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ABSTRACT 
 

FRI methods are less popular in the practical application domain. One possible reason is the missing 
common framework. There are many FRI methods developed independently, having different interpolation 
concepts and features. One trial for setting up a common FRI framework was the MATLAB FRI Toolbox, 
developed by Johanyák et. al. in 2006. The goals of this paper are divided as follows: firstly, to present a 
brief introduction of the FRI methods. Secondly, to introduce a brief description of the refreshed and 
extended version of the original FRI Toolbox. And thirdly, to use different unified numerical benchmark 
examples to evaluate and analyze the Fuzzy Rule Interpolation Techniques (FRI) (KH, KH Stabilized, 
MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and SCALEMOVE), that will be classified and 
compared based on different features by following the abnormality and linearity conditions [15]. 

Keywords: Fuzzy Rule Interpolation, Fuzzy Interpolating Function, FRI Toolbox, Sparse Fuzzy Rule Base, 
Missing Fuzzy Rules 

 
1. INTRODUCTION  

 
Former popularity of fuzzy control application 

was derived from the simple human-readable 
knowledge representation of fuzzy rules and the 
simple heuristic way of the control surface 
definition. Using fuzzy sets as linguistic terms and 
defining a control surface by fuzzy rules as 
overlapping fuzzy points was a simple way to 
express and implement a heuristic control strategy. 

 
On the other hand, the heuristic definition of the 

fuzzy rule base in a higher dimensional problem is 
a challenging task. The traditional fuzzy systems, 
[1], [2] were implemented based on defining a 
complete rule base. In the complete fuzzy rule base, 
we have to consider all the possible rule base. The 
fuzzy reasoning is based on rule firing strengths i.e. 
rule matching calculated from the t-norm of fuzzy 
sets, the required rule base size is exponential with 
the number of the input dimensions.  

 
However, in case the complete fuzzy rule base 

cannot be obtained for any reason (e.g. lack of 
expert knowledge base or no overlapping of fuzzy 
sets), then the classical reasoning methods cannot 
offer the desired conclusion. That happens because 
there may be a new observation that is not covered 

directly by any of the current fuzzy rule base. In 
this case, the fuzzy rules are considered as a sparse 
rule-base. There are several application areas such 
as control system, intrusion detection system and 
etc., requested a conclusion for each observation. 
This case the classical reasoning methods could 
face the problem of missing conclusion for some of 
the observations. 

 
Alternative fuzzy reasoning solutions, i.e. Fuzzy 

Rule Interpolation (FRI) methods can release the 
need for the complete rule-base by replacing the 
rule matching reasoning concept with fuzzy 
interpolating function. The Fuzzy Rule 
Interpolation (FRI) methods were produced to 
handle the case of sparse rule-base. FRI methods 
are suitable to produce a conclusion even if some 
observations are not covered directly by the fuzzy 
rules. Therefore, using the FRI methods there is no 
need to have a complete fuzzy rules. The most 
significant fuzzy rules are enough to generate the 
desired conclusion. 

 
The goals of this paper are divided as follows: 

firstly, to present a brief introduction of the FRI 
methods. Secondly, to introduce a brief description 
of the refreshed and extended version of the 
original FRI Toolbox. And thirdly, to use different 
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unified numerical benchmark examples to evaluate 
and analyze of the Fuzzy Rule Interpolation 
Techniques (FRI) (KH, KH Stabilized, MACI, 
IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and 
SCALEMOVE) that will be classified and 
compared based on the abnormality and linearity 
conditions. 

 
The rest of the paper is organized as follows: 

Section (2) provides a brief review of the basic 
definitions of the classical reasoning and 
interpolative reasoning methods. Section (3) 
introduces an overview about enumeration of some 
of the implemented FRI methods. Description of 
the renewed and extended version of the original 
FRI toolbox is presented in section (4) and a set of 
some numerical examples of implemented FRI 
methods are presented in section (5). FRI methods 
results are discussed in section (6). Finally, section 
(7) concludes the paper. 

 
2. PRELIMINARIES 

This section provides a brief overview of the 
basic definitions of the complete fuzzy rule base 
and sparse rules. It also briefly introduces the 
description of the interpolative reasoning concept. 

 
2.1 Complete and Incomplete Rule Bases 

Let us take into consideration two numerical 
variables X and Y described on the universe R of 
real numbers, and F is a set in the fuzzy sets of R. 
We assume the fuzzy sets Ai in F are defined, 1 ≤ i 
≤ n, such that: A1   A2...  Ai   Ai+1...  An, for a 

given order   on F. We also suppose that we are 

given fuzzy sets Bi in F, 1 ≤ i ≤ n, which are also 
ordered according to  . 

 
According to the definitions in [12], [13], the 

fuzzy functions are described by the fuzzy relations 
between the fuzzy sets of the inputs Ai and outputs 
Bi. The fuzzy rule base could be characterized and 
represented based on this relation. The classical 
reasoning methods, such as Mamdani and Sugeno 
[1], [2] follow that relation which require to define 
all the fuzzy rule base relations between the inputs 
and outputs, in addition, to define the overlapping 
between them to get the desired conclusion. Figure 
(1) describes the complete fuzzy rule base between 
two dimensions antecedents and single consequent, 
the observations (x1) and (x2) are matching with 
the fuzzy rules 1,2,4 and 5, thus, the conclusion 
could be computed based on one of the classical 
fuzzy reasoning methods, like the Zadeh-Mamdani 
max-min Compositional Rule of Inference (CRI). 

