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ABSTRACT 
 

This paper presents a detailed design of a decentralised agent-based scheduler, which can be used to manage 
workloads within the computing cells of a Cloud system. This scheme in based on the concept of service 
allocation negotiation, whereby all system nodes communicate between themselves and scheduling logic is 
decentralised. The architecture presented has been implemented, with multiple simulations run using real-
word workload traces from the Google Cluster Data project. The results were then compared to the scheduling 
patterns of Google’s Borg system. 
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1. INTRODUCTION 

Cloud computing has become a very widespread 
phenomenon in daily lives, especially if we consider 
how accepted smart phones are. A typical phone 
application is heavily depended on infrastructure and 
remote processing capabilities Clouds deliver. Also, 
in desktop computer’s programs area, a significant 
number of applications have been moved into 
Software-as-a-Service model, where desktop serves 
only as a client, but actual processing in done on a 
remote Cloud, e.g.: business subscriptions for 
Microsoft Office 365 offer access to cloud-hosted 
versions of Office programs. Therefore, the current 
world is more and more reliant on Cloud computing. 

A variety of vendors, services and business 
models have created an extremely complex 
environment. The latest developments in Cloud 
technologies gravitate towards federated, inter-
Cloud cooperative models and, therefore, already 
very complex solutions are destined to become even 
more complex. It’s is also a very competitive market. 
A recent rise in Big Data systems fuelled a growth in 
demand of cheap computing power; however, a 
number of vendors joined and market offering 
computing services has greatly expanded Prices have 
also been driven down and, as of 24 July 2018, the 
cost of renting a general-use instance of 16-core 
machine with 64GB memory was 80 cents per hour 
(data from aws.amazon.com/ec2/pricing website).  

The main difference between a Cluster and a 
Cloud is business model and access. Clusters were 
traditionally available only to a very limited number 
of institutions and corporations, who pooled their 

resources in order to get advantage of scale of 
computing. Public generally did not have access to 
computing capabilities of Clusters. 

Because access to Clusters was very restricted 
and incoming workload was planned well in 
advance, it was practical to centralise task scheduling 
and system management functions. Therefore, a 
centralised architecture was generally used a base for 
Cluster management software, such as SLURM [61], 
Univa Grid Engine [16], Google’s Borg [44], etc. 

Cluster schedulers evolved from a sequential 
processing of allocation decisions in a loop (e.g. 
SLURM) towards more parallel solutions [44]: 

 (i) Statically partitioned scheduling in which the 
exclusive sets of machines in a Cluster are dedicated 
to certain types of workload and the resulting 
specialised partitions are managed separately. The 
example of such design is Microsoft’s Quincy [39]. 
The main criticism of the static partitioning is 
inflexibility – a homologous workload might result 
in a part of scheduler being relatively idle, while 
other nodes are very active. 

(ii) Two-level architecture in which a Cluster is 
partitioned dynamically by a central coordinator. 
The actual task allocations take place at the second 
level of architecture in one of the specialised 
schedulers. The first two-level scheduler was Mesos 
[20] in which resources are distributed to the 
frameworks in the form of ‘offers’ made by Mesos 
Master. Scheduling frameworks have autonomy in 
deciding which resources to accept and which tasks 
to run on them. The mechanism used causes 
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resources to remain locked while the resources offer 
is being examined by a specialised scheduler. This 
means the benefits from parallelisation are limited 
due to pessimistic locking. In addition, the 
schedulers do not coordinate between each other and 
must rely on a centralised coordinator to make them 
offers, which further restricts their visibility of the 
available resources in the Cluster. 

(iii) Shared state is the most recent design, used 
in Google’s Borg [44] and Microsoft’s Apollo [7]. 
The concept behind this architecture is to deploy 
several schedulers working in parallel. The scheduler 
instances are using a shared object with a state of 
available resources; however, the resource offers are 
not locked during scheduling decisions (optimistic 
concurrency control). In the case of a conflict, when 
two or more schedulers allocated jobs to the same 
resources, all involved jobs are returned to the jobs 
queue and scheduling is re-tried. 

This research focuses on the next type of 
scheduler architecture, which expands on the shared 
state scheduler concept where the scheduling logic is 
processed in parallel but still within a specific entity. 
The key novelty of the presented design is the 
distribution of the scheduling logic’s processing to 
Cluster nodes themselves – this approach eliminates 
the requirement that all allocation decisions have to 
be synchronised and aggregated into a single state. 
Such a solution should scale beyond the limits of the 
currently deployed Clusters orchestration software 
while preserving or bettering the workload 
throughput and quality of centralised scheduler’s 
allocations. The key objective of this research was to 
experimentally evaluate performance advances 
emerging out of the designed solution. 

One of the most developed and published Cluster 
managers is Google’s Borg system which represents 
the shared state scheduler architecture. When 
allocating a task, Borg’s scheduler is scoring a set of 
available nodes (best-fit algorithm) and selects the 
most feasible machine for this task. The central 
module of Borg architecture is BorgMaster, which 
maintains an in-memory copy of most of the state of 
the cell. Each machine in a cell is running BorgLet, 
an agent process responsible for starting and 
stopping tasks and also restarting them if they fail. A 
single BorgMaster controller is able to manage a cell 
of more than 12k machines (highest value is not 
specified). Google’s engineers achieved this 
impressive result by a number of optimisations and, 
so far, they’ve managed to eliminate or work around 
virtually every limitation they have approached [51]. 
Nevertheless, a centralised architecture is a 
limitation within a current design of a Cloud. 

One might also ask a fundamental question - do 
Cloud systems really require more inter-connected 
nodes in one cell? Computing power of 12k 
machines working together is already a very 
considerable force and, barring few exceptions, it’s 
highly unlikely that an application would require 
such a processing power. However, in recent years, 
software development is trending towards Big Data 
systems. Big Data systems are characterised by a 
high degree of parallelism. A typical Big Data 
system design is based on a distributed file system, 
where nodes have dual function of storing data as 
well as processing it. One process of such system 
might need to crunch thousands of TBs of data split 
across thousands of nodes. Even with ideal allocation 
of Big Data tasks, where every task is processing 
data only available locally (i.e. locality 
optimisation), a single node would still need to 
process GBs of data locally. Therefore, the answer to 
the above question is yes – it’s highly likely that we 
will require larger computing cells in the near future. 

Therefore, if centralised architecture has its 
ultimate scalability limits, we shall consider 
alternative approaches. In this paper we present a 
working prototype of decentralised Cloud manager – 
Multi-Agent System Balancer (MASB), which relies 
on a network of software agents to organically 
distribute and manage good system load. MASB 
prototype has been built on top of Accurate Google 
Cloud Simulator (AGOCS) framework [48] and such 
all research and development has been continuously 
tested on a real-world workload traces from the 
Google Cluster Data (GCD) project [19].  

The main novel aspects of this approach were to 
co-operatively schedule the incoming tasks by a 
network of software agents, which allows running 
programs to be offloaded to alternative system nodes 
on the fly, in addition to designing algorithms 
capable of proactively managing a workload in such 
a dynamic environment. Thus, this research breaks 
with the concept that the execution of a task in a 
cluster is immovable or unstoppable, and instead 
examines the available technology to implement 
such a strategy.  

Furthermore, moving away from the concept of 
the centralised load balancing and offloading the 
actual scheduling logic to the nodes themselves 
resulted in more time available for the execution of 
allocation routines. As such, more sophisticated 
algorithms could be deployed, such as metaheuristic 
methods. Since none of the commercially available 
cluster schedulers realise such features, the objective 
of this research was to implement a working 
prototype for the Cloud load balancer, and to 
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evaluate their performance advances emerging out of 
the designed solution. 

The remaining of this paper is organised as 
follows. Section 2 provides introduction to agent 
systems and a brief of research history how they have 
been used to schedule tasks. Section 3 describes 
MASB’s design principles, defines scope of project 
and lists all main used technologies. Section 4 has 
details about MASB architecture and its objects. 
Section 5 describes in detail the allocation 
negotiation protocol that is used between system 
components to allocate new task or re-allocate 
existing task on a node. Section 6 present allocation 
score functions, which are modelling distribution of 
tasks and their allocations across nodes through 
tasks’ lifecycles. Section 7 specifies experiments, 
which were performed as a part of his research and 
provides a discussion on achieved results. Section 8 
describes competitive solutions. In section 9, 
important optimisations and lessons learnt are 
presented. 

2. LOAD BALANCING WITH AGENTS 
Agent technologies can be dated back to 1992 

[42], at which point it was predicted that intelligent 
agent would become the next mainstream computing 
paradigm. Agents were described as the most 
important step in software engineering, representing 
a revolution in software [18]. Since its inception, the 
field of multi-agent systems has experienced an 
impressive evolution, and today it is an established 
and vibrant field in computer studies. The software 
agents research field spans many disciplines, 
including mathematics, logic, game theory, 
cognitive psychology, sociology, organisational 
science, economics, philosophy, and so on [54]. 
Agents are considered to be a viable solution for 
large-scale systems, for example through spam-
filtering and traffic light control [9], or by managing 
an electricity gird [8]. 

It is difficult to argue for any precise definition 
of an agent, with the research literature seeming to 
suggest that there are four key properties of an Agent 
[13][15][56], namely: 

 Autonomy when allowing agents to operate 
without direct human intervention; 

 Social ability when agents communicate and 
interact with other agents; 

 Reactivity when agents actively perceive their 
environment (physical or digital) and act on its 
changes; 

 Proactiveness when agents not only dynamically 
respond to changes in environments but are also 

able to take initiative and exhibit goal-oriented 
behaviour as well as real-time communications. 

