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ABSTRACT 
 

Fitness switching genetic algorithm is a sort of genetic algorithm, which was initially developed for solving 
combinatorial optimization problems with rare feasible solutions. Compared to previous genetic algorithms, 
fitness switching genetic algorithm has three distinguishing procedures including fitness switching, fitness 
leveling and simple local search, which enable the infeasible solutions to be included within the population. 
Consequently, fitness switching genetic algorithm can effectively explore the search space of given 
problem by utilizing infeasible solutions, even if it is difficult to find arbitrary feasible solutions. On the 
contrary, 0-1 knapsack problem is a well-known combinatorial optimization problem that typically has 
many feasible solutions, and this paper aims to apply fitness switching genetic algorithm to solve this 
problem in order to investigate applicability of the algorithm. To this end, fitness switching, fitness leveling 
and simple local search procedures are tailored to 0-1 knapsack problem, and a revised algorithm structure 
is proposed. Consequently, this paper demonstrates that combinatorial optimization problems with many 
feasible solutions also can be solved by applying fitness switching genetic algorithm. Especially, fitness 
switching genetic algorithm is easy to implement in that it does not require repair or penalization 
procedures for handling infeasible solutions.  

Keywords: 0-1 Knapsack Problem, Genetic Algorithm, Combinatorial Optimization, Metaheuristics, 
Operations Research 

 
1. INTRODUCTION  
 

0-1 knapsack problem (KP) is a classical 
combinatorial optimization problem, which is 
characterized by n  items with non-negative weight 

iw s and value iv s ( i = 1, 2, …, n ), and its 

objective is to find the optimal set of items that 
maximizes total value under total weight constraint 
[1][2][3]. Moreover, this paper assumes 1iw   and 

1iv   for all i  = 1, 2, …, n , for convenience. 

Typically, 0-1 knapsack problem is 
formulated as an integer programming model as 
follows: 

 

Max. Total Value = 
1

n

i i
i

v x
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  
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n
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where t  denotes pre-specified upper bound of total 
weight. The optimal solution of 0-1 KP can be 
obtained by applying exact methods such as branch 
and bound [4], however, approximate methods such 
as genetic algorithm (GA) [5] and tabu search (TS) 
[6] can be more effective when n  is large, due to 
NP-hardness of the problem [7][8]. 

It is straightforward that the feasibility of a 
solution of KP is dependent on its total weight, and 
a solution of KP is feasible if and only if its total 
weight is smaller than or equal to t . In general, 
arbitrary feasible solutions of given KP can be 
identified easily. Moreover, even if a solution is 
infeasible, it is not difficult to convert it into a 
feasible one by deleting some items included within 
the solution. Therefore, conventional population-
based search methods, such as GA, for solving KP 
typically utilize the populations which consist of 
feasible solutions. 

On the contrary, this paper applies fitness 
switching genetic algorithm (FSWGA) to 0-1 KP in 
order to effectively utilize the infeasible solutions 
during search procedure. Initially, FSWGA was 
developed to solve combinatorial optimization 
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problems with rare feasible solutions, and it allows 
the infeasible solutions to be included in population 
[9][10]. In this context, this paper has two main 
objectives: (i) To refine FSWGA to deal with 
combinatorial optimization problems with many 
feasible solutions. (ii) To investigate the 
applicability of FSWGA to a wide range of 
combinatorial optimization problems. 

The remainder of this paper is organized 
as follows: Section 2 introduces the key concepts 
and features of FSWGA, which is refined to solve 
0-1 KP in Section 3. The experiment results 
obtained by applying the refined FSWGA to 0-1 
KP are reported in Section 4. Finally, Section 5 
contains some concluding remarks and future 
research topics. 
 