 
Figure 1: Complete Fuzzy Rule Base 

Regarding the sparse rule-base (incomplete rule-
bases) systems where fuzzy rules are of the type: 
(Ri): “if X is Ai then Y is Bi”. The sparsity means 
there is no overlapping between the observation and 
any of the fuzzy rules (do not cover the input space 
F), where there exist inputs A∗ such that ∃i / Ai   

A∗   Ai+1. The aim of a fuzzy interpolation method 

is to provide the conclusion corresponding to the 
observation A∗ by considering only the two rules Ri 
and Ri+1 when Ai   A∗   Ai+1. 

 
Figure (2) describes the issue, where the 

observations x1.1 and x1.2 refer to the first input 
(antecedent 1), the observations x2.1 and x2.2 refer to 
the second input (antecedent 2). These observations 
are described two different types of issues in 
classical reasoning. The observations x1.1 and x2.1 
are not overlapped with any of the rules of the rule-
base, while, the observations x1.2 and x2.2 hit spaces 
in the universe of discourse, there are no linguistic 
terms defined, hence no overlapping rule can exist. 
 

 
Figure 2: The Incomplete Rule Base (Sparse Fuzzy Rule 

Base And No Overlapping Fuzzy Sets) 
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2.2 Notation of FRI 
According to the definition of the fuzzy 

function, the fuzzy space can be described by the 
mapping between antecedents and consequents 
fuzzy sets LX and LY via f: LX → LY. This leads to 
the main idea of the fuzzy rule interpolation 
methods which is finding a suitable fuzzy 
interpolating function.  
 

These functions could be able to produce a 
conclusion directly even if the rule base is sparse, 
and there is no overlapping between the observation 
and any of the fuzzy rules. 

 
Many of the fuzzy rule interpolation (FRI) 

methods following the notion in [3], [14], [15] 
which describe the relation between two fuzzy rule 
base, these fuzzy sets must be adjacent convex and 
normal (CNF) and partially ordered fuzzy sets. 
Where the ordering is defined as A1, is said to be 
“less than” A2, for all A1, A2 sets in a given fuzzy 
partition. the ordering of the fuzzy set A1 and A2, 
denoted by A1 ≺ A2, if  α  [0,l], the following 
condition hold: 

 
inf(A1α) < inf(A2α), sup(A1α) < sup(A2α), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where the "inf" denotes the infimum and "sup" 
refers the supremum of the (A1α), (A2α) fuzzy sets. 
For simplicity, suppose that two fuzzy rules are 
given: 
 

If X is A1 then Y is B1 
If X is A2 then Y is B2 

 
Where the fuzzy rules are described by A1 ⇒ B1 

and A2 ⇒ B2. Also, that rules in a given rule base 
are arranged with respect to a partial ordering 
among the convex and normal fuzzy sets (CNF sets) 
of the antecedents, consequent and observation. For 
the above two rules, this means that: 

 
A1 ≺ A∗ ≺ A2   ∧ B1 ≺ B2    

 
Figure (3) illustrates the simplest form to 

describe two flanking rules of the fuzzy sets, where 
the shape of the fuzzy sets membership functions 
remained restricted to trapezoidal, the figure shows 
the main points (variables) of the fuzzy sets to be 
applied for determining the conclusion in most FRI 
methods.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3: Fuzzy Interpolation With Trapezoidal Fuzzy Sets (The Antecedent Part And Observation) And (The 
Consequent Part And Conclusion). 
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Where A1, A2 refer to the fuzzy sets of the 
antecedents, B1, B2 denote the consequent fuzzy 
sets. A∗ denotes to the new input (observation), B∗ 
refers to the conclusion. The characteristic points of 
the trapezoidal membership function could be 
defined by four values (LF, LC, RC, RF), the (LC, 
RC) refer to the left and the right core, the (LF, RF) 
refer the left and the right flank. (RA1, RA∗, RA2) 
denote the center point of the fuzzy sets in 
antecedents side and similarly the (RB1, RB∗, RB2) 
denote the center points of the fuzzy sets in 
consequents side, (fl, s2, r1) and (fu s1, r2) denote 
the left and the right fuzziness for each fuzzy set, 
(Ui, U’) denotes the distance between the center 
points of the fuzzy sets.  

 
3. FRI METHODS 
 

There are many fuzzy rule interpolation 
methods exists, classified into two groups. The first 
group obtains the conclusion in a single step 
(directly) and the second group demands two-steps 
to compute the conclusion, using different 
algorithms in each step. This section presents an 
overview about some of the implemented FRI 
methods. 

 
3.1 KH Interpolation Method 

The first method which was proposed for FRI is 
called the KH (linear interpolation) method, this 
method was published by Kóczy and Hirota [3]. 
Concerning the common general conditions for FRI 
methods suggested in [15], The KH rule 
interpolation method needs the following conditions 
to be satisfied: the fuzzy sets in both antecedents 
and consequents must be convex and normal (CNF) 
with bounded support and at least a partial ordering 
must exist between fuzzy sets in the universes of 
discourse.  

 
The conclusion in KH interpolation method 

produced directly based on the α-cuts of the 
observation and the fuzzy rule-base, it can be 
calculated by using the fundamental equation of the 
KH FRI (1), which is based on the lower and upper 
fuzzy distances between fuzzy sets [16]. The upper 
and lower endpoints could be used to calculate the 
distance between the conclusion and the consequent 
which must be analogous to the upper and lower 
fuzzy distances between observation and 
antecedents. 

 

d(A*, A1):d(A*, A2) = d(B∗, B1):d(B∗, B2) (1) 

 

Where (d) refers to the Euclidean distance that 
could be used between the fuzzy sets (A1, A2) and 
(B1, B2). 

 
The conclusion B∗ in this method could be 

calculated based on the lower and upper fuzzy 
distances between the fuzzy sets of the antecedents, 
consequent and observation. Figure (3) illustrates 
the main points (core and flank) of the trapezoidal 
fuzzy sets which could use in order to compute the 
conclusion B∗ as follows: 

 
The right (core) can be calculated by the 

Equation (2): 
 

RCB* = 
RCdRCd

RCBRCdRCBRCd

21
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And the right (flank) can be calculated by 
Equation (3): 
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The left (core) and the (flank) can be obtained 
similarly to the above Equation (2 and 3). 

