracting all the properties first then put
its adjacent subjects and objects against these
properties shown in Figure 35. After extracting the
properties, we also produce has Hash Table of it as
shown in Figure 34.

Figure 34: Extracted Properties of Example 1

The properties are hashed so that we can find the
relevant property quickly (in constant time). When
the property in the Query need to be matched with
RDF data it will first be searched in the Hash Map

Pro[], and the index of property will be return that
will point us to the property in the Adjacency List of
Property. As we have created the Adjacency List of
properties according to the indices in the Hash Map
Pro[].

Figure 35: Adjacency List of properties

4.1.2 Query Processing
The data is stored now and we should run the

query. For this purpose, we have taken an example
query which is shown in Figure 36. This is a
Forward Path Query in which the whole triples are
given first then and a triple with missing object is
given. The result of the Query is the missing object
which is found out by implanting our algorithm at
Figure 26 (Algorithm 6). According to our
algorithm, we will extract all the triples one by one.
For the whole triples of query, we will match these
triples with triples of RDF data stored in Adjacency
Matrix. When a triple with missing ‘object’ comes,
we will use then Adjacency List of properties to find
out the relevant object.

Figure 36: Query 1

When the Algorithm 6 (Figure 28) starts for the
query, it first extract triple (line # 1) of Query.
According to the Query, the triple will be,

(<stu 2> <regstrd> <Ontology>)

The subject, object and predicate or property will
be extract next and stored for further processing (line
2 to 4).

sub stu 2, pro regstrd & obj Ontology

Now the Object of the Query will be checked (line
5) either it is known or not. As it is known, now
we will check is this Query Triple exists in the RDF
data or not. To do this we extract the indices of
subject and object (from Hash Map Sub[] & Hash
Map Obj[] respectively) and put these in the indices
of Adjacency Matrix (line # 6 & 7).

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7610

row 1
col 5

These indices gave us the location of triple in the
RDF data. We will switch to the location R [1][5] (R
is the name of the Adjacency Matrix of RDF data)
and against that cell the property will be matched
with the property of the Query (line # 8). If it
matched, we will extract next triple of query to be
matched. If it will not match we will exit Algorithm
as there is no use to search further. When the triple
extracted with unknown Object the second part (else
if) of the Algorithm will be run. It is used to find the
desired Object. In this case, Query with missing
object is:

(<pro 1> <is> <?x>)
sub pro 1, pro is & obj ?x

Now, instead of Adjacency Matrix the Adjacency
List of Properties will be searched. The index of the
property of Query will be extracted (line # 13) and
tells where will be that property in the Adjacency
List.

pro.idx 4

It will tell us the location of the property in the
Adjacency Master List. Now, in the next list of
property we will search the subject and against that
subject extract the Object that will be the answer for
the Query. The answer to the Query is ‘dean’.

<stu1> <regstrd> <Ontology> <Ontology>
 <taught by> <pro1> <pro 1> <is>

<dean>

We have handled the Backward Path Queries too
in our proposed work. It will be processed same as
the Forward Path Query, with a single difference that
now the subject will be extracted. One of the
Backward Path Query is given in the Figure 37. For
whole triples, it will search in Adjacency Matrix and
for the triple with missing ‘subject’ it will search in
Adjacency List of properties in a way that it will
extract the property of the triple. For that property,
in the Property Adjacency List search object which
will match with the object of RDF data and extract
‘subject’ against that object.

Figure 37: Query 2

4.1.3 Storing the RDF data using Adjacency
List

The other technique of storing data is using
Adjacency List. Hence, we have also stored the
same data in Adjacency List as shown in Figure 38.

The same queries will also run on this data structure
also and produce results. To store data, firstly all the
subjects will be extracted from the RDF data and
Hash table will be created as shown in the Figure
32(a). According to this the Master Adjacency List
will be created. Then the adjacent Objects (with their
property) to each subject, will stored in the next list
of that subject.

