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ABSTRACT 
 

With the arrival of the Internet of Things (IoT) era, the emergence of new applications to improve various 
aspects of daily life is encouraged. Most Internet of things devices are small-scale, and battery power 
sources have improved the mobility of these devices. In this way, execution at low power is an important 
issue because it is necessary to extend the battery life. In order to improve the performance of small-scale 
embedded systems, we propose a data migration method for transferring read-dominant data from SRAM to 
Flash memory. We trace memory accesses, analyze memory access patterns, and separate read-dominant 
data from the read/write data. Then, the read-dominant data is relocated to the Flash memory sector. These 
procedures are able to reduce the energy, power, and current consumption for accessing the data in SRAM. 
Experiments showed that the proposed methodology achieves reduction of power and current consumption 
compared with conventional storage, which keeps all data in SRAM. Data migration technique could 
manage efficiently energy and power in IoT device. 

Keywords: Low Power Embedded System, Data Migration, Hybrid Memory, Internet of Things 
 
1 INTRODUCTION 

With the arrival of the Internet of Things (IoT) 
era, the emergence of new applications to improve 
various aspects of daily life is encouraged [1,2]. In 
particular, mobile devices and wearable devices are 
typical of IoT devices, and most IoT devices are 
small-scale and battery-driven. Once the battery is 
charged, the user wants to use the device to operate 
for as long as possible. Therefore, IoT devices 
should perform target functions using battery power 
in real-time and low power manner on an embedded 
system. In fact, the low power operation of IoT 
devices has recently become one of the most 
important issues, and research is needed to reduce 
the power consumption of IoT devices through 
effective low power management. It is a recent 
study task to enable long-term computation on a 
system that is made up of unreliable and 
intermittent sources of energy. And generally, 
because 60% of the power consumption of the 
embedded system is caused by memory, effective 
memory management is critical for low power 
embedded systems [3]. 

IoT devices have various memory types 
depending on power consumption, execution speed, 
read/write latency, etc. It is important to understand 
which memory is used according to specific types. 
The memory type determines the performance, 
energy, and reliability of an embedded system [4]. 

Different types of memories can be combined 
together to compensate for the characteristics of 
each kind of memory. Various studies proposed 
methods for improving the effectiveness of hybrid 
memory in recent years. Several studies have 
focused on page replacement in hybrid main 
memory systems [4,5]. Other methods related to 
data allocation in the hybrid memory have been 
employed within a chip multiprocessor (CMP) 
system [6]. Our research focused on small-scale 
embedded systems such as IoT devices. 

In this paper, we propose the use of data 
migration in IoT devices equipped with hybrid 
memory. To validate the proposed methodology, 
we use TI’s MSP432P401R Launchpad for an 
experiment. This Launchpad composed of SRAM 
and Flash memory as called hybrid memory. We 
propose a data migration methodology to migrate 
selected variables from SRAM to Flash memory in 
a small-scale embedded system. Migrating selected 
variables to Flash memory guarantees to expand the 
limited SRAM's capacity. And also, the proposed 
methodology could reduce energy and power 
consumptions of the device. We validate the 
proposed data migration methodology using FIR, 
Mibench benchmarks, and PowerStone benchmarks 
and the EnergyTrace+ GUI in Code Composer 
Studio (CCS) [7]. 
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The remainder of the paper is organized as 
follows. In Section II, the architecture and 
characteristics of hybrid memory in an embedded 
system are described. Section III presents the Data 
Migration Methodology suggested in this paper. In 
Section IV, the experimental setup of the data 
migration experiment is presented. In Section V, 
the experiment of the Data Migration Methodology 
is given. In Section VI, the experimental results of 
this paper. Finally, this paper concludes in Section 
VII and suggests future works. 

 
2 HYBRID MEMORY ARCHITECTURE 

AND CHARACTERISTICS 

The improvements to the performance and 
technology of embedded systems increase the 
importance of power management. Memory use 
determines the performance, speed, and reliability 
of an embedded system. Typically, there is volatile 
memory and nonvolatile memory. Normally, 
volatile memory such as SRAM or DRAM is used 
as main memory because access its time is short. 
However, volatile memory consumes a 
considerable amount of energy [5]; in addition, data 
is lost at the time of power failure, and the 
scalability of volatile memory is limited. These 
disadvantages can be overcome by replacing the 
volatile memory with non-volatile memory such as 
Flash memory. Non-volatile memory has lower 
energy consumption and higher memory capacity 
than volatile memory. In the non-volatile memory, 
when the power is turned off, the data are 
unchanged. However, non-volatile memory has low 
memory access speed, and it has high write latency 
[4,5]. Thus, each type of memory has advantages 
and disadvantages, so it is important to take 
advantages of each type memory to compensate for 
disadvantages. This is why hybrid memory systems 
have been proposed in many studies and applied to 
embedded systems. 

