
Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7312

ASYNCHRONOUS REASONING SCHEME FOR GLOBAL
ONTOLOGY MANAGEMENT IN INTERNET OF THINGS

INFORMATION SYSTEMS: ASYNCR*/GOM

1YONGGOO CHOI, 2ILKYEUN RA, 3SANGWON LEE
1Professor. Department of Computer Information, Dong Seoul University, Seongnam 13117, Republic of

Korea
2Professor. Department of Computer Science and Engineering, University of Colorado Denver, Colorado

80204, United States of America
3Associate Professor. Department of Computer & Software Engineering (Institute of Convergence

Creativity), Wonkwang University, Iksan 54538, Republic of Korea

E-mail: 1ygchoi@du.ac.kr, 2ilkyeun.ra@ucdenver.edu, 3sangwonlee@wku.ac.kr

ABSTRACT

In the open and dynamic Things of Internet (IoT), synchronization of the things is mandatory to provide
their adaptable behaviors and maximum autonomies. The core goal of the synchronization is consistent
context reasoning and up-to-date context maintaining in the IoT information systems. For realizing this
goal, we present an asynchronous reasoning (AsyncR*) scheme, which is capable of non-stop reasoning
while always maintaining up-to-date context information in the IoT information system. The AsyncR*
scheme based on semantic-timestamp and forged-version scheduling methods to preserve a serializability
between concurrent ontology transactions. We also present a global ontology management (GOM) model
and an ontology transaction (OT) model for efficiently governing the IoT ontology system. Finally, we talk
key issues of the correctness of the AsyncR* scheme in consideration of diverse synchronous situations.

Keywords: AsyncR* (Asynchronous Reasoning), GOM (Global Ontology Management), Ontology System
Model, Ontology Transaction Model, Internet of the Things (IoT).

1. INTRODUCTION

The vision of ubiquitous computing has typically
focused on providing people with comfortable
living environments. As a key task for achieving
this vision, all of the intelligent devices around
human being let themselves manage overall matters
related to human activities without explicit human
intervention. The Internet of Things (IoT) [1] has
become a key concept in industry and academic
fields to achieve such key tasks.

 The IoT is completely integrated into everyday
life of people to provide people with diverse
context-aware services and context information in
an “anyone, anywhere, anytime, and anything”
fashion. Therefore, all of the intelligent objects on
the IoT must be able to share common knowledges,
reason their situations and interoperate with each
other. For these tasks, ontologies [2] have clear

advantages in the IoT context model due to
enabling knowledge sharing and interoperability
with semantically well-defined concepts and their
relationships in the open and dynamic
environments.

Nowadays, the IoT technologies are widely
applied to not only common workplaces, but
mission-critical applications such as healthcare
service, intelligent production, smart farming,
security monitoring and control, and so on. In such
a mission-critical IoT environments, it is very
important to synchronize the things’ behaviors and
preserve their autonomy through adaptive context
reasoning. Therefore, we propose an asynchronous
reasoning (AsyncR*) scheme, which is capable of
non-stop reasoning while always maintaining up-to-
date context information in the IoT information
system.

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7313

The design philosophy behind the AsyncR*
scheme is that a reasoning process that was once
started should not be interrupted and avoided in any
cases to preserve consistent behaviors of the things
in the IoT, and an ontology information system for
them should always maintain up-to-date context
information. Analogously, it should provide a high
degree of concurrent execution of ontology tasks.
The AsyncR* scheme based on semantic-timestamp
and forged-version scheduling methods to preserve
a serializability between concurrent ontology
transactions. We also present a global ontology
management (GOM) model and an ontology
transaction model for efficiently governing the IoT
ontology system. Finally, we talk key issues of the
correctness of the AsyncR* scheme in consideration
in the global ontology system.

2. BACKGROUNDS

2.1. IoT Ontology Modeling Scheme

Ontology is the study to express the general
concepts that symbolize the basic categories of
objects or elements that make up the world [3]. In
other words, in the IoT, the Ontology describes a
way to express relationships between things clearly.
This type of ontology allows the user to define the
status of certain IoT objects, such as various
sensors, air conditioners, fans and lamps, and to
define the relationships between objects. These
defined objects and their relationships can be used
for search, statistics, and analysis on situation and
status data, as well as analysis on their associations
and links. These applications are based on semantic
web technology. The semantic web is a kind of web
technology for the next generation that will give
computers a handle on the information that exists
on the web. In other words, the semantic web
makes it possible for computers to understand the
meaning of web information resources and self-
designate the process of handling information such
as extracting, transforming, cleansing, and loading
information [4]. Until now, it is known that
Ontology is best suited for modelling
methodologies to systematically represent and
deduce these semantic web resources.