A software agent it is generally defined as being of 
acting independently of its user in order to 
accomplish tasks on behalf of its user [36]. An agent 
can be described as a being which is supposed to act 
intelligently according to environmental changes 
and the user’s input [17]. 

Software agents are found across many computer 
science disciplines, including AI, decentralised 
systems, self-organising systems, load balancing and 
expert systems [18][30]. Previous research has also 
shown that by deploying agents it is possible to 
achieve good global system performance [34] and 
attain dynamic adaptation capability [23]. 

Agents were also found to be useful for the 
performance monitoring of distributed systems [10]. 
Several additional benefits may also be achieved, 
including more cost-effective resource planning 
[11], a reduction of network traffic [32], the 
autonomous activities of the agents [17], and 
decentralised network management [59]. Multi-
agent systems were also successfully used for 
forecasting demand and then adapting the charging 
schedule for electric cars [58], and also to effectively 
coordinate emergency services during crisis [37]. 
[40] presents an agent-based framework to model 
procurement operations in India. The most state-of-
art research generally focuses on negotiation 
protocols and communications [28][31][53][57]. 

Agent-based systems generally rely on 
decentralised architecture [22][31][46][53], 
considering it to be more reliable. However, those 
schemas require complex communication 
algorithms, with negotiation protocols often being 
required for distributed architecture to attain a good 
level of performance [6][57][59]. 

The idea of job scheduling with agents is not 
new; a single-machine multi-agent scheduling 
problem was introduced in 2003 [3][4]. Since this 
time, the problem has been extended and exists in 
several variations, such as deteriorating jobs [26], 
the introduction of weighted importance [35], 
scheduling with partial information [27], global 
objective functions [50], and adding jobs' release 
times and deadlines [60]. A suitable taxonomy of 
multi-agent scheduling problems in presented in 
[38]. 

The research on workload sharing via agents has 
a long history, with the papers below in particular 
having influenced the design of the MASB: 
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(i) [43] presents a study concerning a multi-agent 
system in which all decision making is performed by 
a learning AI. The likeness of selection of a 
particular node for the processing of a given task 
depends on the past capacity of this node. The 
Agent’s AI uses only locally-accessible knowledge, 
meaning that it does not rely on information shared 
by other agents. 

(ii) [14] introduces Challenger, a multi-agent 
system, in which agents communicate with each 
other to share their available resources in an attempt 
to utilise them more fully. In Challenger, agents act 
as buyers and sellers in a resources marketplace, 
always trying to maximise their own utility. MASB 
follows a similar pattern, where nodes try to 
maximise their utilisation (via score system). 

(iii) [6] shows that cooperative negotiation 
between agents representing base stations in a 
mobile cellular network can lead to a near global 
optimal coverage agreement within the context of 
the whole cellular network. Instead of using a 
negotiation model of alternating offers, several 
possible local hypotheses are created, based on 
which parallel negotiations are initiated. The system 
commits to the best agreement found within a 
defined timeline. The cooperative model in which 
agents negotiate between themselves is the base of 
the distributed scheduling presented in this research. 

(iv) [23] proposes a load-balancing scheme in 
which a mobile agent pre-reserves resources on a 
target machine prior to the occurrence of the actual 
migration. The system also prevents excessive 
centralisation through the implementation of a 
mechanism whereby when the workload processed 
on a particular machine exceeds a certain threshold, 
this machine will attempt to offload its agents to 
neighbouring machines.  

(v) [12] describes a solution in which agents 
representing a local grid resource uses past 
application performance data and iterative heuristic 
algorithms to predict the application’s resource 
usage. In order to achieve a globally-balanced 
workload, agents cooperate with each other using a 
Point-to-Point (P2P) service advertisement and 
discovery mechanism. Agents are organised into a 
hierarchy consisting of agents, coordinators and 
brokers, who are at the top of the entire agent 
hierarchy. The authors conclude that for local grid 
load balancing, the iterative metaheuristic algorithm 
is more efficient than simple algorithms such as 
FCFS. 

(vi) [21] details a solution built on top of the ant 
colony algorithm, a solution which takes its 

inspiration from the metaphor of real ants searching 
for food. ‘Ants’ are software objects that can move 
between nodes managed by agents. A move between 
nodes which is managed by the same agent is less 
costly. Ants explore paths between nodes, marking 
them with different pheromone strength. Whenever 
an Ant visits a node, the agent managing it saves the 
recorded tour and updates its own database. Ants 
who subsequently visit this node read its current 
knowledge, meaning they have the potential to 
exchange information in this environment, which 
adds to the predictability of the whole solution. 

3. MASB DESIGN PRINCIPLES 
The MASB project has been developed over 

several years, during which time it has undergone 
many changes in terms of both the technology used 
and the design of the architecture. This has included, 
for example, migration from Java to Scala, the 
change from thread pools to an Akka Actors/Streams 
framework, and the introduction and use of 
concurrency packages and non-locking object 
structures. However, the main design principles have 
not been altered and are presented below: 

 To provide a stable and robust (i.e. no single 
point of failure) load balancer and scheduler for 
a Cloud-class system; 

 To efficiently reduce the cost of scaling a Cloud-
class system so that it can perform in an 
acceptable manner on smaller clusters (where 
there are tens of nodes) as well on huge 
installations (where there are thousands of 
nodes); 

 To provide an easy way of tuning the behaviours 
of a load balancer where the distribution of tasks 
across system nodes can be controlled.  

Many other Cluster managing systems, such as 
Google’s Borg [51], Microsoft’s Apollo [7] and 
Alibaba’s Fuxi [63], were built around the concept 
of the immovability and unstoppability of a task’s 
execution. This means that once a task is started it 
cannot be re-allocated: it can only be stopped/killed 
and restarted on an alternative node. 

 This design is particularly well suited when 
there is a high task churn, as observed in Apollo or 
Fuxi where tasks are generally short-lived, meaning 
that the system’s scheduling decisions do not have a 
lasting impact. However, in order to support a mixed 
workload which features both short-lived batch jobs 
and long-running services, alternative solutions 
needed to be developed. One such solution is the 
resource recycling routines present in Borg wherein 
resources allocated to production tasks but not 
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currently employed are used to run non-production 
applications [51]. 

MASB takes advantage of virtualisation 
technology features, namely Virtual Machine Live 
Migration (VM-LM), to dynamically re-allocate 
overloading tasks. VM-LM allows programs which 
are running to be moved to an alternative machine 
without stopping their execution. As a result, a new 
type of scheduling strategy can be created which 
allows for the continuous re-balancing of the 
cluster’s load. This feature is especially useful for 
long-term services which initially might not be fitted 
to the most suitable node, or where their required 
resources or constraints change. Nevertheless, this 
design creates a very dynamic environment in which 
it is insufficient to schedule a task only once. Instead, 
a running task has to be continuously monitored and 
re-allocated if the task’s current node cannot support 
its execution any longer. 

The design of MASB relies on a number of 
existing tools and frameworks. The main 
technologies used are listed below: 

(i) Decentralised software agents – a network of 
independent AI entities that can negotiate between 
each other and allocate Cloud workload between 
them. In MASB, specialised agents control nodes 
and manage the system workload. Due to the 
decentralised nature of MASB, there is no complete 
up-to-date system state. Instead, yet another type of 
agent is responsible for caching the nodes’ statistics 
and providing an interface whereby a set of 
candidate nodes which a particular task can be 
migrated to can be requested. 

(ii) Metaheuristic selection algorithms – while 
the majority of the processing of load balancing 
logic is done via negotiation between agents, a few 
system processes are handled locally. One such 
example is that when an agent discovers its node is 
overloaded, it will select a subset of its tasks which 
it will attempt to migrate out. This selection is 
performed by Tabu Search (TS) algorithm. 

(iii) VM-LM which allows the transfer of a 
running application within the Virtual Machine 
(VM) instance to an alternative node without 
stopping its execution. The vendors’ strategy is to 
implement mixed production and low-priority jobs 
on a single machine. While production jobs are idler, 
low-priority jobs consume the nodes’ resources. 
However, when production job resources need to be 
increased, the low-priority jobs are killed. The non-
production jobs in Google Cluster [51] and the spot-
instances in Amazon EC2 [52] use such an approach. 
MASB takes advantage of VM-LM to offload tasks 

without stopping their execution, collecting 
information about tasks in order to estimate the VM-
LM cost of such a task. 

(iv) Functional programming language Scala and 
accompanying libraries – due to the decentralised 
design and loose coupling between the system’s 
components, the implementation language is of 
secondary importance. However, load balancing 
algorithms require a significant amount of tuning, 
especially if the Cloud is designed to have a high 
utilisation of available resources. This would mean 
that resource waste is low, and therefore the cost-
per-job execution is also low. Due to the complexity 
of inner-system relations and dependencies, a high-
fidelity simulation environment is necessary to 
evaluate the expected performance of a given 
configuration and implemented changes before is 
deployed to a production system, e.g. the 
FauxMaster simulator used by Google Engineers 
[51]. In this implementation, Akka Actors 
framework was selected as the core parallelisation 
technology. 

4. MASB ARCHITECTURE 
The experiments in [49] that used a centralised 

load balancer based on metaheuristic algorithms 
demonstrated that, due to the high overheads of these 
algorithms, a scheduling strategy implemented on a 
single machine is highly unlikely to efficiently 
manage a large number of tasks. Therefore, MASB 
has been built around the concept of a decentralised 
load balancing architecture, an architecture which 
could scale well beyond the limits of a centralised 
scheduler. 