Hybrid memory enables fast access time and 
consumes less energy. Recent work has focused on 
power-efficient methodology in large-scale 
embedded systems that use hybrid memory [6,8,9]. 
In order to prolong the battery life of IoT devices, 
we propose a data migration methodology that 
reduces the power consumption of IoT devices and 
uses the volatile memory capacity more efficiently. 
This methodology will make it possible to reduce 
the power and current consumption in IoT devices. 

The data migration methodology finds read-
dominant data within the read/write data and 
migrates these data to non-volatile memory. Owing 
to the write latency and invariability of non-volatile 

memory, read-only data, such as critical system 
information, are already located in non-volatile 
memory. Additionally, read/write data are stored in 
the volatile memory in the .bss or .data section. Part 
of the read/write data mainly participates in the read 
operation. It is called read-dominant data. But the 
remaining data do alternately read and write 
operations. Read-dominant data can be stored in 
non-volatile memory during reading operations, 
like read-only data. Therefore, the migration is 
expected to reduce power and current consumption 
while securing volatile memory capacity.  

3 DATA MIGRAITON METHODOLOGY 

This section describes the two steps of the data 
migration methodology: data selection and data 
migration. First, in the variables, we find the read-
dominant variables according to memory read/write 
access. Next, the time to shift to Flash memory and 
the time to return to SRAM for the write operation 
are analyzed. After the selection and analysis work 
is finished, the selected variables are transferred to 
the Flash memory using Flash programming. 

 
3.1 Selection 

Read-dominant data is selected by analyzing 
the read/write trace results of the memory. These 
trace results allow us to determine when the 
memory is accessed for read and write operations. 
By using the address of the accessed memory, the 
data region of the SRAM where the read/write data 
are stored is first separated before classifying the 
data according to the variable in the data region. 
When classification is completed, a read/write 
pattern is drawn for each variable using both the 
memory read/write index and the clock time, i.e., 
time of memory access. Then, the variable patterns 
are used to select the read-dominant variables. 

For example, as shown in Figure 1, Data = 
{D1, D2, D3, D4, D5} is a set of data and Time = 
{T1, T2, T3, T4, T5} is a set of memory access 
times. During execution, D1 keeps reading memory 
from time T2. D2 reads and writes memory 
repeatedly. D3 reads the memory during the period 
from T3 to T5. D4 continues to read from time T4. 
Last, D5 writes and reads at the initial time. And it 
doesn’t operate for a while until time T5. At T5, it 
starts read operation again. With that analysis, we 
could select D1, D3, D4, and D5 which have read-
dominant property. Therefore, it would be efficient 
to move D1 to the Flash memory at T2 and also to 
move D4 to the Flash memory at T4. Likewise, 
during the memory access from T3 to T5, D3 could 
be located in Flash memory. D5 could be located in 
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Flash memory from T1 to T5. Based on this 
analysis, D1, D3, D4, D5 could be selected for data 
migration, but not D2. 

Figure 1: Data variable memory read/write access flow 
for selection 

A specific clock time is determined by 
comparing the trace data of a branch instruction of 
the program, which indicate the target address 
related to the branch operation at that clock time. 
For example, Func = {func(X), func(Y)} is a set of 
function in a program. The program starts with 
func(X) and jumps to func(Y) during T3 and T4. 
Along with Figure 1, it is possible to move D1, D3, 
and D5 to the Flash memory after starting the 
func(X) execution and D4 is migrated just after 
func(Y) execution start. 

Figure 2 shows that representative pattern of 
the read-dominant variable. Most of the read-
dominant variables tend to have patterns like Figure 
2. For every clock time, we plot the pattern where 
read access is value 1 and black and write access is 
value 2 and red. This pattern shows that program 
does write access only at initial clock time and 
keeps do read access until the end of execution. 

