
Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7282

MEMORY-ACCESS-AWARE DATA MIGRATION
TECHNIQUES FOR LOW POWER EMBEDDED SYSTEM

1YEONJOON HAN, 2SANGSOO PARK
1,2Department of Computer Science and Engineering, Ewha Womans University, Seoul, Republic of Korea

E-mail: 1yeonjoon@ewhain.net, 2sangsoo.park@ewha.ac.kr

ABSTRACT

With the arrival of the Internet of Things (IoT) era, the emergence of new applications to improve various
aspects of daily life is encouraged. Most Internet of things devices are small-scale, and battery power
sources have improved the mobility of these devices. In this way, execution at low power is an important
issue because it is necessary to extend the battery life. In order to improve the performance of small-scale
embedded systems, we propose a data migration method for transferring read-dominant data from SRAM to
Flash memory. We trace memory accesses, analyze memory access patterns, and separate read-dominant
data from the read/write data. Then, the read-dominant data is relocated to the Flash memory sector. These
procedures are able to reduce the energy, power, and current consumption for accessing the data in SRAM.
Experiments showed that the proposed methodology achieves reduction of power and current consumption
compared with conventional storage, which keeps all data in SRAM. Data migration technique could
manage efficiently energy and power in IoT device.

Keywords: Low Power Embedded System, Data Migration, Hybrid Memory, Internet of Things

1 INTRODUCTION

With the arrival of the Internet of Things (IoT)
era, the emergence of new applications to improve
various aspects of daily life is encouraged [1,2]. In
particular, mobile devices and wearable devices are
typical of IoT devices, and most IoT devices are
small-scale and battery-driven. Once the battery is
charged, the user wants to use the device to operate
for as long as possible. Therefore, IoT devices
should perform target functions using battery power
in real-time and low power manner on an embedded
system. In fact, the low power operation of IoT
devices has recently become one of the most
important issues, and research is needed to reduce
the power consumption of IoT devices through
effective low power management. It is a recent
study task to enable long-term computation on a
system that is made up of unreliable and
intermittent sources of energy. And generally,
because 60% of the power consumption of the
embedded system is caused by memory, effective
memory management is critical for low power
embedded systems [3].

IoT devices have various memory types
depending on power consumption, execution speed,
read/write latency, etc. It is important to understand
which memory is used according to specific types.
The memory type determines the performance,
energy, and reliability of an embedded system [4].

Different types of memories can be combined
together to compensate for the characteristics of
each kind of memory. Various studies proposed
methods for improving the effectiveness of hybrid
memory in recent years. Several studies have
focused on page replacement in hybrid main
memory systems [4,5]. Other methods related to
data allocation in the hybrid memory have been
employed within a chip multiprocessor (CMP)
system [6]. Our research focused on small-scale
embedded systems such as IoT devices.

In this paper, we propose the use of data
migration in IoT devices equipped with hybrid
memory. To validate the proposed methodology,
we use TI’s MSP432P401R Launchpad for an
experiment. This Launchpad composed of SRAM
and Flash memory as called hybrid memory. We
propose a data migration methodology to migrate
selected variables from SRAM to Flash memory in
a small-scale embedded system. Migrating selected
variables to Flash memory guarantees to expand the
limited SRAM's capacity. And also, the proposed
methodology could reduce energy and power
consumptions of the device. We validate the
proposed data migration methodology using FIR,
Mibench benchmarks, and PowerStone benchmarks
and the EnergyTrace+ GUI in Code Composer
Studio (CCS) [7].

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7283

The remainder of the paper is organized as
follows. In Section II, the architecture and
characteristics of hybrid memory in an embedded
system are described. Section III presents the Data
Migration Methodology suggested in this paper. In
Section IV, the experimental setup of the data
migration experiment is presented. In Section V,
the experiment of the Data Migration Methodology
is given. In Section VI, the experimental results of
this paper. Finally, this paper concludes in Section
VII and suggests future works.