2. RESEARCH BACKGROUNDS 
 

GA is a sort of stochastic search procedure 
proposed by Holland [5], and it has been 
successfully applied to a wide range of 
combinatorial optimization problems during past 
decades [11][12]. Typically, GA maintains a 
population of solutions for given problem and 
explores the search space by applying three genetic 
operators, selection, crossover and mutation [13]. 
Since there are many feasible solutions within the 
search space of general combinatorial optimization 
problems, conventional GAs generally utilize 
populations of feasible solutions. Moreover, the 
infeasible solutions generated during search 
procedure can be dealt with by applying two 
approaches, repair and penalization [11]. Note that 
repair procedure is used to convert an infeasible 
solution into a feasible one [14][15], while the role 
of penalization is to decrease the fitness value of 
infeasible solution [16][17][18]. However, 
designing repair or penalization procedures can be 
non-trivial task for some problems. Furthermore, 
such conventional GAs cannot deal with 
combinatorial optimization problems with rare 
feasible solutions effectively. 

On the contrary, FSWGA is developed to 
solve combinatorial optimization problems with 
rare feasible solutions, such as maze-type shortest 
path problem (M-SPP) [9][10]. M-SPP is a variant 
of classical shortest path problem (SPP), which is 
associated with maze-type network with many 
dead-ends. Since it is not easy to find arbitrary 
feasible paths for such networks, FSWGA allows 
infeasible solutions to be included within 
population and provides three distinguishing 
procedures, fitness switching, fitness leveling and 
simple local search. Among them, the most 

important procedure is fitness switching, which is 
used to compute the fitness values of feasible and 
infeasible solutions in different manners. Let’s 
assume that the fitness value of a solution s  is 

( )fitness s  if it is feasible, while the solution has 

fitness value ( )fitness s  if it is infeasible. Fitness 

switching procedure of FSWGA suggests that 
( )fitness s  should be inversely proportional to 

( )fitness s  as follows: 

 
1

( )
( )

fitness s K
fitness s


                          (2) 

 
Note that the term K = 1 for the initial 

version of FSWGA, developed to solve M-SPP. 
It is straightforward that fitness switching 

operation should satisfy 
 

( ) ( )fitness s fitness s  .                             (3) 

 
However, too large difference between 
( )fitness s  and ( )fitness s  can impose high 

selection pressure on infeasible solutions. Therefore, 
FSWGA maintains appropriate selection pressure 
by applying fitness leveling procedure, which is 
used to modify the initial fitness values of both 
feasible and infeasible solutions. 

Inherently, the infeasible solutions cannot 
be the optimal solution for given problem, even 
though FSWGA allows them to be included within 
population. Hence, simple local search procedure of 
FSWGA is used to slightly modify the infeasible 
solutions in population in hopes that they would be 
converted into better solutions. In this paper, fitness 
switching, fitness leveling and simple local search 
procedures of FSWGA are refined to solve classical 
0-1 KP. 

 
3. FITNESS SWITCHING GENETIC 
ALGORITHM FOR SOLVING 0-1 
KNAPSACK PROBLEM 
 
3.1 Encoding Scheme and Initialization 
 

This paper adopts binary string 
representation, which is the most widely used 
encoding scheme for representing solutions for 
combinatorial optimization problems such as KP. 
Hence, a solution for KP with n  items is 
represented as a binary string with n  genes, [ 1x  

2x  … nx  ], where ix s are binary variables and ix  

= 1 if and only if item i  ( i  = 1, 2, …, n ) is 
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included within a solution. Moreover, a solution of 
initial population can be easily created by using 
randomly generated ix s. This initialization 

procedure is summarized in Figure 1, where pN  

denotes population size. Note that no repair 
procedure is applied to the initial solutions in 
Figure 1. 

 
01: void initialize(int pN , int n ) 

02: { 
03:    SET population = new int[ pN ][ n ] 

04:  
05:    FOR k  = 1 TO pN  

06:      FOR l  = 1 TO n  
07:         SET u = random real number in (0, 1) 
08:          
09:         IF 0.5u   THEN 
10:            SET population[ k -1][ l -1] = 0 
11:         ELSE 
12:            SET population[ k -1][ l -1] = 1 
13:         END IF 
14:      NEXT l  
15:   NEXT k  
16: } 

Figure 1: Initialization Procedure 
 

3.2 Fitness Switching for 0-1 Knapsack Problem 
 
Typically, ( )fitness s  for KP is computed 

by using total value of the items included in 
solution s  as follows:  

