
Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7339

APPLICATION OF FITNESS SWITCHING GENETIC
ALGORITHM FOR SOLVING 0-1 KNAPSACK PROBLEM

1KIM JUN WOO
1Associate Professor, Dong-A University, Department of Industrial and Management Systems Engineering,

South Korea

E-mail: 1kjunwoo@dau.ac.kr

ABSTRACT

Fitness switching genetic algorithm is a sort of genetic algorithm, which was initially developed for solving
combinatorial optimization problems with rare feasible solutions. Compared to previous genetic algorithms,
fitness switching genetic algorithm has three distinguishing procedures including fitness switching, fitness
leveling and simple local search, which enable the infeasible solutions to be included within the population.
Consequently, fitness switching genetic algorithm can effectively explore the search space of given
problem by utilizing infeasible solutions, even if it is difficult to find arbitrary feasible solutions. On the
contrary, 0-1 knapsack problem is a well-known combinatorial optimization problem that typically has
many feasible solutions, and this paper aims to apply fitness switching genetic algorithm to solve this
problem in order to investigate applicability of the algorithm. To this end, fitness switching, fitness leveling
and simple local search procedures are tailored to 0-1 knapsack problem, and a revised algorithm structure
is proposed. Consequently, this paper demonstrates that combinatorial optimization problems with many
feasible solutions also can be solved by applying fitness switching genetic algorithm. Especially, fitness
switching genetic algorithm is easy to implement in that it does not require repair or penalization
procedures for handling infeasible solutions.

Keywords: 0-1 Knapsack Problem, Genetic Algorithm, Combinatorial Optimization, Metaheuristics,
Operations Research

1. INTRODUCTION

0-1 knapsack problem (KP) is a classical
combinatorial optimization problem, which is
characterized by n items with non-negative weight

iw s and value iv s (i = 1, 2, …, n), and its

objective is to find the optimal set of items that
maximizes total value under total weight constraint
[1][2][3]. Moreover, this paper assumes 1iw  and

1iv  for all i = 1, 2, …, n , for convenience.

Typically, 0-1 knapsack problem is
formulated as an integer programming model as
follows:

Max. Total Value =
1

n

i i
i

v x



Subject to
1

n

i i
i

w x t


 (1)

}1 ,0{ix ,

where t denotes pre-specified upper bound of total
weight. The optimal solution of 0-1 KP can be
obtained by applying exact methods such as branch
and bound [4], however, approximate methods such
as genetic algorithm (GA) [5] and tabu search (TS)
[6] can be more effective when n is large, due to
NP-hardness of the problem [7][8].

It is straightforward that the feasibility of a
solution of KP is dependent on its total weight, and
a solution of KP is feasible if and only if its total
weight is smaller than or equal to t . In general,
arbitrary feasible solutions of given KP can be
identified easily. Moreover, even if a solution is
infeasible, it is not difficult to convert it into a
feasible one by deleting some items included within
the solution. Therefore, conventional population-
based search methods, such as GA, for solving KP
typically utilize the populations which consist of
feasible solutions.

On the contrary, this paper applies fitness
switching genetic algorithm (FSWGA) to 0-1 KP in
order to effectively utilize the infeasible solutions
during search procedure. Initially, FSWGA was
developed to solve combinatorial optimization

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7340

problems with rare feasible solutions, and it allows
the infeasible solutions to be included in population
[9][10]. In this context, this paper has two main
objectives: (i) To refine FSWGA to deal with
combinatorial optimization problems with many
feasible solutions. (ii) To investigate the
applicability of FSWGA to a wide range of
combinatorial optimization problems.

The remainder of this paper is organized
as follows: Section 2 introduces the key concepts
and features of FSWGA, which is refined to solve
0-1 KP in Section 3. The experiment results
obtained by applying the refined FSWGA to 0-1
KP are reported in Section 4. Finally, Section 5
contains some concluding remarks and future
research topics.

