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ABSTRACT 

Time series data principally involves four major components which are trend, cyclical, seasonal and 
irregular, that reflects the characteristics of the data. Ignoring the systematic analysis of patterns from time 
series components will affect forecasting accuracy. Thus, this paper proposes a high-order ratio trend 
variation (RTV) fuzzy time series model based on the trend pattern and variations in time series to deal with 
patterns within the time series data. RTV is used in the fuzzification process to deal with data that contains 
vagueness, uncertainty and impreciseness. Proper adjustment was also applied to handle the common issues 
in fuzzy time series model includes determination of length of interval, fuzzy logic relations (FLRs), 
assigning weight to each FLR and the defuzzification process. Empirical analysis was performed on 
enrollments data of Alabama University to assess the efficiency of the model. The performance of the 
proposed model was evaluated by comparing the average forecasting error rate and mean square error 
values with several fuzzy time series models in the literatures. Experimental results revealed that the 
proposed model was better than other fuzzy time series models. The use of RTV was able to grip the 
fuzziness in time series data and reduce the estimation of forecasting errors. In addition, this technique is 
capable to identify and describe the underlying structure that influence the occurrence of the uncertainty 
and high fluctuation of the phenomena under investigation.  

 Keywords: High-Order Fuzzy Time Series, Ratio Trend Variation, Enrolment, Fuzzy Logic Relation 

1. INTRODUCTION 

The time series forecasting approach is a 
technique used in analyzing the series of 
observations collected in the past involving single 
or more variables. The main goal of this system 
modelling is to predict the future value in complex 
systems by looking at the existence of patterns in 
past data and describe its underlying relationship. 
There are many forecasting models developed, 
designed and implemented and published in 
literature for numerous fields such as geology, 
ecology, hydrology, social sciences, medicine and 
many more. From the different perspectives, a lot 
of effort and progressive studies have been carried 
out over the past decades to develop and improve 
the time series forecasting models. An adequate and 
accurate forecasting model is an essential 
requirement to improve the prediction for better 
decision-making. Being highly non-stationary, non-
linear and uncertainty in nature of the time series 
are among the main hindrance in achieving efficient 
forecast. There have been numerous concepts and 

techniques proposed and discussed in the past few 
decades to enhance time series forecasting. 
Generally, time series forecasting techniques are 
classified into two categories which are 
conventional and non-conventional. The Regression 
and Box-Jenkins method are most commonly used 
in conventional techniques. These statistical 
approaches required very strict assumption where 
data must have normal distribution and stationary. 
In most cases, these requirements may not be 
fulfilled for all types of data without any 
adjustment or transformation of the original data. 
Other aggregation problems such as measurement 
error, imprecise, vague and uncertain data also may 
influence the forecasting performance. These 
techniques would need more historical data that 
will affect the prediction accuracy, slow 
convergence and may deviant due to its 
computational burden. On the contrary, non-
conventional techniques have been successfully 
implemented across extensive applications in 
various domains with very minimal assumptions. 
To avoid statistical conflicts, this technique 
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attempts to explain the input-output relationship, 
internal structure and behavior of the time series. 
This approach is proposed in line with the 
development of soft computing to forecast 
uncertain, vague and imprecise data. Nonlinear 
modelling approaches such as artificial intelligence 
based has received considerable attention among 
researchers in the last two decades. For example, 
[1], [2], [3] and [4] have proposed artificial neural 
network (ANN) based models (focus time-delay 
neural network, back propagation neural network, 
input delay neural network and feed-forward back 
propagation) for rainfall forcasting. Most of the 
case studies accommodated either the regression or 
ANN.  ANN is definitely a very powerful tool for 
the task but greatly depends on the network design. 
Thus, poor and too complex structures will affect 
the learning capabilities and lead to overfitting. 
Difficulties in obtaining stable solution, high 
tendencies of over fitting and the need for many 
controlling parameters are several weaknesses of 
neural network. Alternatively, fuzzy based time 
series forecasting has achieved a lot of progress in 
the soft computing approach. 

The fuzzy time series (FTS) is capable in 
dealing deal with historical data in the form of 
linguistic values. It has received a lot of attention 
and applied in various domains to describe the non-
linear input-output relationship for time series. 
Initially, the fuzzy set theory was introduced by [5] 
and [6] which was a pioneer in explaining the basic 
concept of fuzzy time series. They also proposed 
the two classes of the FTS model known as time-
invariant [7] and time-variant [8]. The first-order 
fuzzy time series was applied in the enrollment data 
at the University of Alabama for both classes of the 
FTS model. Most of the studies developed methods 
for solving time-invariant fuzzy time series in most 
literature. For time-invariant, the max-min 
composition operator was used in the fuzzy relation 
between the current (t) and previous states (t-1). 
This technique was very time consuming in the 
computational process when fuzzy relation is too 
large. Subsequently, [9] has adopted [7] work by 
presenting the arithmetic operation which was more 
simple and more accurate than the max-min 
composition operator in the first-order fuzzy time 
series. [10] then promoted the high-order 
forecasting model using the same method. 

