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ABSTRACT 
 

In this study, we propose a method to assess central nervous system activity in terms of activity-degree in 
sympathetic and parasympathetic state by estimating the cardiac oscillator-parameters of Integral Pulse 
Frequency Modulation (IPFM) model in which the artificial heart rhythms are generated by modulating 
sinusoid signal with applying the threshold level for resolving R-peaks. With this aim, we proposed a 
modified IPFM model by the empirical method with applying preset-threshold of unity. The artificial R-R 
interval data are analyzed by the time and frequency-domain features to describe Heart Rate Variability 
(HRV) under the effects of cardiac oscillator constants. The benchmarking MIT/BIH database consisted of 
Normal Sinus Electrocardiogram rhythms (NSR-ECG) are utilized to estimate the sympathetic and 
parasympathetic constants by comparing HRV measures on MIT/BIH NSR with those on the data 
generated by our modified IPFM model. Based on our experimental results on estimating the modulatory 
parameters of central nervous system activity, we can conclude that IPFM parameters on the real ECG data 
can be effectively estimated to assess cardiac-sympathetic and parasympathetic activity. 

Keywords: Electrocardiogram (ECG), Heart Rate Variability (HRV), Integral Pulse Frequency 
Modulation (IPFM), Autonomic Nervous System (ANS), sinus rhythm, Poincare plot. 

 
 
1. INTRODUCTION  
 

Many biomedical measurements are influenced 
by the balance of autonomic nervous system (ANS) 
in terms of sympathetic and parasympathetic nerve 
activity [1]. The Electrocardiogram (ECG) also 
reflects the activities of two subsystems by 
revealing the variability in the time between 
successive heart beats. The prominent fiducial 
feature in ECG for estimating heart rate is R-peak 
wave and Heart Rate Variability (HRV) analyses 
the variability in R-R intervals [2],[3],[4]. 
Mathematical models for generating the artificial 
R-R intervals have been suggested to estimate the 
effects of autonomic nerve activity. Integrate Pulse 
Frequency Modulation (IPFM) model [5],[6],[7] 
aimed to produce heart beat-to-beat fluctuations by 
integrating the modulated sinusoid signals with the 
coupled-oscillating coupling constants: sympathetic 
oscillator, Cs and parasympathetic oscillator, Cp. 
The effects of coupling parameters were 
investigated by interpreting time-domain or power 

spectrum features of HRV applied on the artificially 
generated heart-beats [8]. However, none of the 
proposed IPFM models offered a method to 
estimate the values of Cs and Cp based on the ECG 
data obtained from the real cardiac patients. With 
this aim, a new IPFM model is proposed with 
applying preset-threshold of unity to generate R-R 
intervals and then the time and frequency-domain 
features of HRV on the simulated time series are 
computed with varying cardiac oscillator 
parameters, Cs and Cp. In order to validate the 
proposed IPFM model, PhysioBank MIT-BIH 
benchmarking-ECG database [9],[10] that consists 
of Arrhythmia and Normal Sinus-ECG rhythms 
(NSR) obtained from the real cardiac patients was 
considered to assess the effects of sympathetic and 
parasympathetic constants by comparing HRV 
measures on NSR with the features on the 
simulated data generated by the modified IPFM 
model. 
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2. MATHEMATICAL MODEL FOR 
GENERATING ARTIFICIAL HEART BEATS 

The IPFM model simulates heart-beat 
fluctuations, m(t) by modulating sinusoidal signal 
coupled with sympathetic and parasympathetic 
oscillator constants, Cs and Cp as illustrated in 
Figure 1 and equation (1) [11]: 

 

 
(a) 

 
(b) 

Figure 1: The role of Cs and Cp for modulating 
sinusoidal signal. 

 
𝑚ሺtሻ ൌ 𝐶௦ ∙ sin ሺ𝜔ୱ𝑡ሻ  𝐶 ൈ sin ሺ𝜔୮𝑡ሻ   (1) 

                             

𝐻𝑅௩ ≫
ఠ

ଶగ


ఠೞ

ଶగ
                  (2) 

 
, where 𝜔 , 𝜔௦  are oscillating frequencies for 

modulating virtual cardiac control system and 
HRaveg denotes the average time-duration between 
heart beats. The output of IPFM model is a series of 
pulses, tk’s where each of amplitude exceeds the 
predefined threshold value of unity as shown in 
Figure 2 [11]. 

