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ABSTRACT 
 

In the open and dynamic Things of Internet (IoT), synchronization of the things is mandatory to provide 
their adaptable behaviors and maximum autonomies. The core goal of the synchronization is consistent 
context reasoning and up-to-date context maintaining in the IoT information systems. For realizing this 
goal, we present an asynchronous reasoning (AsyncR*) scheme, which is capable of non-stop reasoning 
while always maintaining up-to-date context information in the IoT information system. The AsyncR* 
scheme based on semantic-timestamp and forged-version scheduling methods to preserve a serializability 
between concurrent ontology transactions. We also present a global ontology management (GOM) model 
and an ontology transaction (OT) model for efficiently governing the IoT ontology system. Finally, we talk 
key issues of the correctness of the AsyncR* scheme in consideration of diverse synchronous situations. 

Keywords: AsyncR* (Asynchronous Reasoning), GOM (Global Ontology Management), Ontology System 
Model, Ontology Transaction Model, Internet of the Things (IoT). 

 
 
1. INTRODUCTION 

 

The vision of ubiquitous computing has typically 
focused on providing people with comfortable 
living environments. As a key task for achieving 
this vision, all of the intelligent devices around 
human being let themselves manage overall matters 
related to human activities without explicit human 
intervention. The Internet of Things (IoT) [1] has 
become a key concept in industry and academic 
fields to achieve such key tasks.  

 The IoT is completely integrated into everyday 
life of people to provide people with diverse 
context-aware services and context information in 
an “anyone, anywhere, anytime, and anything” 
fashion. Therefore, all of the intelligent objects on 
the IoT must be able to share common knowledges, 
reason their situations and interoperate with each 
other. For these tasks, ontologies [2] have clear 

advantages in the IoT context model due to 
enabling knowledge sharing and interoperability 
with semantically well-defined concepts and their 
relationships in the open and dynamic 
environments. 

Nowadays, the IoT technologies are widely 
applied to not only common workplaces, but 
mission-critical applications such as healthcare 
service, intelligent production, smart farming, 
security monitoring and control, and so on. In such 
a mission-critical IoT environments, it is very 
important to synchronize the things’ behaviors and 
preserve their autonomy through adaptive context 
reasoning. Therefore, we propose an asynchronous 
reasoning (AsyncR*) scheme, which is capable of 
non-stop reasoning while always maintaining up-to-
date context information in the IoT information 
system. 
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The design philosophy behind the AsyncR* 
scheme is that a reasoning process that was once 
started should not be interrupted and avoided in any 
cases to preserve consistent behaviors of the things 
in the IoT, and an ontology information system for 
them should always maintain up-to-date context 
information. Analogously, it should provide a high 
degree of concurrent execution of ontology tasks. 
The AsyncR* scheme based on semantic-timestamp 
and forged-version scheduling methods to preserve 
a serializability between concurrent ontology 
transactions. We also present a global ontology 
management (GOM) model and an ontology 
transaction model for efficiently governing the IoT 
ontology system. Finally, we talk key issues of the 
correctness of the AsyncR* scheme in consideration 
in the global ontology system. 

 

2. BACKGROUNDS 
 

2.1. IoT Ontology Modeling Scheme 
 

Ontology is the study to express the general 
concepts that symbolize the basic categories of 
objects or elements that make up the world [3]. In 
other words, in the IoT, the Ontology describes a 
way to express relationships between things clearly. 
This type of ontology allows the user to define the 
status of certain IoT objects, such as various 
sensors, air conditioners, fans and lamps, and to 
define the relationships between objects. These 
defined objects and their relationships can be used 
for search, statistics, and analysis on situation and 
status data, as well as analysis on their associations 
and links. These applications are based on semantic 
web technology. The semantic web is a kind of web 
technology for the next generation that will give 
computers a handle on the information that exists 
on the web. In other words, the semantic web 
makes it possible for computers to understand the 
meaning of web information resources and self-
designate the process of handling information such 
as extracting, transforming, cleansing, and loading 
information [4]. Until now, it is known that 
Ontology is best suited for modelling 
methodologies to systematically represent and 
deduce these semantic web resources. 