Figure 1 visualises the communications’ flow 
within MASB system: 

Figure 1. MASB communications’ flow 

MASB relies on a network of software agents to 
organically distribute and manage the sizeable 
system load. All communication between the agents 
is performed via a specialised stateless P2P protocol 
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which promotes loose coupling. Two types of agents 
are deployed: Node Agent (NA) and Broker Agent 
(BA). NAs are supervising system nodes, are 
responsible for keeping those nodes stable. NAs 
actively monitor the used resources on their nodes 
(1) and periodically forward this information to the 
subnetwork of BAs (2). BAs continuously exchange 
nodes’ load information between themselves (3) and, 
therefore, effectively cache the state of the 
computing cell. 

NA contains an AI module which is based on a 
metaheuristic algorithm TS. It manages a workload 
on a node. When an NA detects that its node is 
overloaded, it will attempt to find an alternative node 
for overloading tasks with the help of Service 
Allocation Negotiation (SAN) protocol (the details 
can be found in section 5). The first step of SAN 
communication is to retrieve alternative nodes from 
BA (4). BAs provide a query-mechanism for NAs, 
which returns a set of candidate nodes for the 
migrations of tasks. However, because the 
information found in BAs is assumed to be outdated, 
once the NA completes this step, it communicates 
directly with their NAs so as to re-allocate this task 
(5). 

The following two subsections describe the types 
of agents noted and detail their responsibilities. The 
annotated arrows 2 to 5 in Figure 1 correspond to 
inter-agent communications – messages that are 
exchanged within the system are detailed in 
subsection 4.3. 

4.1 Node Agent 
Every node in the system has a dedicated 

instance of NA. NA continuously monitors the levels 
of defined resources and periodically reports the 
state of its node and levels of utilised resources to 
BAs. Should any of the monitored resources be over-
allocated, NA will initialise SAN process. In 
addition, NA performs the following functions: 

(i) Accept/deny task migration requests – NA 
listens to task migration requests, and accepts or 
denies them. This routine is simple, with NA 
projecting its resource availability with that task as 
follows: projected allocation of resources = current 
allocation of resources (existing tasks which also 
includes tasks being migrated out from this node) + 
all tasks being migrated to this node + requested task 
(from request). If the projected resources do not 
overflow the node, the task is accepted and the 
migration process is initiated. The source node does 
not relinquish ownership of the task while it is being 
re-allocated, meaning that source node is regarded as 
a primary supplier of the service until the migration 

process successfully completes. It should be noted 
that during task migration, its required resources are 
allocated twice, to both the source node and the 
target node. 

(ii) Task migration – after accepting the task 
migration request, NA immediately starts listening 
for incoming VM-LM. In order to perform task 
migration, NA must have access to the 
administrative functions of VM and be able to 
initiate VM-LM to another node. This functionality 
can be either implemented by the calls of the VM 
manager API or by executing the command line 
command. This process may vary considerably per 
VM vendor. 

4.2 Broker Agent 
BA is responsible for storing and maintaining 

information about nodes’ online status and their 
available resources. BA is a separate process which 
can coexist with NA on the same node since its 
operations are not computing-intensive. BA has two 
main purposes in the system. These are outlined 
below: 

(i) Nodes resources utilisation database – NA 
periodically reports to its BA about the state of its 
node and available resources. BA stores all this data 
and can query them on demand. Every node entry is 
additionally stored with its timestamp, showing how 
long ago the data were updated. It has additional 
protection against the node silently going offline, for 
example through hardware malfunction or the 
network becoming unreachable, in that if this entry 
is not updated for five minutes, the node is assumed 
to be offline and entry is removed. This means that 
it will not be returned as the candidate node. 

(ii) Evaluating candidate nodes for a task 
migration – BA listens for requests and computes a 
list of candidate nodes for a task migration. In order 
to create a list of candidate nodes, BA retrieves nodal 
data from the local cache and then scores them using 
Allocation Scoring Function. BA scores the future 
state of the system as if task migration were being 
carried out. After scoring all the cached nodes, BA 
selects a configured number of candidate nodes with 
the highest score and sends them back to the asking 
node. In this research this number was set to fifteen 
candidate nodes, wherein higher numbers failed to 
yield superior results. 

4.3 Message Types 
In order to avoid costly broadcasts, since 

broadcast packages need to be rerouted through a 
whole network infrastructure consuming the 
available bandwidth, both NA and BA always 
communicate P2P. Agent-to-agent interactions 
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follow the ‘request-response’ pattern, in which each 
request object has one or more matching response 
objects. The message objects carry additional 
metadata such as fitness value (see formula 
subsection 5.1), forced migration flag, and detailed 
node and task information. Section 5 explains the 

process in which messages are exchanged, while the 
subsections 5.1 to 5.4 show detailed samples of such 
objects. In the system there are several types of 
requests and responses between agents outlined in 
Table 1 below: 

 

Request Type Description 

GetCandidateNodesRequest 
Requests a number of candidate nodes for the migration of a specified tasks set. Send from NA to 
BA. 

GetCandidateNodesResponse Reply with a set of candidate nodes for task migration, together with their resource statistics.  

TaskMigrationRequest Request from source NA to candidate NA as to whether task migration is accepted. 

TaskMigrationAcceptanceResponse 
Replay from target candidate NA that task migration will be accepted. 
Note: No resource allocation takes place after this request. 

TaskMigrationRejectionResponse Replay from target node’s NA that task migration will not be accepted. 

TaskMigrationProcessRequest 

Request to selected target node’s NA to start task migration. 
Note: this request has an optional forced flag, requesting the target NA to skip the currently 
available resources check. The total node’s resources check and constraints check will be still 
performed. 

TaskMigrationProcessConfirmationResponse 
Confirmation from the target node’s NA that the task migration process can start. 
Note: Resources are allocated for the migrated task and the live migration process starts. 

TaskMigrationProcessErrorResponse 
Denial of task migration process. This reply is generated if the NA can no longer accommodate the 
migrated task. 

Table 1. Message types 

5. SERVICE ALLOCATION NEGOTIATION 
PROTOCOL 

When NA detects its node is overloaded, it will 
select a task (or a set of tasks) and attempt to migrate 
them to an alternative node or nodes. Since SAN is 
asynchronous, this means a single NA can run 
several SAN processes in parallel. In the current 
implementation, NA selects a number of tasks in the 
first step – Select Candidate Services (SCS) – and 
processes their allocation in parallel. 

Figure 2 visualises this process – for simplicity, 
the chart presents the allocation negotiation of one 
task only. 

SAN is a five-stage process, involving a single 
source node (Node Agent S), one of the system BAs 
and several of other nodes in the system (Node 
Agent A, Node Agent B and Node Agent C). When 
migrating-out a given task, NA at first sends a 
GetCandidateNodesRequest to BA to get with a set 
of candidate nodes where the task can potentially be 
migrated to. BA scores all its cached nodes and sends 
back the top fifteen to NA. Additionally, in order to 
help to avoid collisions, BA does not directly select 
only top candidate nodes, but instead selects them 
randomly from a node pool, where candidate node 
score is a weight, wherein higher scored nodes are 
selected more frequently. This design helps to avoid 
a situation where an identical subset of candidate 
nodes is repeatedly selected for a number of tasks 
with the same resource requirements. 

Upon receiving this list, NA sends task migration 
requests to all of those candidate nodes (Step 3), and 
waits for a given time (in this case for thirty seconds) 
for all replies. After this time, NA evaluates all 
accepted task migration responses (Step 4) and 
orders them in relevance order (nodes with the 
highest score first) and then attempts to migrate a 
task to a target node with top score (Step 5). If target 
node returns an error, the source NA will pick the 
next target node and attempt to migrate a task there. 

At each of these stages, the target node’s NA 
might reject task migration or return an error, for 
example when task migration is no longer possible 
because the current node’s resource utilisation levels 
have increased or because the node attributes no 
longer match the task’s constraints. Depending on a 
system utilisation level, such collisions might be 
more or less frequent. However, they are resolved at 
node-to-node communication level and do not 
impact the system performance as a whole.  

In a situation where there are insufficient 
candidate nodes available due to the lack of free 
resource levels, the BA will return candidate nodes 
with the ‘forced migration’ flag set to true.  

The algorithm’s five steps are explained in the 
following subsections, while the forced migrations 
feature is detailed in supplementary subsection 5.6 
below. 
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Figure 2. Service Allocation Negotiation 

5.1 Step 1: Select Candidate Services 
SCS routine is executed when the NA detects that 

the currently existing tasks are overloading its node. 
This step is processed on the node wholly locally. 
The purpose of this routine is to select the task (or 
set of tasks) that NA will attempt to migrate out and 
become stable (i.e. non-overloaded) during that 
process. All tasks currently running on this node are 
evaluated, taking into consideration various aspects, 
namely: 

(i) The cost of running a task on this particular 
node. NA will aim to have the highest node score for 
its own node. If removing this particular task will 
cause its Allocation Score (AS) to be higher, then 
this task is more likely to be selected. AS is 
calculated by Service Allocation Score (SAS) 
functions – see section 6 for details. 

(ii) The cost of migration of a task – VM 
migrations cause disruptions on the Cloud system. In 
this research, cost is estimated by Live Migration 
Data Transfer formula [47] as the additional network 

traffic required to migrate the running VM instance 
to an alternative node. 

(iii) The likeness to find an alternative node – the 
majority of tasks do not have major constraints and 
can be executed on a wide range of nodes. However, 
there are a small number of tasks with very 
restrictive constraints that significantly limit the 
number of nodes that the task can be executed on. If 
such a task can only be executed locally, i.e. the node 
has enough total resources capacity and task 
constraints are matched, then NA is unlikely to 
migrate out those tasks. 

(iv) Any task which cannot be executed on a 
local node is compulsory selected as a candidate 
task. This scenario could occur if the task constraints 
or node attributes were updated. 