An ontology modelling component consists of a
large number of concepts, relationships between
concepts, and constraints. In other words, it helps us
classify the things that are in this world into a
common class and explicitly articulate relationship
between them [5].

 Concept: It is a basic unit of ontology used
to abstract the properties of an object in a
particular area. Things in the same category
are called classes.

 Relationship or attribute: This is an ontology
unit for expressing meaningful associations
between classes.

 Objects or instances: This refers to the
physical object of the abstract concept, and
the value at the bottom of the ontology
hierarchy.

 Communication: This formats relationship
among the ideas of the Ontology and is used
to clearly infer information.

To further explain the Ontology concept, see a
sensor Ontology example as shown in Figure 1.

Example 1(Sensor Ontology): The fact that
‘TemperatureSensor is a kind of Sensor’ is a true
proposition and knowledge that everybody has
agreed to. TemperatureSensor and Sensor are the
central concepts used to express knowledge, and
their relationship is expressed as is-a (Figure 1).

Figure 1: Hierarchical Representation of the Partial
Sensor Ontology

TemperatureSensor and Sensor can be expressed
as meaningful hierarchical relationships through the
relationship is-a. And the TemperatureSensor
concept can be expressed as a hasValue relationship,
and the property can be expressed as an integer. It is
true that TemperatureSensor has a value of 30, and
when you format it, it becomes an axiom.

End of Example 1.

IoT ontology modeling technology requires an
annotation technique to convert sensor big-
streaming data into a semantic basis. In other words,
it defines the detailed meaning of the status and

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7314

circumstances of objects for interoperability and
situation analysis through semantic based reasoning
of IoT data. To express things on a semantic web,
abstract IoT and sensor streaming data (such as user,
object, time, location, service, and situation) are
expressed in an on-demand knowledge base and
various status information is deduced. Major
Ontology includes SSN (Semantic Sensor Network),
Onto-Sensor, and SensorData [6, 7, 8, and 9]. They
are primarily an extension of the data recognition
model of the Open Geospatial Cooperative (OGC)
SWE (Sensor Web Enablement) [8]. However,
these IoT ontology models are designed to serve the
interoperability of things, so there is a limit to the
real time sharing of objects. Accordingly,
synchronization techniques are necessary for IoT
multiple products to jointly use a single knowledge
base, Ontology.

2.2. IoT Ontology Sharing Scheme

In the open and dynamic context of the IoT, the
purpose of synchronization among the things is to
ensure the maximum autonomy of things and to
enable the thorough interoperability of things at the
same time. To preserve consistency in the context
information based on the IoT Ontology knowledge,
concurrency control schemes are required. They are
necessary between devices to add new knowledge
classes to the ontology to keep things in
synchronization, and devices that use knowledge in
real time from the ontology. In the IoT, the purpose
of the situational synchronization technique is to
give things a context-knowledge view of the current
situation, and to do so. To do so, Ontology storage
should reflect the context of the current application
on a real-time basis from various sensors around
IoT. In IoT situations, the purpose of
synchronization is to ensure proper behavior and to
maintain independence of objects. That is, to ensure
that things are as independent as possible while
maintaining their thorough synchronization.

The basic principle of IoT Ontology sharing is to
set the sequence of approaches to things. That is, it
is necessary to control the concurrency control for
the use of the status information of the different
objects in the Ontology management system to
ensure effective interoperability through
synchronization of devices. Using the Ontology
status information for real-time big data analysis in
IoT environment, there are two works; changing the
Ontology schema structure to add a new instance to
the Ontology and searching for the Ontology
schema. This environmental approach requires

access to a number of classes in the semantic
hierarchy structure of the Ontology.

Example 2(Undesirable Behavior when
Approaching the IoT Ontology Semantic
Hierarchical Structure): Let's assume that, in a
humidity sensor HumiditySensor in an object Object
in the IoT environment, 70% of a value measured at
humidity sensor 1 HumiditySensor#1 H1 is about to
be added while 78% of a value measured at a
specific time is used in a ventilator 1 Ventilator#1
(Figure 2).