An ontology modelling component consists of a 
large number of concepts, relationships between 
concepts, and constraints. In other words, it helps us 
classify the things that are in this world into a 
common class and explicitly articulate relationship 
between them [5]. 

 Concept: It is a basic unit of ontology used 
to abstract the properties of an object in a 
particular area. Things in the same category 
are called classes. 

 Relationship or attribute: This is an ontology 
unit for expressing meaningful associations 
between classes. 

 Objects or instances: This refers to the 
physical object of the abstract concept, and 
the value at the bottom of the ontology 
hierarchy. 

 Communication: This formats relationship 
among the ideas of the Ontology and is used 
to clearly infer information. 

To further explain the Ontology concept, see a 
sensor Ontology example as shown in Figure 1. 

 

Example 1(Sensor Ontology): The fact that 
‘TemperatureSensor is a kind of Sensor’ is a true 
proposition and knowledge that everybody has 
agreed to. TemperatureSensor and Sensor are the 
central concepts used to express knowledge, and 
their relationship is expressed as is-a (Figure 1). 

 

 

Figure 1: Hierarchical Representation of the Partial 
Sensor Ontology 

 

TemperatureSensor and Sensor can be expressed 
as meaningful hierarchical relationships through the 
relationship is-a. And the TemperatureSensor 
concept can be expressed as a hasValue relationship, 
and the property can be expressed as an integer. It is 
true that TemperatureSensor has a value of 30, and 
when you format it, it becomes an axiom. 

End of Example 1. 

 

IoT ontology modeling technology requires an 
annotation technique to convert sensor big-
streaming data into a semantic basis. In other words, 
it defines the detailed meaning of the status and 
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circumstances of objects for interoperability and 
situation analysis through semantic based reasoning 
of IoT data. To express things on a semantic web, 
abstract IoT and sensor streaming data (such as user, 
object, time, location, service, and situation) are 
expressed in an on-demand knowledge base and 
various status information is deduced. Major 
Ontology includes SSN (Semantic Sensor Network), 
Onto-Sensor, and SensorData [6, 7, 8, and 9]. They 
are primarily an extension of the data recognition 
model of the Open Geospatial Cooperative (OGC) 
SWE (Sensor Web Enablement) [8]. However, 
these IoT ontology models are designed to serve the 
interoperability of things, so there is a limit to the 
real time sharing of objects. Accordingly, 
synchronization techniques are necessary for IoT 
multiple products to jointly use a single knowledge 
base, Ontology. 

 

2.2. IoT Ontology Sharing Scheme 
 

In the open and dynamic context of the IoT, the 
purpose of synchronization among the things is to 
ensure the maximum autonomy of things and to 
enable the thorough interoperability of things at the 
same time. To preserve consistency in the context 
information based on the IoT Ontology knowledge, 
concurrency control schemes are required. They are 
necessary between devices to add new knowledge 
classes to the ontology to keep things in 
synchronization, and devices that use knowledge in 
real time from the ontology. In the IoT, the purpose 
of the situational synchronization technique is to 
give things a context-knowledge view of the current 
situation, and to do so. To do so, Ontology storage 
should reflect the context of the current application 
on a real-time basis from various sensors around 
IoT. In IoT situations, the purpose of 
synchronization is to ensure proper behavior and to 
maintain independence of objects. That is, to ensure 
that things are as independent as possible while 
maintaining their thorough synchronization. 