There are several different methods in FTS 
developed by [11], [12], [13], [14], [15] and [16]. 
Most of the proposed methods proposed were based 
on fuzzy lagged autoregressive (AR) models. [17] 
and [18] extended the fuzzy AR model to the fuzzy 

Autoregressive Moving Average (ARMA) model 
for IMKB data and gold prices data into first-order 
and high-order forecasts. For a class of time-variant 
fuzzy time series, [14] proposed a computational 
method by introducing the time-variant parameter 
calculated from the difference between the changes 
in values of three consecutive years for high order 
fuzzy time series. This technique was used to deal 
with the high uncertainty of data, no periodicity and 
large fluctuation for crop production. Further, [19] 
extended the fuzzy difference parameter 
comprehensively by developing a high-order time 
series model to examine a suitable order. From the 
drawbacks of previous works of the fuzzy time 
series model, some improvements have been made 
in [9].  There were common issues highlighted that 
might affect the forecasting accuracy such as (1) 
determination of effective length of interval, (2) 
managing fuzzy logical relationship (FLRs) into 
fuzzy logical relationship groups (FLRGs), and (3) 
Defuzzification process.   

A method on how data can be partitioned into 
intervals using an effective length for each fuzzy set 
is very important. Initially, most of the studies used 
a same number of intervals to fuzzify the data with 
no specific basis ([7], [8], [9], [10], [12], [20]). This 
method is called random partitioning. More 
progress has been made in determining the effective 
length of interval using different methods of 
partitioning the interval later on. Other methods 
here are distribution based partitioning [20], 
average based partitioning [20], ratio-based lengths 
of interval [13] and mean-based discretization [15]. 
Meanwhile, some other methods are evolutionary 
algorithm based partitioning, for example the 
hybrid fuzzy time series as proposed by [21]. 
Genetic algorithm was used to partition the 
universe of discourse into unequal interval and then 
calibrate with the fuzzy time series model. [22] also 
employed the particle swarm optimization to 
partition the index 100 data of the Istanbul Stock 
Exchange. Therefore, the decomposition of 
universe of discourse into effective lengths of 
intervals had an impact on the forecasting results 
[20]. Again, the length of the interval and number 
of intervals to be fuzzified depended on the nature 
of data. Some data might have very large 
fluctuation, non-stationary, additive or 
multiplicative patterns while some are not. 
Therefore, the data need to be transformed or 
modified before the universe of discourse and 
subintervals are defined. The utilization of 
differences to define the universe of discourse is 
very wide in many forecasting methods in the fuzzy 
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time series ([23], [24]).  However, the differences 
were not sufficient to capture the increase and 
decrease in the time series. Then, [25], [26] and 
[27] utilized the percentage change and rate of 
change of time series respectively for the universe 
of discourse. Eventually, both had the same manner 
to perform the fuzzy time series.   

After all the observations have been fuzzified, 
the FLRGs were established from the FLRs. Not 
much difference or improvements were made since 
[9] at this stage. However, some consideration may 
influence the forecast values. For example [15] 
considered the occurrence of FLRs even though 
they were the same FLRs. How many FLRs 
appeared will be considered in the FLRG for 
justification of the model. They introduced the use 
of weight of which the value was equivalent to the 
same fuzzy set. In [17] and [18] as well, the 
frequency of  FLRs in FLRG has to be taken into 
account to improve the fuzzy forecasts. This 
consideration was relatively important for 
determining the defuzzification method.  

As mentioned above, the application of 
arithmetic operations by [9] in defuzzification is 
simple and in fact very efficient. Meanwhile, some 
studies introduced the application of weight in 
defuzzification to enhance the forecasting 
performance. The approach by [28] was more stable 
when the future trend of time series data is in a 
irregular manner. To cope with the presence of 
hidden linguistic values, visible matrix and hidden 
matrix were considered in the weighted-transitional 
matrix. An adjustment has been made in the 
defuzzification forecasts based on this approach. 
[15] introduced an index-based defuzzification 
technique. The forecasted value was calculated by 
multiplying the midpoint and its relative weights 
and added all possible FLRs in the same FLRG. 
The midpoint was computed from the average of 
data values which fall within the sub-intervals of 
each fuzzy set. Meanwhile, the weight is 
represented by the ‘subscript’ of its own fuzzy set. 
[26] introduced an ordered weighted aggregation 
(OWA) based on rate of change of outpatient data. 
The importance of each fuzzy set is represented by 
its weight designed from the priority matrix. In the 
final stage, the weighted centroid was used in the 
defuzzification process for a 3-order fuzzy relation. 
Primarily, determining the OWA was based on the 
frequency of data values in each fuzzy set and the 
OWA was determined in accordance to FLRs. 
Meanwhile, [17] and [18] implemented the 
weighted average from middle points of intervals to 
calculate forecast values in defuzzification. The 

weight was determined based on the number of the 
same fuzzy sets with the highest memberships of 
the defined intervals in the right-hand side (RHS) 
of FLRs. 