Figure 2: Concurrent Access of an Element in
Ontological Semantic Web

Figure 2 shows that various things use the
context awareness information in the IoT Ontology.
While Ventilator#1 recognizes that the humidity
instance is 68%, the 70% of humidity instance of
HumiditySensor#1 recently measured can be added
to the IoT Ontology. Real-time access to Ontology
repository for IoT context-aware services is more
likely to cause phantom phenomena [10], which can
negatively affect the real-time interoperability of
intelligent things in IoT.

End of Example 2.

In the concurrent access to IoT Ontology, a
phantom phenomenon means that when a particular
object is searched for the same ontology blocks
repeatedly, it results in different resulting values.
That is, this typically occurs when adding new
classes or instances during the course of an
ontology context data search. In IoT Ontology
services, a data inconsistency for phantom
phenomenon can lead undesirable behaviors to an
intelligent device. When multiple things
simultaneously approach the same ontology,
undesirable behaviors in the IoT may occur.

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7315

To prevent these undesirable behaviors from a
phantom phenomenon there are conservative and
optimistic concurrent-control schemes. The
conservative schemes are to have a locking method
in advance to prevent other objects from accessing
the IoT context information when an object in the
IoT are accessed. On the other hand, the optimistic
scheme is to allow multiple objects to access a
single IoT Ontology simultaneously, but to grant
the final result through a consistency check at the
end of the access.

3. GLOBAL ONTOLOGY MANAGEMENT
MODEL

3.1. Ontology System Model

In order to apply the IoT information system to
mission-critical applications, it is necessary to
integrate the local ontologies for overall
governments for them. This integrated local
ontology defines as global ontology [11]. The
global ontology is composed by upper-level
ontologies (UO) and local ontologies (LOs) for a
unified and coherent reasoning. The UO specifies
the semantic representation of common concepts
and their semantic relationships of the things such
as object, users, context, services, and so on [12].
On the other hand, the LOs are a semantic
representation of the concepts and their
relationships for any specific goals in domain-
specific situations with the local IoT environments.
The repetitive blocks of the local ontologies include
in a global ontology according to the upper-level
ontology schema rules that is specified in semantic
relationships between ontology concepts or their
instances. In the mission-critical IoT applications,
providing consistent behaviors of the things and
reasonable performances for efficient
interoperability of them comes from a global
ontology management (GOM) model (Figure 3).

We suppose that the local ontology blocks are
inserted into the global ontology repository by a
middle-ware solution over a span with a certain
period of time. Such large global ontology bases are
necessary to drive semantic context-awareness
services in the intelligent business applications and
scientific terminologies [13]. In the GOM system,
the context reasoning rules provide ways to make
high-level contexts which are more meaningful
from the low-level context [14] and used by the
context reasoner. The context awareness is a task
that recognizes a specific situation by combining

the reasoning results with other contexts. The GOM
scheduler processes in the execution order between
a context reasoning task and an insertion operation.
Finally, the service adaptation [15] plays a role in
executing adaptive services related to global
ontology.

Figure 3: Global Ontology Management System

3.2. Ontology Transaction Model

To preserve a consistent information system in
IoT environments, it is important to have a well-
defined transaction model to be adequate to the IoT
information systems. In fact, the context features of
the IoT information systems are time-series and
time-less [16] in the case of governing both their
contexts and applications. The time-series context
information is to record up-to-date context data
every time the situation information of the things is
changed. The other hand, the time-less context
information is applied to predicting future situations
of the things based on analyzing their past status
using the context information. This double-
sidedness features of the context information can
make ontology-transaction model simple.
Therefore, the action tasks in an ontology
transaction consist in reasoning through traversing
existing ontology blocks, and insertion for
submitting new ontology blocks in the global
ontology repository. That is why traversing and
inserting ontology blocks for governing up-to-date

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7316

situations is meaningful, but updating and deleting
existing ontology blocks for ontology management
is meaningless because of the double-side context
information features.

In the ontology transaction model, a set of

ontology tasks is OT = {S, P, T, A} ⊂ OT, and

{Reasoning, Insertion} ∈ T, where S, P, T, and A
are the abbreviations for Start, Place, Traverse, and
Adapt respectively (Figure 4).