 

 
Figure 2: Block diagram of IPFM model. 
 
A typical power spectrum of HRV has three 

frequency ranges: very low frequency (VLF) (0 ~ 
0.04 Hz), low frequency (LF) (Mayer waves, 0.04 ~ 
0.15 Hz) and high frequency (HF) range (RSA 
waves, 0.15 ~ 0.04 Hz) (Figure 3) [12].  

 

 
Figure 3: Three-main waves in the power spectrum of 

HRV. 
 
Attarodi et al. [6] proposed IPFM integral-model 

using four inputs of sinusoidal signals to simulate 
three-prominent peaks in the power spectrum of 
HRV. However, this IPFM model yielded the 
power spectrum of HRV with some spectral 
leakages between main waves. Thus, we propose an 
empirical IPFM model by employing data mining 
approach on MIT-BIH database. 

 
𝐻𝑅௩  𝑚ሺtሻ ൌ 𝐻𝑅௩  |𝐶௦ ∙ sinሺ𝜔ଵ𝑡ሻ| 

      
ೞା

଼
∙ sinሺ𝜔ଶ𝑡ሻ 

ห𝐶 ∙ sin ሺ𝜔ଷ𝑡ሻห             (3) 
 
Here, HRaveg was estimated by the average value 

of R-R intervals with considering NSR database: 
MIT-BIH record: 16265, 16272, 16273, 16240, 
16483, 16539, 16773, 16786, 16795, 17052, 17453, 
18177, 18184, 19088, 19090, 19093, 19140 and 
19830. Each record contained 20 ~ 22 hours ECG 
measurements sampled with 360 Hz. The proposed 
IPFM model generates the simulated R-wave of the 
ECG signal when the output of integrator reaches 
the threshold value of unity. Figure 4 shows the 
power spectrum of HRV signals based on the 
proposed IPFM model by exemplifying the 
oscillator constants:  

 
(a) Cs = 0.06, Cp = 0.34  
 
(b) Cs = 0.1, Cp = 0.1  
 
(c) Cs = 0.5, Cp = 0.1  
 
, with 𝜔ଵ ൌ 2𝜋 ∙ 0.01, 𝜔ଶ ൌ 2𝜋 ∙ 0.1, 𝜔ଷ ൌ 2𝜋 ∙

0.15 and 𝐻𝑅௩ ൌ 1.27sec, respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 4: Power spectrum of HRV signal based on our 
proposed IPFM model, (a) Cs = 0.06, Cp = 0.34, (b) Cs = 

0.1, Cp = 0.1, (c) Cs = 0.5, Cp = 0.1. 

 
3. HRV MEASURES FOR ESTIMATING THE 
OSCILLATOR PARAMETERS OF ROPOSED 
IPFM MODEL 
 

In order to evaluate the roles of Cs and Cp in the 
proposed IPFM model as expressed in equation (3), 
we selected time-domain and power spectrum 
measures as summarized in Table 1. Here, Poincare 
plot represents the geometrical pattern of R-R time 
series on Cartesian plane by visualizing the 
correlation between consecutive R-R intervals [13]. 
Also, Welch-LF/HF, Burg-LF/HF and Lomb-
LF/HF imply the ratio of LF and HF power 
spectrum computed by Welch, Burg and Lomb’s 

periodogram processing method, respectively [14]. 
For our computations of HRV measures, we 
applied HRVAS (HRV Analysis Software) open 
source Matlab library which was developed to 
analyze HRV features [15]. 

 

Table 1: HRV measures selected for estimating the 
parameters of autonomic nervous activity [16]. 

Variable Units Descriptions 

SDNN ms 
The standard deviation of all normal 
beat to normal beat (NN) intervals. 

SDNN 
index 

ms 
Mean of the standard deviations of all 
NN intervals for all 5 min segments of 

the entire recording 

SDANN ms 
The standard deviation of the average 
of NN intervals in all 5 min segments 

of the considered ECG recordings. 