NA first computes a list of compulsory candidate 
tasks, i.e. tasks that can no longer be executed on this 
node. Following this, if the remaining tasks are still 
overloading the node, it will select a subset of tasks 
to be migrated out. 
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The candidate tasks selection algorithm tries to 
minimise the total migration cost of selected tasks, 
and also to achieve the highest AS for a node, under 
the assumption that the selected subset of candidate 
tasks is successfully migrated to the alternative node. 
In order to achieve this, the algorithm defines the 
Fitness Function as coded inside SCS: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ൌ  
𝑁𝑜𝑑𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒
𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

 

For the above in a NP-Hard problem with a 
substantial search space, e.g. twenty tasks on a node, 
the search space size is over one million 
combinations. Given this, the Full Scan approach 
[47] will be substantially computation-intensive. 
Therefore, the use of metaheuristic algorithms is 
justified. In previously researched scheduling 
concept, a variant of TS has been successfully 
applied to solve a similar class of problems. The TS 
algorithm has the following properties: 

 It has a small memory imprint since only the list 
of visited solutions is maintained thorough 
execution; 

 It can be easily parallelised as a variant which is 
restarted multiple times; 

 It is very controllable through setting up a limited 
number of steps and number of runs; 

 It is stoppable, and the best-found result can be 
retrieved immediately. 

 It generally returns good results. 

It was found that multiple restarts (herein a twenty-
five re-run limit) with a shallow limit of steps (herein 
five) yield very good results, with only about 2-7% 
of solutions in the whole search space (i.e. selecting 
a subset of tasks being run on a node) being 
examined in each invocation. Additionally, instead 
of restarting the algorithm an arbitrary number of 
times, a stop condition for this algorithm has been 
implemented when the best-found solution has not 
been improved in a certain number of the last steps 
(herein six). 

A sample log entry is presented below, wherein 
the subset of candidate tasks is being computed: 

 
 
12:44:22.016 NodeAgentActor (node=2274790707) INFO 
SAMPLE: 
 Selected overloading tasks for node [2274790707] 
 Node total resources = [0.5,0.2493] 
 Node used resources (all tasks) = [0.5598619,0.206038] 
 Node used prod resources (all tasks) = [0.481296,0.219028] 
 All tasks (* Selected): 
  Task [2902878580-1081] (PROD) Priority=11 Required resources=[0.006248,0.001457]  
   Used resources=[0.01498,0.02692] Migration cost = 6876.02 [MB] 
  Task [2902878580-3147] (PROD) Priority=11  Required resources=[0.006248,0.001457] 
   Used resources=[0.01053,0.02509] Migration cost = 3820.05 [MB] 
  Task [3998352223-38] (PROD) Priority=9  Required resources=[0.3125,0.1592] 
   Used resources=[0.168,0.07617] Migration cost = 69139054863.11 [MB] 
  Task [5726057648-7] (PROD) Priority=9  Required resources=[0.0625,0.007767] 
   Used resources=[0.01682,0.005814] Migration cost = 106.72 [MB] 
* Task [6218406404-243] (PROD) Priority=0  Required resources=[0.04065,0.02069] 
   Used resources=[0.005684,0.005798] Migration cost = 106.69 [MB] 
  Task [6218406404-959] (PROD) Priority=0  Required resources=[0.04065,0.02069] 
   Used resources=[0.008255,0.005791] Migration cost = 106.67 [MB] 
* Task [6251414911-1447] Priority=1  Required resources=[0.0625,0.0318] 
   Used resources=[0.0007629,0.007675] Migration cost = 112.37 [MB] 
  Task [6251664479-137] (PROD) Priority=2  Required resources=[0.0125,0.007767] 
   Used resources=[0.04224,0.005592] Migration cost = 106.25 [MB] 
  Task [6251784940-1615] Priority=2  Required resources=[0.02499,0.02545] 
   Used resources=[0.02917,0.0135] Migration cost = 183.40 [MB] 
  Task [6251787910-686] Priority=2  Required resources=[0.02499,0.03339] 
   Used resources=[0.0321,0.01501] Migration cost = 236.79 [MB] 
* Task [6251803864-88] Priority=2  Required resources=[0.02499,0.02545] 
   Used resources=[0.1665,0.01027] Migration cost = 128.94 [MB] 
* Task [6251812952-159] Priority=2  Required resources=[0.02499,0.07959] 
   Used resources=[0.06482,0.008408] Migration cost = 115.72 [MB] 
  Task [6251812952-2072] Priority=2  Required resources=[0.02499,0.07959] 
   Used resources=[0,0] Migration cost = 101.00 [MB] 
 Node used resources (remaining tasks) = [0.322095,0.173887] 
 Node used prod resources (remaining tasks) = [0.440646,0.198338] 
 Total migration cost (selected tasks) = 463.71561966381125 [MB] 

 

Here, the thirteen tasks are being executed on node 
‘2274790707’. However, the used resources exceed 
the node’s total resources, i.e. all tasks are utilising 
0.5598619 CPU, while the node can provide only 0.5 
CPU (values are normalised). The node’s NA detects 
the node is overloaded and triggers the SCS routine. 
The SCS routine selects four tasks (here: the 
production task ‘6218406404-243’ and non-
production tasks: ‘6251414911-1447’, 
‘6251803864-88’ and ‘6251812952-159’; marked 
with *) which are then added to candidate tasks, and 
NA will attempt to migrate out this set in the next 
step. 

The potential reduction of used resources is an 
effect of removing a subset of tasks from this node: 
(i) CPU reserved for production tasks is potentially 
reduced from 0.481296 to 0.440646 which is ca. 
88% utilisation of total 0.5 CPU available on this 
node, and (ii) memory reserved for production tasks 
is potentially reduced from 0.219028 to 0.198338 
which is ca. 80% utilisation of the total 0.2493 
memory available on this node. The total migration 
cost for this set of migrations is ca. 463.72MB. 

5.2 Step 2: Select Candidate Nodes 
After selecting candidate nodes, NA sends a 

GetCandidateNodes request to BA. A part of this 
request, task information data, such as currently used 
resources and constraints, are sent. BA also itself 
caches a list of all nodes in system with their 
available resources and attributes. Based on this 
information, BA prepares a list of alternative 
candidate nodes for a task in request. The main 
objective of this process is to find alternative nodes 
which have the potentially highest node AS, under 
the assumption that the task will be migrated to a 
scored node. The size of this list is limited to an 
arbitrary value to avoid network congestion when 
NA will send actual migration requests query in the 
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next step. In this implementation, it is set to fifteen 
candidate nodes returned in each response. 

This step is the most computing intensive of all, 
and represents a potential bottleneck for negotiating 
logic processing. BA needs to examine all system 
nodes, check their availability for a given task and 
score them accordingly. The request processing is 
self-contained and highly concurrent, meaning that 
the node scoring can be run in parallel and the final 
selection of top candidate nodes is run in sequence. 
Originally, this code was extensively profiled and 
improved, and designed BA to be able to run in a 
multi-instance mode if needed and to handle heavy 
usage. However, in experiments, the quoting 
mechanism proved to be very lightweight and the 
demand not that high, meaning that a single BA was 
sufficient to handle 12.5k nodes in the system. 

Below, a sample log entry is presented when 
such a list is computed and returned to a NA: 
 
 
17:53:28.516 NodeAgentActor (node=97967489) INFO 
SAMPLE: 
 Candidate nodes recommendations for migration-out of task: 
  Task [6251414911-740] Priority=1  Required resources=[0.0625,0.0318] 
  Used resources=[0.04761,0.009735] Migration cost = 124.29 [MB] 
 Source node: Node [97967489] [0.5,0.4995]: 
  CandidateNodeRecommendation[nodeId=2110696959,nodeAvailableResources=[0.11670008, 
   0.057892],fitnessValue=5.02779735207,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2274669582,nodeAvailableResources=[0.0846342, 
   0.131113],fitnessValue=4.351440488446,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=294847211,nodeAvailableResources=[0.20732303, 
   0.023297],fitnessValue=3.990484728735,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1302354,nodeAvailableResources=[0.21478553, 
   0.071508],fitnessValue=3.36826714248,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=7246234,nodeAvailableResources=[0.3283863, 
   0.020561],fitnessValue=2.444197290198,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2887932822,nodeAvailableResources=[0.30516457, 
   0.109883],fitnessValue=2.147161970183,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=38743543,nodeAvailableResources=[0.3583948, 
   0.101834],fitnessValue=1.769829840087,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=656811,nodeAvailableResources=[0.23940511, 
   0.26298],fitnessValue=1.711800790297,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=38709566,nodeAvailableResources=[0.3584505, 
   0.118908],fitnessValue=1.697701710745,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=3739348304,nodeAvailableResources=[0.23673398, 
   0.268172],fitnessValue=1.696017579836,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1093461,nodeAvailableResources=[0.380115, 
   0.08412],fitnessValue=1.681960083254,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=4217347623,nodeAvailableResources=[0.36352026, 
   0.146784],fitnessValue=1.553194840995,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=16918689,nodeAvailableResources=[0.3916948, 
   0.125088],fitnessValue=1.456396783346,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=25749509,nodeAvailableResources=[0.0367722, 
   0.073692],fitnessValue=0.000000000001,forceMigration=true] 
  CandidateNodeRecommendation[nodeId=38679534,nodeAvailableResources=[0.38115265, 
   0.006653],fitnessValue=0.000000000001,forceMigration=true] 
 
 

Here, NA on node ‘97967489’ requested candidate 
nodes for the migration of the task ‘6251414911-
740’. BA returned top candidate nodes for a given 
task ordered by their suitability score, i.e. fitness 
value. Here values returned are: 5.02779735207 for 
node ‘2110696959’, 4.351440488446 for node 
‘2274669582’, 3.990484728735 for node 
‘294847211’, 3.36826714248 for node ‘1302354’, 
and so on. Additionally, the last recommendations 
for nodes ‘257495090’ and ‘38679534’ are forced-
migrations (forceMigration is set to true). 