The basic principle of IoT Ontology sharing is to 
set the sequence of approaches to things. That is, it 
is necessary to control the concurrency control for 
the use of the status information of the different 
objects in the Ontology management system to 
ensure effective interoperability through 
synchronization of devices. Using the Ontology 
status information for real-time big data analysis in 
IoT environment, there are two works; changing the 
Ontology schema structure to add a new instance to 
the Ontology and searching for the Ontology 
schema. This environmental approach requires 

access to a number of classes in the semantic 
hierarchy structure of the Ontology. 

Example 2(Undesirable Behavior when 
Approaching the IoT Ontology Semantic 
Hierarchical Structure): Let's assume that, in a 
humidity sensor HumiditySensor in an object Object 
in the IoT environment, 70% of a value measured at 
humidity sensor 1 HumiditySensor#1 H1 is about to 
be added while 78% of a value measured at a 
specific time is used in a ventilator 1 Ventilator#1 
(Figure 2). 

 

 

Figure 2: Concurrent Access of an Element in 
Ontological Semantic Web 

 

Figure 2 shows that various things use the 
context awareness information in the IoT Ontology. 
While Ventilator#1 recognizes that the humidity 
instance is 68%, the 70% of humidity instance of 
HumiditySensor#1 recently measured can be added 
to the IoT Ontology. Real-time access to Ontology 
repository for IoT context-aware services is more 
likely to cause phantom phenomena [10], which can 
negatively affect the real-time interoperability of 
intelligent things in IoT. 

End of Example 2. 

 

In the concurrent access to IoT Ontology, a 
phantom phenomenon means that when a particular 
object is searched for the same ontology blocks 
repeatedly, it results in different resulting values. 
That is, this typically occurs when adding new 
classes or instances during the course of an 
ontology context data search. In IoT Ontology 
services, a data inconsistency for phantom 
phenomenon can lead undesirable behaviors to an 
intelligent device. When multiple things 
simultaneously approach the same ontology, 
undesirable behaviors in the IoT may occur. 
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To prevent these undesirable behaviors from a 
phantom phenomenon there are conservative and 
optimistic concurrent-control schemes. The 
conservative schemes are to have a locking method 
in advance to prevent other objects from accessing 
the IoT context information when an object in the 
IoT are accessed. On the other hand, the optimistic 
scheme is to allow multiple objects to access a 
single IoT Ontology simultaneously, but to grant 
the final result through a consistency check at the 
end of the access. 

 

3. GLOBAL ONTOLOGY MANAGEMENT 
MODEL 
 

3.1. Ontology System Model 
 

In order to apply the IoT information system to 
mission-critical applications, it is necessary to 
integrate the local ontologies for overall 
governments for them. This integrated local 
ontology defines as global ontology [11]. The 
global ontology is composed by upper-level 
ontologies (UO) and local ontologies (LOs) for a 
unified and coherent reasoning. The UO specifies 
the semantic representation of common concepts 
and their semantic relationships of the things such 
as object, users, context, services, and so on [12]. 
On the other hand, the LOs are a semantic 
representation of the concepts and their 
relationships for any specific goals in domain-
specific situations with the local IoT environments. 
The repetitive blocks of the local ontologies include 
in a global ontology according to the upper-level 
ontology schema rules that is specified in semantic 
relationships between ontology concepts or their 
instances. In the mission-critical IoT applications, 
providing consistent behaviors of the things and 
reasonable performances for efficient 
interoperability of them comes from a global 
ontology management (GOM) model (Figure 3). 

We suppose that the local ontology blocks are 
inserted into the global ontology repository by a 
middle-ware solution over a span with a certain 
period of time. Such large global ontology bases are 
necessary to drive semantic context-awareness 
services in the intelligent business applications and 
scientific terminologies [13]. In the GOM system, 
the context reasoning rules provide ways to make 
high-level contexts which are more meaningful 
from the low-level context [14] and used by the 
context reasoner. The context awareness is a task 
that recognizes a specific situation by combining 

the reasoning results with other contexts. The GOM 
scheduler processes in the execution order between 
a context reasoning task and an insertion operation. 
Finally, the service adaptation [15] plays a role in 
executing adaptive services related to global 
ontology. 

