
Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7482

IMPLEMENTATION OF NON-INSTALL TYPE DRM SYSTEM
TO PREVENT ILLEGAL COPYING OF WEB-BASED MEDIA

CONTENT

1 KI-BOK NAM, 2KOO-ROCK PARK, 3JOON-YOUNG KIM, 4YOUNG-SUK CHUNG
1 School of Computer Engineering, Kongju National University, Korea

 2 Key Laboratory of Computer Science & Engineering, Kongju National University
3 School of Computer Engineering, Kongju National University, Korea

4 School of Computer Engineering, Kongju National University, Korea

E-mail: 1mtgood@naver.com, 2ecgrpark@kongju.ac.kr, 3musim-kum@hanmail.net,
4merope@kongju.ac.kr

ABSTRACT

With the development of IT technology today, many media content services are being used, and there are
cases where they have to use both online and offline depending on the service type. However, there are
various difficulties due to illegal distribution of content. In this paper, we study DRM (Digital Right
Management) method which can run on a web browser that supports HTML5, which does not need to be
installed separately, in order to prevent illegal distribution of media content. The existing DRM method is
expensive, and since the encryption algorithm is not standardized even when it is operated off-line, it is
difficult to use since a dedicated DRM viewer for each installation type have to be installed. To solve this
problem, this paper proposes and implements a new DRM system using base64, an encrypted media source
file, which can be used without installing separately in a web browser supporting HTML5.

Keywords: DRM, AES256, Base64, BLOB, Javascript

1. INTRODUCTION

 Today, with the rapid advancement of IT
technology, various media contents are being
created and utilized. However, piracy, which is
throwing a cold water in the development of such
diverse content, is constantly harassing content
producers. Piracy is widespread in all areas of
content, whether it is publishing, music, movies, or
games. In particular, piracy is a major threat to
producers' livelihood in the digital content sector1.
Analog piracy has the disadvantage of going
through a cumbersome copying process and is of
poor quality, but digital copying can be done
relatively simple but the quality is the same as that
of genuine products, and the spreading rate is very
fast, which causes serious damage to the producers
in material and psychologically. There is a strong
and systematic anti-piracy technology called DRM,
but there are various problems in servicing
customers. The reason for this is as follows. First, it
is possible to prevent piracy by using DRM
technology. However, the introduction cost is high,
and if the DRM is applied, the DRM exclusive

viewer program must be separately installed.
Second, in an environment where the Internet is
available, there are technologies to protect
copyright by transmitting authentication codes to
the authentication server for copyright protection 2,3.
However, in an off-line environment where the
Internet is not available, if the content must be
stored in the terminal, the corresponding DRM
program must be installed for each content
provider, and in all viewers that support WEB must
be able to view the content. For this reason, there
are limitations in applying DRM technology4,
which is currently popular. To solve this problem in
this paper, we propose and implement a new
method of media content DRM system that enables
viewers in all terminals that utilize web browser
supporting HTML5, rather than the dedicated DRM
viewer which is now popular.

2. Related Work

2.1 DRM
DRM (Digital Right Management) system is a

limitation technology that allows only authorized
users to access digital content. It is a system that

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7483

provides services for users to use safely and also
protects rights and interests of copyright owners.

It is composed of a content packager that
encrypts the file with the metadata of the content to
prevent access by unauthorized users, and a license
server that grants the user or authority to use the
encrypted file on the device. And it performs the
function of requesting permission to use to the
encrypted file and DRM controller technology that
decrypts the file only according to the granted
authority and allows the user to use it 5.

2.2 BLOB
 A binary large object (BLOB) is a collection of
binary data stored as an entity in a database
management system. It is usually a picture, audio,
or other multimedia object [3]. The purpose of the
object is diverse. Among them, the method of
accessing through the URL used in the WEB can
grant a virtual URL to the object after the BLOB
object is created. If you use this method, you can
use JavaScript to call the createObjectURL method
of the URL and transmit the BLOB or FILE object
to create the URL as the first argument. Including
BLOB, FILE objects that inherited BLOBs are
composed of the same format as " Blob: 550e8400-
e29b-41d4-a716-446655440000", which is a format
that can be granted a URL. This URL is the same as
a regular file, except that it is not actually a URL
that exists on the server6.