2. RESEARCH BACKGROUNDS

GA is a sort of stochastic search procedure
proposed by Holland [5], and it has been
successfully applied to a wide range of
combinatorial optimization problems during past
decades [11][12]. Typically, GA maintains a
population of solutions for given problem and
explores the search space by applying three genetic
operators, selection, crossover and mutation [13].
Since there are many feasible solutions within the
search space of general combinatorial optimization
problems, conventional GAs generally utilize
populations of feasible solutions. Moreover, the
infeasible solutions generated during search
procedure can be dealt with by applying two
approaches, repair and penalization [11]. Note that
repair procedure is used to convert an infeasible
solution into a feasible one [14][15], while the role
of penalization is to decrease the fitness value of
infeasible solution [16][17][18]. However,
designing repair or penalization procedures can be
non-trivial task for some problems. Furthermore,
such conventional GAs cannot deal with
combinatorial optimization problems with rare
feasible solutions effectively.

On the contrary, FSWGA is developed to
solve combinatorial optimization problems with
rare feasible solutions, such as maze-type shortest
path problem (M-SPP) [9][10]. M-SPP is a variant
of classical shortest path problem (SPP), which is
associated with maze-type network with many
dead-ends. Since it is not easy to find arbitrary
feasible paths for such networks, FSWGA allows
infeasible solutions to be included within
population and provides three distinguishing
procedures, fitness switching, fitness leveling and
simple local search. Among them, the most

important procedure is fitness switching, which is
used to compute the fitness values of feasible and
infeasible solutions in different manners. Let’s
assume that the fitness value of a solution s is

()fitness s if it is feasible, while the solution has

fitness value ()fitness s if it is infeasible. Fitness

switching procedure of FSWGA suggests that
()fitness s should be inversely proportional to

()fitness s as follows:

1

()
()

fitness s K
fitness s


  (2)

Note that the term K = 1 for the initial

version of FSWGA, developed to solve M-SPP.
It is straightforward that fitness switching

operation should satisfy

() ()fitness s fitness s  . (3)

However, too large difference between
()fitness s and ()fitness s can impose high

selection pressure on infeasible solutions. Therefore,
FSWGA maintains appropriate selection pressure
by applying fitness leveling procedure, which is
used to modify the initial fitness values of both
feasible and infeasible solutions.

Inherently, the infeasible solutions cannot
be the optimal solution for given problem, even
though FSWGA allows them to be included within
population. Hence, simple local search procedure of
FSWGA is used to slightly modify the infeasible
solutions in population in hopes that they would be
converted into better solutions. In this paper, fitness
switching, fitness leveling and simple local search
procedures of FSWGA are refined to solve classical
0-1 KP.

3. FITNESS SWITCHING GENETIC
ALGORITHM FOR SOLVING 0-1
KNAPSACK PROBLEM

3.1 Encoding Scheme and Initialization

This paper adopts binary string
representation, which is the most widely used
encoding scheme for representing solutions for
combinatorial optimization problems such as KP.
Hence, a solution for KP with n items is
represented as a binary string with n genes, [1x

2x … nx], where ix s are binary variables and ix

= 1 if and only if item i (i = 1, 2, …, n) is

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7341

included within a solution. Moreover, a solution of
initial population can be easily created by using
randomly generated ix s. This initialization

procedure is summarized in Figure 1, where pN

denotes population size. Note that no repair
procedure is applied to the initial solutions in
Figure 1.

01: void initialize(int pN , int n)

02: {
03: SET population = new int[pN][n]

04:
05: FOR k = 1 TO pN

06: FOR l = 1 TO n
07: SET u = random real number in (0, 1)
08:
09: IF 0.5u  THEN
10: SET population[k -1][l -1] = 0
11: ELSE
12: SET population[k -1][l -1] = 1
13: END IF
14: NEXT l
15: NEXT k
16: }

Figure 1: Initialization Procedure

3.2 Fitness Switching for 0-1 Knapsack Problem

Typically, ()fitness s for KP is computed

by using total value of the items included in
solution s as follows:

1

()
n

i i
i

fitness s v x



  , (4)

if s satisfies

1

n

i i
i

w x t


 , (5)

where t is pre-specified upper bound of total
weight. A solution is infeasible for given KP if it
does not satisfy (5), and its fitness value should be
computed in different manner. Moreover, the
fitness function for infeasible solution, ()fitness s

should have following features: First, an infeasible
solution bs is worse than any feasible solution as ,

even if it has larger total value. Thus, ()bfitness s

cannot exceed ()afitness s . Second, quality of

infeasible solution should be appropriately

measured. For example, let ()E s denote excess

weight of a solution s as follows:

1

1

0 , if

()

, otherwise

n

i i
i

n

i i
i

w x t

E s

w x t





  
 




 (6)

If 0 () ()b cE s E s  , both bs and cs are infeasible,

however, bs is probably better than cs in that bs

has smaller excess weight and it can be converted
into feasible solution more easily. In other words,

()bfitness s should be larger than ()cfitness s .