 

3.2 Data Migration 

When the data are selected for data migration 
and the clock point is determined, the data are 

migrated from SRAM to Flash memory. To move 
data to the Flash memory, Flash programming must 
be used for the program code. Normally, in order to 
save data in Flash memory, we declare a constant 
using the “const” statement. However, this 
statement creates read-only data and most of the 
data are usually read/write data. Because it's our 
aim that move, not read-only data, read/write data 
to Flash memory, we need to use Flash 
programming to read/write data. 

 

Figure 2: Representative pattern of the read-dominant 
variable 

Figure 3 depicts a four-stage data migration 
process. First, we remove protection from the 
specified Flash sectors, i.e., sector 1 and sector 2, 
for use. Generally, critical system information 
exists in the Flash memory, and overwriting is 
prevented by protecting the Flash memory sectors. 
Thus, it is necessary to remove protection from 
specific Flash sectors for use before data migration. 
Second, useless data stored in sectors 1 and 2 need 
to be erased. Third, after the erase operation is 
completed, the Flash sectors are programmed to 
transfer data from the SRAM to the Flash memory. 
The selected data, which are D1, D3, and D4 in the 
.bss or .data sections, will move to sectors in bank 0 
of the Flash main memory. Finally, we need to 
protect Flash sectors again. Protecting and 
removing protection from the sectors are very 
important steps, as only unprotected sectors of 
Flash memory can be programmed. 
 
4 EXPERIMENTAL SETUP 

This section describes the experimental setup 
including Launchpad, software tools and evaluation 
benchmarks. 
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4.1 Hardware 

We evaluate the power and current 
consumption of the proposed data migration 
methodology. The MSP432P401R Launchpad 
(Texas Instruments; Novi, MI) is mainly used for 
the experiments. This Launchpad has an ARM 
Cortex-M4 microcontroller and hybrid memory 
comprising 256 KB of Flash memory and 64 KB of 
SRAM. The Flash main memory includes two 128-
KB banks, which comprise a total of 64 4-KB 
sectors. The Flash programming procedure for data 
migration is processed sector by sector. 
Additionally, the MSP432P401R Launchpad has an 
embedded EnergyTrace+ chip that can measure the 
time, power, and current consumed by an 
application [10].  

 
4.2 Software Tools 

4.2.1 Code Composer Studio (CCS) 

Code Composer Studio is an integrated 
development environment (IDE) supporting TI’s 
microcontroller and embedded processors. Our 
Launchpad MSP432P401R is built-in 
EnergyTrace+ technology. EnergyTrace technology 
is viable with TI’s Code Composer Studio IDE. 

Using Code Composer Studio, we can monitor 
device in real-time and measures time, energy, 
power and current [10]. 

 
4.2.2 FastModels Tarmac trace 

FastModels from ARM supports a generation of 
traces that consistently track model execution and 
related activities. Using plug-ins, virtual platforms 
are generated and provide trace function [11,12]. 
The trace function can make trace output like 
Figure 4. We can select trace options such as 
instruction trace, branch trace, memory trace, etc. 
In this paper, we trace memory access and branch 
instruction. Thereby, we could distinguish and 
select read-dominant variables which should be 
migrated. 
 
4.3 Evaluation Benchmarks 

We verified the data migration methodology 
by using FIR, two benchmarks in MiBench: 
basicmath, and dijkstra, and five benchmarks in 
Powerstone: bcnt, blit, CRC, g3fax, and pocsag. 
The finite impulse response (FIR) filter benchmark 
is a float array calculation algorithm. Basicmath is a 
mathematical program composed of a cubic 
function, and an integer square root function. 
Dijkstra is a finding shortest path algorithm in a 
node graph [13]. In the powerstone set, bcnt is a 
program which does a bit shifting and AND 
calculation through a 1K array. Blit is graphics 
applications and CRC is a cyclic redundancy check 
program. G3fax is a group three fax decode 
program which is kind of image decompression. 
And last, pocsag is paging communication 

 
Figure 3: Four steps of data migration from SRAM to 

Flash memory 

 
Figure 4: FastModels Tarmac trace output file 

(memory trace) 
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protocols [14]. In this verification, we increased the 
original number of benchmark executions by 2 
times, as indicated in Table 1. The criteria for the 
number of execution is the number of iteration 
execution during roughly 1 minute. The execution 
times of the basicmath, dijkstra, and g3fax 
benchmarks are much longer than the others, so the 
number of executions for basicmath, dijkstra, and 
g3fax were inevitably small. 