2.3 Base64

 The base64 is an encoding method that
converts binary data to ASCII text or vice versa,
and is one of the methods used by MIME. The
base64 divides each 3 bytes of the original data into
four 6-bit units so that it can be expressed as four 7-
bit ASCII characters. This usually increases the file
size by about 1/3 of the original size.
The background of its birth is that early e-mail was
designed to handle only textual information. But as
email has become widely used, it has been designed
as part of Multipurpose Internet Mail Extensions
(MIME) 7, requiring the transmission of binary data
such as images or attachment files. It also uses 64
ASCII codes (alphanumeric, upper and lower case
letters, "+", "-") that are common to all platforms so
that data is not broken or invisible on
heterogeneous platforms. However, the platform
does not support all ASCII codes8.

2.4 Javascript

 JavaScript is an object-based script
programming language. This language is mainly
used in web browsers and has the ability to access

built-in objects of other application programs.
JavaScript was initially named Mocha and
originally developed by Brendan Eich of Netscape
Communications Corporation and later, it was
developed as LiveScript, and finally became
JavaScript.

Although JavaScript is similar to Java and
syntax of Sun Microsystems, it is because both are
based on the basic syntax of the C language, and
Java and JavaScript are not directly related. Beyond
the name and syntax, there are many similarities
with the self than Java. As of January 2013, the
most recent version is JavaScript 1.8.5, which is
supported in Firefox 3. The JavaScript version
corresponding to the standard ECMA-262 3rd
edition is 1.5. To put bluntly, an ECMA script is a
standardized version of JavaScript.

As Mozilla 1.8 Beta 1 is introduced, it has
been in part supported E4X (ECMA-357), an
extension language corresponding to XML.
JavaScript has a different version to each different
browser, and the most commonly supported version
is 1.59.

2.5 AES

The Advanced Encryption Standard (AES) is a
cryptographic scheme established by the National
Institute of Standards and Technology (NIST)

AES allows the selection of three key lengths
of 128, 196, or 256 bits, but the block length is
suggested to be 128 bits.

The overall structure of AES is first, the
Rijndael algorithm does not use the Feistel structure,
and the entire data block is processed in parallel
during permutation and permutation in each round.

Second, a 128-bit key given as an input is
extended to four 32-bit words and four different
words (128-bit) are used as round keys in each
round.

Third, use four steps (Substiute bytes, Shift
row, Mix columns, and Adround key) consisting of
one permutation and three permutations.

Fourth, encryption and decryption both begin
with a round-key addition phase, followed by nine
rounds involving all four stages, followed by the
tenth round, which includes only three stages
(excluding heat blending).

Fifth, in practice, the Round Key step is not
powerful by itself and provides chaos, spread and
non-linearity in conjunction with the other three
stages, but it does not provide security because it
does not use keys.

The AES encryption is efficient and safe
because it proceeds in the following order: a
modified XOR operation of the block (addition of a

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7484

round key), a blending of blocks (byte substitution,
row movement, and column mixing), and an XOR
operation.

Sixth, in case of decryption, byte substitution,
row movement, and column mixing steps use the
inverse function, and round key addition step uses
A + B + B = A.

Seventh, in most block cipher algorithms, the
decryption algorithm is performed using the reverse
order of the expansion key, but the decryption
algorithm and the encryption algorithm are not the
same. Both of them are composed of only three
stages in the final round10.

3. THE PROPOSED SYSTEM

In this paper, we implemented a new

method DRM for viewing media content in a web
browser supporting HTML5. The following
[Figure. 1] is the proposed system execution order.

Figure 1: System execution order

First, on the computer where the server side
original media file exists, an encrypted script file is
created that can run a media file in JavaScript
through the encryption engine.

Secondly, to prevent the tampering of the
converted script, generate drive file and drive key
with encrypted JavaScript.

Third, convert to Base64 and BLOB format so
that location and decryption of the media file are
impossible but able to run in HTML5.

The final step is to show the media converted
to BLOB format in HTML5. Content converted to
HTML5 can be used on PCs and mobile browsers
with a web browser supporting HTML5 installed,
and it runs both on-line and off-line.