 
The KH method was developed for a single 

dimension and multi-dimensional antecedent 
universes as appearing in the previous Equations. 
The most significant advantage of the KH 
interpolation is its simplicity and its low 
computational complexity. However, the 
disadvantage of this method is the abnormality in 
the conclusion can be seen in some cases such as in 
[17], [18], where the lower (left) end of the α-cut 
interval has a higher value than its upper (right) end 
point. 
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3.2 The KH Stabilized Method 
Many studies introduced a modification of the 

original KH method to improve the abnormality and 
to take more than two rules throughout the 
determination of the conclusion, the extended 
method was developed to handle and decrease the 
abnormality of the original KH method is called KH 
Stabilized that was proposed by Tikk, .et.al. [5]. 
 

The main idea of this method is to take all 
flaking rules of the observation which is getting 
better with the growth of the number of the rules 
taken into consideration to conclude the conclusion, 
using the extent of the inverse distance of the 
antecedents and observation of fuzzy sets. The 
universal approximation property holds if the 
distance function is raised to the power of the 
inputs dimension. 
 

The authors of [5] propose using formulas to 
calculate the upper and lower endpoints of α- cuts 
of the approximated consequence which contain the 
distance on the nth power as shown via the 
Equations (4 and 5): 
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 (5) 

 
The simplest of the KH Stabilized method is the 

linear interpolation of two rule-bases for the area 
between their antecedents. In addition, this method 
can be applied if the observation position is located 
between two closest rules or hits outside rule-bases. 
 
3.3 VKK Interpolation Method 

This method was proposed by Vas, Kalmar and 
Kóczy [4]. The main idea of this method is based 
on the center point and width ratio, the conclusion 
could be calculated by the center point and width 
ratio between the antecedent, consequent, and 
observation fuzzy sets.  

 
The center point of the conclusion can be 

obtained by Equations (6, 7 and 8): 
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The width ratio of the conclusion can be 
calculated by Equations (9, 10 and 11): 
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Where  
 

)inf()sup()(  AAAWidth   

 
The d(Ai1α, A∗α), d(A∗α, Ai2α) and d(Ai1α, Ai2α)) 

refer to the distance between antecedents fuzzy sets, 
the geometric average of the width values metrical 
is represented by (WA1i), (WA2i), and (WA∗) 
between the antecedents and observation.  

 
The disadvantage of this method is the 

abnormality can be appeared in some cases. 
Nevertheless, the VKK method is distinguished by 
a low complexity compared to the KH method due 
to the calculation of the conclusion directly through 
the center and the width of the fuzzy sets. It is also 
simple and can be used in several applications 
without complications. 

 
3.4 MACI Interpolation Method 

Another method of the FRI called the Modified 
α-Cut based Interpolation (MACI) method was 
proposed by Tikk and Baranyi [6]. The main idea of 
this method is based on the vector’s description of 
the fuzzy sets for eliminating the abnormality 
problem in the conclusion. The fuzzy set in this 
method could be described by two vectors space, it 
can represent the Left and the Right flank of the α-
cut levels where the abnormal consequent set is 
excluded. 

 
The characteristic points that are used in vector 

description can be represented by the piecewise 
linear shape of the fuzzy sets where (a−1, a0) 
describe the left flank, and (a0, a2) represent the 
right flank, also a0 refers to the reference point of 
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the fuzzy set, the Cartesian axes can be represented 
by Z0, Z1 as shown in Figure (4). 

 

 
Figure 4: The Vectors Description Input And Output 

Fuzzy Sets [6]. 

The conclusion in this method could be 
determined by the transformation of the current 
characteristic points to a new Cartesian to calculate 
the conclusion, then, transforming back to the 
original Cartesian to show the result that could be 
computed by using the following Equations (12, 13 
and 14): 

 
The new Cartesian can be calculated by the 

vector form: 
 

b = [ 0b , 1b ] and 'b  = [ '
0b , '

1b ]            (12) 
 

'
0b  = 0b . 2  and '

1b  = 0b  - 1b        (13) 
 

The vector description can be represented by the 
matrix: 

 

b’ = bT                           (14) 
Where 

T = 








 11

02
 

 
The MACI method concentrates on the 

characteristic points of the fuzzy set (A1, A∗ and A2) 
and the consequents (B1 and B2). It can be described 
by vectors which involve computing the center 
point of the conclusion RB∗ as shown in Figure (3). 
The conclusion could be calculated by Equation 
(15) as follows: 

 

RB*=(1- core)RB1 +  core RB2 (15) 
 
 
 

Where 
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Where, the RA∗, RA1, and RA2 denote the 

reference point of the observation and antecedents 
fuzzy sets. After computing the conclusion could be 
transformed back to the original Cartesian by the 
vector form by applying the Equations (16, 17 and 
18): 

 

*
0b  = *'

0b  . 2                  (16) 
 

*
1b = *'

1b  + *
0b  = *'

1b  + ( *'
0b / 2 )       (17) 

 

*b  = *'b .T-1                               (18) 

Where  

T = 












12/1

02/1
 

 
For more detailed description of MACI function 

can be found in [19], [20]. 
 
The main advantage of the MACI method is that 

the conclusion is always a convex and normal fuzzy 
set. It can also apply multi-dimensional antecedents 
[6]. On the other hand, the disadvantage of this 
method (in some instances) is that it does not keep 
the piecewise linearity of the membership 
functions. 
 