Table 1: The Number of Executions of The Benchmarks. 

Benchmarks 
Number of Executions 

x1 x2 

FIR 10,000 20,000 

Mibench 
basicmath 100 200 

dijkstra 10 20 

Powerstone 

bcnt 50,000 100,000 

blit 5,000 10,000 

CRC 50,000 100,000 

g3fax 250 500 

pocsag 2,500 5,000 

 
5 EXPERIMENT 

5.1 Tracing Variables 

Tracing memory access and tracing branch 
instruction are afforded while executing 
instructions using FastModels Tarmac trace. The 
Tarmac Trace plug-in of the FastModels from 
ARM keeps track of ‘trace_loads and stores’, 
‘trace_instructions’, and ‘trace_branches’. The 
‘trace_loads and stores’ function can trace loads 
and stores triggered by instructions, i.e., read and 
write access operations. These might go into the 
memory subsystem. In figure 4, it shows the 
memory tracing results. This trace function 
indicates time (clock), read or write access, size of 
data (bytes), a virtual address, and a transferred 
data. The ‘trace_instructions’ function can trace all 
of the instructions triggered during execution. This 
function presents the time (clock), an instruction ID 
which is the number of instructions executed, 
address at which fetch instruction, an instruction 
type, a mode which is processor execution mode, 
and disassembly code. The ‘trace_branches’ 
function can trace changes of the program flow like 
branches and exception returns. This function 
presents the time (clock), the instruction ID, the 
address at which the branch instruction is executed, 
and the target address at which the processor 
branches [12]. Figuring out where each function 
ends, we perform the data migration at prefer time. 

In table 2, there are specifications of every 
benchmark which are analyzed by trace results. 
Using trace results, we count every instructions and 
memory access during the program execution. 
Basicmath benchmark has smaller instructions than 
any other benchmarks. Other benchmarks perform 
instructions more 1 million. There is much more 
read-dominant memory access in bcnt, cnt, blit, 
CRC, and pocsag benchmarks. Read-dominant 
memory count means the number of memory access 
of all of the read-dominant variables. With the 
Tarmac Trace plug-in features, we can trace the 
memory access and prepare a more precise 
selection of read-dominant data. 

Table 2: Specifications of The Benchmarks. 

Benchmarks 
Instruction 

Count 
Memory 
Count 

Read-dominant 
Memory Count 

FIR 2,463,576 6,850 1,477 

basicmath 632,986 9,161 726 

dijkstra 5,327,109 2,157,952 120,657 

bcnt 13,477,186 5,956,749 4,015,071 

blit 20,997,773 4,022,203 2,006,331 

CRC 63,983,246 21,204,125 4,100,003 

g3fax 1,170,376 380,328 17,193 

pocsag 32,462,073 11,267,772 1,571,461 

 
5.2 Selecting Variables 

From the previous trace results, we can 
analyze and select read-dominant variables. First, 
read/write data in SRAM data region is required. 
We use the virtual address in the trace results to 
separate the results within the data region of the 
SRAM. The data region includes data section, stack 
and heap. For example, figure 5 and figure 6 show 
the patterns of the memory access in the data region 
of the benchmarks. Red indicates write access and 
black represents read access. Figure 5(a) is the 
memory access of the FIR benchmark, revealing 
that specific memory addresses keep doing read 
operations. In Figure 5(b), the pattern of basicmath 
benchmark is different with 5(a) because there 
aren’t continuous patterns. We ascertain that there 
are variables which could be also migrated at an 
initial read operation clock. Also Figure 5(c) and 
5(d) show the memory access of the dijkstra and 
bcnt benchmark, revealing that some memory 
addresses mainly do read operations throughout the 
entire execution. Read-dominant variables likely 
exist in those addresses. In contrast, the others do 
write operations, but only at the start of execution. 
Figure 6(a) shows the pattern of the blit benchmark 
revealing that part of the memory addresses are 
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black, meaning that this part of memory could be 
read-dominant. Similar to Figure 6(a), almost half 
of the memory addresses in Figure 6(b) and Figure 
6(d) do read operations continuously. The g3fax 
benchmark pattern is unlike the other benchmarks, 
as shown in Figure 6(c). Although g3fax does not 
perform read operations continuously, it does keep 
reading. Therefore, there are likely some read-
dominant variables. With the patterns of memory 
access in a data region, we can confirm whether 
read-dominant variables exist. Then, we can split 
the memory addresses with each variable to depict 
the patterns in a variable unit. Through those 
procedures, we could precisely identify read-
dominant variables. 