 

 

Figure 3: Global Ontology Management System 

 

3.2. Ontology Transaction Model 
 

To preserve a consistent information system in 
IoT environments, it is important to have a well-
defined transaction model to be adequate to the IoT 
information systems. In fact, the context features of 
the IoT information systems are time-series and 
time-less [16] in the case of governing both their 
contexts and applications. The time-series context 
information is to record up-to-date context data 
every time the situation information of the things is 
changed. The other hand, the time-less context 
information is applied to predicting future situations 
of the things based on analyzing their past status 
using the context information. This double-
sidedness features of the context information can 
make ontology-transaction model simple. 
Therefore, the action tasks in an ontology 
transaction consist in reasoning through traversing 
existing ontology blocks, and insertion for 
submitting new ontology blocks in the global 
ontology repository. That is why traversing and 
inserting ontology blocks for governing up-to-date 
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situations is meaningful, but updating and deleting 
existing ontology blocks for ontology management 
is meaningless because of the double-side context 
information features. 

In the ontology transaction model, a set of 

ontology tasks is OT = {S, P, T, A} ⊂ OT, and 

{Reasoning, Insertion} ∈ T, where S, P, T, and A 
are the abbreviations for Start, Place, Traverse, and 
Adapt respectively (Figure 4). 

 

 

Figure 4: Tasks in the Ontology Transaction 

 

In the Start step in an ontology transaction, GOM 
system creates a new ontology process to begin the 
ontology transaction. And then the Place step 
directly moves an access position on a target 
ontology block in the global ontology using primary 
context types [17] such as ontology identifier, time, 
location, state, etc. The Traverse step searches 
ontology blocks located in the Place step for 
reasoning or insertion. Depending on the traversal 
results, the Adapt step performs context-awareness 
services based on reasoning results, or actually 
inserts the ontology block from local ontologies 
into global ontology repository. 

 

4. ASYNCHRONOUS REASONING SCHEME 
 

4.1. Ontology Process State Block 
 

The first design philosophy behind AsyncR* is 
that a reasoning process that was once started 
should not be stopped in any case to preserve the 
consistency of the behaviors of the IoT objects, 
while the global ontology is always maintaining up-
to-date context information under the dynamic 
environments. Simultaneously, it provides a high 
degree of concurrent execution of ontology tasks 
for preserving autonomous behaviors of the 
intelligent devices on the IoT. To elucidate the 

AsyncR* scheme, we assume that the global 
ontology resides in computing main memory after 
being parsed in accordance with ontology schema 
rules, and each domain ontology in the global 
ontology has ontology block numbers (OBNs) to 
distinguish them from the others. We also assume 
that an ontology state block (OSB) has the ontology 
process state information such as ontology 
transactions, domain-ontology blocks, their 
associated time-stamps, and etc. To deal with such 
OSB, AsyncR* scheduler maintains the following 
data structure (Figure 5). 

 

 

Figure 5: Ontology State Block 

 

In Figure 5, when an ontology transaction is 
started, the OSB is immediately created by a GOM 
system, and the PID has a unique number to be able 
to distinguish the process from other processes. The 
OBN assigns the ontology block number in the 
global ontology to be accessed by an ontology 
transaction. The TID records a number of the task 
types defined in an ontology transaction. It only has 
one of two digits: 1 means a reasoning task, or 2 
means an insertion task. The OID is assigned a 
number of an operation in an ontology transaction. 
It has one of four digits: 1 means start, 2 means 
place, 3 means traverse, or 4 means adapt operation. 
The STS and the ETS records each start and end 
time of the ontology transaction. The other part in 
the OSB has reasoning results in the case of the 
reasoning task, or a forged-version number in the 
case of the insertion task when required by AsyncR* 
scheduler. 