3.5 CRF Interpolation Method 

This method was proposed to modify the 
fuzziness term and to improve α-cut levels. The 
main idea of this method was introduced in [21] 
which was called GK method, also the modified 
version of the GK called the KHG method was 
published by Kóczy, Hirota, and Gedeon in [7]. The 
current modified version is called the conservation 
relative fuzziness (CRF) which follows 
fundamental equation (FEFRI) (1). This method 
aims to obtain the conclusion based on determining 
the core and fuzziness of antecedents, consequents 
and observation fuzzy sets, the core c∗ could be 
described by (A1c∗, A2c∗, A∗c∗) and (B1c∗, B2c∗) as 
shown in Figure (3), the core of the conclusion 
could be calculated by using the distances between 
the antecedents and observation as d(A∗, A1) and 
d(A2, A∗), also between the consequents fuzzy sets 
d(B1, B2). 
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In addition, the fuzziness of the conclusion 
could be determined by calculating the (A1fU, 
A∗fL) that must have the same fuzziness of the 
(B1fU, B∗fL), and similarly the fuzziness between 
(A∗fU, A2fL) and (B∗fU, B2fL) as shown in Figure 
(3).  

 
The core of the conclusion C∗ can be calculated 

by Equation (19): 
 

),(

),(
*

211

211*

AAd

BBd
cC   (19) 

 
Where c∗ denotes the core of the observation, 

and d1 denotes the distance between A1 and A2 
which can be calculated as follows: 

 
d1=(A1,A2) = A2c* - A1c* 

 
d1=(B1,B2) = B2c* - B1c* 

 

The general fundamental Equation (1) can be 
applied to determine the distance between the 
current fuzzy sets through Equation (20): 
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So, Equation (20) can be used to calculate the 

core of the conclusion by the distance of the 
following Equation (21 and 22): 
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Where the distance between the fuzzy sets can 

be computed as the following formula: 
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2
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The fuzziness of the conclusion can be 

determined by the left and the right flanks by the 
current fuzzy sets as follows by Equations (23 and 
24): 

fU

fU
fLfL A

B
AB

1

1**   (23) 

fL

fL
fUfU A

B
AB

2

2**   (24) 

Accordingly, the equations in [7], it is possible 
to compute the A∗fL, A∗fU, A1fU, A2fL, B1fU, and 
B2fL which are based on the calculation of the (inf) 
and (sup) of the current fuzzy sets. 

 
 The previous Equations (19-24) of the CRF 

method were introduced to be applied by single 
dimensional input, and also, it can be applied in 
multi-dimensional input by using the expression in 
[7]. 

 
The advantage of this method is that the flanks 

are used to define the conclusion, therefore, this 
method can be applied arbitrarily on fuzzy set 
shapes. Additionally, the observation position must 
be surrounding two rule-bases s to get a conclusion. 
 
3.6 IMUL Interpolation Method 

This method was proposed by Wong, Gedeon 
and Tikk [8], the IMUL is introduced to avoid the 
abnormal conclusion and improve the 
multidimensional α-cut (levels). This method was 
presented to combine the features of MACI method 
[6] and Conservation of Relative Fuzziness (CRF) 
method [7]. 

 
The IMUL method applied the vector 

description, it can describe the characteristics points 
of the fuzzy sets through advantageous the 
transformation feature of MACI method, and 
representing the fuzziness of the input and output 
by CRF method. The conclusion could be 
calculated between the characteristic points of the 
antecedent fuzzy sets which are neighboring to the 
observation as shown in Figures (3).  

 
The conclusion in IMUL method is based on 

calculating the reference point (RB∗) and the left / 
right core (LCB∗, RCB∗), the reference point could 
be computed by Equation (8). The left and right 
core can be calculated through the following 
Equations (25 and 26): 

 
The right core: 
 

RCB*= (1- right)RCB1 +  right 

RCB2+ ( core - right)(RB2 + RB1) 
(25) 
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where  
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The left core: 
 

LCB*= (1- left)LCB1 +   left LCB2+  

( core -  left)(RB2 + RB1) 
(26) 
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The conclusion flanks (LFB∗, RFB∗) can be 

computed by following Equation (27): 
 
The left flank: 
 

)
'

'
1(**

U

S

U

S
rLCBLFB k   (27) 

 
Where the LFB∗ denotes the left flank fuzziness 

of the conclusion B∗, and the LCB∗ denotes the left 
core, the right flank can be calculated in the same 
way, the variables (r, s, u, s’, u’) are used to 
determine the fuzziness between the fuzzy sets to 
calculate the conclusion flank ([8], [19]). 

 
One of the benefits of using IMUL method is 

that the conclusion can be obtained by computing 
core and fuzziness focusing on the information of 
the consequents (outputs) and the information of the 
antecedents fuzzy sets that are given correct results. 
Moreover, IMUL method can be applied on single 
dimension and also in multi-dimensional inputs 
space (see the examples in [8]).  
 
3.7 GM Interpolation Method 

The first method in the second group of the 
interpolation methods which demanded two-steps to 
get the conclusion is called GM method. It was 
published by Baranyi et al. [9], the conclusion in 
this method could be determined by two algorithms. 
The first one is based on the fuzzy relation and the 
second one is based on semantics of the relations. 
The GM method will adopt the characterization of 
the position fuzzy sets to determine the reference 
points (core), thus, the distance between the 
observation and antecedents fuzzy sets can be 
calculated based on the reference points via 

Equation (28) instead of using the interpolating α-
cut levels.  

 

d(A1,A2) = | RP(A2) – RP(A1) | (28) 
 

where A1 and A2 are the fuzzy sets, the 
reference point is (RP) and (d) denotes the distance 
of the sets. 

 
The conclusion (interpolation) can be obtained 

by applying the following primary two steps: 
The first step is to generate a new interpolated 

rule Ri: Ai → Bi, which is positioned between rules 
R1 and R2 via Equation (29), the position of the new 
rule is the same position of the observation, so, each 
fuzzy set of the antecedents is used to produce the 
new rule which must be identical with the reference 
point of the observation fuzzy set in the 
corresponding dimension. 