 

1

( )
n
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  ,                                  (4) 

 
if s  satisfies  
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where t  is pre-specified upper bound of total 
weight. A solution is infeasible for given KP if it 
does not satisfy (5), and its fitness value should be 
computed in different manner. Moreover, the 
fitness function for infeasible solution, ( )fitness s  

should have following features: First, an infeasible 
solution bs  is worse than any feasible solution as , 

even if it has larger total value. Thus, ( )bfitness s  

cannot exceed ( )afitness s . Second, quality of 

infeasible solution should be appropriately 

measured. For example, let ( )E s  denote excess 

weight of a solution s  as follows:  
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If 0 ( ) ( )b cE s E s  , both bs  and cs  are infeasible, 

however, bs  is probably better than cs  in that bs  

has smaller excess weight and it can be converted 
into feasible solution more easily. In other words, 

( )bfitness s  should be larger than ( )cfitness s . 

Thirdly, ( )fitness s  has to satisfy  

 
( ) 0fitness s  ,                                             (7) 

 
for every infeasible solution. In addition, designing 
a penalization procedure which has all of those 
three features can be a non-trivial task. 

In this context, this paper proposes three 
types of ( )fitness s  including 
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and 
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Note that  
 

2 3 10 1       ,                                (11) 

 
where i  is the correlation coefficient between 

( )fitness s  and ( )ifitness s . Moreover, fitness 

switching procedure of the original version of 
FSWGA, developed for solving M-SPP, is most 
similar to 1 ( )fitness s  in that 1 1  . However, 

the feasibility of a solution for KP is dependent on 
threshold of total weight t , while M-SPP does not 



Journal of Theoretical and Applied Information Technology 
30th November 2018. Vol.96. No 22 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
7342 

 

have any explicit threshold for solutions. Hence, 
this paper proposes alternative fitness functions 

2 ( )fitness s  and 3 ( )fitness s , where total weight of 

solution s  is considered. The fitness switching 
procedure for KP proposed in this paper is 
summarized in Figure 2. 

 
01: single fitness_switching(int[] s , int n , int 
type ) 

02: { 
03:    SET weight = array of weights 
04:    SET value = array of values 
05:     
06:    SET total_weight = 0 
07:    SET initial_fitness = 0 
08:    SET t  = upper bound of total weight 
09:     
10:    FOR k  = 1 TO n  

11:       SET total_weight += [ 1]s k  × 

weight[ k -1] 
12:    NEXT k  
13:     

14:    IF initial_fitness ≤ t  THEN 

15:       FOR k  = 1 TO n  
16:          SET initial_fitness += [ 1]s k  × 

value[ k -1] 
17:       NEXT k  
18:    ELSE IF type  = 1 THEN 

19:       FOR k  = 1 TO n  
20:          SET initial_fitness += [ 1]s k  × 

value[ k -1] 
21:       NEXT k  
22:  
23:       SET initial_fitness = 1 / initial_fitness 
24:    ELSE IF type  = 2 THEN 

25:       SET initial_fitness = 1 / total_weight 
26:    ELSE IF type  = 3 THEN 

27:       FOR k  = 1 TO n  
28:          SET initial_fitness += [ 1]s k  × 

value[ k -1]×weight[ k -1] 
29:       NEXT k  
30:  
31:       SET initial_fitness = 1 / initial_fitness 
32:    END IF 
33:  
34:    RETURN initial_fitness 
35: } 

Figure 2: Fitness Switching Procedure 
 

3.3 Fitness Leveling for 0-1 Knapsack Problem 

 
One important limitation of fitness 

switching procedure described in previous section 
is that a feasible solution can have extremely large 
fitness value, while infeasible ones have relatively 
small fitness values when iv , 1iw  . Moreover, 

this disparity in fitness values brings about high 
selection pressure, which can lead to premature 
convergence to local optima.  