 

4.2. Scheduling Algorithm 
 

In this AsyncR* scheduling algorithm, our 
primary concerns focus on how to preserve the non-
stop execution of context reasoning tasks without 
interference of any other tasks, and how to gain 
higher concurrency for mission-critical context 
awareness services in the IoT information systems. 
For this goal, a semantic timestamp and forged-
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version control scheme are used in the AsyncR* 
scheduling algorithm (Figure 6). 

 

Figure 6: AsyncR* Scheduling Algorithm 

 

In AsyncR* scheduling algorithm in the Figure 4, 
each ontology transaction progresses according to 
the following scheduling rules. 

 Rule 1(Start scheduling): If an ontology 
transaction begins in Start step, the GOM 
system creates an OSB and assign a PID, 
OBN, TID, OID, and STS respectively to the 
OSB as shown in Fig. 3.  

 Rule 2(Place scheduling): According to the 
context reasoning rules and ontology schema, 
the GOM system directly moves an access 
position on a target ontology block in global 
ontology using primary context types. The 
rule of finding an access position of an 
ontology block is the same as OT(STS) >= 
max(OBN(d-time)), where d-time is the time 
assigned to the ontology block.  

 Rule 3(Semantic timestamp scheduling): If 
an ontology transaction is successfully 
initiated, AsyncR* scheduler assigns the 
ontology task type to the TID and the 
starting time to STS in the OSB respectively. 
If two different ontology transactions access 
the same ontology block in the global 
ontology, the AsyncR* scheduler processes 
as follows. 

 Case 1(In the case of service requests in 
the order of OT1: Reasoning and OT2: 
Reasoning): The ontology transactions 
OT1 and OT2 run a “first-come, first-
serve” basis in time sequence because of 
non-conflict serializability. 

 Case 2(In the case of service requests in 
the order of OT1: Reasoning and OT2: 
Insertion): In case that while OT1 is 
executing a reasoning task on a specific 
ontology block in the global ontology, 
OT2 is supposed to insert a new ontology 
block at the same position, the insertion 
ontology block issued by OT2 leads a 
phantom block to OT1. In this case, after 
the insertion task in the OT2 is completed, 
the OT1 should be restarted for preserving 
serializability of the ontology transactions. 
However, since restarting the reasoning 
task of the OT1 results in inconsistent 
interoperability among IoT objects, OT1 
should not be interrupted in any case. 
Therefore, for asynchronous reasoning of 
OT1, the AsyncR* scheduler temporally 
made a new forged-version for OT2, and 
insert it into the global ontology repository 
as soon as OT1 have finished. 

 Case 3(In the case of service requests in 
the order of OT1: Insertion and OT2: 
Reasoning): The OT1 is cancelled because 
the ontology block of the insertion in the 
OT1 is unnecessary for any other 
applications. 

 Case 4(In the case of service requests in 
the order of OT1: Insertion and OT2: 
Insertion): Ontology transactions run a 
“first-come, first-serve” basis in time 
sequence of pseudo-conflict serializability. 

Considering the above cases, AsyncR* timestamp 
scheduling algorithm can streamline them as shown 
in Table 1. 

 

Table 1: Timestamp Compatibility Matrix for AsyncR* 
Scheduling 

OT1.time1 OT2.time2 AsyncR* scheduling 

Reasoning Reasoning Sequence 

Reasoning Insertion Forged-version 

Insertion Reasoning Discard Insert 

Insertion Insertion Sequence 
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 Rule 4(Forged-version scheduling): If an 
ontology transaction requests a traveling on 
an ontology block for an insertion task while 
other transaction is traveling on the same 
ontology block for a reasoning task, the 
AsyncR* scheduler decides to create a forged 
version of the ontology block and waits until 
the reasoning task is finished. Right after 
finished, the forged-version ontology block 
is inserted into a global ontology repository.  

 Rule 5(Service adaptation): If an ontology 
transaction scheduling is completed 
successfully, the AsyncR* scheduler assigns 
ending time of the transaction to ETS in the 
OSB and begins ontology tasks: context 
awareness, or insertion task. 