The techniques mentioned above have been 
proposed in developing the FTS model to resolve 
the drawbacks from other techniques specifically 
related to many circumstances to enhance 
forecasting performance. However, there are some 
of improvements that can be made on the FTS 
models. The drawback of most forecasting methods 
is the utilization of actual time series data and 
differences as universe of discourse. The 
fluctuation in time series data cannot be captured 
from the actual data or differences alone. Non of 
them explore patterns in time series to model the 
FTS. Therefore, ratio of trend variation (RTV) has 
been introduced to capture the patterns for FTS 
model. These patterns appear naturally because of 
major components involves in time series data 
which are trend, cyclical, seasonal and irregular. 
These are the factor that reflects the characteristics 
of the data itself. The analysis should be treated 
separately between patterns and true fluctuation 
because both are confounded in actual time series 
data. Negligence in analyzing these patterns will 
affect the forecasting accuracy. 

The aim of this study is to develop a high-order 
forecasting technique that takes into account the 
characteristics of the time series data. It is suitable 
for general application related to time series 
forecasting especially for univariate or multivariate 
modelling and time-invariant system. This paper 
presents a forecasting technique based on high-
order FTS model which accomodates patterns that 
exist in time series data. This model is capable to 
reduce forecasting error by introducing RTV in 
determining the universe of discourse. The model 
can be also be applied in a situation of very high 
fluctuation and uncertainty. The accuracy of the 
forecasting model is seen to be improved by 
introducing effective length of interval to define 
fuzzy linguistic values using RTV. At the 
beginning stage, determining the universe of 
discourse is a crucial part in considering the time 
series data. The utilization of RTV is to overcome 
the deficiency of differences in capturing long term 
trend direction in time series data. Rationally, the 
trend pattern has been considered in the analysis 
together with the existing problems related to the 
nature of time series data namely large fluctuation 
and non-stationary. In this paper, the time-invariant 
FTS model is proposed by focusing on the data 
with the presence of trend, seasonal and cyclical 
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patterns. This approach significantly improves the 
forecasting accuracy in the first-order as well as the 
high-order forecasting models.   To demonstrate the 
application of the proposed method, the enrollment 
data from the University of Alabama was used. The 
developed model has been evaluated by comparing 
with other existing models to affirm its 
preeminence. 

2. FUZZY TIME SERIES 

The basics concepts and theories in the Fuzzy 
time series (FTS) are almost similar to conventional 
time series. The difference is in the values 
represented by the fuzzy set [5], while conventional 
time series had real values. FTS was proposed by 
[7] that combined both the fuzzy set and time 
series. To explain the FTS and its application in the 
AR model, this section briefly reviews some of the 
concepts and definitions. Let  1 2, , , nU u u u   

denotes the universe of discourse. A fuzzy set A  
in U  is defined as 

1 1 2 2= ( ) / + ( ) / + ... + ( ) /A A A nA f u u f u u f u u  (1) 

where the membership function of the fuzzy set iA  

is : [0,1]Af U  , and ( )A if u  is the degree of 

membership iu  that belongs to iA  for 1 i n  . 

The definitions related to fuzzy time series in 
accordance to AR model are given as follows: 
 
Definition 1. Let ( ) ( = 1,2,3, )Y t t   denote a 

subset of real numbers and the universe of 
discourse where the fuzzy sets ( )if t  are defined. If 

( )F t  is a collection of ( ) ( 1,2,3, )if t i   , then 

( )F t  is called the fuzzy time series on ( )Y t . 

Definition 2. Consider that ( , 1)R t t   as the fuzzy 

logic relation (FLR) between both fuzzy sets 
( 1)F t   and ( )F t . If ( )F t  is only affected by 

( 1)F t   then it can be expressed as 

( 1) ( )F t F t   and can also be denoted as 

( ) ( 1) ( , 1)F t F t R t t   , where the symbol “  ” 

is the max-min composition operator. The 
relationship between  ( 1)F t   and ( )F t  is called 

the first-order fuzzy AR(1) time series model which 
is affected by lag one. 