2 HYBRID MEMORY ARCHITECTURE

AND CHARACTERISTICS

The improvements to the performance and
technology of embedded systems increase the
importance of power management. Memory use
determines the performance, speed, and reliability
of an embedded system. Typically, there is volatile
memory and nonvolatile memory. Normally,
volatile memory such as SRAM or DRAM is used
as main memory because access its time is short.
However, volatile memory consumes a
considerable amount of energy [5]; in addition, data
is lost at the time of power failure, and the
scalability of volatile memory is limited. These
disadvantages can be overcome by replacing the
volatile memory with non-volatile memory such as
Flash memory. Non-volatile memory has lower
energy consumption and higher memory capacity
than volatile memory. In the non-volatile memory,
when the power is turned off, the data are
unchanged. However, non-volatile memory has low
memory access speed, and it has high write latency
[4,5]. Thus, each type of memory has advantages
and disadvantages, so it is important to take
advantages of each type memory to compensate for
disadvantages. This is why hybrid memory systems
have been proposed in many studies and applied to
embedded systems.

Hybrid memory enables fast access time and
consumes less energy. Recent work has focused on
power-efficient methodology in large-scale
embedded systems that use hybrid memory [6,8,9].
In order to prolong the battery life of IoT devices,
we propose a data migration methodology that
reduces the power consumption of IoT devices and
uses the volatile memory capacity more efficiently.
This methodology will make it possible to reduce
the power and current consumption in IoT devices.

The data migration methodology finds read-
dominant data within the read/write data and
migrates these data to non-volatile memory. Owing
to the write latency and invariability of non-volatile

memory, read-only data, such as critical system
information, are already located in non-volatile
memory. Additionally, read/write data are stored in
the volatile memory in the .bss or .data section. Part
of the read/write data mainly participates in the read
operation. It is called read-dominant data. But the
remaining data do alternately read and write
operations. Read-dominant data can be stored in
non-volatile memory during reading operations,
like read-only data. Therefore, the migration is
expected to reduce power and current consumption
while securing volatile memory capacity.

3 DATA MIGRAITON METHODOLOGY

This section describes the two steps of the data
migration methodology: data selection and data
migration. First, in the variables, we find the read-
dominant variables according to memory read/write
access. Next, the time to shift to Flash memory and
the time to return to SRAM for the write operation
are analyzed. After the selection and analysis work
is finished, the selected variables are transferred to
the Flash memory using Flash programming.

3.1 Selection

Read-dominant data is selected by analyzing
the read/write trace results of the memory. These
trace results allow us to determine when the
memory is accessed for read and write operations.
By using the address of the accessed memory, the
data region of the SRAM where the read/write data
are stored is first separated before classifying the
data according to the variable in the data region.
When classification is completed, a read/write
pattern is drawn for each variable using both the
memory read/write index and the clock time, i.e.,
time of memory access. Then, the variable patterns
are used to select the read-dominant variables.

For example, as shown in Figure 1, Data =
{D1, D2, D3, D4, D5} is a set of data and Time =
{T1, T2, T3, T4, T5} is a set of memory access
times. During execution, D1 keeps reading memory
from time T2. D2 reads and writes memory
repeatedly. D3 reads the memory during the period
from T3 to T5. D4 continues to read from time T4.
Last, D5 writes and reads at the initial time. And it
doesn’t operate for a while until time T5. At T5, it
starts read operation again. With that analysis, we
could select D1, D3, D4, and D5 which have read-
dominant property. Therefore, it would be efficient
to move D1 to the Flash memory at T2 and also to
move D4 to the Flash memory at T4. Likewise,
during the memory access from T3 to T5, D3 could
be located in Flash memory. D5 could be located in

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7284

Flash memory from T1 to T5. Based on this
analysis, D1, D3, D4, D5 could be selected for data
migration, but not D2.

Figure 1: Data variable memory read/write access flow
for selection

A specific clock time is determined by
comparing the trace data of a branch instruction of
the program, which indicate the target address
related to the branch operation at that clock time.
For example, Func = {func(X), func(Y)} is a set of
function in a program. The program starts with
func(X) and jumps to func(Y) during T3 and T4.
Along with Figure 1, it is possible to move D1, D3,
and D5 to the Flash memory after starting the
func(X) execution and D4 is migrated just after
func(Y) execution start.

Figure 2 shows that representative pattern of
the read-dominant variable. Most of the read-
dominant variables tend to have patterns like Figure
2. For every clock time, we plot the pattern where
read access is value 1 and black and write access is
value 2 and red. This pattern shows that program
does write access only at initial clock time and
keeps do read access until the end of execution.