Within the node recommendation there is 
additional information, such as node available 
resources and other metadata (not shown in listing). 
It is not necessary to return this extra information, 
but it was found to be very useful for logging and 
sampling purposes, and then efficient tuning of the 
system (for details see subsection 7.4). 

 

5.3 Step 3: Send Migration Requests 
Forced migration candidates will be always 

added to the list of accepted candidate nodes in the 
next step but with minimal scores. Each NA analyses 
its own node availability for a given task, i.e. both 
the available resources and the node’s attributes, and 
responds with TaskMigrationAcceptanceResponse 
or TaskMigrationRejectionResponse.  

Acceptance response only implies the readiness 
to accept a task with NA not yet allocating any 
resources (the resources allocation is part of task 
migration request process as detailed in Step 5). 
Additionally, TaskMigrationAcceptanceResponse 
message contains this node’s current resources usage 
levels, which are used in the next step to rescore this 
node, since the data from BA are less recent. 

 

5.4 Step 4: Select Target Node 
NA waits for a defined time, or until all candidate 

nodes have responded by either the acceptance or 
rejection of a migrated task, and computes a list of 
nodes that accepted this task. NA evaluates each of 
the accepting nodes using the Service Re-allocation 
Score (SRAS) function, with the assumption that the 
task will be re-allocated to a scored node. From this 
pool, a target node is then selected. The selection is 
weighted with node scores but still randomised, 
which helps to avoid conflicts when many task 
migrations compete for the same node. 

As noted above, all forced migration candidate 
nodes will be added to this list but will be selected 
only in last place, once all other alternative 
migrations attempts fail. This strategy ensures that 
NA always has an alternative node to offload the 
task. A scenario in which only one node is capable 
of running a given task is considered to be an error, 
and is reported to the system administrator. For fault-
tolerance reasons, the system should always have 
multiple nodes able to run any given task. 

A sample log entry is presented below: 
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17:48:51.541 NodeAgentActor (node=30790115) INFO 
SAMPLE: 
 Accepted recommendations for migration-out of task: 
  Task [4844000327-3] (PROD) Priority=10  Required resources=[0.0625,0.003109] 
   Used resources=[0.003742,0.001886] Migration cost = 101.86 [MB] 
 Source node: Node [30790115] [0.5,0.2493] 
 All non-expired recommendations (* selected): 
  CandidateNodeRecommendation[nodeId=72,nodeAvailableResources=[0.24092502,0.080235], 
   fitnessValue=2.737788312063,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=499530475,nodeAvailableResources=[0.2017312, 
   0.133636],fitnessValue=2.704122369764,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=6608641,nodeAvailableResources=[0.15529385, 
   0.18712],fitnessValue=2.657728011619,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=336053478,nodeAvailableResources=[0.2798536, 
   0.047955],fitnessValue=2.558664832112,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=351638129,nodeAvailableResources=[0.212140724, 
   0.146822],fitnessValue=2.505822852307,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=431038304,nodeAvailableResources=[0.3267638, 
   0.039748],fitnessValue=2.142784872639,forceMigration=false] 
* CandidateNodeRecommendation[nodeId=3650320528,nodeAvailableResources=[0.31184762, 
   0.073969],fitnessValue=2.101080438228,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=351664198,nodeAvailableResources=[0.3099791, 
   0.111418],fitnessValue=1.926755718413,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=656551,nodeAvailableResources=[0.3613202, 
   0.1106346],fitnessValue=1.564594925411,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1273895,nodeAvailableResources=[0.3402396, 
   0.148566],fitnessValue=1.556209187067,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=662212,nodeAvailableResources=[0.40326971, 
   0.065803],fitnessValue=1.431851646113,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=1272936,nodeAvailableResources=[0.34438919, 
   0.267601],fitnessValue=1.119583713082,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2594787,nodeAvailableResources=[0.3313337, 
   0.363716],fitnessValue=0.874210901828,forceMigration=false] 
  CandidateNodeRecommendation[nodeId=2098371268,nodeAvailableResources=[0.33264115, 
   0.052842],fitnessValue=0.000000000001,forceMigration=true] 
  CandidateNodeRecommendation[nodeId=1332336,nodeAvailableResources=[0.25883595, 
   0.325499],fitnessValue=0.000000000001,forceMigration=true] 
 
 

Here, NA on a node ‘30790115’ is selecting a target 
node for the migration of task ‘4844000327-3’ (with 
the migration cost of 101.86MB). All accepted 
recommendations from previous step (within thirty 
seconds) or forced recommendations 
(forceMigration is set to true) are re-scored and a 
single node is selected (here: node ‘3650320528’; 
marked with *). Then, NA sends 
TaskMigrationProcessRequest to initiate a task 
migration process itself. NA stores received 
candidate node recommendations in its memory in 
case the task migration fails, and the next target node 
has to be selected. 

Once the task is removed from a node, meaning 
it is re-allocated, and has finished its execution, is 
killed or crashes, all its candidate node 
recommendations are automatically invalidated and 
deleted. Additionally, candidate node 
recommendations expire after an arbitrary defined 
time, in this case three minutes. This mechanism 
exists in order to remove recommendations with out-
dated node data. If no candidate node 
recommendations are left (or expire), and the node is 
still overloaded, the SAN process restarts from Step 
1. 

5.5 Step 5: Migration Process 
Every NA is actively listening for coming 

migration requests. When NA receives 
TaskMigrationProcessRequest, it performs a final 
suitability check, wherein both node’s available 
resources and task constraints are validated. If the 
forced-migration flag is set, NA ignores the existing 
tasks and validates the required resources against 
total node resources. Occasionally, the target NA can 
reject task migration process or migration fails. In 
such a scenario the algorithm returns to Step 4 and 
selects the next candidate node (via weighted 
randomised selection). 

In practice, this happens only for 6-8% of all task 
migration attempts (in simulated GCD workload), 
the majority being the result of task migration 
collisions where two or more tasks are being 
migrated to the same node. The first-to-arrive 
TaskMigrationProcessRequest is generally 
successful, meaning that Steps 4 and 5 are repeated 
only for the rejected migrations. There have been no 
observations of an increase in collisions when the 
larger Cloud system is simulated (up to 100k nodes, 
as detailed in section 7.10). This is because a single 
NA communicates with only a limited set of other 
agents, and the P2P communication model is used 
exclusively. This means that the communication 
overhead does not go up when the system size is 
increased. 

5.6 Forced Migration 
In rare circumstances, approximately 10-15 out 

of 10k tasks present constraints which restrict the 
execution of a task to a very limited number of 
nodes. Considering this, there is a scenario in which 
NA wants to migrate out a given task but is unable 
to find an alternative node because all suitable nodes 
have already been allocated to other tasks, and the 
majority of their resources have been utilised. In 
such a scenario, BA returns candidate node 
recommendations with a forced-migration flag set. 
In response, the BA can also mix non-forced 
migrations and forced migrations. In a worst-case 
scenario, all returned recommendations would be 
forced, but this approach ensures there is always an 
acceptable node to run a given task on. This prevents 
a starvation of the task resources, where the task is 
never executed. 

A forced migration flag signals that a node is 
capable of executing a task but that its current 
resources utilisation levels do not allow it to allocate 
additional tasks, since this will cause the node to be 
overloaded. Forced migration forces the node to 
accept the task migration request while skipping the 
available resources check. However, task constraints 
are still validated, including the check if the node’s 
total resources are sufficient to run the task. This 
design helps to avoid a situation where a task has 
very limiting constraints and only a few nodes in the 
system can execute it. If those nodes have no 
available resources then it will not be possible to 
allocate a task to them, and therefore tasks will not 
run. As such, the nodes are forced to accept this task, 
which then many trigger the target node’s NA to 
migrate out some of its existing tasks to alternative 
nodes. 
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6. SERVICE ALLOCATION SCORE 
SAS functions are a crucial part of the system, 

which greatly impacts global resource usage level. 
That is, they determine how well nodes' resources 
are utilised. They are used when a new task is 
allocated or when a system needs to re-allocate an 
existing task to an alternative node. 

SAS functions evaluate how well a given task 
will fit a scored node system-wise by returning AS 
value. In this implementation, SAS input is 
constructed from the total node resources, the 
currently available node resources and the currently 
required resources for a given task. SAS function 
returns a value when a task fits the available 
resources on a node, and also when a node is 
overloaded by a task. If a node cannot fulfil a task's 
constraints, the node is deemed non-suitable and the 
scoring function is undefined. This research 
concludes that node AS are failing in six separate 
areas: 

(i) Idle Node – a completely idle node is a special 
case of allocation, in which no task has been 
allocated to this node. Such a node could be 
completely shut down, resulting in lower power 
usage for a cluster. In this research, idle nodes are 
scored most highly when determining a suitable 
node for initial task allocation. 

(ii) Super Tight Allocation (STA) – where some 
of the node's resources are utilised in the 90%-100% 
range. STA is regarded as stable allocation; 
however, due to the dynamic resource usage, this is 
actually not a desirable scenario. Complete, or 
almost complete, resource usage can frequently lead 
to resource over-allocation, whereby one or more 
tasks increase their resource utilisation. This 
experimentation has determined that leaving 10% of 
any given resource unutilised gives the best results 
since it reduces task migration but still ensures the 
efficient use of the system resources (see discussion 
in subsection 6.4). 

(iii) Tight Allocation (TA) – where all node 
resources are utilised in the 70-90% range. This is 
the most desirable outcome as it promotes the best 
fitting allocation of tasks and, therefore, low 
resource wastage. 