 

4.3. Proof of Correctness 
 

In the academic field, a correctness criterion 
pertaining to concurrency control schemes has been 
widely used in serializability among transactions 
[18]. To prove the correctness of AsyncR* scheme, 
we will show that the AsyncR* scheduler always 
produces a serial execution history. Due to 
preservation requirement of creation order of any 
conflicting insertion ontology transactions, it is 
necessary to show that the forged-version 
timestamp scheduling scheme for the AsyncR* 
always processes them in the order of their creation 
sequence. 

 

Definition 1(Global ontology structure): When a 
global ontology (GO) consists in an upper-level 
ontology (UO) and several local ontologies (LOs), 
it can express in follow:  

                      (1) 

where i is the number of a specific ontology 
domain, and j is the number of a ontology block in 
the block i. By the Equation the global ontology 

presents as GO = { UO ∝ { { LO11, LO12, ...., LO1n 

}, ..., LOij, ..., LOmn } }, where LOij is the ontology 
blocks in global ontology, and each LOij has 
seamlessly semantic relationships with each other 
according to the upper-level ontology schema rules. 

 
Definition 2(Context integration and integrity 
constraints of a global ontology): The global 

ontology should preserve ①  context integration 

that completely converges the local (or domain) 
ontologies to share the global ontology among the 

things in the IoT, and ②  context integrity that 

entirely contains all the essential context 
information pertaining to context reasoning. 

 
Suppose 1(Uniform access to an ontology block in 
the global ontology): Access to an ontology block 
in the global ontology is uniform in main memory 
ontology.  

 
Lemma 1(Non-stop reasoning): In the IoT 
information systems, context reasoning for context-
awareness services should never be interrupted and 
avoided in any other situations for consistent 
interoperability among the things in the IoT 
environments. 

Proof) Let’s recall Definition 1. If in the IoT 
dynamic environments, an ontology transaction 
interrupts and avoids reasoning process on LOij, at 
the moment, LOi(j+1) may be added in another 
ontology transaction. In this case, the LOij becomes 
old-fashion context block in time sequence for a 
situation status. This schedule scheme leads to 
inconsistent interoperability because of context 
information loss, and violates the context integrity 
constraints in the definition 1. Therefore, a 
reasoning task in an ontology transaction should be 
always executed in non-stop fashion to combat such 
side-effects caused by a result of such miss-
scheduling. 

 

Lemma 2(New-fashion placing): If some ontology 
transaction intents to access an target ontology 
block in the global ontology, the access point 
should be always placed in the most recently 
inserted ontology block in time sequence. 

Proof) The IoT applications are typically based on 
prompt interoperability using context information 
generated in a real-time fashion from various 
sensors on the IoT. Let’s recall Definition 1 and 
Suppose 1. Suppose that the local ontology sets { 
LO11, LO12, ...., LO1n } in a global ontology are 
listed in chronological order, and LO11 > LO12 in 
time sequence is established. If an ontology 
transaction intends to traverse an ontology block 
LO1j for context reasoning, the LO11 always 
becomes the target ontology block. In the same 
manner, if an ontology transaction intends to insert 
a new ontology block from local ontology 
repositories, it become inserted into the front of 
LO11. This new-fashion placement follows a stack 
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data structure that has a “last-in, first-service 
(LIFO)” fashion. 

 

Theorem 1(View serializability [19] of AsyncR* 
scheme): Suppose that the local ontology sets are 

represented as { LO11, LO12, ...., LO1n } ⊂ GO, LO11 
> LO12 in time sequence. Now, consider the 
following schedule history H:  

(1) The AsyncR* scheduler receives LO11, where 
LO11 denotes that an ontology transaction OT1 
retrieves the LO11 contained in LO1j. 