3.2 Data Migration

When the data are selected for data migration
and the clock point is determined, the data are

migrated from SRAM to Flash memory. To move
data to the Flash memory, Flash programming must
be used for the program code. Normally, in order to
save data in Flash memory, we declare a constant
using the “const” statement. However, this
statement creates read-only data and most of the
data are usually read/write data. Because it's our
aim that move, not read-only data, read/write data
to Flash memory, we need to use Flash
programming to read/write data.

Figure 2: Representative pattern of the read-dominant
variable

Figure 3 depicts a four-stage data migration
process. First, we remove protection from the
specified Flash sectors, i.e., sector 1 and sector 2,
for use. Generally, critical system information
exists in the Flash memory, and overwriting is
prevented by protecting the Flash memory sectors.
Thus, it is necessary to remove protection from
specific Flash sectors for use before data migration.
Second, useless data stored in sectors 1 and 2 need
to be erased. Third, after the erase operation is
completed, the Flash sectors are programmed to
transfer data from the SRAM to the Flash memory.
The selected data, which are D1, D3, and D4 in the
.bss or .data sections, will move to sectors in bank 0
of the Flash main memory. Finally, we need to
protect Flash sectors again. Protecting and
removing protection from the sectors are very
important steps, as only unprotected sectors of
Flash memory can be programmed.

4 EXPERIMENTAL SETUP

This section describes the experimental setup
including Launchpad, software tools and evaluation
benchmarks.

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7285

4.1 Hardware

We evaluate the power and current
consumption of the proposed data migration
methodology. The MSP432P401R Launchpad
(Texas Instruments; Novi, MI) is mainly used for
the experiments. This Launchpad has an ARM
Cortex-M4 microcontroller and hybrid memory
comprising 256 KB of Flash memory and 64 KB of
SRAM. The Flash main memory includes two 128-
KB banks, which comprise a total of 64 4-KB
sectors. The Flash programming procedure for data
migration is processed sector by sector.
Additionally, the MSP432P401R Launchpad has an
embedded EnergyTrace+ chip that can measure the
time, power, and current consumed by an
application [10].

4.2 Software Tools

4.2.1 Code Composer Studio (CCS)

Code Composer Studio is an integrated
development environment (IDE) supporting TI’s
microcontroller and embedded processors. Our
Launchpad MSP432P401R is built-in
EnergyTrace+ technology. EnergyTrace technology
is viable with TI’s Code Composer Studio IDE.

Using Code Composer Studio, we can monitor
device in real-time and measures time, energy,
power and current [10].

4.2.2 FastModels Tarmac trace

FastModels from ARM supports a generation of
traces that consistently track model execution and
related activities. Using plug-ins, virtual platforms
are generated and provide trace function [11,12].
The trace function can make trace output like
Figure 4. We can select trace options such as
instruction trace, branch trace, memory trace, etc.
In this paper, we trace memory access and branch
instruction. Thereby, we could distinguish and
select read-dominant variables which should be
migrated.

4.3 Evaluation Benchmarks

We verified the data migration methodology
by using FIR, two benchmarks in MiBench:
basicmath, and dijkstra, and five benchmarks in
Powerstone: bcnt, blit, CRC, g3fax, and pocsag.
The finite impulse response (FIR) filter benchmark
is a float array calculation algorithm. Basicmath is a
mathematical program composed of a cubic
function, and an integer square root function.
Dijkstra is a finding shortest path algorithm in a
node graph [13]. In the powerstone set, bcnt is a
program which does a bit shifting and AND
calculation through a 1K array. Blit is graphics
applications and CRC is a cyclic redundancy check
program. G3fax is a group three fax decode
program which is kind of image decompression.
And last, pocsag is paging communication

Figure 3: Four steps of data migration from SRAM to

Flash memory

Figure 4: FastModels Tarmac trace output file

(memory trace)

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7286

protocols [14]. In this verification, we increased the
original number of benchmark executions by 2
times, as indicated in Table 1. The criteria for the
number of execution is the number of iteration
execution during roughly 1 minute. The execution
times of the basicmath, dijkstra, and g3fax
benchmarks are much longer than the others, so the
number of executions for basicmath, dijkstra, and
g3fax were inevitably small.