Thirdly, ()fitness s has to satisfy

() 0fitness s  , (7)

for every infeasible solution. In addition, designing
a penalization procedure which has all of those
three features can be a non-trivial task.

In this context, this paper proposes three
types of ()fitness s including

1

1

1
()

n

i i
i

fitness s
v x








, (8)

2

1

1
()

n

i i
i

fitness s
w x








, (9)

and

3

1

1
()

n

i i
i

fitness s
v x








. (10)

Note that

2 3 10 1       , (11)

where i is the correlation coefficient between

()fitness s and ()ifitness s . Moreover, fitness

switching procedure of the original version of
FSWGA, developed for solving M-SPP, is most
similar to 1 ()fitness s in that 1 1  . However,

the feasibility of a solution for KP is dependent on
threshold of total weight t , while M-SPP does not

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7342

have any explicit threshold for solutions. Hence,
this paper proposes alternative fitness functions

2 ()fitness s and 3 ()fitness s , where total weight of

solution s is considered. The fitness switching
procedure for KP proposed in this paper is
summarized in Figure 2.

01: single fitness_switching(int[] s , int n , int
type)

02: {
03: SET weight = array of weights
04: SET value = array of values
05:
06: SET total_weight = 0
07: SET initial_fitness = 0
08: SET t = upper bound of total weight
09:
10: FOR k = 1 TO n

11: SET total_weight += [1]s k  ×

weight[k -1]
12: NEXT k
13:

14: IF initial_fitness ≤ t THEN

15: FOR k = 1 TO n
16: SET initial_fitness += [1]s k  ×

value[k -1]
17: NEXT k
18: ELSE IF type = 1 THEN

19: FOR k = 1 TO n
20: SET initial_fitness += [1]s k  ×

value[k -1]
21: NEXT k
22:
23: SET initial_fitness = 1 / initial_fitness
24: ELSE IF type = 2 THEN

25: SET initial_fitness = 1 / total_weight
26: ELSE IF type = 3 THEN

27: FOR k = 1 TO n
28: SET initial_fitness += [1]s k  ×

value[k -1]×weight[k -1]
29: NEXT k
30:
31: SET initial_fitness = 1 / initial_fitness
32: END IF
33:
34: RETURN initial_fitness
35: }

Figure 2: Fitness Switching Procedure

3.3 Fitness Leveling for 0-1 Knapsack Problem

One important limitation of fitness

switching procedure described in previous section
is that a feasible solution can have extremely large
fitness value, while infeasible ones have relatively
small fitness values when iv , 1iw  . Moreover,

this disparity in fitness values brings about high
selection pressure, which can lead to premature
convergence to local optima.

In order to avoid this problem, FSWGA
uses fitness leveling procedure to obtain adjusted
fitness values,

'()

() min ()
1

max () min ()
s F

s Fs F

fitness s

fitness s fitness s
L

fitness s fitness s



 


 






 



 (12)

and

()

'() (1)
max ()

s I

fitness s
fitness s

fitness s








   , (13)

where F and I denote the sets of feasible and
infeasible solutions within population, respectively,
and F I = population. In addition, factor L is
used to prioritize feasible solutions over infeasible
ones, and 1L  . Note that the selection pressure of
FSWGA is directly proportional to factor L .

The role of factor  is used to slightly
decrease the fitness values of infeasible solutions,
and 0 1  so that the adjusted fitness values

'()fitness s and '()fitness s satisfy

0 '() 1 '()fitness s fitness s L     . (14)

The fitness leveling procedure proposed in

this paper is summarized in Figure 3.

3.4 Simple Local Search for 0-1 Knapsack
Problem

The fitness leveling procedure helps the

competitive infeasible solutions to survive in
selection phase of GA. However, the infeasible
solutions are not suitable for given problem,
inherently. Therefore, FSWGA uses simple local
search procedure to slightly modify the infeasible
solutions in hopes that they would be converted
into better infeasible solutions or feasible solutions.

In solving KP, simple local search
procedure can be used to exclude a randomly

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7343

chosen item from an infeasible solution, and this
procedure is summarized in Figure 4.