Definition 3. Assume that iCtF  )1(  and 

jCtF )( , the relationship between ( 1)F t   and 

( )F t  can be represented by ji CC  , where iC  

(current state) and jC  (next state) are known as the 

left-hand side (LHS) and the right-hand side (RHD) 
of FLR respectively. 

Definition 4. Assume that the current state, iC  of 

fuzzified value )1( tF  has FLR with several next 

states klkk CCC ,,, 21   as shown as follows: 

kl

ki

ki

C

CC

CC






i

2

1

C

      
  

If the FLRs having same current state of different 
next states then they are grouped in same fuzzy 
logical relationship group (FLRG) as 

 klkki CCCC ,,, 21    

Definition 5. ( )F t is called n-order FTS, if ( )F t is 

influenced by ( 1), ( 2), , ( )F t F t F t n    which 

are the lagged FTS. This n-order FTS is known as 
AR(n) that can be expressed as, 

( ), , ( 2),  ( 1) ( )F t n F t F t F t     (2) 

Definition 6. Let ( , 1)R t t   be the fuzzy relation to 

define the relationship between ( 1)F t   and ( )F t . 

If ( , 1) ( 1, 2)R t t R t t     for any t, then ( )F t  is 

called a time-invariant fuzzy time series. 
Otherwise, it is called a time-variant fuzzy time 
series. 

3. PROPOSED METHOD 

In this section, the proposed methodology 
using the RTV-Fuzzy time series is elucidated in 
three phases.  A new approach known as the RTV 
is employed to determine the universe of discourse 
and partitioning it into sub-intervals. The 
enrollments data of University of Alabama [7] 
shown in Table 1 was utilized to describe this 
approach. 

Table 1: Enrollments data of University of Alabama 
Year t Enrollment ( ( )Y t ) 

1971 1 13055 
1972 2 13563 
1973 3 13867 
1974 4 14696 
1975 5 15460 
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1976 6 15311 
1977 7 15603 
1978 8 15861 
1979 9 16807 
1980 10 16919 
1981 11 16388 
1982 12 15433 
1983 13 15497 
1984 14 15145 
1985 15 15163 
1986 16 15984 
1987 17 16859 
1988 18 18150 
1989 19 18970 
1990 20 19328 
1991 21 19337 
1992 22 18876 

 

Phase 1: Trend analysis 

Step 1. Estimate the trend equation using 
regression equation (3) based on the least squares 
method. The values of a and b are the parameters to 
be estimated given by equation (4) and (5). The 
equations are stated as follows: 

0 1T b b t    (3) 

1

1 2

1

n n

i in
i i

i i
i

n

n
i

i
i

t y
t y

n n

b

t
t

n





   
   
    
  
  
  

 
 
 
 
 
 

 





  

(4) 

0 1
1 1

1 n n

i i
i i

b y b t
n  

 
  

 
 

  
(5) 

Where, t is denoted as 1, 2,3,  of 1971, 1972, 
1973, and so on for the corresponding 

( ) ( = 1, 2,3, )Y t t   as presented in Table 1. The 

estimated trend equation is 
13425.57 240.49T t  . Based on Figure 1, the 

trend for the dataset shows an upward trend since 
the b1 value is positive. 

Step 2: Prepare the trend values ( tT ) for each week 

using (3) as 

 

Figure 1: The Enrollments Data And The Trend  
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1(1971)

22(1992)

13428.57 240.49 1

          13669.06

             

13428.57 240.49 22

             =18719.35

T

T

  



  
  

Compute the ratio variation ( tR ) of original time 

series value ( tY ) over trend value ( tT ) as given by 

the following equation  

100%t
t

t

Y
R

T
   (6) 

In this example, ratio variation for the year of 1971 
is computed as 
 

%51.95%100
06.13669

13055
1 R  

The trend values and ratio variations ( tR ) are 

placed in column 4 and 5 of Table 3. 
 

Phase 2: Fuzzification of ratio series 

Step 1: From table 3 in column 5, arrange the ratio 
variation ( tR ) in ascending order as 

   89.01,90.17,92.52, ,107.79tR    

Where ( )tR  is the ordered series of tR . 