Table 1: The Number of Executions of The Benchmarks.

Benchmarks
Number of Executions

x1 x2

FIR 10,000 20,000

Mibench
basicmath 100 200

dijkstra 10 20

Powerstone

bcnt 50,000 100,000

blit 5,000 10,000

CRC 50,000 100,000

g3fax 250 500

pocsag 2,500 5,000

5 EXPERIMENT

5.1 Tracing Variables

Tracing memory access and tracing branch
instruction are afforded while executing
instructions using FastModels Tarmac trace. The
Tarmac Trace plug-in of the FastModels from
ARM keeps track of ‘trace_loads and stores’,
‘trace_instructions’, and ‘trace_branches’. The
‘trace_loads and stores’ function can trace loads
and stores triggered by instructions, i.e., read and
write access operations. These might go into the
memory subsystem. In figure 4, it shows the
memory tracing results. This trace function
indicates time (clock), read or write access, size of
data (bytes), a virtual address, and a transferred
data. The ‘trace_instructions’ function can trace all
of the instructions triggered during execution. This
function presents the time (clock), an instruction ID
which is the number of instructions executed,
address at which fetch instruction, an instruction
type, a mode which is processor execution mode,
and disassembly code. The ‘trace_branches’
function can trace changes of the program flow like
branches and exception returns. This function
presents the time (clock), the instruction ID, the
address at which the branch instruction is executed,
and the target address at which the processor
branches [12]. Figuring out where each function
ends, we perform the data migration at prefer time.

In table 2, there are specifications of every
benchmark which are analyzed by trace results.
Using trace results, we count every instructions and
memory access during the program execution.
Basicmath benchmark has smaller instructions than
any other benchmarks. Other benchmarks perform
instructions more 1 million. There is much more
read-dominant memory access in bcnt, cnt, blit,
CRC, and pocsag benchmarks. Read-dominant
memory count means the number of memory access
of all of the read-dominant variables. With the
Tarmac Trace plug-in features, we can trace the
memory access and prepare a more precise
selection of read-dominant data.

Table 2: Specifications of The Benchmarks.

Benchmarks
Instruction

Count
Memory
Count

Read-dominant
Memory Count

FIR 2,463,576 6,850 1,477

basicmath 632,986 9,161 726

dijkstra 5,327,109 2,157,952 120,657

bcnt 13,477,186 5,956,749 4,015,071

blit 20,997,773 4,022,203 2,006,331

CRC 63,983,246 21,204,125 4,100,003

g3fax 1,170,376 380,328 17,193

pocsag 32,462,073 11,267,772 1,571,461

5.2 Selecting Variables

From the previous trace results, we can
analyze and select read-dominant variables. First,
read/write data in SRAM data region is required.
We use the virtual address in the trace results to
separate the results within the data region of the
SRAM. The data region includes data section, stack
and heap. For example, figure 5 and figure 6 show
the patterns of the memory access in the data region
of the benchmarks. Red indicates write access and
black represents read access. Figure 5(a) is the
memory access of the FIR benchmark, revealing
that specific memory addresses keep doing read
operations. In Figure 5(b), the pattern of basicmath
benchmark is different with 5(a) because there
aren’t continuous patterns. We ascertain that there
are variables which could be also migrated at an
initial read operation clock. Also Figure 5(c) and
5(d) show the memory access of the dijkstra and
bcnt benchmark, revealing that some memory
addresses mainly do read operations throughout the
entire execution. Read-dominant variables likely
exist in those addresses. In contrast, the others do
write operations, but only at the start of execution.
Figure 6(a) shows the pattern of the blit benchmark
revealing that part of the memory addresses are

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7287

black, meaning that this part of memory could be
read-dominant. Similar to Figure 6(a), almost half
of the memory addresses in Figure 6(b) and Figure
6(d) do read operations continuously. The g3fax
benchmark pattern is unlike the other benchmarks,
as shown in Figure 6(c). Although g3fax does not
perform read operations continuously, it does keep
reading. Therefore, there are likely some read-
dominant variables. With the patterns of memory
access in a data region, we can confirm whether
read-dominant variables exist. Then, we can split
the memory addresses with each variable to depict
the patterns in a variable unit. Through those
procedures, we could precisely identify read-
dominant variables.