 

),( 21 RRfR ionInterpolati   (29) 

 
This step could be divided into three stages:  

1. The first stage, a set interpolation technique 
will help to determine the antecedent set 
shapes of the interpolated rule.  

2. The second stage, the reference points of the 
observation and the consequent sets can be 
used to determine the reference point of the 
conclusion, where the rules could be taken 
into consideration, for example, using the 
fundamental equation of the fuzzy rule 
interpolation (FEFRI) (Equation (1)). 

3. The third stage, the shapes of the consequent 
sets could be determined by the interpolated 
rule using the same set interpolation 
technique as (stage 1) as shown in Figure 
(5). 
 

Many techniques were proposed for this step of 
the set interpolation technique (e.g. SCM, FPL, 
etc.). The Solid Cutting Technique (SCM) is 
introduced for this step, the main idea of this 
technique is that all the associated sets are rotated 
by 90° about a vertical axis which is passed through 
their reference point, then by connecting the similar 
points of antecedents and consequents, two solids 
can be constructed: one in the input and one in the 
output dimension (Figure (5)) where the solid was 
created in an input dimension could be described.  
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Figure 5: The Main Steps Of The GM Method [9]. 

The second step in the GM method is that the 
new rule could be specified as a part of the 
extended rule of the approximate conclusion, as a 
conclusion of the inference method is defined by 
determining this rule. In many instances, there is no 
identical similarity between the rule and the 
observation part, for this purpose, many techniques 
are used to handle the mismatch by either the 
Transformation of the Fuzzy Relation (TFR) 
technique or by Fixed Point Law (FPL).  

 
This step could be divided to two stages: 

The first stage, the Transformation of the Fuzzy 
Relation (TFR) technique could be applied, where 
the interrelation function [9] is generated between 
the observation (A∗) and the antecedent (Ai) set, 
there is mapping between observation (A∗) and 
antecedent (Ai) by the endpoints of the support and 
reference point (RP), as shown in Figure (6), the 
interrelation area can be represented by the 
endpoints of the supports sets. The purpose of the 
first phase is to improve the proportion of the area 
of interrelation mapping between (Ai and Bi) sets, it 
can correspond with the support of the observation 
and the horizontal side of the square. Hence, the 
support of the conversion set (At) is the same 
support of the (A∗), the membership in both cases 
(At, A∗) is the same as its interrelated point in the 
Antecedents part. 

 

 
Figure 6: The Interrelation Functions [9]. 

The second stage, the FPL (Fixed Point Law) 
technique can be used where an interrelation 
function is created between observation (A∗) and 
the transformed antecedents sets (At), the (FPL) 

technique is used to calculate the difference 
between the membership values for each 
interrelated point set, this difference can be applied 
to determine the approximate conclusion from the 
transformed consequent sets (Bt) that will take into 
consideration the interrelation between transformed 
(At) and transformed (Bt) [9]. 

 
The main advantage of this method (GM) is to 

avoid the abnormal fuzzy conclusion, there is no 
restriction to CNF sets and preserving normality, it 
preserves linearity and is compatible with the rule 
base, finally it investigates the monotonicity and the 
continuity. 

 
3.8 FRIPOC Interpolation Method 

A new fuzzy interpolation method which is 
based on the reasoning method by using the concept 
of the linguistic term shifting and polar cut which is 
called Fuzzy Rule Interpolation based on POlar 
Cuts (FRIPOC), this method was proposed by 
Johanyák and Kovács [10], where it is appropriate 
in case of sparse and dense rule bases. The general 
formula that can be described to show the reference 
point which is specified to calculate the interpolated 
of the Antecedents RP(Ai

j) and the consequent 
RP(Bi

l) sets which could be calculated by Equation 
(30). 

 
)),(),..,(),..,(),(( 2

i
na

i
j

ii
l

i
l ARPARPARPARPfRPB   (30) 

 
This method is based on the position of the 

fuzzy sets which is characterized by a reference 
point during the calculations, the reference point 
RP(Bi

l) can be determined by several techniques 
Figure (7). The presented technique to determine 
the reference point can be calculated by Equations 
(31 and 32). The FRIPOC method essentially 
follows the GM method [9], where the conclusion 
can be done by applying two steps: the first step is 
to define the new rule based on the position of the 
antecedents part that describes the observation in 
each dimension, this means the reference point of 
the observation and antecedents set are identical. 

 

 
Figure 7: Choices For The Reference Point And The 

Associated Set Distances [10]. 
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Where RP(Bi

l) is the RP of the consequent sets, 
sj denotes to weight attached to the rule, (l) refers to 
the number of dimensions, (N) denotes the number 
of the rules, (j) refers to the actual rule, RAi and 
RAj denote the antecedent rule [10]. 

 
Accordingly, the new rule could be determined 

by two steps: The first step could be described by 
three stages as follows: 1) the fuzzy sets of the 
antecedents are estimated by utilizing the set 
interpolation technique Fuzzy SEt interpolAtion 
Technique bases on Polar cut (FEAT-p) that is 
independently in each antecedent dimension, the 
main purpose of this technique is that the whole sets 
of the partition are shifted horizontally into the 
reference point of the observation, i.e. their 
reference points are identical with the interpolation 
point. 2) the new fuzzy set is determined based on 
the polar cut, where the fuzzy set can be specified 
by using the polar distance of each polar cut level as 
a weighted mean of the similar polar distances of 
the forecasted identified sets. 3) the fuzzy set will 
determine the consequent by FEAT-p technique in 
the same way as (first stage). Thus, the new fuzzy 
set can be calculated by following the formula as 
shown in Equation (33). 
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(33) 

 
The second step in FRIPOC method defines the 

conclusion which is generated by exciting the new 
rule based on using the Single Rule Reasoning 
based on polar cuts (SURE-p) technique [10]. The 
reference point of the interpolated conclusion and 
the consequent set are identical to the new rule in 
the current dimension. Figure (8) describes the 
distance of the polar that can be calculated based on 
each polar level, the conclusion can be computed by 
the modified consequents of the interpolated rule 
using the average differences, where the technique 
of correction and control could be used to guarantee 
the efficacy of the new fuzzy set. 