Second, we classify the trace results by 
variables according to the memory address. In these 
steps, memory accesses are indexed by numbers. 
The black color and index 1 is a memory read 
access. And the red color and index 2 is a memory 
write access. Third, we plot the memory access 
patterns of each variable using the index. Finally, 
we analyze the patterns to determine which 
variables are read-dominant. In Figure 7, there are 
some specific read-dominant variable patterns 
among the benchmarks. Most of the read-dominant 

variables show a tendency like that in Figure 2. 
Figure 7(a) shows the pattern of an array INPUT[] 
in FIR benchmark. INPUT[] read and write at the 
initial clock time and there is no memory access 
until the almost half of execution. And it keeps read 
access during last half. Therefore, we could select 
INPUT[] as read-dominant variable and migrate the 
array right after write operations. Figure 7(b) shows 
the array data of the basicmath benchmark. This 
D[] only access read and write at the start and last 
clock. Albeit there are few read operations in D[], 
we could select this variable as a read-dominant 
variable. Because D[] could be located in flash 
memory transiently. In Figure 7(c), array g3white[] 
in g3fax benchmark is similar to a representative 
pattern. The g3white[] only write at the initial clock 
and then it is not continuous but it keeps reading. It 
is one of the read-dominant variables. 

Through these selection procedures, read-
dominant variables are selected. In bcnt benchmark, 
There are 3 read-dominant arrays: poptab[], src[], 
and dst[]. Those arrays are large. And blit 
benchmark has one large read-dominant array src[]. 
It is about 4KB size. An array aa[] in CRC 
benchmark is selected. Large arrays which are fax[], 
g3white[], and g3black[] in g3fax benchmark are 

 
Figure 5 : Patterns of Memory Access In The Data Regions of the (a) FIR, (b) basicmath, (c) Dijkstra, and, (d) 

bcnt benchmarks 
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 also selected for migration. Last, in Pocsag 
benchmark, we selected six small arrays such as 
alpha[], alpha3[], alpha_inv[], roots[], err_tab[], and 
alpha_data[]. Read-dominant variables tend to be 
primarily array data because most of them used in 
benchmark as input data. 

 

5.3 Migrating Variables 

Read-dominant data should be moved to Flash 
memory. It is important to determine the specific 
clock time at which to transfer the data. In the result 
of ‘trace_branches’, a branch point between 
functions is revealed. We can acquire the clock 
point when a certain function enters the read 
operation stage. All read-dominant variables of the 
eight benchmarks start read operations before 
starting their core functions. Therefore, flash 
programming should be performed at the main 
function. The size of read-dominant variables in 
dijkstra benchmark is almost 3.6KB. For the bcnt 
and g3fax benchmarks, the size of the read-
dominant variables is almost 4 KB. For that reason, 
dijkstra benchmark use two sectors in the Flash 
memory for data migration. And with bcnt and 

g3fax benchmarks, three sectors in the Flash 
memory are used for data migration. In contrast, the 
other five benchmarks use only one sector because 
the total size of all selected variables does not 
exceed one sector size. Flash programming is 
performed in the bank 1 sectors in the Flash main 
memory. When the data is placed in a sector, it 
defines an additional pointer directed to the Flash 
memory address of the migrated data. Each time 
there is a read operation request, the value is 
acquired from the Flash memory using the pointer.  

 

6 EXPERIMENTAL RESULTS 

The current consumption results are shown in 
Figure 8. In most of the benchmarks, the current 
consumption is reduced when the read-dominant 
data is migrated. By placing the read-dominant data 
in the flash memory where the code is executed, the 
current and power required to access read/write 
data in SRAM are reduced. During a read operation, 
the processor does not need to access and obtain the 
data from SRAM because the necessary data are 
already in flash memory. The CRC benchmark has 

Figure 6 : Patterns of Memory Access In The Data Regions of the (a) blit, (b) CRC, (c) g3fax, and (d) pocsag 
benchmarks
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the greatest reduction of current consumption with 
data migration. As table 2, compared with other 
benchmarks, CRC benchmark has significant 
counts in instruction, memory access, and even 
read-dominant variable access. Figure 9 is showing 
graphs comparing basic execution results with the 
results which the number of execution is increased 
by 2 times. More benchmarks are reduced the 
consumed current when the number of execution is 
increased.  