Second, we classify the trace results by
variables according to the memory address. In these
steps, memory accesses are indexed by numbers.
The black color and index 1 is a memory read
access. And the red color and index 2 is a memory
write access. Third, we plot the memory access
patterns of each variable using the index. Finally,
we analyze the patterns to determine which
variables are read-dominant. In Figure 7, there are
some specific read-dominant variable patterns
among the benchmarks. Most of the read-dominant

variables show a tendency like that in Figure 2.
Figure 7(a) shows the pattern of an array INPUT[]
in FIR benchmark. INPUT[] read and write at the
initial clock time and there is no memory access
until the almost half of execution. And it keeps read
access during last half. Therefore, we could select
INPUT[] as read-dominant variable and migrate the
array right after write operations. Figure 7(b) shows
the array data of the basicmath benchmark. This
D[] only access read and write at the start and last
clock. Albeit there are few read operations in D[],
we could select this variable as a read-dominant
variable. Because D[] could be located in flash
memory transiently. In Figure 7(c), array g3white[]
in g3fax benchmark is similar to a representative
pattern. The g3white[] only write at the initial clock
and then it is not continuous but it keeps reading. It
is one of the read-dominant variables.

Through these selection procedures, read-
dominant variables are selected. In bcnt benchmark,
There are 3 read-dominant arrays: poptab[], src[],
and dst[]. Those arrays are large. And blit
benchmark has one large read-dominant array src[].
It is about 4KB size. An array aa[] in CRC
benchmark is selected. Large arrays which are fax[],
g3white[], and g3black[] in g3fax benchmark are

Figure 5 : Patterns of Memory Access In The Data Regions of the (a) FIR, (b) basicmath, (c) Dijkstra, and, (d)

bcnt benchmarks

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7288

 also selected for migration. Last, in Pocsag
benchmark, we selected six small arrays such as
alpha[], alpha3[], alpha_inv[], roots[], err_tab[], and
alpha_data[]. Read-dominant variables tend to be
primarily array data because most of them used in
benchmark as input data.

5.3 Migrating Variables

Read-dominant data should be moved to Flash
memory. It is important to determine the specific
clock time at which to transfer the data. In the result
of ‘trace_branches’, a branch point between
functions is revealed. We can acquire the clock
point when a certain function enters the read
operation stage. All read-dominant variables of the
eight benchmarks start read operations before
starting their core functions. Therefore, flash
programming should be performed at the main
function. The size of read-dominant variables in
dijkstra benchmark is almost 3.6KB. For the bcnt
and g3fax benchmarks, the size of the read-
dominant variables is almost 4 KB. For that reason,
dijkstra benchmark use two sectors in the Flash
memory for data migration. And with bcnt and

g3fax benchmarks, three sectors in the Flash
memory are used for data migration. In contrast, the
other five benchmarks use only one sector because
the total size of all selected variables does not
exceed one sector size. Flash programming is
performed in the bank 1 sectors in the Flash main
memory. When the data is placed in a sector, it
defines an additional pointer directed to the Flash
memory address of the migrated data. Each time
there is a read operation request, the value is
acquired from the Flash memory using the pointer.

6 EXPERIMENTAL RESULTS

The current consumption results are shown in
Figure 8. In most of the benchmarks, the current
consumption is reduced when the read-dominant
data is migrated. By placing the read-dominant data
in the flash memory where the code is executed, the
current and power required to access read/write
data in SRAM are reduced. During a read operation,
the processor does not need to access and obtain the
data from SRAM because the necessary data are
already in flash memory. The CRC benchmark has

Figure 6 : Patterns of Memory Access In The Data Regions of the (a) blit, (b) CRC, (c) g3fax, and (d) pocsag
benchmarks

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7289

the greatest reduction of current consumption with
data migration. As table 2, compared with other
benchmarks, CRC benchmark has significant
counts in instruction, memory access, and even
read-dominant variable access. Figure 9 is showing
graphs comparing basic execution results with the
results which the number of execution is increased
by 2 times. More benchmarks are reduced the
consumed current when the number of execution is
increased.