 

 
Figure 8: Polar Distances Utilized For The Estimation 

Of The Relative Difference [11]. 

The main benefits of the FRIPOC method are 
comprehensibility, the ability to applicability in 
subnormal cases, and also can be applied if there 
are no rules surrounding of the observation 
(extrapolation). 

 
3.9 LESFRI Interpolation Method 

This method follows the GM method by 
computing the conclusion based on two steps, this 
method is called LEast Squares based Fuzzy Rule 
Interpolation (LESFRI) and was proposed by 
Johanyák and Kovács Szilveszter [11]. 

 
The main idea of this method is the conservation 

of the weighted average differences measured on 
the antecedent part, where these modifications 
could be applied on the consequent side, in which 
the results usually could be as a set of characteristic 
points that will not fit with the default shape type of 
the partition. Therefore, the LESFRI method could 
be used in order to find the breakpoints of an 
adequate conclusion. The LESFRI method is based 
on two-step: 

 
The first step aims to define the interpolation 

point of the new fuzzy set which can be achieved by 
three stages as follows [11]: 

1. The FEAT-LS technique is used to calculate 
the antecedent sets for each dimension, 
where this technique aims to generate a new 
fuzzy set based on the interpolation points of 
the fuzzy partitions, thus, all the sets of the 
partition are shifted horizontally in order to 
reach the coincidence between their 
reference points and the interpolation point 
by using Equation (34). 
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2. The position of the consequent fuzzy sets can 
be determined for each consequent 
dimension of the new rule by utilizing a crisp 
interpolation method by Equation (35). 
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(35) 
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3. The characteristic points of the new fuzzy 

sets shapes are defined by the method of 
weighted least squares by taking into 
consideration the similar characteristic points 
of the overlapped sets which could be used to 
estimate the conclusion using the observation 
and the new rule. 

 
The second step in the LESFRI method is the 

conclusion that could be produced based on the new 
rule which is required for the calculation of the 
conclusion because the points of the rule do not fit 
ideally with the observation in each input 
dimension. The method that was proposed for this 
purpose is called SURE-LS as a single rule 
reasoning method which is based on the α-cut 
approach. Consequently, all the current antecedent 
dimensions and consequent fuzzy sets could be 
described by the break-point α-levels to calculate 
the conclusion, it must be done independently to the 
left and right flanks of the fuzzy sets. Additionally, 
the weighted average of the distances between the 
endpoints the α-cuts of the rule antecedent and the 
observation set could be calculated to each side for 
each level. 

 
The advantages of this method are its capability 

to produce new linguistic terms that fit into the 
regularity of the original partitions, as well as its 
low computational complexity, where it can be 
applied in case of the interpolation and 
extrapolation. 
 
3.10  Scale and Move Interpolation Method 

The scale and move transformation-based 
method was produced by Huang and Shen [22], it 
follows the interpolation concept to handle the 
sparse fuzzy rules. The scale and move method 
provides the capabilities to work with different 
fuzzy membership functions types such as 
(Triangular, Trapezoidal). 

 
The scale and move method is based on the 

Centre Of Gravity (COG) of the membership 

functions as shown in Figure (9), this method based 
on generates a new central rule-base via two 
neighboring rule-bases that are surrounding the 
observation. 

 

 
Figure 9: Representative Value Of A Triangular And 

Trapezoid Fuzzy Sets [22]. 

This scale and move method follows two-steps 
to obtain the conclusion, the first step is to produce 
a new central rule-base (A` → B`) is produced 
within the existing surrounding rule-bases between 
observation (A∗: A1 → B1, A2 → B2) through to 
apply the Equation (36): 

 

))(),((

))(),((

21

*
1

AREPAREPd

AREPAREPd
REP   (36) 

 
Where d(Rep(A1); Rep(A2)) represents the 

distance between two fuzzy sets A1 and A2. Rep(A1) 
refer to the center of gravity for A1 [22]. 

 
The new rule-base (A` → B`) can be calculated 

by Equations (37 and 38): 
 

21)1(' AAA REPREP    (37) 
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21)1(' BBB REPREP    (28) 
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0 )1( bbb REPREP    
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,
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,
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The degree of similarity between A` and A∗ is 

set, it is natural to require that the consequent part 
B` and B∗ achieve the same similarity degree as 
follows: 
 
The more similar X to A`; the more similar Y to B` 
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Therefore, the second step is to calculate the A` 
similarity degree between fuzzy sets (A` and A∗) 
that is to allow transforming B` to B∗ with the 
desired degree of similarity by the scale and move. 
The aim of the Scale transformation is to change the 
support value of the membership function while 
keeping its representative value and shape, the aim 
of the move transformation is to transfer the support 
of the membership function with keep of its 
representative. 

 
The advantages of scale and move method that 

it can handle multiple antecedent variables with 
simple computation. It guarantees the normality and 
convexity of the conclusion fuzzy set. It offers the 
capability to handle the extrapolation issue in direct 
manner [23]. It preserves the piecewise linearity for 
interpolations involving arbitrary polygonal fuzzy 
sets and it uses various definitions for 
representative values. 
 