Figure 4: Tasks in the Ontology Transaction

In the Start step in an ontology transaction, GOM
system creates a new ontology process to begin the
ontology transaction. And then the Place step
directly moves an access position on a target
ontology block in the global ontology using primary
context types [17] such as ontology identifier, time,
location, state, etc. The Traverse step searches
ontology blocks located in the Place step for
reasoning or insertion. Depending on the traversal
results, the Adapt step performs context-awareness
services based on reasoning results, or actually
inserts the ontology block from local ontologies
into global ontology repository.

4. ASYNCHRONOUS REASONING SCHEME

4.1. Ontology Process State Block

The first design philosophy behind AsyncR* is
that a reasoning process that was once started
should not be stopped in any case to preserve the
consistency of the behaviors of the IoT objects,
while the global ontology is always maintaining up-
to-date context information under the dynamic
environments. Simultaneously, it provides a high
degree of concurrent execution of ontology tasks
for preserving autonomous behaviors of the
intelligent devices on the IoT. To elucidate the

AsyncR* scheme, we assume that the global
ontology resides in computing main memory after
being parsed in accordance with ontology schema
rules, and each domain ontology in the global
ontology has ontology block numbers (OBNs) to
distinguish them from the others. We also assume
that an ontology state block (OSB) has the ontology
process state information such as ontology
transactions, domain-ontology blocks, their
associated time-stamps, and etc. To deal with such
OSB, AsyncR* scheduler maintains the following
data structure (Figure 5).

Figure 5: Ontology State Block

In Figure 5, when an ontology transaction is
started, the OSB is immediately created by a GOM
system, and the PID has a unique number to be able
to distinguish the process from other processes. The
OBN assigns the ontology block number in the
global ontology to be accessed by an ontology
transaction. The TID records a number of the task
types defined in an ontology transaction. It only has
one of two digits: 1 means a reasoning task, or 2
means an insertion task. The OID is assigned a
number of an operation in an ontology transaction.
It has one of four digits: 1 means start, 2 means
place, 3 means traverse, or 4 means adapt operation.
The STS and the ETS records each start and end
time of the ontology transaction. The other part in
the OSB has reasoning results in the case of the
reasoning task, or a forged-version number in the
case of the insertion task when required by AsyncR*
scheduler.

4.2. Scheduling Algorithm

In this AsyncR* scheduling algorithm, our
primary concerns focus on how to preserve the non-
stop execution of context reasoning tasks without
interference of any other tasks, and how to gain
higher concurrency for mission-critical context
awareness services in the IoT information systems.
For this goal, a semantic timestamp and forged-

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7317

version control scheme are used in the AsyncR*
scheduling algorithm (Figure 6).

Figure 6: AsyncR* Scheduling Algorithm

In AsyncR* scheduling algorithm in the Figure 4,
each ontology transaction progresses according to
the following scheduling rules.

 Rule 1(Start scheduling): If an ontology
transaction begins in Start step, the GOM
system creates an OSB and assign a PID,
OBN, TID, OID, and STS respectively to the
OSB as shown in Fig. 3.

 Rule 2(Place scheduling): According to the
context reasoning rules and ontology schema,
the GOM system directly moves an access
position on a target ontology block in global
ontology using primary context types. The
rule of finding an access position of an
ontology block is the same as OT(STS) >=
max(OBN(d-time)), where d-time is the time
assigned to the ontology block.

 Rule 3(Semantic timestamp scheduling): If
an ontology transaction is successfully
initiated, AsyncR* scheduler assigns the
ontology task type to the TID and the
starting time to STS in the OSB respectively.
If two different ontology transactions access
the same ontology block in the global
ontology, the AsyncR* scheduler processes
as follows.

 Case 1(In the case of service requests in
the order of OT1: Reasoning and OT2:
Reasoning): The ontology transactions
OT1 and OT2 run a “first-come, first-
serve” basis in time sequence because of
non-conflict serializability.

 Case 2(In the case of service requests in
the order of OT1: Reasoning and OT2:
Insertion): In case that while OT1 is
executing a reasoning task on a specific
ontology block in the global ontology,
OT2 is supposed to insert a new ontology
block at the same position, the insertion
ontology block issued by OT2 leads a
phantom block to OT1. In this case, after
the insertion task in the OT2 is completed,
the OT1 should be restarted for preserving
serializability of the ontology transactions.
However, since restarting the reasoning
task of the OT1 results in inconsistent
interoperability among IoT objects, OT1
should not be interrupted in any case.
Therefore, for asynchronous reasoning of
OT1, the AsyncR* scheduler temporally
made a new forged-version for OT2, and
insert it into the global ontology repository
as soon as OT1 have finished.