Also, according to the condition of the

encryption module, the code is inserted in the
media file conversion process so that it can run only
in the designated device, the designated domain,
and the designated HTML. And the number of
content viewers can also be designated, and if the
number of times exceeds the specified number, the
decode code of the content does not match and the
content can no longer be viewed.
The following [Figure. 2] is a system configuration
diagram implemented in this paper

Figure 2: System configuration

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7485

The system in this paper is implemented so that

files can be exchanged in API format like ① in
order to convert multiple contents at the same time.
When sending the API, send the original file and it
converts it into the encrypted JS file from the

security conversion server as shown in ②, and
delivers it to the device. Also, it is generated as a
file which can be run only in specific terminal and
specific file according to API argument option, and
is delivered to the device. If the converted file is

configured for each service as shown in ③, it runs
only by the device that meets the specific condition.
The following [Figure. 3] is part of the source for

file conversion.

String choice_1="",choice_2="";

if (args.length > 0) {
choice_1 = args[0]; //Conversion file
choice_2 = args[1]; //Original File
}
File file = new File(choice_2);
encode(file,new FileOutputStream(choice_2+".js"));

//base64 Conversion
String lastModified = file.length()+"";
String key="";

AES256Util en = new AES256Util();
key=en.aesEncode(lastModified);
key=key.substring(0,key.length()-2);
System.out.println("***License key
generation****"+key); //License key

last_key=base64_relocation(choice_2); //relocation of
base64 encryption
System.out.println("===last_key="+last_key);

byte[] temp = null;
emp = Files.readAllBytes(new
File(choice_2+".js").toPath());
String body = "var _DATA='"+head_string+"/";
byte[] header = body.getBytes();
int alllen=temp.length+header.length;
byte[] data = new byte[alllen];
System.arraycopy(header, 0, data, 0, header.length);
System.arraycopy(temp, 0, data,
header.length,temp.length);
FileUtils.writeByteArrayToFile(new
File(choice_2+".js"), data);
System.out.println("success : ");

Figure 3: File conversion source

The main contents of the source are as follows.

First of all, an argument is received to convert the
file at the same time. choice_1 is the name of the
file where the converted file will be saved and the
html source file is saved in choice_2.

First, the original file goes through the
conversion process to base64.

Second, generate a license key encrypted with
AES256 for the original file. At this time, it is
added to the license key according to the running
condition. In this paper, we have generated an
encryption key that can run only in a specific file.

Third, relocate the base64-converted file to
base64 encryption by combining it with the
generated run key to enhance security.

Fourth, the relocated file is generated as a
SCRIPT file so that it can run in JAVASCRIPT.
Fifth, deliver the generated SCRIPT file to the
DEVICE that sent the original file.
Sixth, you need to configure HTML5 with each file

delivered and start servicing.

Following [Figure. 4] is part of a JavaScript
function algorithm that reads a Base64 encrypted
file, converts it to a BLOB, and decrypts the
encrypted code.

_HEAD = _DATA.substring(0,_DATA.indexOf('/'));
_DEC = parseInt(_HEAD, 16)+'';
key_dim = _KEY.split('');
var last_key='';
for(i = 0; i < _DEC.length ; i++){

 num=parseInt(_DEC.substring(i,i+1));
 if(num>0)
 {

 chg=key_dim[num-1].charCodeAt(0);
 key_dim[num-1]=String.fromCharCode(chg+num);

 }
}

for(i = 0; i < key_dim.length ; i++){
 last_key=last_key+key_dim[i];
}

_DATA=
_DATA.substring(_DATA.indexOf('/')+1,_DATA.length
)

_DATA=
_DATA.replace(last_key,_DATA.substring(_DATA.leng
th-last_key.length,_DATA.length));
 contentType = 'video/mp4';

Figure 4: Base64 decrypt

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7486

At the first, it reads converted file to the base64 and
decrypt the encrypted head part of the file again.
The second, some of the content of Base64 is
repositioned and the document converted is found
in Base64 source,
The third, it is relocated to a normal driving source
what find in the base64 source.

Following [Figure. 5] Is a part of the JavaScript
Function algorithm which reads a Base64-
encrypted file and converts it to a BLOB to prevent
reinterpretation of the source.

blob = Base64toBlob (nkbData, contentType);
blobUrl = URL.createObjectURL(blob);
document.getElementById(item).src=blobUrl;

function Base64toBlob(nkbData, contentType,
sliceSize) {
 contentType = contentType || '';
 sliceSize = sliceSize || 512;

 var byteCharacters = atob(nkbData);
 var byteArrays = [];

 for (var offset = 0; offset < byteCharacters.length;
offset += sliceSize) {
 var slice = byteCharacters.slice(offset, offset +
sliceSize);

 var byteNumbers = new Array(slice.length);
 for (var i = 0; i < slice.length; i++) {
 byteNumbers[i] = slice.charCodeAt(i);
 }

 var byteArray = new Uint8Array(byteNumbers);

 byteArrays.push(byteArray);
 }

 var blob = new Blob(byteArrays, {type:
contentType});

 return blob;
}

Figure 5: Convert Base64 to BLOB

The original source encoded in Base64 is a source
that can be easily retrieved from the Web and thus
converted to a BLOB to prevent acquisition of the
original source.