(iv) Proportional Allocation (PA) – while tight-
fit is the most desirable outcome, the majority of 
tasks in this research consumed a small amount of 
each resource. Most scheduled tasks are short batch 
jobs which have a very short execution time. In such 
a scenario, it is desirable to keep proportional 
resources' usage ratios on all nodes which would, 

therefore, generally enable nodes to fit more tasks 
with ease. 

(v) Disproportional Allocation (DA) – where the 
node's resources are not proportionally utilised, 
thereby making it difficult to allocate additional 
tasks if required. For example, a setup where tasks 
on a node allocate 75% of CPU but only 20% of 
memory is not desirable. 

(vi) Overloaded Node – when allocated resources 
overload the total available resources on the node. 
Naturally, this is an unwanted situation, and such a 
node is given a score of zero. 

Several types of resources exist which can be 
utilised by the task, such as memory, CPU cycles and 
disk I/O operations, and so on. The model also 
supports artificial resources, called ‘virtual 
resources’ and the number of defined resources is 
potentially unlimited. Figure 3 visualises AS types 
for the two resources (CPU and memory): 

Figure 3. Allocation Score types 
SAS function should never allow overloading 
allocations to take place in order to prevent a scored 
node to become overloaded and unstable. 
Additionally, during the research it was determined 
that STAs are very prone to over-allocate nodes and 
are damaging to overall system stability. Therefore, 
they are also accorded a score of zero. DAs increase 
global resource wastage and should be avoided; 
nevertheless, they are acceptable if none of the more 
desired types of AS are possible. The desirability 
order varies and depends on the task’s state, as 
discussed in subsections 6.2 and 6.3 below, while the 
following subsection introduces the concept of 
Service Allocation Lifecycle (SAL). 

6.1 Service Allocation Lifecycle 
Tightly fitting tasks on as few nodes as possible 

are beneficial for global system throughput. 
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However, during this research the following facts 
were observed: 

(i) Initially, a Cloud user specifies the task’s 
required resources. Users tend to overestimate the 
amount of resources required, wasting in some cases 
close to 98% of the requested resource [33]. 
Therefore, only after the task is executed could 
realistic resource utilisation values be expected. 
Allocating new tasks in a tight-fit way (i.e. TA and 
STA areas in Figure 3) does result in turmoil when 
the task is actually executed and the exact resource 
usages levels are logged. Therefore, the initial 
allocation should rather aim to distribute tasks across 
nodes and keep the resource utilisation levels on 
individual nodes low (i.e. PA area in Figure 3), than 
pile them on the lowest possible number of nodes. 

(ii) In GCD, only about 20-40% of tasks qualify 
as long-running tasks, meaning that they run for 
longer than twenty minutes [44]. The remaining 
scheduled tasks consisted of short-term jobs which 
generally have much lower resource requirements 
than long-running tasks. The majority of tasks are 
short and will not exist for long at all in the system. 
Therefore, it is important for an initial allocation not 
to spend too much time in trying to tightly fit them 
into available nodes. 

(iii) While the majority of tasks are short-lived 
(up to twenty minutes), there exists a number of 
long-running tasks that have more demanding 
resource requirements, meaning that the majority of 
resources (55–80%) are allocated to long-lived 
services (ibid.). Therefore, it is more difficult to fit 
them into nodes, and these allocations should be 
much tighter to minimise global system resource 
waste.  

Given the above reasons, the ideal scenario for a 
task is to be initially allocated on a lowly-utilised 
node, before it is gradually migrated towards more 
tightly-fitted allocations with other tasks.  

Originally, the MASB framework did not have 
distinct scoring functions for Service Initial 

Allocation Score (SIAS) and SRAS; a single SAS 
function, with the same scoring model as SRAS, was 
used for all allocations which resulted in lowered 
performance. The design was ultimately altered, and 
SAS function was split: 

(i) During Initial Allocation, a randomly selected 
BA is responsible for allocating a newly arrived task 
to a worker node. BA uses SIAS function (detailed 
in subsection 6.2) to score nodes. Only a limited 
number of candidate node recommendations are 
calculated (here: 200) before selecting the top 
recommendations. This is to prevent scoring routine 
calculations from processing for too long. The limit 
of 200 applies only to non-forced recommendations 
for matching nodes. 

(ii) A once allocated (and running) task can be 
re-allocated to an alternative node if necessary. In 
such a scenario NA of a node which the task is being 
executed is responsible for finding a candidate node. 
Both NA and BA use SRAS function (detailed in 
subsection 6.3) to score candidate nodes. Similar to 
calculating recommendations for new tasks, as an 
additional optimisation, only a limited number of 
candidate node recommendations are calculated 
before selecting the top recommendations. However, 
because this routine is invoked much less frequently, 
two thousand nodes are analysed. The two thousand 
limit applies only to non-forced recommendations 
for matching nodes. 

MASB uses a network of BAs to provide a set of 
the best candidate nodes (nodes with the highest AS) 
to allocate the task. However, some applications 
such as Big Data frameworks often send multiples of 
an identical task in a batch. Those tasks execute the 
same program and have the same (or very similar) 
resource requirements. As such, a limited set of 
nodes will be highly scored and may result in a 
multiple repeated allocations requests to the same 
node over a very short period of time. To prevent this 
phenomenon, the pool of candidate nodes is 
randomly shuffled each time BA receives a request.
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Figure 4. Service Allocation Lifecycle 

6.2 Service Initial Allocation Score 
As explained in the subsection above, in order to 

minimise the impact of Cluster user’s overestimating 
resource requirements, the initial allocation should 
attempt to spread tasks widely across all system 
nodes. Therefore, when initially allocating existing 
tasks, candidate nodes should be scored in the 
following order: PA, TA and finally DA. 

In this implementation, the SIAS function for 
two resource types (CPU and memory) was used. 
Figure 5 is a graphical representation of SIAS 
function: 

Figure 5. Service Initial Allocation Score 

Three separate areas can be noticed: 

(i) Lower-left (the highest score) – this promotes 
PA, which will leave resource utilisation at a low 
level or proportionately used. 

(ii) Upper-right corner (the medium score) – this 
promotes TA, where tasks on this node will closely 
utilise all its resources. 
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(iii) The upper-left and lower-right corners (the 
lowest score) – these DAs will leave one resource 
utilised almost fully and the other resource wasted. 

It should be noted that the maximum resource 
usage is 90%, and that values above this level are in 
an undesired STA’s area (and have zero AS). The 
following SIAS function was used: 

𝑆𝐶𝑂𝑅𝐸 ൌ 𝐹_𝑆𝑇𝐸𝐸𝑃൫௥಴ುೆିி_஻ூ஺ௌ∙௥಴ುೆ_ಾಲ೉൯∙൫௥ಾಶಾିி_஻ூ஺ௌ∙௥ಾಶಾ_ಾಲ೉൯ െ 𝐹_𝐹𝐿𝑂𝑂𝑅

 𝑟஼௉௎, 𝑟ொெ – current resources utilisation levels 
on a node (values are normalised to between 0 
and 1); 

 𝑟஼௉௎_ெ஺௑, 𝑟ொெ_ெ஺௑ – total resources available 
on a node (values are normalised to between 0 
and 1); 

 𝐹_𝐵𝐼𝐴𝑆 – score factor which sets the bias 
towards low (i.e. SIAS function) or high (i.e. 
SRAS function) utilisation of resources on a 
node. Here, a value of 0.3 was used; 

 𝐹_𝑆𝑇𝐸𝐸𝑃 – parameter describing how 
aggressively the system should increase scores of 
the more desired AS-es (which impacts the 
probability of a node selection). Here, a value of 
350 was used; 

 𝐹_𝐹𝐿𝑂𝑂𝑅 –parameter describing how 
aggressively the system should reduce scores of 
less desired AS-es (which impacts the probability 
of skipping a node). Here, a value of 0.8 was 
used; 

Additionally, negative score values are adjusted to 
zero (to prevent the selection of a node). It should be 
noted that the SIAS is calculated exclusively from 
user-defined resource requirements since the 
actually-used resource requirements are unknown 
before the task execution actually starts. 

6.3 Service Re-allocation Score 
This research has found that the best throughput 

results are achieved when tasks are packed tightly 
into available nodes, i.e. where global resource 
utilisation is the highest. The best fit scenario, where 
the task fully utilises 90% of all available resources 
on a node, is scored the highest. Therefore, when 
migrating existing tasks, candidate nodes should be 
scored in the following order: TA, PA, then DA. 

Like the SIAS function presented in 6.2, the 
SRAS function for two resource types (CPU and 
memory) was used. Figure 6 is a graphical 
representation of SRAS function: 

Figure 6. Service Re-allocation Score 

Three separate areas can be noticed: 

(i) Upper-right corner (the highest score) – this 
promotes TA, where tasks on this node will closely 
utilise all its resources. 

(ii) Lower-left (the medium score) – this 
promotes PA that will leave resource utilisation at a 
low level or proportionately used. 

(iii) The upper-left and lower-right corners (the 
lowest score) – these DAs will leave one resource 
utilised almost fully and the other resource wasted. 

In this implementation, the following SRAS was 
used: 

𝑆𝐶𝑂𝑅𝐸 ൌ 𝐹_𝑆𝑇𝐸𝐸𝑃൫௥಴ುೆିி_஻ூ஺ௌ∙௥಴ುೆ_ಾಲ೉൯∙൫௥ಾಶಾିி_஻ூ஺ௌ∙௥ಾಶಾ_ಾಲ೉൯ െ 𝐹_𝐹𝐿𝑂𝑂𝑅 

with the exceptions of 𝐹_𝑆𝑇𝐸𝐸𝑃 where a value of 
500 was used and 𝐹_𝐵𝐼𝐴𝑆 where a value of 0.6 was 
used; the parameter definitions are the same as in 
SIAS function in subsection 6.2) 

As can be observed visually, SRAS is a mirror 
image to the SIAS function (presented in Figure 5). 
The main difference is changing the score bias (i.e. 
𝐹_𝐵𝐼𝐴𝑆 parameter) which shifts the peak score point 
from (0,0) to (90,90) (percentage of utilised 
resources), and which relates to the change in the 
most desirable AS from PA to TA.  