Step 2: Compute the differences ( D ) between ( 1)tr   

and ( )tr  as 

   1 1t t tD r r     (7) 

Step 3: Find the average of differences values as 

1

1

1

n

i
i

D
D

n







  

(8) 

From (7) and (8), average of differences is obtained 
as 

(90.17 89.01) (92.52 90.17)

 (107.79 106.86)

22 1
   0.89

D

   
 








 

Step 4: Define the universe of discourse (U ) and 

sub-interval  1 2, , , au u u  for tR  series 

 1 2, , , nr r r . Let the universe of discourse is 

 min max,R R , where minR  and maxR  are minimum 

and maximum values in tR . In this example, minR  

is 89.01 and maxR  is 107.79. Then, U  is partitioned 

into equal sub-interval 1 2, ,  and au u u  by taking 

D  as length of interval in step 3 as 

   min min1 ,iu R i D R i D         (9)

From here, 22 sub-intervals and the boundary for 
each sub-interval are formed to define universe of 
discourse (U ) . The following sub-interval of U  is 
calculated based on (9): 
 

]59.108,70.107[

]79.90,90.89[

]90.89,01.89[

22

2

1






u

u

u


 

where minR  and maxR are included in the first 

interval and last interval respectively. 
 
Step 5: Identify and allocate all observations in tR  

series that belongs to each sub-interval determined 
in step 4. Then, the average of observations in each 
sub-interval is computed to represent the adjusted 
midpoint ( im ) of the sub-interval given by 

 1 2i i i ikm r r r k     (10)

Where, 1 2, , ,i i ikr r r  are observations occurred in 

sub-interval iu  and k is the number of observations 

fall within the sub-interval (frequency). Any sub-
interval that do not contains any observation will be 
discarded. After removing empty sub-interval, the 
number of the remaining sub-intervals was 18 
( },,,{ 1821 uuu  ) which contains at least one 

observation for each. The number of sub-intervals 
to be considered, boundaries and observation/s lie 
in each boundary are arrange in columns 1, 2 and 3 
of Table 2. The corresponding midpoints are 
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calculated based on equation (10) with its 
respective frequency. For example, the midpoint for 

11u  is calculated as 

 

09.102
3

21.10212.10295.101
11 


m  

Column 5 of Table 2 shows the corresponding 
midpoints for all the sub-intervals. 
 

Table 2: The midpoints of sub-intervals  

Sub-interval ( iu ) Boundary of iu  Observation ( iku ) Frequency (k) Midpoint ( im ) 

u1 [89.01, 89.90] 89.01 1 89.01 
u2 [89.90, 90.79] 90.17 1 90.17 
u3 [91.68, 92.57] 92.52 1 92.52 
u4 [93.46, 94.35] 93.61 1 93.61 
u5 [94.35, 95.24] 94.60 1 94.60 
u6 [95.24, 96.13] 95.51 1 95.51 
u7 [96.13, 97.02] 96.24 1 96.24 
u8 [97.02, 97.91] 97.51 1 97.51 
u9 [97.91, 98.80] 98.00 1 98.00 
u10 [100.58, 101.47] 100.84 1 100.84 
u11 [101.47, 102.36] 101.95, 102.12, 102.21  3 102.09 
u12 [102.36, 103.25] 102.96, 103.25   2 103.11 
u13 [103.25, 104.14] 103.31 1 103.31 
u14 [104.14, 105.03] 104.64 1 104.64 
u15 [105.03, 105.92] 105.4, 105.67 2 105.54 
u16 [105.92, 106.81] 105.97 1 105.97 
u17 [106.81, 107.70] 106.86 1 106.86 
u18 [107.70, 108.59] 107.79 1 107.79 

 
 
 
Step 6: Define fuzzy sets 1 2, , , aC C C  accordance 

to the number of sub-interval for the time series. 
The fuzzy set is expressed as 

1 1i ij j ij j ia aC c u c u c u      where ijc  is 

defines as 

1 ,                       

0.5 , 1 or 1

0 , others                    
ij

i j

c i j i j


    

  

 

ijc  indicates the degree of membership for ju  in 

the fuzzy set iC  for , 1,2,3, ,i j a  . Since time 

series ( tR ) has been divided into 18 sub-intervals 

( 1821 ,,, uuu  ), then there are 18 linguistic 

variables to be defined. In this case, linguistic 
variables are too many and meaningless to be 

defined unless they only can be represented by 
fuzzy sets ( 1821 ,,, CCC  ).  

 
Step 7: Fuzzify the ratio series ( tR ). Assign each 

observation ( tr ) into fuzzy set iC  with the highest 

degree of membership of defined sub-intervals. For 
example, if the ratio value in 1971 ( 1r ) is 95.51 

which falls within the sub-interval 6u  ([95.24, 

96.13]), then the fuzzified ratio is 6C . Repeat the 

same process to fuzzify the tR  series as presented 

in the last column of Table 3. Finally, all ratio 
variations ( tR ) have been converted into fuzzy sets 

( 1821 ,,, CCC  ). 