The source converted to BLOB is composed of
URLs that can not be accessed from source view
which is one of the functions of web browser. When
re-reading the page of the web browser's URL, the
URL was changed again to fix the web security
vulnerability.

4. EXPERIMENTAL RESULT

The source converted to BLOB is composed of
URLs that can not be accessed from source view
which is one of the functions of web browser. When
re-reading the page of the web browser's URL, the
URL was changed again to fix the web security
vulnerability.
The proposed system in this paper is implemented
on JAVA basis and the sample file is implemented
by selecting a video file, mp4. The following
[Figure. 6] is part of the screen that operates by
converting the original file.

Figure 6: Execute file conversion

The license key was generated by combining the
HTML file (test_video.html) and the original media
file (2.mp4) file so that it can run only on a specific
html. The mp4 file that converted last to the value of
"last_key" generates a Script file as shown in the
[Figure. 7].

28C253/AAAAGGZ0EXBPC29TAAAAAWLZB21
HDMMXAABZC21VB3YAAABSBXZOZAAAA
ADPFLH7Z35YEWAAALGAAMDMAAEAAAE
AAAAAAAAAAAAAAAABAAAAAAAAAAAA
AAAAAAAAAQAAAAAAAAAAAAAAAAAAQ
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAMAAAAVAW9KCWAAAA

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7487

AQBWBP//8PFF8AAC3LDHJHAWAAAFX0A2H
KAAAAAC9+WHVPFLH7AAAAAQAAAAAAA
MDWAAAAAAAAAAAAAAAAAAAAAAABA
AAAAAAAAAAAAAAAAAAAAQAAAAAAAA
AAAAAAAAAAQAAAAAQAAAACQAAAAAA
TGW1KAWEAAAAGBWROZAAAAADPFLH7Z
35YEWAADTAAJU79VCQAAAAAAHHOZGXY
AAAAAAAAAAB2AWRLAAAAAAAAAAAAA
AAABWN0ZW1WOTCZNJBINJK0NWY2NGZM
ZS4YNJQJDMLKZW86ZNBZPTI5LJK3ONBHCJ
0XNJOXNSATIELTCG9YDGVKIHDPDGGGR1B
BQYAWLJUUMC1YZXY0MDY1AAAALOFTA
W5MAAAAFHZTAGQAAAABAAAAAAAAAA
AAAAAKZGLUZGAAABXKCMVMAAAAAAA
AAAEAAAAMDXJSIAAAAAEAACYHC3RIBA
AAAL1ZDHNKAAAAAAAAAAEAAACTYXZJ
MQAAAAAAAAABAAAAAAAAAAAAAAAAA
AAAAAPAAKAASAAAAEGAAAAAAAAAAQA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAABJ//WAAABBWYXNWAA
AAEAAAAA8AAAAZYXZJQWFCWCJ/4QABZ0
LAKNSDWEM/8AEAAPEAAAMAZAAAF2QPG
DLGAQAFAMQHLIAAAAAUYNRYDAABTNE
ALZWGAAWLCAAAABHZDHRZAAAAAAAA
AAEAAAN1AAAD6QAAAMBZDHNZAAAAAA
AAACWAAAABAAAAPQAAAHKAAAC1AAA
A8QAAAS0AAAFUAAABIGAAACYAAAICAA
ACPGAAANOAAAK2AAAC8GAAAY4AAANQ
AAC..........

Figure 7: Base64 conversion file

The generated file is not a basic BASE64 file but a
result of the changed structure and a combination of
encryption algorithm.

The following [Figure. 8] is a typical BASE 64 tran
slation form.