The power consumption is displayed in Figure
10 as result of data migration. It tends to be much
similar with the current consumption. This
tendency is because the power equation is P = V*I
(P is power (W), V is voltage (V), and I is current
(A)). In our experiment environment, we use a
voltage as 3.3V which are fairly fixed value.

Therefore, the power consumption is effected by
current consumption. As CRC benchmark has the
greatest reduction in current consumption, there are
significant reductions in power consumption, too.

 The FIR, basicmath, blit, g3fax, and pocsag
benchmarks are also reduced consumed power.
This is significant that moving read-dominant to
flash memory is effective in managing power. With
our data migration experiment, it is found that data
migration methodology could reduce the power
consumption of IoT device. This tendency is also
seen in the doubling of execution.

In Figure 12, there is an energy consumption
graph. Compared with current and power,
consumed energy is reduced slightly less. The
energy equation is E = V*I*T (E is energy (J), V is

Figure 7: Read-dominant patterns of the (a) FIR, (b)

basicmath, and (c) g3fax benchmarks

Figure 8: Current consumption of benchmarks
(normalized)

Figure 9: Current consumption of benchmarks with
the number of execution x2 (normalized)

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7290

voltage (V), I is current (A), and T is time (s)). As
mentioned above, voltage in our experiment is 3.3V.
Revealed in figures, the current reduction rate is
greater than the energy reduction rate. According to
the energy equation, energy is proportional to time
and current. Consequently, it means that the time of
executions has increased. There is a visible
augment of energy in dijkstra, bcnt, blit, CRC, and
pocsag benchmarks. The dijkstra, bcnt, blit, and
g3fax benchmarks have large size of read-dominant
variables. Dijkstra and blit benchmarks’s total size
of read-dominant variables are almost 4KB. And
bcnt and g3fax benchmarks’s total size of read-
dominant variables are almost 8KB. Because of the
size, we have to allot several sectors in flash
memory. Especially, bcnt and g3fax benchmarks
allot 3 sectors. Programming several sectors in flash

memory should be executed independently of each
other. Furthermore, there are significant instruction
and memory access in CRC and pocsag
benchmarks. We thought that these factors affect
Flash programming and that the overhead that
occurs in Flash programming affects the execution
time and also energy consumption. Even though
additional overhead occurs with the data migration
methodology, the power consumption has
decreased in most benchmarks. And some
benchmarks have been more efficient when they
have increased the number of runs.

7 CONCLUSTION AND FUTURE WORK

In this paper, we proposed a data migration
method in which read-dominant data is moved from
SRAM into Flash memory. Typically, it is possible
to reduce power and energy required to access read-

Figure 13: Energy consumption of benchmarks with
the number of execution x2 (normalized)

Figure 12: Energy consumption of benchmarks
(normalized)

Figure 10: Power consumption of benchmarks
(normalized)

Figure 11: Power consumption of benchmarks with
the number of execution x2 (normalized)

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7291

dominant data by migrating it to Flash memory.
Now that IoT technology is rapidly developing,
many IoT devices use hybrid memory.
Furthermore, power consumption and energy
consumption in IoT devices are very important
factors. Adoption of the data migration method
reduces energy, power, and current consumptions.
Moreover, there is a limit to the capacity of using
SRAM, but it can be improved by applying the data
migration technique. The more read-dominant
variables we migrate, the more efficiently we can
use SRAM.

In the future, we aim to devise reliable and
efficient data migration techniques through more
detailed memory analysis. It is a recent study task
to enable long-term computation on a system that is
made up of unreliable and intermittent sources of
energy. There are many promising and viable
solutions for powering IoT devices. Energy
harvesting is the representative one. However,
frequent intervals of power loss occur because of
ambient energy sources in nature [15]. In such
power unreliability, it is a challenge that performing
programs completely. We will make sure that
programs that use techniques work well even in the
event of power loss. We also plan to expand
learning for various applications with various
datasets and sizes of various applications. A more
efficient migration method is expected to lead to
considerable performance improvement in small
embedded systems.

ACKNOWLEDGMENTS:

This work was supported by the National
Research Foundation of Korea funded by the
Korean Government (NRF-2017R1D1A1B030303
93). Sangsoo Park is the corresponding author.

REFRENCES:
[1] G. Acampora, D. J. Cook, P. Rashidi and A. V.