RMSSD ms 
The square root of the mean of the sum 
of the squares of differences between 

the adjacent NN intervals. 

NN50 - 
Number of pairs of adjacent NN 

intervals differing by more than 50 ms 
in the ECG recordings. 

pNN50 % 
NN50 counts divided by the total 

number of all NN intervals. 

SD1 ms 
The standard deviation of the 

perpendicular distance to the line of 
identity in Poincare plot. 

SD2 ms 
The standard deviation of the distance 
along to the line of identity in Poincare 

plot. 

Welch-
LF/HF

- 
The ratio of LF and HF spectrum in 

HRV by Welch Power Spectrum 
estimation. 

Burg-
LF/HF

- 
The ratio of LF and HF spectrum in 

HRV by Burg Power Spectrum 
estimation. 

Lomb-
LF/HF

- 
The ratio of LF and HF spectrum in 

HRV by Lomb Power Spectrum 
estimation. 

 
4. EXPERIMENTAL RESULTS AND 
ANALYSIS 

 
For the experimental simulations, we adopted the 

eighteen sets of NSR and each HRV signal is 
computed based on non-overlapping ECG data 
segment of five minutes duration. HRV measures 
as specified in Table 1 were calculated and 
compared with the corresponding HRV feature on 
the artificial R-peaks by increasing or decreasing Cs 
and Cp value with using a scale of 0.01. The 
computing range of Cs is from 0 to 1 and the scope 
of Cp is from 0 to 0.5. Figure 5 shows the computed 
HRV features based on our proposed mathematical 
model for generating artificial heart beats. 
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(a) SDNN 

 
(b) SDNN index 

 
(c) SDANN 

 
(d) RMSSD 

 
 

 
(e) NN50 

 
(f) pNN50 

 
(g) SD1 

 
(h) SD2 
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(i) Welch-LF/HF ratio 

 
(j) Burg-LF/HF ratio 

 
(k) Lomb-LF/HF ratio 

Figure 5: The computed HRV measures on the artificial 
heart beats. The index represents the scaled version (100 
times) of actual values of Cs and Cp. In other words, Cs 
(Cp) ranges from 0 to 1.0(0.5) with increasing by 0.01. 

 
Similarly, we calculated HRV features using the 

MIT-BIH NSR database and tried to eliminate the 
outliers by applying Interquartile-range (IQR) 
statistical analysis [17]. Table 2 shows the HRV 

features which exists in the range of Q1-1.5·IQR ~ 

Q3+1.5 · IQR, where Q1 and Q3 denote the first 

quartile and third quartile of the total range, 
respectively. 

 

Table 2: HRV features resulted from applying IQR 
analysis on MIT-BIH NSR dataset. 

HRV Features Maximum value Minimum value

SDNN 81.5 -3.3 

SDANN 66.9 -1.9 

RMSSD 76.85 -8.35 

NN50 179 -85 

pNN50 53.1 -26.1 

SD1 54.45 -5.95 

SD2 101.5 -4.1 

Welch-LF/HF 8.552 -3 

Burg-LF/HF 8.9745 -3.4375 

Lomb-LF/HF 8.6235 -3.1085 

 
The outliers that exist in the computed HRV 

measures as shown in Figure 3 were eliminated by 
applying Interquartile-range analysis as stated in 
Table 2. Figure 6 displays HRV feature resulted 
from removing outliers. Note that SDNN index 
feature was not considered due to its nonlinearity 
and the negative values displayed in Table 2 were 
not used. 

 
(a) SDNN 

 
(b) SDANN 
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(c) RMSSD 

 
(d) NN50 

 
(e) pNN50 

 
(f) SD1 

 
(g) SD2 

 
(h) Welch-LF/HF ratio 

 
(i) Burg-LF/HF ratio 

 
(j) Lomb-LF/HF ratio 

Figure 6: HRV measures based on MIT-BIH NSR 
database with removing outliers. 

 
The valid range of Cs and Cp was determined by 

overlapping ten HRV features as shown in Figure 7. 
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Figure 7: The decision logic map for determining the 
valid range of Cs and Cp. The real Cs and Cp values can 
be obtained by dividing 100. 