The power consumption is displayed in Figure 
10 as result of data migration. It tends to be much 
similar with the current consumption. This 
tendency is because the power equation is P = V*I 
(P is power (W), V is voltage (V), and I is current 
(A)). In our experiment environment, we use a 
voltage as 3.3V which are fairly fixed value. 

Therefore, the power consumption is effected by 
current consumption. As CRC benchmark has the 
greatest reduction in current consumption, there are 
significant reductions in power consumption, too. 

 The FIR, basicmath, blit, g3fax, and pocsag 
benchmarks are also reduced consumed power. 
This is significant that moving read-dominant to 
flash memory is effective in managing power. With 
our data migration experiment, it is found that data 
migration methodology could reduce the power 
consumption of IoT device. This tendency is also 
seen in the doubling of execution. 

In Figure 12, there is an energy consumption 
graph. Compared with current and power, 
consumed energy is reduced slightly less. The 
energy equation is E = V*I*T (E is energy (J), V is  

 
Figure 7: Read-dominant patterns of the (a) FIR, (b) 

basicmath, and (c) g3fax benchmarks

Figure 8: Current consumption of benchmarks 
(normalized) 

Figure 9: Current consumption of benchmarks with 
the number of execution x2 (normalized) 
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voltage (V), I is current (A), and T is time (s)). As 
mentioned above, voltage in our experiment is 3.3V. 
Revealed in figures, the current reduction rate is 
greater than the energy reduction rate. According to 
the energy equation, energy is proportional to time 
and current. Consequently, it means that the time of 
executions has increased. There is a visible 
augment of energy in dijkstra, bcnt, blit, CRC, and 
pocsag benchmarks. The dijkstra, bcnt, blit, and 
g3fax benchmarks have large size of read-dominant 
variables. Dijkstra and blit benchmarks’s total size 
of read-dominant variables are almost 4KB. And 
bcnt and g3fax benchmarks’s total size of read-
dominant variables are almost 8KB. Because of the 
size, we have to allot several sectors in flash 
memory. Especially, bcnt and g3fax benchmarks 
allot 3 sectors. Programming several sectors in flash 

memory should be executed independently of each 
other. Furthermore, there are significant instruction 
and memory access in CRC and pocsag 
benchmarks. We thought that these factors affect 
Flash programming and that the overhead that 
occurs in Flash programming affects the execution 
time and also energy consumption. Even though 
additional overhead occurs with the data migration 
methodology, the power consumption has 
decreased in most benchmarks. And some 
benchmarks have been more efficient when they 
have increased the number of runs. 

 

7 CONCLUSTION AND FUTURE WORK 

In this paper, we proposed a data migration 
method in which read-dominant data is moved from 
SRAM into Flash memory. Typically, it is possible 
to reduce power and energy required to access read-

Figure 13: Energy consumption of benchmarks with 
the number of execution x2 (normalized) 

Figure 12: Energy consumption of benchmarks 
(normalized) 

Figure 10: Power consumption of benchmarks 
(normalized) 

Figure 11: Power consumption of benchmarks with 
the number of execution x2 (normalized) 
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dominant data by migrating it to Flash memory. 
Now that IoT technology is rapidly developing, 
many IoT devices use hybrid memory. 
Furthermore, power consumption and energy 
consumption in IoT devices are very important 
factors. Adoption of the data migration method 
reduces energy, power, and current consumptions. 
Moreover, there is a limit to the capacity of using 
SRAM, but it can be improved by applying the data 
migration technique. The more read-dominant 
variables we migrate, the more efficiently we can 
use SRAM.   

In the future, we aim to devise reliable and 
efficient data migration techniques through more 
detailed memory analysis. It is a recent study task 
to enable long-term computation on a system that is 
made up of unreliable and intermittent sources of 
energy. There are many promising and viable 
solutions for powering IoT devices. Energy 
harvesting is the representative one. However, 
frequent intervals of power loss occur because of 
ambient energy sources in nature [15]. In such 
power unreliability, it is a challenge that performing 
programs completely. We will make sure that 
programs that use techniques work well even in the 
event of power loss. We also plan to expand 
learning for various applications with various 
datasets and sizes of various applications. A more 
efficient migration method is expected to lead to 
considerable performance improvement in small 
embedded systems. 
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