01: single fitness_leveling(int[] s , single
initial_fitness, single L , single )
02: {
03: SET max_feasible_fitness = maximum
 fitness value of feasible solutions
04: SET min_feasible_fitness = minimum
 fitness value of feasible solutions
05: SET max_infeasible_fitness = maximum
 fitness value of infeasible solutions
06:
07: SET adjusted_fitness = 0
08:
09: IF initial_fitness < 0 THEN
10: SET adjusted_fitness = (1 – )

×initial_fitness/max_infeasible_fitness
11: ELSE
12: SET adjusted_fitness

= 1 + L ×(initial_fitness – min_feasible_
fitness)/(max_feasible_fitness – min_
feasible_fitness)

13: END IF
14:
15: RETURN adjusted_fitness
16: }

Figure 3: Fitness Leveling Procedure

01: single simple_local_search(int[] s , int n , int
type)

02: {
03: SET cur_item_set = 

04:
05: FOR k = 1 TO n
06: IF s [1k ] = 1 THEN
07: ADD 1k  to cur_item_set
08: END IF
09: NEXT k
10:
11: SET del_item = a randomly chosen

element of cur_item_set
12:
13: SET s [del_item] = 0
14:
15: RETURN fitness_switching(s , n , type)

14: }
Figure 4: Simple Local Search Procedure

Note that simple local search procedure

calls fitness switching procedure after an infeasible
solution is slightly modified. That is, the fitness

value of the solution is also modified after simple
local search procedure is done.

3.5 Selection, Crossover and Mutation

FSWGA for solving KP proposed in this

paper is based on the common standard GA (SGA)
framework, which uses selection, crossover and
mutation operators in order to generate new
population from current one. Moreover, this paper
uses conventional genetic operators widely used in
GAs for various combinatorial optimization
problems.

Selection operator is used to generate a
mating pool, a set of solutions selected from current
population, where mating pool and population have
identical size and one solution in current population
can be selected two or more times. In this paper,
well-known roulette wheel method is used, which
indicates that an individual solution ks in current

population is selected with a probability
proportional to its own fitness value,

1

fitness of

fitness of
p

k
N

i
i

s

s



. (15)

The role of crossover operator is to

recombine the genes of two solutions in mating
pool, parents, in order to generate two new
solutions, offspring. This paper uses uniform
crossover, which is known as a more exploratory
approach than traditional single-point or two-point
crossover approaches. For example, let 1,p ix and

2,p ix denote the i th genes of parent 1 (father) and

parent 2 (mother), respectively. Then, the uniform
crossover suggests that 1, 1,o i p ix x and 2, 2,o i p ix x

with a probability of 0.5, and 1, 2,o i p ix x and

2, 1,o i p ix x with a probability of 0.5, where 1,o ix

and 2,o ix denote the i th genes of offspring1 and

offspring2, respectively.
The mutation operator is used to randomly

modify the offspring with small probability, and it
helps to maintain the diversity of solutions within
population and avoid the premature convergence to
local optima. In this paper, common bit flip
mutation operator is used, where value of each gene
is changed from 1 to 0 and vice versa with small
probability.

After mutation operator is applied, the
current population is replaced by mating pool, and
we have to evaluate fitness of the solutions in new

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7344

population. The evaluation phase of FSWGA is
described in next section. In addition, note that the
new population obtained in this manner can contain
a number of infeasible solutions but no additional
repair or penalization procedures are used in this
paper.

3.6 Evaluation

In the original version of FSWGA, fitness

leveling procedure is applied to selection phase of
GA, while fitness switching and simple local search
procedures are incorporated into evaluation phase.
On the contrary, all of those procedures are applied
to evaluation phase in this paper, as shown in
Figure 5. In other words, FSWGA can be
implemented with existing selection, crossover and
mutation operators, if evaluation phase is
appropriately designed.

Figure 5: Overall Structure of FSWGA

The objective of evaluation phase is to

compute the fitness values of the solutions within
current population, and the evaluation phase of
FSWGA proposed in this paper is summarized in
Figure 6.

At first, fitness switching procedure is
used to compute initial fitness values. If a solution
in current population is feasible, its initial fitness
value, computed by (4), will be larger than 1, while
an infeasible solution has initial fitness value
smaller than 1, which is computed by (8)~(10).