/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAA
kGBxMTEhUSExMWFhUXGBgZGRcYGBcYGh
gZGBsdGBcfGBoYHSggGh0lGxgZITEhJSkrLi4u
Fx8zODMtNygtLisBCgoKDg0OGxAQGy8lICUtL
S0vLS0tLS0tLS8tLS0tLS0vLS0tLS0tLS0tLS0tLS
0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALoBDgMBI
gACEQEDEQH/xAAcAAABBQEBAQAAAAAA
AAAAAAAAAwQFBgcCAQj/xAA+EAABAwIE
AwUGBAYBBAMBAAABAAIRAyEEE..........

Figure 8: Base64 Standard file

The BASE64, which is inserted with the encryption
key as shown in the general BASE64 and [Figure.
7], has a 28C253 code inserted in its head section to

prevent the BASE64 from being decrypted.
How to create a key depends on the different
conditions.

First, create a key that will only work with that
HTML file.

Secondly, create a key that will only allow content
to work for the duration you want.

Thirdly, create a key that makes the content work at
the designated number of times to view it.

Fourth, create a key that enables content to function
only in a particular domain.

Fifth, generate a key that only makes it operable on
a particular device (PC, MOBILE)

All of these key generation methods are designed to
be operational in a manner that is operational at
Local without the need to install a separate DRM
viewer file.

In addition, the code location of BASE 64 was
changed with the corresponding key and the
random code was inserted. The code is also
decrypted with the key used to Decoding from
HTML5 according to the conditions.

In addition, the JavaScript file, which consists of JS
files, is the same structure as [Figure. 4], where
anyone can analyze the sources. To solve this
problem, To solve this problem, we have incoded
the JavaScript file decoding.js as shown in [Figure.
9] below so that the JS file can not be decrypted as
well.

eval(function(p,a,c,k,e,d){e=function(c){return
c};if(!''.replace(/^/,String)){while(c--
){d[c]=k[c]||c}k=[function(e){return
d[e]}];e=function(){return'\\w+'};c=1};while(c--
){if(k[c]){p=p.replace(new
RegExp('\\b'+e(c)+'\\b','g'),k[c])}}return
p}('25=3.13(0,3.27(\'/\'));22=30(25,16)+\'\';11=32.36(\'\');
5
10=\'\';15(2=0;2<22.4;2++){9=30(22.13(2,2+1));31(9>0)
{28=11[9-1].29(0);11[9-
1]=34.35(28+9)}}15(2=0;2<11.4;2++){10=10+11[2]}3=
3.13(3.27(\'/\')+1,3.4)3=3.37(10,3.13(3.4-
10.4,3.4));6=\'33/46\';14=26(18,6);23=53.49(14);48.51(5
2).50=23;38 26(18,6,8){6=6||\'\';8=8||47;5 17=41(18);5
21=[];15(5 7=0;7<17.4;7+=8){5 12=17.12(7,7+8);5
20=19 40(12.4);15(5 2=0;2<12.4;2++){20[2]=12.29(2)}5
24=19 39(20);21.42(24)}5 14=19 43(21,{45:6});44
14}',10,54,'||i|_0|length|var|contentType|offset|sliceSize|n
um|last_key|key_dim|slice|substring|blob|for||byteCharact

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7488

ers|nkbData|new|byteNumbers|byteArrays|_1|blobUrl|byt
eArray|_2|Base64toBlob|indexOf|chg|charCodeAt|parseIn
t|if|_3|video|String|fromCharCode|split|replace|function|U
int8Array|Array|atob|push|Blob|return|type|mp4|512|docu
ment|createObjectURL|src|getElementById|item|URL'.spl
it('|'),0,{}))

Figure 9: Javascript conversion encoding

[Figure. 9] is implemented to prevent leakage of
media contents by configuring [Figure. 4] and
[Figure. 5] so that it is difficult to decode source
code with converted JavaScript.

The following [Figure. 10] is the result screen
showing with the converted file from the web
browser.

Figure 10: Execution result

It is converted to blob so that it cannot be
reinterpreted with HTML5 source. It is a URL that
does not actually exist, and the URL is changed
every time the screen is reloaded to protect the
original content.

Following [Figure. 11] is a screen generated as a
file operated by HTML5.

Figure 11: List of generated drive files

At the First, the test_video.html file is an HTML5
file that constitutes a screen, and is a file configured
to load a js file composed of basically JavaScript
and display it on the screen.

The second, the source.js file is a Base64 file that is
encrypted and transformed a video originally.

The third, the decoding.js file decrypts for the
encrypted source file after loading it. However, the
decrypted file is a JavaScript file that is converted to
a BLOB so that the original source can not be
confirmed because be changed by the user.