It should be noted that the SRAS is calculated 
exclusively from actually-allocated resource 
requirements. User-defined resource requirements 
are evaluated as part of the Resource Usage Spikes 
(RUS) routine, explained in detail below. 

6.4 Resource Usage Spikes 
Occasionally, a task might instantly increase its 

resource usage as the result of sudden increase of a 
demand for a task; at such times, a node should have 
the capacity to immediately accommodate this 
request, without needing to migrate the task to an 
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alternative node (since this takes time). In such a 
situation, other VMs running on this machine can be 
paused or killed to let the VM instance executing this 
task instantly allocate more resources. 

 

Figure 7. Production vs. non-production allocated resources 

As such, an additional feature was implemented 
in MASB to handle RUS. Aside from checking the 
actually-used resources for tasks and ensuring that 
the node has the capacity to support it, the system 
also calculates the maximum possible resource 
usage of all production tasks based on user-defined 
resource requirements, as well as making sure that 
the node has the capacity to support all production 
tasks at their full resource utilisation. This constraint 
is limited only to production jobs since VMs running 
non-production jobs can be suspended without 
disturbing business operations.  

The introduction of RUS constraint adds another 
dimension to the tasks allocations’ logic. Figure 7 
visualises how user-defined resource requirements 
for production tasks and actually-used resources for 
all tasks are integrated. In this 60-node sample (a 
single bar represents one node), approximately half 
the nodes have a very high CPU user-defined 
allocation for production tasks, while the real usage 
is much lower. It should be noted that while memory 
usage stays proportionally high thorough the GCD 
workload, the gaps between the requested and the 
actually-used memory are much smaller. This is a 
relatively common pattern for GCD workload.  
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Whilst RUS do not occur frequently, they do 
have the significant potential to destabilise an 
affected node. Table 2 represents the average 
frequency of RUS in examined GCD workload 
traces with ca. 12.5k nodes and ca. 140k tasks being 
continuously executed by them (with different RUS 
thresholds examined): 
 

RUS threshold 
Average RUS 

(count per minute) 
Peak RUS 

(count per minute) 

5% 659 7538 

10% 212 4362 

15% 66 2390 

20% 47 1925 

25% 26 1135 

Table 2. Resource Usage Spike frequencies 

Here, while running a simulation based on replaying 
the original Borg’s allocation decisions (as detailed 
in subsection 7.7), the RUS threshold of 10%, i.e. 
whenever there was a greater than 10% increase in 
the overall node resource utilisations levels in any of 
the monitored resources, was breached 212 times per 
minute on average, with a peak of 4362 breaches. 

In this research, a threshold of 10% was selected 
for the experimental simulations as an overall good 
balance between efficiently allocating nodes’ 
resources and, at the same time, leaving the running 
tasks enough headroom for occasional activity 
spikes. Generally, lower thresholds resulted in many 
task migrations (and thus incurred additional task 
migration costs), and the thresholds above 10% were 
not utilising resources effectively (the system 
throughput was lowered). Consequently, the SAS 
functions were tuned to allocate up to 90% of all 
available resources on the node (as seen in Figure 3) 
which seem to give the best overall results. 

RUS are a significant design consideration, and 
a misconfiguration might lead to multiple premature 
terminations of the tasks and suboptimal 
performance of the system. Google’s engineers 
implemented a custom resource reservation strategy 
using a variant of step moving average, as detailed 
by John Wilkes in a presentation during the GOTO 
2016 conference in Berlin [55]. 

7. EXPERIMENTAL RESULTS 
The previously developed AGOCS framework 

was used as the base of the experimental simulation. 
AGOCS is a very detailed simulator which provides 
a multiple of parameters and logical constraints for 
simulated jobs. The scope of the available variables 
is very broad, including memory page cache hit and 
instructions per CPU cycle; however, in this project 

simulations were based on the following 
assumptions: 

 Requested (by user) and realistic (monitored) 
resources’ utilisation levels for memory and 
CPU; 

 Detailed timing of incoming tasks and any 
changes in available nodes (within one-minute 
cycles); 

 Nodes attributes and attributes’ constraints 
defined for tasks (as specified in GCD workload 
traces). 

This level of detail comes at the price of extensive 
computing power requirements. While dry 
simulation itself can run on a typical desktop 
machine, adding layers of scheduling logic, agents’ 
states and inter-system communication requires a 
significant increase in processing time. In order to 
realistically and correctly simulate scheduling 
processes on a Cloud system, the Westminster 
University HPC Cluster was used. 

7.1 Test Environment and Code Profiling 
The MASB prototype was initially developed 

on a personal desktop, but as the size and level of 
detail of the simulations grew, it was necessary to 
move to a Cluster environment where more 
computing power was available. All the experiments 
were executed on the Westminster University HPC 
Cluster, regarding which more details concerning the 
software and hardware specifications can be found 
in Table 3 below: 
 

Model Dell R630 

Operating System CentOS Linux release 7.2.1511 (Core) 

CPU 20x 2.3GHz Intel E5-2650 v3 

Memory 96GB memory 

Storage 1TB 

Networking 10Gb Ethernet 

Java Virtual Machine 
OpenJDK 64-Bit Server VM 
(build 25.91-b14, mixed mode) 

Table 3. Westminster University HPC Cluster node 
(March 2016) 

While this cluster offered a sizable array of GPUs, 
the simulations did not take advantage of that 
computing power, and instead all processing took 
place on CPUs. Although it would have been 
possible to achieve higher throughput when using 
GPU with frameworks such as ScalaCL or Rootbeer, 
JVM does not natively support GPU processing. 
Having as few external dependencies as possible was 
therefore preferred, since they make maintaining the 
project more time-consuming. Interestingly, 
Google’s BorgMaster process, which manages a 
single cell in the production environment for one 
computing cell, uses 10–14 CPU cores and up to 
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50GB of memory. The statistics presented are valid 
for an intensely utilised computing cell, for example 
one which completes more than 10k tasks per minute 
on average [51]. 

In experiments, MASB allocated all available 
forty CPU cores on HPC machine and used them 
continuously at 60% to 80%. The MASB process 
allocated ca. 7GB of memory. It is difficult to 
measure exactly how much computing power was 
spent on supporting activities such as simulating 
messaging interactions between agents, i.e. 
enqueuing and dequeuing messages to and from 
Akka actors. However, after tuning exercises of the 
default configuration, the Akka Actors framework 
proved to be quite resilient. It is estimated that the 
framework’s processing did not take up more than 
10-15% of the total CPU time, with the relatively 
lightweight AGOCS simulator framework 
consuming about 15-25% of all CPU time. As an 
interesting note, Akka’s optional Thread-pool 
executor performed noticeably better on the test 
HPC machines than on the default Fork-join-pool 
executor, which is based on a work-stealing pattern.  

However, in a truly multi-core environment, a 
different approach was required – one which focused 
on minimising context switches frequency and 
average CPU idle time across all available cores. 
Once the MASB framework was moved into the 
Cluster environment, the ‘pidstat’ command tool 
was used to gather statistics, before the refactor and 
fine-tune framework so as to achieve better 
parallelism. During MASB simulations, the typical 
observed context switches frequency was ca. 500-
700 per second per thread, which is comparable with 
a fully loaded webserver [29]. 

 
7.2 Testable Design 

Building a framework which fully simulates the 
Google computing cell from GCD traces has been 
previously recognised as a challenging task, where 
there are many aspects to consider [2][45][64]. GCD 
traces contain details of nodes, including their 
resources, attributes and historical changes in their 
values. Traces also contain corresponding 
parameters for tasks, such as user-defined and 
actually-used resources, as well as attributes’ 
constraints. This has created a multi-dimensional 
domain with a range of relations which has resulted 
in complex error-prone implementation. In order to 
mitigate the risk of coding errors, especially during 
rapid iterations, a number of programming practices 
were used: 

(i) A comprehensive test units suite was 
developed, along with prototype code. Test units 

were executed upon every build to catch errors 
before being deployed to production. This software 
engineering pattern allowed for a rapid development 
of prototype and helped to maintain the high code 
quality; 

(ii) A number of sanity checks were built into the 
runtime logic, such as checking whether the task’s 
constraints could be matched to any node’s attributes 
within the system and checking whether the total of 
all scheduled tasks’ resources exceeded the 
computing cell compatibilities; 

(iii) Recoverable logic flow was implemented for 
both NA and BA. In the case of various errors such 
as division by zero or null pointer exceptions, the 
error is logged but the agent continues to run; 

(iv) Keeping a separate error log file with the 
output of all warnings and errors was a considerable 
help in terms of resolving bugs. 

The implementation of the above features gave 
high confidence in terms of realising a good quality 
and reasonably bug-free code. 