4. GENERAL DESCRIPTION OF FRI 
TOOLBOX 
 

The FRI toolbox was developed by Z.C. 
Johanyák, .et. al. [24] and implemented in 
MATLAB environment. The main goal of the FRI 
toolbox is to unify different fuzzy interpolation 
methods. The general structure of FRI toolbox 
presented in Figure (10) can run the FRI toolbox 
and could be used to evaluate the current FRI 
methods.  
 

 

Figure 10: The General Structure Of FRI Toolbox  

The current version of FRI toolbox is available 
to download in [26], it includes the following 
methods (KH, KH Stabilized, MACI, IMUL, CRF, 
VKK, GM, FRIPOC, LESFRI, and SCALE 

MOVE). The package of FRI toolbox contains a 
software with graphical user interface providing an 
easy-to-use access as shown in Figure (11).  

Figure 11: The Main Panel Of The FRI Toolbox [24] 
 
In the FRI toolbox, the structure of the fuzzy 

inference system (FIS) and observation (OBS) were 
different from the classical inference system. Figure 
(12) presents an example of FIS within the FRI 
toolbox. It worths mentioning that, the fuzzy sets 
have to be convex and normal [3], [25]. 

 

 
Figure 12: The New Parameters Of The Membership 
Functions That Are Used By The File System In FRI 

Toolbox 

Where the (trimf), (trapmf) and (singlmf) denote 
the triangular, trapezoidal and singleton shapes of 
the fuzzy sets respectively. The A1;1, A2;1 and B1;1 
refer to the names of the fuzzy sets of Antecedents 
and consequent parts. The values [10 20 30], [4.5 5 
5.5 6] and [0.46] denote the characteristic points 
(params) of the fuzzy sets in the universe of the 
discourse, where the triangular shape takes three 
values [a0, a1, a2], the trapezoidal shape can be 
represented by four values [a0, a1, a2, a3], and 
singleton shape could be described by one value 
[a0]. 

  
The new parameter in FIS general structure is 

called (paramsy), the characteristic points of the 
fuzzy sets in case of piecewise linear membership 
functions as (triangular, trapezoidal, and singleton) 
that could be represented based on α-cut levels. The 
lower level will take the value (0) and the upper 
level will take the value (1). For example, the new 
parameter of the trapezoidal shape can be 
represented based on the characteristic points [a0, 
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a1, a2, a3], where the points [a0, a3] refer to the level 
(0) (lower level) and the points [a1, a2] refer to the 
level (1) (upper level). Figure (12) describes the 
new parameter for the trapezoidal membership 
function (trapmf) which represented by [0 1 1 0]. 

 

5. NUMERICAL EXAMPLES 
 

In this section, the following (FRI) methods (KH, 
KH Stabilized, MACI, IMUL, CRF, VKK, GM, 
FRIPOC, LESFRI, and SCALE MOVE) are 
presented and discussed in details. The unified 
numerical examples are applied for the sake of 
investigating and comparing the FRI methods. 
These examples selected based on various features, 
the number of dimensions, the shape of 
membership functions and the number of 
membership functions.  

 
Results of these examples would be used to 

evaluate the FRI methods by following the general 
conditions of the fuzzy interpolation concept [15], 
the abnormality and linearity. 

 
These examples were chosen to test the current 

FRI methods by using FRI toolbox. The triangular, 
trapezoidal and singleton membership functions are 
used to describe the antecedent, consequent and 
observation. Seven examples will be introduced in 
this section to test the current FRI methods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13: The Antecedent And Observation Fuzzy Sets 
For Example (1) 

 
 
 

The first two examples, single dimension is 
described the antecedent and consequent, these 
examples will compare the results based on the 
difference between the number of the fuzzy sets by 
using the same membership functions for 
antecedent, consequent and observation.  

 
The third example will represent the antecedent 

and consequent by a single dimension, the same 
number of the fuzzy sets is used for the antecedent, 
consequent part. This example describes the 
antecedent, consequent by a different membership 
function, where the observation represented by the 
trapezoidal membership function. 

 
The fourth and fifth examples were selected to 

show the results by using the same membership 
functions of the antecedents and consequent using 
different shapes of the observation. These examples 
are described by using different dimensions, where 
the antecedent parts are represented by three 
dimensions and the consequent represented by 
single dimension.  

 
Table.1 summarizes the unified numerical 

examples. The antecedents and observations are 
shown in Figures (13 to 19), the consequents part 
and conclusions have appeared in Figures (20 to 
29). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14: The Antecedent And Observation Fuzzy Sets 
For Example (2) 

 
 
 

Table 1: The Unified Numerical Examples. 

 No. Dimensions Type of Membership Functions No. of Membership Functions 

Antecedents Consequents Antecedents Consequents Observations Antecedents Consequents 

Example 1 1 1 Triangular Triangular Triangular 2 2 

Example 2 1 1 Triangular Triangular Triangular 4 4 

Example 3 1 1 Triangular Trapezoidal Trapezoidal 4 4 

Example 4 1 1 Trapezoidal Trapezoidal Singleton 4 4 

Example 5 1 1 Triangular Triangular Singleton 4 4 

Example 6 3 1 Triangular Trapezoidal Triangular 3 3 

Example 7 3 1 Triangular Trapezoidal Singleton 3 3 
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Figure 15: The Antecedent And Observation Fuzzy Sets 
For Example (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20: Numerical Examples: KH Conclusions 

 

Figure 16: The Antecedent And Observation Fuzzy Sets 
For Example (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 21: Numerical Examples: KH Stabilized 

Conclusions 

 

Figure 18: The Antecedents and Observations Fuzzy Sets for Example (6)  

 

Figure 19: The Antecedents and Observations Fuzzy Sets for Example (7) 

 

Figure 17: The Antecedent and Observation Fuzzy Sets for Example (5) 
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Figure 22: Numerical Examples: MACI Conclusions 