 Case 3(In the case of service requests in
the order of OT1: Insertion and OT2:
Reasoning): The OT1 is cancelled because
the ontology block of the insertion in the
OT1 is unnecessary for any other
applications.

 Case 4(In the case of service requests in
the order of OT1: Insertion and OT2:
Insertion): Ontology transactions run a
“first-come, first-serve” basis in time
sequence of pseudo-conflict serializability.

Considering the above cases, AsyncR* timestamp
scheduling algorithm can streamline them as shown
in Table 1.

Table 1: Timestamp Compatibility Matrix for AsyncR*
Scheduling

OT1.time1 OT2.time2 AsyncR* scheduling

Reasoning Reasoning Sequence

Reasoning Insertion Forged-version

Insertion Reasoning Discard Insert

Insertion Insertion Sequence

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7318

 Rule 4(Forged-version scheduling): If an
ontology transaction requests a traveling on
an ontology block for an insertion task while
other transaction is traveling on the same
ontology block for a reasoning task, the
AsyncR* scheduler decides to create a forged
version of the ontology block and waits until
the reasoning task is finished. Right after
finished, the forged-version ontology block
is inserted into a global ontology repository.

 Rule 5(Service adaptation): If an ontology
transaction scheduling is completed
successfully, the AsyncR* scheduler assigns
ending time of the transaction to ETS in the
OSB and begins ontology tasks: context
awareness, or insertion task.

4.3. Proof of Correctness

In the academic field, a correctness criterion
pertaining to concurrency control schemes has been
widely used in serializability among transactions
[18]. To prove the correctness of AsyncR* scheme,
we will show that the AsyncR* scheduler always
produces a serial execution history. Due to
preservation requirement of creation order of any
conflicting insertion ontology transactions, it is
necessary to show that the forged-version
timestamp scheduling scheme for the AsyncR*
always processes them in the order of their creation
sequence.

Definition 1(Global ontology structure): When a
global ontology (GO) consists in an upper-level
ontology (UO) and several local ontologies (LOs),
it can express in follow:

 (1)

where i is the number of a specific ontology
domain, and j is the number of a ontology block in
the block i. By the Equation the global ontology

presents as GO = { UO ∝ { { LO11, LO12,, LO1n

}, ..., LOij, ..., LOmn } }, where LOij is the ontology
blocks in global ontology, and each LOij has
seamlessly semantic relationships with each other
according to the upper-level ontology schema rules.

Definition 2(Context integration and integrity
constraints of a global ontology): The global

ontology should preserve ① context integration

that completely converges the local (or domain)
ontologies to share the global ontology among the

things in the IoT, and ② context integrity that

entirely contains all the essential context
information pertaining to context reasoning.

Suppose 1(Uniform access to an ontology block in
the global ontology): Access to an ontology block
in the global ontology is uniform in main memory
ontology.

Lemma 1(Non-stop reasoning): In the IoT
information systems, context reasoning for context-
awareness services should never be interrupted and
avoided in any other situations for consistent
interoperability among the things in the IoT
environments.

Proof) Let’s recall Definition 1. If in the IoT
dynamic environments, an ontology transaction
interrupts and avoids reasoning process on LOij, at
the moment, LOi(j+1) may be added in another
ontology transaction. In this case, the LOij becomes
old-fashion context block in time sequence for a
situation status. This schedule scheme leads to
inconsistent interoperability because of context
information loss, and violates the context integrity
constraints in the definition 1. Therefore, a
reasoning task in an ontology transaction should be
always executed in non-stop fashion to combat such
side-effects caused by a result of such miss-
scheduling.

Lemma 2(New-fashion placing): If some ontology
transaction intents to access an target ontology
block in the global ontology, the access point
should be always placed in the most recently
inserted ontology block in time sequence.