In order to avoid this problem, FSWGA 
uses fitness leveling procedure to obtain adjusted 
fitness values,  

 
'( )

( ) min ( )
1

max ( ) min ( )
s F

s Fs F
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fitness s fitness s
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 
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 
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
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
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and 
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'( ) (1 )
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s I

fitness s
fitness s
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






   ,     (13) 

 
where F  and I  denote the sets of feasible and 
infeasible solutions within population, respectively, 
and F I  = population. In addition, factor L  is 
used to prioritize feasible solutions over infeasible 
ones, and 1L  . Note that the selection pressure of 
FSWGA is directly proportional to factor L . 

The role of factor   is used to slightly 
decrease the fitness values of infeasible solutions, 
and 0 1   so that the adjusted fitness values 

'( )fitness s  and '( )fitness s  satisfy 

 
0 '( ) 1 '( )fitness s fitness s L     .       (14) 

 
The fitness leveling procedure proposed in 

this paper is summarized in Figure 3. 
 

3.4 Simple Local Search for 0-1 Knapsack 
Problem 

 
The fitness leveling procedure helps the 

competitive infeasible solutions to survive in 
selection phase of GA. However, the infeasible 
solutions are not suitable for given problem, 
inherently. Therefore, FSWGA uses simple local 
search procedure to slightly modify the infeasible 
solutions in hopes that they would be converted 
into better infeasible solutions or feasible solutions. 

In solving KP, simple local search 
procedure can be used to exclude a randomly 
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chosen item from an infeasible solution, and this 
procedure is summarized in Figure 4. 

 
01: single fitness_leveling(int[] s , single 
initial_fitness, single L , single  ) 
02: { 
03:    SET max_feasible_fitness = maximum  
                 fitness value of feasible solutions 
04:    SET min_feasible_fitness = minimum 
                 fitness value of feasible solutions 
05:    SET max_infeasible_fitness = maximum 
                 fitness value of infeasible solutions 
06:     
07:    SET adjusted_fitness = 0 
08:     
09:    IF initial_fitness < 0 THEN 
10:       SET adjusted_fitness = (1 –  ) 

×initial_fitness/max_infeasible_fitness 
11:    ELSE 
12:       SET adjusted_fitness  

= 1 + L ×(initial_fitness – min_feasible_ 
fitness)/(max_feasible_fitness – min_ 
feasible_fitness) 

13:    END IF 
14:     
15:    RETURN adjusted_fitness 
16: } 

Figure 3: Fitness Leveling Procedure 
 

01: single simple_local_search(int[] s , int n , int 
type ) 

02: { 
03:    SET cur_item_set =   

04:     
05:    FOR k  = 1 TO n  
06:       IF s [ 1k  ] = 1 THEN 
07:          ADD 1k   to cur_item_set 
08:       END IF 
09:    NEXT k  
10:     
11:    SET del_item = a randomly chosen  

element of cur_item_set 
12:     
13:    SET s [del_item] = 0 
14:     
15:    RETURN fitness_switching( s , n , type ) 

14: } 
Figure 4: Simple Local Search Procedure 

 
Note that simple local search procedure 

calls fitness switching procedure after an infeasible 
solution is slightly modified. That is, the fitness 

value of the solution is also modified after simple 
local search procedure is done. 

 
3.5 Selection, Crossover and Mutation 

 
FSWGA for solving KP proposed in this 

paper is based on the common standard GA (SGA) 
framework, which uses selection, crossover and 
mutation operators in order to generate new 
population from current one. Moreover, this paper 
uses conventional genetic operators widely used in 
GAs for various combinatorial optimization 
problems.  