Table 3: Fuzzified Ratio Series 

Year t Enrollment ( tY ) Trend ( tT ) Ratio ( tR ) Fuzzified Ratio ( iC ) 

1971 1 13055 13669.06 95.51 C6 
1972 2 13563 13909.55 97.51 C8 
1973 3 13867 14150.04 98.00 C9 
1974 4 14696 14390.53 102.12 C11 
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1975 5 15460 14631.02 105.67 C15 
1976 6 15311 14871.51 102.96 C12 
1977 7 15603 15112.00 103.25 C12 
1978 8 15861 15352.49 103.31 C13 
1979 9 16807 15592.98 107.79 C18 
1980 10 16919 15833.47 106.86 C17 
1981 11 16388 16073.96 101.95 C11 
1982 12 15433 16314.45 94.60 C5 
1983 13 15497 16554.94 93.61 C4 
1984 14 15145 16795.43 90.17 C2 
1985 15 15163 17035.92 89.01 C1 
1986 16 15984 17276.41 92.52 C3 
1987 17 16859 17516.90 96.24 C7 
1988 18 18150 17757.39 102.21 C11 
1989 19 18970 17997.88 105.40 C15 
1990 20 19328 18238.37 105.97 C16 
1991 21 19337 18478.86 104.64 C14 
1992 22 18876 18719.35 100.84 C10 

 
 
Step 8: Establish the fuzzy logic relation (FLR) and 
subsequently form the fuzzy logical relationship 
groups (FLRGs) for first order autoregressive 
model (AR(1)) based on definition 3. For example, 
the relationship between )1971(F  and  )1972(F  

can be denoted by 86 CC   as in column 3 of 

Table 4. Out of 21 FLRs, 17 FLRGs are formed 
based on definition 4. Based on FLR in Table 4, 
there are some LHS having the same current state 
with different RHS of the next state. For example, 

1511 CC  ,  511 CC   and   1511 CC  are group 

into 1551511 ,, CCCC   as in column 2 of Table 5. 

 

Table 4: The First Order Fuzzy Logical Relationship 
(FLRs) Of Fuzzified Ratio 

Year Fuzzified Ratio ( iC ) FLR 

1971 C6     - 
1972 C8 C6→C8 
1973 C9 C8→C9 
1974 C11 C9→C11 
1975 C15 C11→C15 
1976 C12 C15→C12 
1977 C12 C12→C12 
1978 C13 C12→C13 
1979 C18 C13→C18 
1980 C17 C18→C17 
1981 C11 C17→C11 
1982 C5 C11→C5 
1983 C4 C5→C4 
1984 C2 C4→C2 
1985 C1 C2→C1 
1986 C3 C1→C3 
1987 C7 C3→C7 
1988 C11 C7→C11 
1989 C15 C11→C15 

1990 C16 C15→C16 
1991 C14 C16→C14 
1992 C10 C14→C10 

Table 5: The First Order Fuzzy Logical Relationship 
Groups (FLRGs) Of Fuzzified Ratio 

Group FLRGs 
1 C1 →C3 
2 C2 →C1 
3 C3 →C7 
4 C4 →C2 
5 C5 →C4 
6 C6 →C8 
7 C7 →C11 
8 C8 →C9 
9 C9 →C11 

10 C11 →C5, C15, C15 
11 C12 →C12, C13  
12 C13 →C18 
13 C14 →C10 
14 C15 →C12, C16 
15 C16 →C14 
16 C17 →C11 
17 C18 →C17 

 
Phase 3: Defuzzification of fuzzified ratio 
variation 
 
Step 1: Obtain the fuzzy time series forecasts after 
defuzzifying the fuzzy forecasts. The centralization 
method was used to defuzzify the fuzzy time series 
forecasts into real values by taking the adjusted 
midpoints of sub-intervals in Table 2. The 
calculations attained by the following rules and 
applicable for the n-order FTS model: 
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Rule 1: If FLRG is , , , , , ,p q r i i iC C C C C C   

then the fuzzy forecast is iC . Where the maximum 

membership value of iC  occurred in sub-interval 

iu  with midpoint im , then the forecasted value 1t̂r   

at time t is im  as given below 

1t̂ ir m    (9) 

For example, if the FLRG is C2 →C1 in 1-order 
FTS model then the fuzzy forecast is C1. As for the 
2-order FTS model with FLR is C3, C2 →C1, C1 the 
fuzzy forecast is C1 and applied the same process 
for the higher order of FTS model.  

Rule 2: If FLRG is 

   
 
, , , , , , , , , , ,

, , , ,

p q r i i i j j j

k k k

C C C C C C C C C

C C C

  

 
  

where , , ,p q rC C C  influence iC  occurs by   

times, jC  by   times, kC  by   times and so on, 

then the fuzzy forecast is 

     , , , , , , , , , , , ,i i i j j j k k kC C C C C C C C C    . 