Proof) The IoT applications are typically based on
prompt interoperability using context information
generated in a real-time fashion from various
sensors on the IoT. Let’s recall Definition 1 and
Suppose 1. Suppose that the local ontology sets {
LO11, LO12,, LO1n } in a global ontology are
listed in chronological order, and LO11 > LO12 in
time sequence is established. If an ontology
transaction intends to traverse an ontology block
LO1j for context reasoning, the LO11 always
becomes the target ontology block. In the same
manner, if an ontology transaction intends to insert
a new ontology block from local ontology
repositories, it become inserted into the front of
LO11. This new-fashion placement follows a stack

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7319

data structure that has a “last-in, first-service
(LIFO)” fashion.

Theorem 1(View serializability [19] of AsyncR*
scheme): Suppose that the local ontology sets are

represented as { LO11, LO12,, LO1n } ⊂ GO, LO11
> LO12 in time sequence. Now, consider the
following schedule history H:

(1) The AsyncR* scheduler receives LO11, where
LO11 denotes that an ontology transaction OT1
retrieves the LO11 contained in LO1j.

(2) The AsyncR* scheduler places LO1j, where LO1j
denotes that OT2 inserts the new LO into LO1j.

(3) The AsyncR* scheduler places in LO11.

According to schedule history H, the AsyncR*
scheme is view serializability if and only if
differencing R2 from R1 is null where R1 is a result
set of Case 1 and R2 is a result set of Case 2

Proof: The serial graph of H is represented as
OT1→OT2→OT1. The AsyncR* scheduler receives
an absolute position of LO11 from the global
ontology and has a start timestamp t1 according to
ontology state block (OSB) in Fig. 3. The R1 of

LO11 execution gets LO11⊂OL1j (Case 1). Now,

suppose that OT2 at the almost same time t2
requests an absolute position of LO1j so as to insert
a new ontology block from local ontology
repositories into LO1j. The insertion task of OT2
could not be immediately granted according to
Lemma 1. Therefore, the AsyncR* creates a forged-
version LO11

+ of LO1j at time t6 and inserts a local
ontology block into LO11

+ (Figure 7). The OT2
waits until the reasoning task of OT1 is finished.
Right after finished at the time t5, forged-version
ontology block inserts into global ontology
repository at the time t7 (Case 2 of Rule 3 and Rule
4) (Fig. 5). Therefore, the serial graph of H
executes in serial as OT1→OT2 and reasoning tasks
of OT1 executed in non-stop fashion (Lemma 1).
According to Case 2 of Rule 2, the inconsistent
interoperability occurs in AsyncR* scheduling rules
since differencing R2 from R1 is always null value.
This is sufficient to prove that AsyncR* scheduler
only produces serializable executions semantically.

Theorem 2(Correctness of AsyncR* scheme): For
any history H, H is serializable if only if every
transaction in H obeys the schedule rules of
AsyncR*.

Proof: This necessary condition is capable of being
proven by following the same discussion as that of
Theorem 1. From Lemma 1 and 2, we can also infer

that all conflicting insertion transactions in H are
executed in the order of their creation and H is
serializable, if every ontology transaction in H
obeys the concurrency control rules of AsyncR*.
Hence, if every transaction in H obeys the
scheduling rules of AsyncR*, H is serializable.
Finally, H is serializable if and only if every
ontology transaction in H obeys the scheduling
rules for AsyncR*.

Figure 7: Proof of view serializability of the ontology
transactions using Petri Nets [20]

5. DISCUSSION AND CONCLUSIONS

In this paper, we proposed an AsyncR* scheme,
which was capable of non-stop reasoning while
always maintaining up-to-date context information
in the IoT information system. The AsyncR*
scheme based on semantic-timestamp and forged-
version scheduling methods to preserve a
serializability between concurrent ontology
transactions. The background of the AsyncR*
scheme was that a reasoning process that was once
started should not be stopped in any case to
preserve the consistency of the behaviors of the IoT
objects, while the global ontology should always
maintain up-to-date context information. For
realizing this design philosophy, we also presented
a global ontology management (GOM) model and
an ontology transaction model for the AsyncR*
scheme. Finally, we talked correctness issues of the
proposed scheme using Petri Nets. The AsyncR*
scheme is simple, but provides a high degree of
concurrency of ontology tasks.

As this paper may ignore comparison with other
approaches in terms of some examples, the AsyncR*

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7320

scheme could be strengthened by additional
evidence demonstrating its strengths over the
conventional approaches. The implementation of
the proposed scheme and the quantitative analysis
of execution times according to a real-time variance
of computerized resources needed for the proposed
timestamp and version scheme will be included in
future works. Finally, we would like to extend our
scheme to allow further theoretical investigation by
using some properties such as multiple versions and
operation semantics for more novel models.