 
The final Cs and Cp value on the real ECG 

segments are estimated by finding the minimum 
mean-square-error (MSE) as the differences of 
HRV measures on between the annotated ECG 
segment and the IPFM output. We tested 18 MIT-
BIH NSR dataset (16265, 16272, 16273, 16240, 
16483, 16539, 16773, 16786, 16795, 17052, 17453, 
18177, 18184, 19088, 19090, 19093, 19140 and 
19830) by encoding the data into 5 minutes-
segments. Figure 8 represents histogram 
distribution of Cs and Cp evaluating on MIT-BIH 
NSR dataset. It also shows that Cs (Cp) have a 
Gaussian distribution ranging from 0 to 1.0 (0.5) 
for Normal sinus rhythms. 

 

 
(a) 

 
(b) 

Figure 8: Histogram distribution of (a) Cs and (b) Cp 
by evaluating MIT-BIH NSR dataset. 

 
To illustrate effects of Cs and Cp by Poincare 

plot, we sought particularly three cases: (a) high Cs 
and low Cp, (b) low Cs and high Cp and (c) similar 
range of Cs and Cp, respectively. With this aim, we 
considered MIT-BIH (a) five-minutes duration of 
16272 elapsed by 22 hours, (b) five-minutes 
duration of 16773 between 20 and 22 hours elapsed 
and (c) five-minutes duration of 16272 between 8 
and 10 hours elapsed. Table 3 displays HRV 
measure on the selected MIT-BIH NSR dataset and 
Table 4 shows the estimated Cs, and Cp values. 

 

Table 3: HRV measures on five-minutes duration of 
16272, 16773 and 16272 record, Respectively. 

 (a) (b) (c) 

SDNN 39.7 130 24.7 

SDANN 29 98.8 19.3 

RMSSD 23.1 143.2 28.5 

NN50 10 141 21 

pNN50 4.1 65.6 6.9 

SD1 16.3 101.5 20.2 

SD2 53.7 153.3 28.5 

Welch- 
LF/HF 

26.304 2.74 1.09 

Burg- 
LF/HF 

28.614 3.251 0.796 

Lomb- 
LF/HF 

9.468 2.237 1.378 

 
 

Table 4: The estimated Cs and Cp based on the records 
as specified in Table 3. 

Cs Cp 

(a) 0.98 0.08 

(b) 0 0.46 

(c) 0.13 0.13 

 
 
Figure 9 shows the ECG segment (five-minutes 

duration) with illustrating heart beats by Poincare 
plot. 
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(a) 

 
(a’) 

 
(b) 

 
(b’) 

 
(c) 

 
(c’) 

Figure 9: The estimated activity of autonomic nervous 
system (a): the five-minutes duration of MIT-BIH: 16272 
(Cs = 0.98, Cp= 0.08) (a)’ : Poincare plot of (a) (b): the 
five-minutes duration of MIT-BIH: 16773 (Cs = 0.0, Cp= 
0.46) (b)’: Poincare plot of (b) (c): the five-minutes 
duration of MIT-BIH: 16272 (Cs = 0.13, Cp= 0.13) (c)’: 
Poincare plot of (c). 

 
 

5. CONCLUSIONS 
 
In this study, we have proposed a new IPFM 

model to generate the artificial R-R time-series 
using the threshold of unity and it can effectively 
resolve three main-peaks in power spectrum of 
HRV. In order to estimate the values of Cs and Cp 
parameters, the difference of HRV measures on 
between MIT-BIH NSR dataset and IPFM output 
was evaluated by MSR performance index. Our 
experimental simulations based on real-patient data 
demonstrated that the cardiac activity of autonomic 
nervous system can be interpreted in terms of Cs 
and Cp using the proposed IPFM model as follows; 

 
i) The real values of Cs & Cp parameter can be 

estimated by using data mining approach on MIT-
BIH NSR dataset. 

ii) Cs (Cp) have a Gaussian distribution ranging 
from 0 to 1.0 (0.5) for MIT-BIH NSR dataset. 
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