Next, simple local search procedure is
applied to the solutions with initial fitness values

smaller than 1, in order to convert them into better
solutions by slight modifications. Moreover, their
fitness values are also modified, and the modified
fitness values are larger than the initial fitness
values. If an infeasible solution is converted into a
feasible solution, its modified fitness value will be
larger than 1. On the contrary, if the modified
solution is still infeasible, its modified fitness value
cannot exceed 1.

Finally, fitness leveling procedure is
applied to both feasible and infeasible solutions
within current population in order to maintain
appropriate selection pressure, which is directly
proportional to factor L . Consequently, each
solution in current population will have adjusted
fitness value, which is used by next selection
operator.

01: void evaluation(int type , single L , single

)
02: {
03: SET n = number of items
04: SET pN = population size

05: SET fitness = new single[pN]

06: SET population = current population
07:
08: FOR k = 1 TO pN // Fitness switching

09: SET fitness[1k ] = fitness_switching(
 population[1k ], n , type)

10: NEXT k
11:
12: FOR k = 1 TO pN //Simple local search

13: IF fitness[1k ] < 1 THEN
14: SET fitness[1k ] = simple_local_
 search(population[1k ], n , type)

15: END IF
16: NEXT k
17:
18: FOR k = 1 TO pN //Fitness leveling

19: SET fitness[1k ] = fitness_leveling(
 population[1k ], fitness[1k ], L ,)
20: NEXT k
21: }

Figure 6: Evaluation Phase

Note that fitness leveling procedure has to

be applied after fitness switching and simple local
procedures have been done, since it utilizes
max

s F
()fitness s , min

s F
()fitness s and max

s I

()fitness s .

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7345

4. EXPERIMENT RESULTS

In order to investigate the performance of

FSWGA for KP, three versions of FSWGAs with

1 ()fitness s , 2 ()fitness s and 3 ()fitness s had been

applied to a KP with 50 items, listed in Table 1,
with varying upper bound of total weight t . For
each case, 10 repetitions of experiments had been
performed under population size pN = 50,

crossover rate = 0.8, mutation rate = 0.01,
maximum iteration number = 500, L = 2 and  =
0.1. Moreover, elitism policy for preserving the 5
best solutions within each generation was applied.

Table 1: Knapsack Problem With 50 Items

Item
ID

Weight Value Item
ID

Weight Value

1 39 66 26 33 45
2 19 60 27 35 16
3 34 21 28 38 130
4 13 139 29 35 58
5 15 65 30 13 37
6 17 95 31 27 116
7 31 6 32 20 64
8 12 91 33 14 43
9 21 12 34 14 108
10 24 85 35 13 75
11 23 12 36 23 121
12 11 53 37 35 67
13 40 99 38 25 60
14 32 48 39 33 33
15 36 96 40 34 48
16 38 81 41 23 98
17 20 70 42 15 91
18 13 122 43 24 102
19 28 83 44 39 120
20 17 129 45 23 61
21 26 54 46 28 58
22 36 31 47 23 119
23 33 52 48 20 122
24 29 96 49 32 71
25 17 57 50 28 64

Note that this KP is rather hard to solve in

that item values and item weights are not strongly
correlated, as shown in Figure 7. On the contrary,
the item values have weak inverse correlation with
item weights, and the correlation coefficient
between them is about -0.2. In this paper, three
upper bound values listed in Table 2 are considered,
where Optimal-Total-Value is the total value of
optimal solution, and MS-Excel Solver failed to
find the optimal solution when t = 500.

Figure 7: Item Value Versus Item Weight

Table 2: Upper Bound Of Total Weight

ID
Upper bound of total

weight (t) Optimal-Total-Value

1 200 (Low) 1282
2 500 (Moderate) 2373
3 1000 (High) 3465

The experiment results are summarized in

Table 3~Table 5, where Best-Total-Value is the
total value of the best solution identified by each
version of FSWGA. Moreover, success rate is the
proportion of experiments where the optimal
solution is identified.