Vasilakos, "A Survey on Ambient Intelligence
in Healthcare," IEEE, Vol. 101, No. 12, 2013,
pp. 2470-2494.

 [2] D. Balsamo, A. Elboreini, B. M. Al-Hashimi
and G. V. Merrett, "Exploring ARM mbed
support for transient computing in energy
harvesting IoT systems," Proceedings of 2017
7th IEEE International Workshop on Advances
in Sensors and Interfaces (IWASI), IEEE
(Italy), June 15-16, 2017, pp. 115-120.

 [3] M. Eggenberger and M. Radetzki, "Optimal

memory selection for low power embedded
systems," Proceedings of 2015 12th
International Workshop on Intelligent Solutions
in Embedded Systems (WISES), IEEE (Italy),
October 29-30, 2015, pp. 11-16.

 [4] H. Aghaei Khouzani, F. S. Hosseini and C.
Yang, "Segment and Conflict Aware Page
Allocation and Migration in DRAM-PCM
Hybrid Main Memory," IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, Vol. 36, No. 9, 2017, pp. 1458-
1470.

[5] Z. Zhang, Y. Fu and G. Hu, "DualStack: A High
Efficient Dynamic Page Scheduling Scheme in
Hybrid Main Memory," Proceedings of 2017
International Conference on Networking,
Architecture, and Storage (NAS), IEEE
(China), August 7-9, 2017, pp. 1-6.

 [6] Y. Wang, K. Li, J. Zhang and K. Li, "Energy
Optimization for Data Allocation With Hybrid
SRAM+NVM SPM," IEEE Transactions on
Circuits and Systems I: Regular Papers, Vol.
65, No. 1, 2018, pp. 307-318.

 [7] Texas Instruments, “Code Composer
StudioTMv7.x for MSP430TM: User’s Guide”,
http://www.ti.com/lit/ug/slau157ap/slau157ap.p
df, 06/05/2018.

 [8] W. Tian et al., "Task Allocation on Nonvolatile-
Memory-Based Hybrid Main Memory," IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 21, No. 7, 2013, pp. 1271-
1284.

 [9] R. Raha, “Adaptive Regulation of Sampling
Rates for Power Efficient Embedded Control
System Design”, J. Inst. Control Robotics Syst
(ICCAS), Vol. 23, 2017, pp. 505-510.

 [10] Texas Instruments, “MSP432P401R
SimpleLinkTM Microcontroller LaunchPadTM
Development Kit (MSP-EXP432P401R)”,
http://www.ti.com/lit/ug/slau597e/slau597e
.pdf, 06/05/2018

 [11] ARM, “Fast Models Reference Manual
Version 10.3”, https://developer.arm.com/
products/system-design/fast-models/docs/
dui0834/latest/plug-ins-for-fast-models/
tarmactrace-and-tarmactracev8, 06/05/2018.

 [12] ARM, “Tarmac Trace for Fast Models User
Guide Version 10.0”, https://developer.
arm.com/docs/dui0845/latest/tarmac-trace-
plug-in, 06/05/2018.

Journal of Theoretical and Applied Information Technology
15th November 2018. Vol.96. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7292

 [13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T.
M. Austin, T. Mudge and R. B. Brown,
"MiBench: A free, commercially representative
embedded benchmark suite," Proceedings of
the Fourth Annual IEEE International
Workshop on Workload Characterization.
WWC-4 (Cat. No.01EX538), IEEE (USA),
December 2-2, 2001, pp. 3-14.

 [14] A. Malik, B. Moyer and D. Cermak, "A low
power unified cache architecture providing
power and performance flexibility," Low Power
Electronics and Design, 2000. ISLPED '00.
Proceedings of the 2000 International
Symposium on, IEEE (Italy), July 26-27, 2000,
pp. 241-243.

 [15] H. Jayakumar, A. Raha, J. R. Stevens and V.
Raghunathan, “Energy-Aware Memory
Mapping for Hybrid FRAM-SRAM MCUs in
Intermittently-Powered IoT Devices”, ACM
Transactions on Embedded Computing Systems
(TECS)-Special Issue on Embedded Computing
for IoT, Special Issue on Big Data and Regular
Papers, Vol. 16, No. 65, 2017, pp. 1-23.