Figure 38: Adjacency List of Example 1

4.1.4 Query Processing
The Algorithm 5 at Figure 18 will be used to

answer query when data is stored in Adjacency List.
We have taken the Query 1 (Figure 36) as an
example. The Algorithm is same as the Algorithm 6,
with only difference is in the first part of Algorithm
in which the Adjacency List is use instead of
Adjacency Matrix. The whole triples will now be
searched in Adjacency List. In Adjacency List, it
will search firstly in Master Adjacency List and then
its next lists. For this there a for loop is needed which
will decrease the efficiency little. For the missing
triple, it will search in the same manner as it is being
done Adjacency Matrix’s method.
4.1.5 Comparison of both methods

As the data which have taken as an example is
sparse in nature, therefore, the later technique
(storing data using Adjacency List) will be
preferable in a sense that using Adjacency Matrix
wastes a lot of space. This can aptly be seen in the
Figure 33. Most of the cells are not utilized because
there are very less properties between the subjects
and objects. By using Adjacency List, we can save
a lot of space but with a little compromise of time
efficiency.

4.2 Example No. 2
We have taken such type of data in example 2 of

case studies (whose graphical representation is
dense). The example data is shown in Figure 39.

When this data is represented through graph, it can
evidently be seen that it is a dense graph as shown in
Figure 40.

We stored this data both in Adjacency Matrix and
Adjacency List shown in Figure 41 (a) and Figure 43
respectively. Firstly, we extracted subjects and

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7611

objects, produce their Hash Tables (as shown in
Figure 41 (b) & (c)) and then produce Adjacency
Matrix of it.

Figure 39: Example RDF data 2

Figure 40: Graphical representation of Example data 2

Figure 41: Storage of Example 2

To answer the missing part of query, the
Adjacency List of properties (for both storage
methods) has been created and shown in Figure
43(a). The Hash Table for properties has been shown
in Figure 42(b). It will be used to produce Master
Adjacency List.

After analyzing the comparison between both
storage methods, it can explicitly be viewed that in
this case Adjacency Matrix is more efficient than
Adjacency List considering the both aspects of Time
and Space complexities.

Figure 42: Storing Properties

In Figures 44 and 45, the Forward and Backward
Path Queries have been shown. Both queries can be
answered by both techniques (storing either through
Adjacency Matrix or through Adjacency List).

Figure 43: Adjacency List of Example 2

Figure 44: Query 3

The efficiency of algorithms (Figures 25 & 26) is
evidently more executable in Adjacency Matrix
rather than in Adjacency List.

Figure 45: Query 4

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7612

Considering the above discussed case studies, it
can be concluded that when we have a data, we will
check the nature of the data and then store it
accordingly.

4.3 Example No. 3

Now, we have taken as an example from the one
of the research papers (Kim, Sept. 2009) of our
Literature Review as shown in Figure 46. This is a
graphical representation of RDF data.

Figure 46: Graphical Representation of data

In the proposed technique we used RDF data to
produce Adjacency Matrix. Here from the graph we
produce the RDF data of our own as shown in the
Figure 47. Now we will follow all the steps of our
technique to find the result of the Query of that
research paper. For the clarity purpose, we have
numbered the properties.

Figure 47: RDF data Example 3

4.3.1 Storing the RDF data using Adjacency
Matrix

Now, we will store this data in Adjacency Matrix
using Algorithm at Figure 33. First, we will extract
all the distinct subjects and objects from the RDF
data (Figure 47) are stored them by creating hashing
over the subjects and Objects (shown in the Figure
48). Then, we will create Adjacency Matrix
according to indices of Hash Tables and populate it
with properties. We have taken the subjects at row
side and objects at column side (shown at Figure 49).

4.3.2 Query Processing
The data is stored, now we will query it (Query 5

in Figure 50). By using Algorithm 6 first, we will
extract all the triples of query one by one. For the
complete triples of query, we will match these triples
with triples of RDF data stored in Adjacency Matrix.
As triple with missing ‘object’ extracted, we will use

then Adjacency List of Properties to search out the
desired object.