In Table 3~Table 5, we can get following
observations: Firstly, 2 ()fitness s shows superior

performances to the others in that it produces the
highest average Best-Total-Value, the smallest
standard deviation of Best-Total-Value and the
highest success rate in all cases. Since 2 ()fitness s

is inversely proportional to total weight, a solution
s is infeasible if 2 () 1fitness s  . In other words,

2 ()fitness s evaluates the fitness of a solution most

appropriately. Meanwhile, 1 ()fitness s is inversely

proportional to total value, which is generally
proportional to total weight. However, as
mentioned earlier, item values and item weights of
given KP are not strongly correlated, and

1 ()fitness s sometimes produce wrong fitness

values. For example, let’s consider two infeasible
solution, 1s

 and 2s . If 1s
 has smaller total value

and larger total weight, it is straightforward that 1s


is worse infeasible solution than 2s . Nevertheless,

1 1()fitness s  > 1 2()fitness s  , since 1s
 has smaller

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7346

total value. Similarly, 3 ()fitness s produces wrong

fitness values more often, and this indicates that
()fitness s for a given problem should be carefully

chosen.
Secondly, the performance of FSWGA is

significantly affected by the upper bound of total
weight t . Especially, the three versions of FSWGA
performs badly when t = 500, as shown in Table 4.
Of course, other solution methods also have
difficulties in solving highly complex combinatorial
optimization problems, and this indicates that
FSWGA can be further revised to deal with such
complexities.

Nevertheless, we can see that all FSWGAs
have identified optimal or nearly optimal solutions
in almost experiments, and this suggests that the
search strategy of FSWGA can be used to solve
combinatorial optimization problems with many
feasible solutions, such as KP.

Table 3: Best-Total-Values For Low Upper Bound Of

Total Weight (t = 200)

 1 ()fitness s 2 ()fitness s 3 ()fitness s

Average 1280.2 1281.4 1275.2
Max. 1282 1282 1282
Min. 1276 1276 1256

Std.Dev. 2.75 1.80 9.47
Success rate 70% 90% 50%

Table 4: Best-Total-Values For Moderate Upper Bound

Of Total Weight (t = 500)

 1 ()fitness s 2 ()fitness s 3 ()fitness s

Average 2363.7 2370.4 2362.7
Max. 2373 2373 2373
Min. 2341 2360 2344

Std.Dev. 9.72 3.85 10.21
Success rate 10% 40% 10%

Table 5: Best-Total-Values For High Upper Bound Of

Total Weight (t = 1000)

 1 ()fitness s 2 ()fitness s 3 ()fitness s

Average 3460.9 3462.8 3459.8
Max. 3465 3465 3465
Min. 3451 3460 3453

Std.Dev. 4.64 2.27 3.25
Success rate 40% 50% 10%

Figure 8 shows changes in the maximum

total value during search procedure of a single
experiment with FSWGA based on 2 ()fitness s and

t = 500. Since the maximum total value is
consistently increased, we can conclude that
FSWGA is useful to explore the search space of KP.

Similarly, Figure 9 shows changes in
infeasible ratio, the proportion of infeasible
solutions within population, during search
procedure of same experiment. In Figure 9, the
infeasible ratios of first two populations are 90.0%
and 66.0%, respectively. However, the infeasible
ratio is rapidly decreased, and later populations
have quite lower infeasible ratios. What is
important is that such infeasible solutions are not
“destroyed” by repair procedure, and they are dealt
with by the three operations of FSWGA, instead of
penalization procedure, which requires careful
configuration.

Figure 8: An Example Of Change In Maximum Total

Value During Search Procedure

Figure 9: An Example Of Change In Infeasible Ratio

During Search Procedure

Note that the initial population contains a

number of feasible solutions in Figure 9, which is
not the case with original version of FSWGA
applied to M-SPP. In other words, early populations
of FSWGA may contain only infeasible solutions if
given problem has rare feasible solutions. In such

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7347

cases, FSWGA has two objectives, one is to find
any feasible solutions and the other is to choose the
optimal solution among feasible ones. On the
contrary, FSWGA in this paper can focus on the
second objective, since it is very easy to find
arbitrary feasible solutions for given KP.

5. CONCLUSIONS

The most important benefit of FSWGA is

that it can be applied to solve combinatorial
optimization problems with rare feasible solutions.
In addition, FSWGA can be easily designed and
implemented in that it does not require any
problem-dependent repair or penalization
procedures, however, this additional benefit of
FSWGA was not appropriately investigated in
previous literature.

In this context, this paper develops refined
FSWGAs and applies them to solve one of well-
known combinatorial optimization problem with
many feasible solutions, classical 0-1 KP. The
experiment results demonstrate that the search
strategy of FSWGA is also useful even if given
problem has many feasible solutions. In addition,
this paper suggests that the fitness switching
procedure is the most important element of
FSWGA, and ()fitness s must be carefully chosen.