ACKNOWLEDGMENTS
This paper was supported by Dong Seoul

University for the research year (2016.8 ~ 2017.7)
of the first author, Yonggoo Choi.

REFRENCES:
[1] IStrategy, I. T. U., and Policy Unit. “ITU

Internet Reports 2005: The internet of things.”,
International Telecommunication Union
(Geneva), 2005.

[2] T. R. Gruber, “A Translation Approach to
Portable Ontology Specifications”, Knowledge
Acquisition, Vol. 5, No. 2, 1993, pp. 199-220.

[3] J. Park, “Ontology,” in Management Information
Systems, G.B. Davis (ed.) Cambridge,
Blackwell Publishing, Vol. 7, 2005, pp. 233-
236.

[4] Amit Sheth and Matthew Perry, “Traveling the
Semantic Web through Space, Time, and
Theme”, IEEE Internet Computing, Vol. 12,
No. 2, 2008, pp. 81-86.

[5] Mustafa Jarrar, Jan Demey, and Robert
Meersman. “On Using Conceptual Data
Modeling for Ontology Engineering”, Journal
on Data Semantics i, Springer Berlin
Heidelberg, 2003, pp. 185-207.

 [6] Holger Neuhaus and Michael Compton. “The
semantic sensor network ontology”, AGILE
Workshop on Challenges in Geospatial Data
Harmonisation, 2009.

[7] D. J. Russonmanno, C. Kothari, and O. Thomas,
“Sensor Ontologies: from Shallow to Deep
Models”, Proceedings of System Theory,
SSST’05 Proceedings of the 37th Southeastern
Symposium on Los Alamitos (USA), Mar.
2005, pp. 107-112.

[8] A. Sheth, C. Henson, and S.S. Sahoo, “Semantic
Sensor Web”, Internet Computing IEEE, Vol.
12, Aug. 2008, pp. 78-83.

[9] C. Michael, H. Cory, L. Laurent, N. Holger, and
S. Amit, “A Survey of the Semantic
Specification of Sensors”, Proceedings of the
2nd International Workshop on Semantic
Sensor Networks (SSN09) (USA), Oct. 2009,
pp. 17-32.

[10] Weikum, Gerhard, and Gottfried Vossen.
Transactional information systems: theory,
algorithms, and the practice of concurrency
control and recovery. Elsevier, 2001.

[11] R. F. Brena and H. G. Ceballos. “Combining
Global and Local Ontology handling in a
Multiagent System”, FLAIRS Conference,
2004.

[12] M. Lenzerini, “Ontology-based Data
Management”, Proceedings of the 20th ACM
international conference on Information and
knowledge management, 2011.

[13] J. Seidenberg and A. Rector. “A Methodology
for Asynchronous Multi-User Editing of
semantic Web Ontologies”, Proceedings of the
4th International Conference on Knowledge
Capture, 2007.

[14] C. Perera, et al., “Context Aware Computing
for the Internet of Things: A survey”, IEEE
Communications Surveys & Tutorials, Vol. 16,
No. 1, 2014, pp. 414-454.

 [15] H. Guermah, et al., “An Ontology Oriented
Architecture for Context Aware Services
Adaptation”, arXiv preprint arXiv:1404.3280,
2014.

[16] C. Bettini, et al., “A Survey of Context
Modelling and Reasoning Techniques”,
Pervasive and Mobile Computing, Vol. 6, No.
2, 2010, pp. 161-180.

[17] G. D. Abowd, et al., “Towards a Better
Understanding of Context and Context-
Awareness”, International Symposium on
Handheld and Ubiquitous Computing,
Springer Berlin Heidelberg, 1999.

[18] N. S. Barghouti and G. E. Kaiser,
“Concurrency Control in Advanced Database
Applications”, ACM Computing Surveys, Vol.
23, no. 3, 1991, pp. 269-317.

[19] M. Sunil, “Timestamp-Ordering Protocol for
Concurrent Transactions - A Performance
Study”, International Journal of Computer
Applications, National Conference on
Emerging Trends in Computer Technology,
2014, pp. 24-26.

[20] T. Murata “Petri Nets: Properties, Analysis and
Applications”, Proceedings of the IEEE, Vol.
77, No. 4, 1989, pp. 541-580.