(2) The AsyncR* scheduler places LO1j, where LO1j 
denotes that OT2 inserts the new LO into LO1j.  

(3) The AsyncR* scheduler places in LO11.  

According to schedule history H, the AsyncR* 
scheme is view serializability if and only if 
differencing R2 from R1 is null where R1 is a result 
set of Case 1 and R2 is a result set of Case 2  

Proof: The serial graph of H is represented as 
OT1→OT2→OT1. The AsyncR* scheduler receives 
an absolute position of LO11 from the global 
ontology and has a start timestamp t1 according to 
ontology state block (OSB) in Fig. 3. The R1 of 

LO11 execution gets LO11⊂OL1j (Case 1). Now, 

suppose that OT2 at the almost same time t2 
requests an absolute position of LO1j so as to insert 
a new ontology block from local ontology 
repositories into LO1j. The insertion task of OT2 
could not be immediately granted according to 
Lemma 1. Therefore, the AsyncR* creates a forged-
version LO11

+ of LO1j at time t6 and inserts a local 
ontology block into LO11

+ (Figure 7). The OT2 
waits until the reasoning task of OT1 is finished. 
Right after finished at the time t5, forged-version 
ontology block inserts into global ontology 
repository at the time t7 (Case 2 of Rule 3 and Rule 
4) (Fig. 5). Therefore, the serial graph of H 
executes in serial as OT1→OT2 and reasoning tasks 
of OT1 executed in non-stop fashion (Lemma 1). 
According to Case 2 of Rule 2, the inconsistent 
interoperability occurs in AsyncR* scheduling rules 
since differencing R2 from R1 is always null value. 
This is sufficient to prove that AsyncR* scheduler 
only produces serializable executions semantically.  

 
Theorem 2(Correctness of AsyncR* scheme): For 
any history H, H is serializable if only if every 
transaction in H obeys the schedule rules of 
AsyncR*. 

Proof: This necessary condition is capable of being 
proven by following the same discussion as that of 
Theorem 1. From Lemma 1 and 2, we can also infer 

that all conflicting insertion transactions in H are 
executed in the order of their creation and H is 
serializable, if every ontology transaction in H 
obeys the concurrency control rules of AsyncR*. 
Hence, if every transaction in H obeys the 
scheduling rules of AsyncR*, H is serializable. 
Finally, H is serializable if and only if every 
ontology transaction in H obeys the scheduling 
rules for AsyncR*.  

 

 

Figure 7: Proof of view serializability of the ontology 
transactions using Petri Nets [20] 

 

5. DISCUSSION AND CONCLUSIONS 
 

In this paper, we proposed an AsyncR* scheme, 
which was capable of non-stop reasoning while 
always maintaining up-to-date context information 
in the IoT information system. The AsyncR* 
scheme based on semantic-timestamp and forged-
version scheduling methods to preserve a 
serializability between concurrent ontology 
transactions. The background of the AsyncR* 
scheme was that a reasoning process that was once 
started should not be stopped in any case to 
preserve the consistency of the behaviors of the IoT 
objects, while the global ontology should always 
maintain up-to-date context information. For 
realizing this design philosophy, we also presented 
a global ontology management (GOM) model and 
an ontology transaction model for the AsyncR* 
scheme. Finally, we talked correctness issues of the 
proposed scheme using Petri Nets. The AsyncR* 
scheme is simple, but provides a high degree of 
concurrency of ontology tasks. 

As this paper may ignore comparison with other 
approaches in terms of some examples, the AsyncR* 
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scheme could be strengthened by additional 
evidence demonstrating its strengths over the 
conventional approaches. The implementation of 
the proposed scheme and the quantitative analysis 
of execution times according to a real-time variance 
of computerized resources needed for the proposed 
timestamp and version scheme will be included in 
future works. Finally, we would like to extend our 
scheme to allow further theoretical investigation by 
using some properties such as multiple versions and 
operation semantics for more novel models. 
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