The fourth, the license.js file is a license key
generated for each video file.
In addition, it is the key used to recover the modified
file from the decoding file and is the file that not
working a normal operation if a change is made to
the drive file.

Following [Figure. 12] is a screen assuming that a
video has partially hacked of the deformed Base64

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7489

Figure 12: Screen after penetration testing video

[Figure 12- a] is a video of a document file written
with modified code by normal HTML5.

[Figure 12- b] is a screen that does not operate
normally because between the license key and
decoding value do not match when file contents are
partially changed due to penetration testing that is
called simulation hacking.

In this paper, the license key is designed to operate
normally without changing the file structure. If you
change the file arbitrarily, the screen will not be
displayed, or some contents will be displayed, and
then it will stop in the middle.

Following [Figure. 13] is a screen assuming that the
image has partially hacked of the deformed Base64.

Figure 13: Screen after penetration testing image

[Figure 13- a] is an HTML5 image tag that is
transformed into a normal code.

[Figure 13- b] is a screen that does not operate
normally because between the license key and the
decoded value do not match when the contents of
the file are partially changed due to penetration
testing that is called simulation hacking.

If the file structure is changed by hacking, some
images may appear to be broken or some images
may not be seen at all.

5. CONCLUSIONS

With the advancement of IT technology, various

media contents are being countlessly generated.
However, it is difficult to provide service due to
indiscreet piracy.

In this paper, to solve this problem, we proposed

a DRM that can protect new media content that can
support in off-line while supporting a web browser
supporting HTML5.

 In addition, in the conventional method, only the
dedicated DRM viewer can be used to view the
media content. However, it is confirmed that the
media content protection model implemented in
this paper can carry out the service without
difficulty as long as you have a web browser that
supports HTML5.

Journal of Theoretical and Applied Information Technology
30th November 2018. Vol.96. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7490

 In the future study, we will study the conversion
technologies that do not increase through a new
compression algorithm for solving the problem of a
file that increases by 30% when converting to
BASE64.

REFERENCES:

[1] Kim Jae Wan, "A Study on the Illegal Use

Regulationof the Works in Cyberspace :
Focused on the Illegal Use Regulation of the
Films on the Internet", The Journalof Image
and Cultural Contents.Vol.5,pp.97-126(2012).

[2] Donghyun Choi, Yunho Lee, Hogab Kang,
Seungjoo Kim, Dongho Won, "A Secure
License Sharing Scheme for Domain DRM
System Against Replay Attack", Korea
Institute Of Information Security And
Cryptology, pp.97-101(2007).

[3] Duk-Kyu Lee, Hee-Un Park, Im-Yeong Lee,
"A DRM Model for Illegal Copyrights
Protection based on Agent", Korea Information
Science Society, pp.682-684(2001)

[4] Jin-Kyoung Heo, "Distributed Security for
Web Application Contents Protection", Digital
Contents Society, pp.125-130(2008).

[5] Eung Sup Jun, "An Efficient Application of
eBSS DRM Method to eBook Contents based
on ePub 3.0 for Smart Device", The Korean
Society Of Computer And Information, pp.59-
72(2016).

[6] Giho Choi, Hyunchul Kang, "A Scheme for
Classifying Assorted Types of BLOBs for
Multimedia Data Management", Korea
Information Science Society, pp.73-76(1993).

[7] Byung-Do Lee, Seok-Gyu Kang, "Web
Publishing Young-Suk Chung, " A study on
anti-piracy model of WEB-based educational
media contents ", The Korean Society Of
Computer And Information, pp.15-18(2017).

[8] Ki-Bok Nam, Koo-Rack Park, Joon-Yong Kim,
Young-Suk Chung, " A study on anti-piracy
model of WEB-based educational media
contents ", The Korean Society Of Computer
And Information, pp.15-18(2017).

[9] Hongki Lee, Junho Jin, Sooncheol Won,
Junhee Cho, Sukyoung Ryu, Yoonseok Ko, "
SAFE: Scalable Analysis Framework for
ECMAScript ", Korea Information Science
Society, pp.283-289(2013).

[10] Jeong Woo Cha, Chang Hoon Kim, " Design of
FPGA Hardware Accelerator for Information
Security System", Korea Society of Industrial
Informantion Systems, pp.1-12(2013).