Hence, the maximum membership values of 

     , , , , , , , , , , , ,i i i j j j k k kC C C C C C C C C     

occurred in sub-interval , , ,i j ku u u  with 

midpoints , , ,i j km m m . Therefore, the calculation 

for defuzzification forecasts at time t is using 
weighted average is as follows: 

1

...
ˆ

...
i j k

t

m m m
r 

       


     
  (10) 

In Table 5, one example of FLRG is 

11 5 15 15, ,C C C C  and the fuzzy forecast 

determined for the FLRG is 5 15 15, ,C C C . 

Rule 3. If FLRG is , , , emptyp q rC C C  , then 

the fuzzy forecast is , , ,p q rC C C . Where the 

maximum membership value of , , ,p q rC C C  

occurred in sub-interval , , ,p q ru u u  with 

midpoints , , ,p q rm m m ,  then the forecasted value 

1t̂r   at time t is calculated as equation (10). For 

example, the FLRG is 2 emptyC  then the fuzzy 

forecast determined is 2C  and the same process can 

be applied for the n-order FTS model. 

Step 2: Forecast the time series data. This stage 
begins with estimation of the trend using equation 
(11) and ratio variation 1t̂r   in step 1. Meanwhile, 

the forecasted value for 1
ˆ

ty   is calculated using 

equation (12) as given below  

1 113425.57 240.49t tT t     (11) 

1
1 1

ˆ ˆ
100

t
t t

T
y r

     (12) 

From the application of the proposed method, 
the results are shown in Table 6. The forecasted 
ratio variation and students’ enrollments are the 
solution from step 1 and 2 in Phase 3 as in columns 
5 and 6. The entire  procedures are applicable for 
the first order FTS model. It may also be extended 
to high-order FTS models using same dataset as 
depicted in Figure 2. For meaningfull visualisation, 
several high-order models are to be compared with 
first order model and the actual enrollments dataset 
as well. From the multiple comparison, the 
forecasting was almost consistent particularly for 
order 3 or more. 

 

Table 6: Forecasted Ratio Variation And Enrollments 

Year 
 

Enrollment 
 ( tY ) 

Trend 
( tT ) 

Ratio 
 ( tR ) 

Forecasted ratio 

( ˆ
tR ) 

Forecasted 

Enrollment ( t̂Y ) 

1971 13055 13669.06 95.51         -        - 
1972 13563 13909.55 97.51 97.51 13563.20 
1973 13867 14150.04 98.00 98.00 13867.04 
1974 14696 14390.53 102.12 102.09 14691.29 
1975 15460 14631.02 105.67 102.23 14957.29 
1976 15311 14871.51 102.96 104.54 15546.68 
1977 15603 15112.00 103.25 103.21 15597.10 
1978 15861 15352.49 103.31 103.21 15845.30 
1979 16807 15592.98 107.79 105.55 16458.39 
1980 16919 15833.47 106.86 106.86 16919.65 
1981 16388 16073.96 101.95 102.09 16409.91 
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1982 15433 16314.45 94.60 102.23 16678.26 
1983 15497 16554.94 93.61 93.61 15497.08 
1984 15145 16795.43 90.17 90.17 15144.44 
1985 15163 17035.92 89.01 89.01 15163.67 
1986 15984 17276.41 92.52 92.52 15984.13 
1987 16859 17516.90 96.24 96.24 16858.26 
1988 18150 17757.39 102.21 102.09 18128.52 
1989 18970 17997.88 105.40 102.23 18399.23 
1990 19328 18238.37 105.97 104.54 19066.39 
1991 19337 18478.86 104.64 104.64 19336.28 
1992 18876 18719.35 100.84 100.84 18876.59 

 

 
Figure 2: The Comparison Of Actual Enrollments Data And The Forecasting Models For Various Orders 

 

4. PERFORMANCE EVALUATION 

In this section, a comparison of accuracy is 
made to evaluate the performance of the proposed 
forecasting model with other models. The 
performance indicators are the average forecasting 
error rate (AFER) and mean square error (MSE). It 
is defined by the following equations: 

1

ˆ

100%

n

t t t
t

y y y
AFER

n



 


  
(13) 

 2

1

ˆ
n

t t
t

y y
MSE

n






  
(14) 

Where, ty  is the actual value of time series data, 

ˆ
ty  is the forecasted value and n is the total number 

values in time series data. 