Figure 48: Extracted Subjects and Objects from RDF
data Example 3

Figure 49: Adjacency Matrix of Example RDF data 3

Figure 50: Query 5

Algorithm first extract first triple (line # 1) of
Query, which is

(< r1 > < p3 > < r5 >)
The subject, object and predicate or property of the
corresponding triple will be extracted next and stored
(line # 2-4).

sub r1 , pro p3 & obj r5
Now the Object of the Triple (as above) will be
checked (line # 5) either it is known or not. As it is
known, now we will check either this Query Triple
exists in the RDF data or not. We then extract the
indices of subject and object (from Hash Map Sub[]
& Hash Map Obj[] respectively) and use these
indices for Adjacency Matrix (line # 6 & 7).

row 0
col 3

Now check for the location R [0][3] (R is the
Adjacency Matrix of RDF data) the property. If
matched with the property of the Query Triple (line
8). If not matched we will exit Algorithm without
proceeding further. When such triple extracted
having Object unknown the second part (else if) of
the Algorithm will be executed. This part is used to
find the unknown Object. Here the Query Triple with
missing object is as below.

(< r5 > < p6 > < ?x >)

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7613

sub r5, pro p6 & obj ?x
Now, instead of Adjacency Matrix the Adjacency

List of Properties will be used to find the missing
‘Object’. The index of the property of Query Triple
will be extracted (line # 13) from the Hash Map Pro[]
(Figure 51) and tells about the property in the
Adjacency List of Properties (Figure 52).

pro.idx 4

Figure 51: Hash Map of Properties

This index will tell us the location of the property
in the Master List of Adjacency List. Now, in the
next list[] of this property we will search the subject
and for this subject extract the Object that is will be
the result of the Query. The result of the Query 5 is
‘r6’.

(< r1 > < p3 > < r5 >) (< r5 > < p6 > < r6 >)

Consider the Backward Path given in the Figure
53. It will be processed same like Forward Path
Query, with one difference that now the subject will
be searched out. The Algorithm at the Figure 39 will
be used to find the missing ‘Subject’ of the Query 6.
For complete triples, it will search in Adjacency
Matrix for the triple with missing ‘subject’ it will
search in Adjacency List of properties in a way that
it will extract the property of the triple. For that
property, in the Property Adjacency List searched for
given object in triple of query, which will be matched
with the object of RDF data and if found against that
object extract ‘subject’.

Figure 52: Adjacency List of Properties

Figure 53: Query 6

4.3.3 Storing the RDF data using Adjacency List
Now we will store the same data using Adjacency

List as shown in Figure 54. Same queries will also
run on this data structure also and produce results.

Figure 54: Adjacency List of Example 3

4.3.4 Query Processing
The Algorithm 5 will be used for answering the

query, when data is stored in Adjacency List. We
have taken the Query 5 as an example. The
Algorithm is same as the Algorithm 6, with only one
difference in first part of Algorithm. In the First part
of Algorithm 5 the Adjacency List is use instead of
Adjacency Matrix. The whole triples will now be
searched in Adjacency List. For searching in
Adjacency List, it will be first searched Master
Adjacency List and then its next lists. Hence, due to
this there is a for loop used, which will decrease the
efficiency (but little). For the triple with missing
Object, it will search in the same manner as it is
being done in Adjacency Matrix Algorithm (using
Adjacency List of Properties). It can be seen that as
the data is sparse, the Adjacency Lists fits more to
store data.