 

 

 
Figure 23: Numerical Examples: IMUL Conclusions 

 

 
Figure 24: Numerical Examples: CRF Conclusions 

 

 

 
Figure 25: Numerical Examples: VKK Conclusions 

 

 
Figure 26: Numerical Examples: GM Conclusions 

 

 
Figure 27: Numerical Examples: FRIPOC Conclusions 
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Figure 28: Numerical Examples: LESFRI Conclusions 
 

 
Figure 29: Numerical Examples: Scale and Move 

Conclusions 

6. RESULTS AND DISCUSSION 
 

The aforementioned results of the numerical 
examples conclude the following: 
 

According to the antecedents and observations 
shown in Figures (13,14,16 and 17), the following 
methods (KH, KH Stabilized, MACI, IMUL, CRF, 
VKK, GM, FRIPOC, LESFRI, and SCALE 
MOVE) could be a suitable approach to be 
implemented as an inference system in a single 
dimension antecedent, the antecedent and 
consequent have the same type of membership 
functions (Triangular / Trapezoidal), despite the 
type of observation membership functions shown in 
Figures (20 to 29) which illustrated in examples 
(1,2,4, and 5). 

 
With regard to the antecedents and observations 

shown in Figure (15), the following methods (KH, 
KH Stabilized) could be a suitable approach to be 
implemented as an inference system in a single 
dimension antecedent, the antecedent and 
consequent have different type of (Triangular and 
Trapezoidal) respectively, based on the type of the 

observation shown in Figures (20 and 21) which 
represented in examples (1,2,4, and 5). 

 
According to the antecedents and observations 

shown in Figure (15), the following methods 
(MACI, IMUL, CRF, GM, FRIPOC and LESFRI) 
could be a suitable approach to be implemented as 
an inference system in a single dimension, the 
antecedent and consequent have different type of 
(Triangular / Trapezoidal), regardless of the type of 
the observation shown in Figures (22, 23, 24, 26, 27 
and 28) which illustrated in example (3). 

 
Regarding the antecedents and observations 

shown in Figures (18 and 19), the following 
methods (MACI and GM) could be a suitable 
approach to be implemented as an inference system 
in multi-dimension antecedents, the antecedent and 
consequent have different type of membership 
function (Triangular / Trapezoidal), despite the 
type of observation membership functions shown in 
Figures (22 and 26) which described in examples (6 
and 7). 

 
For antecedents and observations shown in 

Figures (18 and 19), the following methods (IMUL 
and CRF) could be a suitable approach to be 
implemented as an inference system in multi-
dimension antecedents, the antecedent and 
consequent have different type of membership 
function (Triangular and Trapezoidal), regardless 
of the type of observation membership functions 
shown in Figures (23 and 24) which defined in 
examples (6 and 7).  

 
Regarding the antecedents and observations 

shown in Figure (19), the following method 
(FRIPOC) could be a suitable approach to be 
implemented as an inference system in multi-
dimension antecedents, the antecedent and 
consequent have different type of membership 
function (Triangular and Trapezoidal), in case of 
the type of observation membership function is 
singleton shown in Figure (27) and defined in 
example (7).  

 
On the other hand, regarding the antecedents 

and observations shown in Figure (15), the 
following method (VKK) suffers from the 
abnormality in a single dimension antecedent, the 
antecedent and consequent have different type of 
(Triangular and Trapezoidal) respectively, based 
on the type of the observation shown in Figure (25) 
and illustrated in example (3). 
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Referring to the antecedents and observations 
shown in Figures (18 and 19), the following 
methods (KH, KH Stabilized and VKK) suffer from 
the abnormality in multi-dimension antecedents, 
whereas the antecedent and consequent have 
different type of membership function (Triangular / 
Trapezoidal), regardless of the type of observation 
membership functions shown in Figures (20, 21) 
and 25) which described in examples (6 and 7). 

 
For to the antecedents and observations shown 

in Figure (18), the following method (FRIPOC) 
suffers from the piecewise linearity in multi-
dimension antecedents, whereas the antecedent and 
consequent have different type of membership 
function (Triangular / Trapezoidal), in case of the 
type of observation membership function is 
triangular which shown in Figure (27) and 
displayed in example (6). 

 
Regarding the antecedents and observations 

shown in Figure (18) and (19), the following 
method (LESFRI) suffers from the abnormality in 
multi-dimension antecedents, whereas the 
antecedent and consequent have different type of 
membership function (Triangular and Trapezoidal), 
in case of the type of observation membership 
function is triangular which shown in Figure (28) 
and defined in example (6 and 7). 

 
7. CONCLUSIONS AND FUTURE WORK  
 

This paper contributed to introduce a brief 
introduction of the extended version of FRI toolbox 
and how we can use it. In addition, different unified 
numerical examples introduced to compare between 
the Fuzzy Rule Interpolation Techniques (FRI) 
based on the various features especially the shape 
type of the membership function for the antecedent 
and consequent, as presented in Table.1. 

 
As a result of the performed examples, KH, KH 

Stabilized, LESFRI and VKK methods suffer from 
the abnormality in case of having multi-dimension 
antecedents and different type of membership 
functions which described in examples (6 and 7), 
also, the VKK method suffers from the abnormality 
in case of having single-dimension which illustrated 
in example (3). FRIPOC method suffers from 
piecewise linearity in case of having multi-
dimension antecedents and different type of 
membership functions which displayed in example 
(6). 
 

In contrast MACI, IMUL, CRF, GM and 
SCALE MOVE methods did not suffer from 
abnormality and piecewise linearity according to 
the unified numerical examples. For future work, 
we want to take more cases and be standard to find 
unified examples to compare and evaluate between 
the FRI methods. Furthermore, the FRI toolbox is 
still under development by adding new methods. 
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