The higher accuracy of a model will relatively 
lower the AFER and MSE values. Using the same 
dataset, the AFER of the proposed partitioning 
method was compared with other available methods 
for first order model as presented in Table 7. 
Results reflected that, most of the random 
partitioning methods shows larger AFER values 
than other methods which is greater than 2.75. They 
are using  7 fixed number of intervals to define 
universe of discourse. However, the increasing in 
number of intervals does not promises for a better 
model. Moreover, the proposed model using RTV-
based shows the lowest rate as 0.94 and 
preeminence as compared to other random and non-
random partitioning methods. The main key in 
deciding the length of interval and suitable number 
of interval must be neither too small nor large. It is 
important to preserve the fluctuation in time series 
that make the fuzzy time series meaningful. 

Table 7: A Comparison Of First Order Models 
Model Partitioning #Interval AFER 
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method (%) 
[7]  Random 7 3.23 
[9] Random 7 3.11 
[12] (MEPA) Random 7 2.75 
[12] (TFA) Random 7 3.04 

[20] 
Distribution-
based 

18 1.51 

[20] Average-based 24 1.31 
[13] Ratio-based 21 1.45 

[29] 
Frequency 
density-based 

13 1.02 

[15] 
Mean-based 
discretization 

13 1.19 

Proposed 
model 

Ratio trend 
variation-based 

18 0.94 

From first order model, it has been extended to 
high-order models based on definition 5 and step 2 
onwards in phase 2. The same results in Figure 3 
and Figure 4 also showed that the proposed model 
using the RTV-based method was more stable and 
consistent for higher order models based on AFER 
and MSE values. There are a significant difference 
between the order of first, second and third but a 
slight difference after the third order onward. It is 
suggested that the third order model is suitable to fit 
the enrollments data. 

Figure 3: The AFER Of Various Orders Of Proposed 
Model 

 

Figure 4: The MSE Of Various Orders Of Proposed 
Model 

Based on Table 8, higher order models do not 
necessarily give an impact on forecasting errors for 
certain models. Sometimes, the errors become 
unstable and inconsistent for higher order models 
[18]. However, AFER values for the proposed 
model are small and remain constant at third order 
onward as compared to others. Since the 3-order 
model is recommended, a comparison  is made with 
other common models based on the AFER and 
MSE values. Results in Table 9, show that the 
proposed model is superior as compared to other 
models which has the smallest values for both 
performance indicators. 

Table 8: A Comparison Of AFER For High-Order 
Models 

Model 2-order 3-order 4-order 5-order 
[10] 2.55 1.93 1.85 1.77 
[19] 1.80 1.56 1.74 1.68 
[15] 0.66 0.19 0.20 0.20 
Proposed 
model 

0.18 0.05 0.05 0.04 

 

Table 9: A Comparison Of AFER And MSE For 3-Order 
Model 

Model AFER (%) MSE 
[10] 1.93 185115 
[26] 1.65 174391 
[19] 1.56 97180 
Proposed model 0.05 153 

5. DISCUSSION AND CONCLUSION 

Evaluation of the proposed model was 
performed on  the students’ enrollment data of 
University of Alabama and results showed that the 
performance of the proposed model outperformed 
other models in previous studies. In general, the 
high-order model is better than the first-order from 
the aspect of forecasting performance. However, it 
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depends on the nature of the time series data, the 
factors and how it influences the behavior of 
historical data. Besides natural variability, specific 
pattern might be present in the time series data 
seem like trend, seasonal or cyclical which are very 
common. In addition, non-stationary, non-linear 
and high fluctuations are the most impeding factors 
to achieve better forecasting performance. Those 
are the factors to be considered in the forecasting 
process for time series data. Although fuzzy time 
series is employed in the forecasting model but it is 
still less efficient if the time series exhibited 
upward or downward trends as well as seasonality 
and cyclical patterns. Most literature utilized 
original historical data and the rate of change in 
defining the universe of discourse to develop time 
series forecasting which disregarded the existence 
of trend and seasonality. Therefore, this paper 
proposed the utilization of the RTV to define the 
universe of discourse with an appropriate 
partitioned number of intervals employed in fuzzy 
time series model. From there, the trend direction 
either upwards or downwards can be captured as 
well as its seasonal fluctuation. Another advantage 
of using this method is the ability to handle high 
fluctuations in time series data. In addition, this 
technique is capable to identify and describe the 
underlying structure that influence the occurrence 
of the uncertainty and high fluctuation of the 
phenomena under investigation. This method 
proves that the forecasting accuracy depended on 
how the universe of discourse is defined. To avoid 
ambiguity, higher order models were derived where 
the performance of the proposed model has been 
shown to be more stable and consistent. It was 
demonstrated that the 3-order RTV-fuzzy time 
series is appropriate and free from ambiguities. It is 
also proven that with the AFER and MSE values, 
using RTV-fuzzy time series improved the 
forecasting accuracy. 
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