Thus, the author plans to apply FSWGA to
a wider range of combinatorial optimization
problems develop more effective fitness switching
procedures in future.

ACKNOWLEDGEMENTS

This work was supported by the National
Research Foundation of Korea(NRF) grant funded
by the Korea government(Ministry of Science, ICT
& Future Planning) (NRF-2017R1C1B1008650).

REFRENCES:
[1] D. Zou, L. Gao, S. Li, and J. Wu, “Solving 0-1

Knapsack Problem by a Novel Global Harmony
Search Algorithm”, Applied Soft Computing,
Vol.11, No.2, 2011, pp.1556-1564.

[2] A.J. Umbarkar, and M.S. Joshi, “0/1 Knapsack
Problem using Diversity based Population
Genetic Algorithm”, International Journal of
Intelligent Systems and Applications, Vol.6,
No.10, 2014, pp.34-40.

[3] K.K. Bhattacharjee, and S.P. Sarmah, “Shuffled
Frog Leaping Algorithm and Its Application to
0/1 Knapsack Problem”, Applied Soft
Computing, Vol.19, 2014, pp.252-263.

[4] S. Martello, D. Pisinger, and P. Toth, “New
Trends in Exact Algorithms for the 0-1
Knapsack Problem”, European Journal of
Operational Research, Vol.123, No.2, 2000,
pp.325-332.

[5] J.H. Holland, Adaptation in Natural and
Artificial Systems, University of Michigan Press,
Michigan, 1975.

[6] F. Glover, “Tabu Search: A Tutorial”, Interfaces,
Vol.20, No.4, 1990, pp.74-94.

[7] D. Pisinger, “Where Are the Hard Knapsack
Problems?”, Computers and Operations
Research, Vol.32, No.9, 2005, pp.2271-2284.

[8] J.W. Kim, “Performance Comparison of
Neighborhood Structures of Tabu Search
Algorithms for Sequencing Problems”,
Advanced Science Letters, Vol.23, No.10, 2017,
pp.10423-10426.

[9] J.W. Kim, and S.K. Kim, “Fitness Switching
Genetic Algorithm for Solving Combinatorial
Optimization Problems with Rare Feasible
Solutions”, Journal of Supercomputing, Vol.72,
No.9, 2016, pp.3549-3571.

[10] J.W. Kim, and S.K. Kim, “Genetic Algorithms
for Solving Shortest Path Problem in Maze-type
Network with Precedence Constraints”,
Wireless Personal Communications,
forthcoming.

[11] J.W. Kim, “Candidate Order based Genetic
Algorithm (COGA) for Constrained Sequencing
Problems”, International Journal of Industrial
Engineering: Theory, Applications and Practice,
Vol.23, No.1, 2016, pp.1-12.

[12] M. Kumar, M. Husian, N. Upreti, and D. Gupta,
“Genetic Algorithm: Review and Application”,
International Journal of Information
Technology and Knowledge Management, Vol.2,
No.2, 2010, pp.451-454.

[13] Z. Michalewicz, Genetic Algorithm+Data
Structures=Evolution Programs, Springer
Science and Business Media, Heidelberg, 2013.

[14] P. Chootinan, and A. Chen, “Constraint
Handling in Genetic Algorithms using a
Gradient-based Repair Method”, Computers
and Operations Research, Vol.33, No.8, 2006,
pp.2263-2281.

[15] S. Salcedo-Sanz, “A Survey of Repair Methods
Used as Constraint Handling Techniques in
Evolutionary Algorithms”, Computer Science
Review, Vol.3, No.3, 2009, pp.175-192.

[16] D.W. Coit, A.E. Smith, and D.M. Tate,
“Adaptive Penalty Methods for Genetic
Optimization of Constrained Combinatorial

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7348

Problems”, INFORMS Journal on Computing,
Vol.8, No.2, 1996, pp.173-182.

[17] Ö, Yeniay, “Penalty Function Methods for
Constrained Optimization with Genetic
Algorithms”, Mathematical and Computational
Applications, Vol.10, No.1, 2005, pp.45-56.

[18] M. Schlüter, and M. Gerdts, “The Oracle
Penalty Method”, Journal of Global
Optimization, Vol.47, No.2, 2010, pp.293-325.