Selection operator is used to generate a 
mating pool, a set of solutions selected from current 
population, where mating pool and population have 
identical size and one solution in current population 
can be selected two or more times. In this paper, 
well-known roulette wheel method is used, which 
indicates that an individual solution ks  in current 

population is selected with a probability 
proportional to its own fitness value, 

 

1

fitness of 

fitness of 
p

k
N

i
i

s

s



.                                           (15) 

 
The role of crossover operator is to 

recombine the genes of two solutions in mating 
pool, parents, in order to generate two new 
solutions, offspring. This paper uses uniform 
crossover, which is known as a more exploratory 
approach than traditional single-point or two-point 
crossover approaches. For example, let 1,p ix  and 

2,p ix  denote the i th genes of parent 1 (father) and 

parent 2 (mother), respectively. Then, the uniform 
crossover suggests that 1, 1,o i p ix x  and 2, 2,o i p ix x  

with a probability of 0.5, and 1, 2,o i p ix x  and 

2, 1,o i p ix x  with a probability of 0.5, where 1,o ix  

and 2,o ix  denote the i th genes of offspring1 and 

offspring2, respectively.  
The mutation operator is used to randomly 

modify the offspring with small probability, and it 
helps to maintain the diversity of solutions within 
population and avoid the premature convergence to 
local optima. In this paper, common bit flip 
mutation operator is used, where value of each gene 
is changed from 1 to 0 and vice versa with small 
probability. 

After mutation operator is applied, the 
current population is replaced by mating pool, and 
we have to evaluate fitness of the solutions in new 
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population. The evaluation phase of FSWGA is 
described in next section. In addition, note that the 
new population obtained in this manner can contain 
a number of infeasible solutions but no additional 
repair or penalization procedures are used in this 
paper. 

 
3.6 Evaluation 

 
In the original version of FSWGA, fitness 

leveling procedure is applied to selection phase of 
GA, while fitness switching and simple local search 
procedures are incorporated into evaluation phase. 
On the contrary, all of those procedures are applied 
to evaluation phase in this paper, as shown in 
Figure 5. In other words, FSWGA can be 
implemented with existing selection, crossover and 
mutation operators, if evaluation phase is 
appropriately designed. 

 

 
Figure 5: Overall Structure of FSWGA 
 
The objective of evaluation phase is to 

compute the fitness values of the solutions within 
current population, and the evaluation phase of 
FSWGA proposed in this paper is summarized in 
Figure 6.  

At first, fitness switching procedure is 
used to compute initial fitness values. If a solution 
in current population is feasible, its initial fitness 
value, computed by (4), will be larger than 1, while 
an infeasible solution has initial fitness value 
smaller than 1, which is computed by (8)~(10). 

Next, simple local search procedure is 
applied to the solutions with initial fitness values 

smaller than 1, in order to convert them into better 
solutions by slight modifications. Moreover, their 
fitness values are also modified, and the modified 
fitness values are larger than the initial fitness 
values. If an infeasible solution is converted into a 
feasible solution, its modified fitness value will be 
larger than 1. On the contrary, if the modified 
solution is still infeasible, its modified fitness value 
cannot exceed 1.  

Finally, fitness leveling procedure is 
applied to both feasible and infeasible solutions 
within current population in order to maintain 
appropriate selection pressure, which is directly 
proportional to factor L . Consequently, each 
solution in current population will have adjusted 
fitness value, which is used by next selection 
operator. 

 
01: void evaluation(int type , single L , single 

 ) 
02: { 
03:    SET n  = number of items 
04:    SET pN  = population size 

05:    SET fitness = new single[ pN ] 

06:    SET population = current population 
07:     
08:    FOR k  = 1 TO pN   // Fitness switching 

09:       SET fitness[ 1k  ] = fitness_switching( 
             population[ 1k  ], n , type ) 

10:    NEXT k  
11:     
12:    FOR k  = 1 TO pN  //Simple local search 

13:       IF fitness[ 1k  ] < 1 THEN 
14:          SET fitness[ 1k  ] = simple_local_ 
               search(population[ 1k  ], n , type ) 

15:       END IF 
16:    NEXT k  
17:     
18:    FOR k  = 1 TO pN   //Fitness leveling 

19:       SET fitness[ 1k  ] = fitness_leveling( 
             population[ 1k  ], fitness[ 1k  ], L , ) 
20:    NEXT k  
21: } 

Figure 6: Evaluation Phase 
 
Note that fitness leveling procedure has to 

be applied after fitness switching and simple local 
procedures have been done, since it utilizes 
max

s F
( )fitness s ,  min

s F
( )fitness s  and max

s I
 

( )fitness s . 
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4. EXPERIMENT RESULTS 