5. CONCLUSION

In this research, the basic concern is optimizing
storing and retrieval of RDF data, which is the format
to describe the resources over the web (Semantic
Web). The Semantic Web is a web with semantics
that describe things in a manner that can be easily
processed as compared to WWW (World Wide
Web). The RDF provides a method through which
this becomes possible. Now many of the data on the
web is being storing in RDF format. There is a
considerable research available on storage of RDF
data and to query RDF data. Many the existing
techniques that used the RDF data are studied and
critically analyzed. The proposed techniques
perform way better than the existing techniques in
terms of space and time complexity. There is not
much offline work. Two solutions are derived that
can be fitted in desired situations. RDF Graph are
investigated and categorized as sparse and dense.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7614

Consequently, two storage mechanisms were
proposed. If the data is dense then Adjacency Matrix
was suggested and in case of sparse data Adjacency
Matrix was suggested to store RDF data. Then based
on the storage of RDF data Algorithms are devised.
Moreover, an improved method to store RDF data in
Adjacency Matrix directly from the triples is
proposed. Finally, the case studies are presented to
show the effectiveness of the proposed techniques
and comparison with other state of the art techniques
is given. In future, further optimization will be
investigated in contrast to various query
optimization techniques.

REFERENCES
[1]. Y. Yan, C. W. A. Z. W. Q. L. M. a. Y. P., 2009.

Efficient Indices using Graph Partitioning in
RDF. s.l., s.n.

[2]. Akiyoshi Matono, T. A. M. Y. S. U., 2005. A
Path-based Relational RDF Database. s.l., The
16th Australasian Database Confrence.

[3]. Shady Elbassuoni, R. B., 2011. Keywords
search over RDF data. Scotland, UK., s.n.

[4]. Baolin Lui, B. H., 2010. HPRD: A High
Performance RDF Database. International
Journal of Parallel, Emergent and Distributed
Systems, Volume 25.

[5]. Matono, e. a., Sept. 2003. An Indexing Scheme
for RDF and RDF Schema based on Suffix
Arrays. s.l., First International Workshop on
Semantic Web and Databases (SWDB).

[6]. Kim, S. W., Sept. 2009. Improved Processing
of Path Query on RDF Data Using Suffix
Array. Journal of Convergence Information
Technology, Volume 4.

[7]. Y. Yan, C. W. A. Z. W. Q. L. M. a. Y. P., 2008.
“Efficiently querying rdf data in triple stores,
Beijing, China.: s.n.

[8]. Anon., 2013. SPARQL Query Laguage for
RDF. [Online]http://www.w3.org/TR/rdf-
sparql-query

[9]. Hutt, K., 2005. A Comparison of RDF Query
Languages. 21st Computer Science Seminar.

[10]. Manber, U. M. E., 1993. Suffix Arrays: A New
Method for On-Line String Searches. SIAM. J.
on Computing, p. 935–948.

[11]. Morin, P., 2012. Open Data Structures. Edition
0.1E ed. s.l.:s.n.

[12]. David C. FAYE, O. C. ,. G. B., 2012. A survey
of RDF storage approaches. ARIMA Journal,
Volume vol. 15.

[13]. Seaborne, A., 2004. “RDQL, A Query
Language for RDF". [Online] Available at:
http://www.w3.org/submission/2004/subm-
rdql

[14]. Anon., 2012. Minimal Perfect Hash Functions
- Introduction. [Online] Available at:
http://cmph.sourceforge.net/concepts.html

[15]. Anon., 2013 . SPARQL. [Online] Available at:
http://en.wikipedia.org/wiki/SPARQL

[16]. Anon., 2000. RDF schema. [Online] Available
at: http://www.w3.org/TR/2000/CR-rdf-
schema-20000327/

[17]. Anon., 2013. http://www.foaf-project.org/.
[Online]

[18]. Anon., 2013. Triple store. [Online] Available
at: http://en.wikipedia.org/wiki/Triplestore/

[19]. Abadi, D. J. M. A. M. S. R. a. H. K., 2009. SW-
Store: A Vertically Partitioned DBMS for
Semantic Web Data Management. VLDB
Journal.

[20]. Bo, L. B. a. H., 2007. HPRD: A High
Performance RDF Database. s.l., IFIP
International Federation for Information
Processing.