 
In order to investigate the performance of 

FSWGA for KP, three versions of FSWGAs with 

1 ( )fitness s , 2 ( )fitness s  and 3 ( )fitness s  had been 

applied to a KP with 50 items, listed in Table 1, 
with varying upper bound of total weight t . For 
each case, 10 repetitions of experiments had been 
performed under population size pN  = 50, 

crossover rate = 0.8, mutation rate = 0.01, 
maximum iteration number = 500, L  = 2 and   = 
0.1. Moreover, elitism policy for preserving the 5 
best solutions within each generation was applied.  

 
Table 1: Knapsack Problem With 50 Items 

Item 
ID 

Weight Value Item 
ID 

Weight Value 

1 39 66 26 33 45 
2 19 60 27 35 16 
3 34 21 28 38 130 
4 13 139 29 35 58 
5 15 65 30 13 37 
6 17 95 31 27 116 
7 31 6 32 20 64 
8 12 91 33 14 43 
9 21 12 34 14 108 
10 24 85 35 13 75 
11 23 12 36 23 121 
12 11 53 37 35 67 
13 40 99 38 25 60 
14 32 48 39 33 33 
15 36 96 40 34 48 
16 38 81 41 23 98 
17 20 70 42 15 91 
18 13 122 43 24 102 
19 28 83 44 39 120 
20 17 129 45 23 61 
21 26 54 46 28 58 
22 36 31 47 23 119 
23 33 52 48 20 122 
24 29 96 49 32 71 
25 17 57 50 28 64 

 
Note that this KP is rather hard to solve in 

that item values and item weights are not strongly 
correlated, as shown in Figure 7. On the contrary, 
the item values have weak inverse correlation with 
item weights, and the correlation coefficient 
between them is about -0.2. In this paper, three 
upper bound values listed in Table 2 are considered, 
where Optimal-Total-Value is the total value of 
optimal solution, and MS-Excel Solver failed to 
find the optimal solution when t  = 500.  

 

 
Figure 7: Item Value Versus Item Weight 

 
Table 2: Upper Bound Of Total Weight 

ID 
Upper bound of total 

weight ( t ) Optimal-Total-Value

1 200 (Low) 1282 
2 500 (Moderate) 2373 
3 1000 (High) 3465 

 
The experiment results are summarized in 

Table 3~Table 5, where Best-Total-Value is the 
total value of the best solution identified by each 
version of FSWGA. Moreover, success rate is the 
proportion of experiments where the optimal 
solution is identified. 

In Table 3~Table 5, we can get following 
observations: Firstly, 2 ( )fitness s  shows superior 

performances to the others in that it produces the 
highest average Best-Total-Value, the smallest 
standard deviation of Best-Total-Value and the 
highest success rate in all cases. Since 2 ( )fitness s  

is inversely proportional to total weight, a solution 
s  is infeasible if 2 ( ) 1fitness s  . In other words, 

2 ( )fitness s  evaluates the fitness of a solution most 

appropriately. Meanwhile, 1 ( )fitness s  is inversely 

proportional to total value, which is generally 
proportional to total weight. However, as 
mentioned earlier, item values and item weights of 
given KP are not strongly correlated, and 

1 ( )fitness s  sometimes produce wrong fitness 

values. For example, let’s consider two infeasible 
solution, 1s

  and 2s . If 1s
  has smaller total value 

and larger total weight, it is straightforward that 1s
  

is worse infeasible solution than 2s . Nevertheless, 

1 1( )fitness s  > 1 2( )fitness s  , since 1s
  has smaller 
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total value. Similarly, 3 ( )fitness s  produces wrong 

fitness values more often, and this indicates that 
( )fitness s  for a given problem should be carefully 

chosen.  
Secondly, the performance of FSWGA is 

significantly affected by the upper bound of total 
weight t . Especially, the three versions of FSWGA 
performs badly when t  = 500, as shown in Table 4. 
Of course, other solution methods also have 
difficulties in solving highly complex combinatorial 
optimization problems, and this indicates that 
FSWGA can be further revised to deal with such 
complexities. 

Nevertheless, we can see that all FSWGAs 
have identified optimal or nearly optimal solutions 
in almost experiments, and this suggests that the 
search strategy of FSWGA can be used to solve 
combinatorial optimization problems with many 
feasible solutions, such as KP. 

 
Table 3: Best-Total-Values For Low Upper Bound Of 

Total Weight ( t  = 200) 

 1 ( )fitness s  2 ( )fitness s  3 ( )fitness s

Average 1280.2 1281.4 1275.2 
Max. 1282 1282 1282 
Min. 1276 1276 1256 

Std.Dev. 2.75 1.80 9.47 
Success rate 70% 90% 50% 

 
Table 4: Best-Total-Values For Moderate Upper Bound 

Of Total Weight ( t  = 500) 

 1 ( )fitness s  2 ( )fitness s  3 ( )fitness s

Average 2363.7 2370.4 2362.7 
Max. 2373 2373 2373 
Min. 2341 2360 2344 

Std.Dev. 9.72 3.85 10.21 
Success rate 10% 40% 10% 

 
Table 5: Best-Total-Values For High Upper Bound Of 

Total Weight ( t  = 1000) 

 1 ( )fitness s  2 ( )fitness s  3 ( )fitness s

Average 3460.9 3462.8 3459.8 
Max. 3465 3465 3465 
Min. 3451 3460 3453 

Std.Dev. 4.64 2.27 3.25 
Success rate 40% 50% 10% 

 
Figure 8 shows changes in the maximum 

total value during search procedure of a single 
experiment with FSWGA based on 2 ( )fitness s  and 

t  = 500. Since the maximum total value is 
consistently increased, we can conclude that 
FSWGA is useful to explore the search space of KP.  

Similarly, Figure 9 shows changes in 
infeasible ratio, the proportion of infeasible 
solutions within population, during search 
procedure of same experiment. In Figure 9, the 
infeasible ratios of first two populations are 90.0% 
and 66.0%, respectively. However, the infeasible 
ratio is rapidly decreased, and later populations 
have quite lower infeasible ratios. What is 
important is that such infeasible solutions are not 
“destroyed” by repair procedure, and they are dealt 
with by the three operations of FSWGA, instead of 
penalization procedure, which requires careful 
configuration. 

 

 
Figure 8: An Example Of Change In Maximum Total 

Value During Search Procedure 
 

 
Figure 9: An Example Of Change In Infeasible Ratio 

During Search Procedure 
 
Note that the initial population contains a 

number of feasible solutions in Figure 9, which is 
not the case with original version of FSWGA 
applied to M-SPP. In other words, early populations 
of FSWGA may contain only infeasible solutions if 
given problem has rare feasible solutions. In such 
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cases, FSWGA has two objectives, one is to find 
any feasible solutions and the other is to choose the 
optimal solution among feasible ones. On the 
contrary, FSWGA in this paper can focus on the 
second objective, since it is very easy to find 
arbitrary feasible solutions for given KP. 

 
5. CONCLUSIONS 

 
The most important benefit of FSWGA is 

that it can be applied to solve combinatorial 
optimization problems with rare feasible solutions. 
In addition, FSWGA can be easily designed and 
implemented in that it does not require any 
problem-dependent repair or penalization 
procedures, however, this additional benefit of 
FSWGA was not appropriately investigated in 
previous literature. 

In this context, this paper develops refined 
FSWGAs and applies them to solve one of well-
known combinatorial optimization problem with 
many feasible solutions, classical 0-1 KP. The 
experiment results demonstrate that the search 
strategy of FSWGA is also useful even if given 
problem has many feasible solutions. In addition, 
this paper suggests that the fitness switching 
procedure is the most important element of 
FSWGA, and ( )fitness s  must be carefully chosen. 

Thus, the author plans to apply FSWGA to 
a wider range of combinatorial optimization 
problems develop more effective fitness switching 
procedures in future.  
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