7.3 Platform Outputs 
Adding detailed logging features to MASB has 

proved surprisingly difficult. Due to the highly 
parallel nature of the simulated Cloud environment, 
an enormous number of log messages were 
generated upon each simulation, making it difficult 
to analyse the behaviour of tested algorithms. In 
addition, writing and flushing log streams caused 
pauses in simulation. Switching to a Logback 
framework designed with a focus on concurrent 
writes provided a solution to this problem, although 
it was necessary to split the data into distinct log files 
in order to improve readability, e.g. separate errors 
from algorithms’ output data. The following outputs 
were used: 

(i) Logging – in order to fine-tune MASB, 
excessive logging routines were implemented. All 
messages, counters and errors are logged to four 
types of log-files: /logs/*.log files – standard log 
outputs containing all logs messages and also 
samples; /logs/*-error.log – errors and corrupted 
data exceptions are written to separate files to help 
with debugging and troubleshooting; /logs/*-
ticks.csv – CSV files with periodically generated 
overall system stats, such as the number of idle and 
overloaded nodes, number of migration attempts, 
global resources-allocation ratio, and so on; 
/usage/*.csv – detailed node usage stats and task 
allocations are written periodically to a file, that is, 
every hundred minutes of simulation time. 
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(ii) Sampling – while examining every decision 
process in MASB simulation is virtually impossible, 
frequent and recurrent analysis of the details and 
values was useful for fine-tuning the system and the 
scoring functions. Not all the details of every single 
decision process were logged, rather just a small 
percentage of all invocations. In the current 
implementation, the following items are sampled: 

 The selection of overloading tasks by the NA, ca. 
1 sample per 50 invocations (a sample is 
presented in 5.1); 

 The scoring and selection of candidate nodes by 
the BA, ca. 1 sample per 5k invocations (see log 
entry in 5.2); 

 The selection of the target node from the 
candidate node list, ca. 1 sample per 5k 
invocations (as listed in subsection 5.4). 

Sampling proved to be one of the most important 
logging features implemented. 

7.4 System Evolutions and Optimisations 
In order to achieve high resources utilisation and 

low resources waste, several enhancements were 
implemented and then fine-tuned, including: 

(i) Limiting the number of candidate nodes 
returned from BA to fifteen, and introducing the 
forced migrations feature (subsection 5.6); 

(ii) Fine-tuning SCS routine to maintain the 
balance between migration cost and the node 
allocation score, which refers to finding the right 
combination of steps of the TS algorithm, as well as 
its termination depth; 

(iii) Splitting the SAS function into SIAS and 
SRAS and then limiting the number of candidate 
nodes examined in those functions (200 and 2k 
respectively); 

(iv) Adjusting input parameters for SIAS and 
SRAS functions, namely values for 𝐹_𝐵𝐼𝐴𝑆, 
𝐹_𝑆𝑇𝐸𝐸𝑃 and 𝐹_𝐹𝐿𝑂𝑂𝑅 for the best results based 
on samples logged (subsections 6.2 and 6.3); 

(v) Adding the timestamp parameter to the 
candidate node recommendations, and regularly 
removing those which have expired. In scenarios 
where the task migration request is repeatedly 
refused, this mechanism forces NA to disregard the 
results of old calculations and request newly scored 
recommendations from BAs. In this implementation, 
the recommendation’s age threshold was set to three 
minutes (simulation time) with lower values not 
yielding better results (see subsection 5.4). 

7.5 Test Simulations Setup 

During the later stages of the development of the 
MASB prototype, several simulations were 
continuously run. They were frequently paused, 
tuned and then resumed to see whether a given tweak 
would improves the results. This methodology 
allowed the research to progress at a good speed 
while simultaneously iterating a number of ideas and 
tweaks. Therefore, the testing process did not have 
noticeable stages, but instead the stages blended into 
each other. This said, it is possible to logically split 
the testing into four main areas: 

(i) Benchmarking – GCD workload traces also 
contain actual Google’s Borg scheduler task 
allocations. In the Borg’s simulation, MASB will 
replay all recorded events, mirroring tasks 
allocations as per the Google scheduler, i.e. not using 
its own scheduling logic. This simulation was used 
as a controlling run in order to test the system, and 
also as a benchmark to compare results with the 
original allocations.  

(ii) Throughput – secondly, MASB was tested to 
identify whether it was capable of allocating the 
same workload as Borg system. The size of the 
workload was then increased gradually in 2% steps 
while preserving the configuration of the system 
nodes. To ensure the correctness of results, another 
technique, called ‘cell compaction’ [51] was used in 
which, instead of adding additional tasks, the system 
nodes were removed. The results were then 
compared to the original GCD workload. 

(iii) Migration Cost – thirdly, this batch of 
experiments focused on migration costs incurred via 
use of VM-LM. A collection of different SAS 
functions and their variants were tried in order to 
research their impact on total migration cost while 
allocating the given workload. 

(iv) Scalability – finally, the MASB simulation 
was run with multiplies of GCD workload in order 
to test the scalability limits of the designed solution. 
Although this step was the least work-intensive, it 
took the longest time to perform. 

As noted in [64], simulating GCD workload is 
not a trivial task. The main challenge when running 
such large and complex simulations is the demand 
for computation power and the continuous 
processing. During this experiment, the AGOCS 
framework was modified to also allow the testing of 
computing cells larger than 12.5k. This was achieved 
by duplicating randomly selected existing tasks and 
their events, for example ‘Create Task A event from 
GCD workload trace files’ will create events 
AddTaskWorkloadEvent events for task A and A’. 
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This feature is based on the hashcode of object’s ID, 
which is a constant value. 

The largest experiments simulated a single Cloud 
computing cell with 100k nodes and required nine 
months of uninterrupted processing on one of the 
University of Westminster HPC cluster’s nodes. At 
this juncture, it should be noted that early 
simulations often fail due to unforeseen 
circumstances, such as NAS detachment or network 
failure. One solution to this was to frequently save 
snapshots of the state of the simulation and to keep a 
number of previous snapshots in case of write file 
failure. 

Figure 8. University of Westminster HPC Cluster 
utilisation 

At the peak of the experiment, eighteen out of twenty 
computing nodes were committed to running MASB 
simulations, as can be seen in Figure 8. 

7.6 Allocation Score Ratios 
Clearly, when examining the suitability of load 

balancing, the key parameter is the number of 
overloaded nodes, which should be kept to 
minimum. It was found that replaying GCD traces 
using Google’s original Borg’s allocation decisions 
results in up to 0.5% of nodes being overloaded in a 
simulated one-minute period. It was assumed that 
this phenomenon was the result of delayed and 
compacted resource usage statistics, which were 
recorded and averaged over ten-minute periods. As 
such, in further experiments this ratio was used as an 
acceptable error margin. 

The second researched property was how nodes 
were distributed amongst allocation score types 
during simulations. Therefore, each experiment 
recorded a number of nodes with each allocation 
score type, and averaged them out over the 
simulation period. The set of normalised values for 
STA, TA, PA and DA are referred to as Allocation 
Score Ratios (ASR). Idle Nodes and Overloaded 
Nodes are discussed separately, and they are 

excluded from the ASR. The ASR values describe 
how well the Cluster is balanced, that is, how well 
nodes are balanced as a whole group. 

The ASR values are used to describe the 
experimental results presented in the subsections 
below to highlight the differences in how various 
load balancing strategies perform under a GCD 
workload. 

The most dominant AS was PA, meaning that 
each of the node’s resources is utilised between 0% 
and 70%. Ca. 68% of all the cluster’s nodes are 
found within these parameters, which is the direct 
result of their initial allocation using SIAS function. 
The second biggest group, ca. 22% of all servers, are 
nodes allocated disproportionally in which one or 
more resources are highly used but the other 
resources are relatively idle. The remainder of the 
nodes have either an STA or TA allocation score 
type. The PA to DA ratio of roughly 3:1 is 
characteristic for a typical workload as recorded in 
GCD traces and processed by MASB. 

Figure 9 chart visualises the AS distribution 
during a month-long simulation. The horizontal axis 
is the measure of time and the vertical axis represents 
the number of nodes having a particular allocation 
type (as per coloured legend). The chart also 
highlights two periods of low and elevated 
workload, marked A and B respectively: 

(i) During the low workload period (A), SIAS 
function can schedule most newly-arriving tasks to 
relatively unused nodes, thereby successfully 
preserving their resource usage proportions. As 
such, the number of PAs increases while the number 
of DAs decreases. Existing long-running services 
continue to run uninterrupted on their nodes, and so 
the ratio of STA to TA remains flat. 

(ii) During an elevated workload period (B), 
SIAS function is unable to find relatively unused 
nodes anymore. It thus selects lower quality 
allocations, resulting in a decrease in PAs. Due to the 
scarcity of resources, tasks are also re-allocated 
more frequently by SRAS function. This results in 
tighter fit allocations, which is seen as an increase in 
STAs and TAs counts. 

This cycle is repeated thorough cluster activity, 
wherein MASB balances the workload. The 
subsections which follow describe several 
implemented optimisations and their rationales, as 
well as the experimental results and a commentary 
on them. 
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Figure 9. MASB – Allocation Scores distribution (12.5k nodes) 

7.7 Benchmark 
Given that GCD traces have a complicated 

structure and contain a vast amount of data, only 
rarely are they analysed to the full extent of their 
complexity. MASB design shares similarities with 
BorgMaster in areas such as constraining tasks, 
defining memory and CPU cores as resources, using 
scoring functions for candidate node selection, and 
handling RUS. It also closely follows the lifecycle of 
tasks as presented in [19]. As things stand, there is 
no publicly available literature which contains 
descriptions of similar experiments which could be 
compared with the simulation results of MASB. 
Therefore, the closest comparable results are the 
original Borg’s allocation decisions that were 
recorded in GCD traces. For the purposes of this 
research, it was decided that they be used as a 
benchmark for the results from MASB’s 
experiments. 

Both simulations processed full month-long 
GCD traces. The average values were used because 
MASB simulation works in one-minute intervals 

whilst GCD traces provide usage statistics in ten-
minute windows that occasionally overlap. Given 
this, peak or median values were not accurate. 

To highlight differences in workings between the 
MASB and Google Borg algorithms, Figure 10 
presents the AS distribution during the period 
recorded in GCD (replayed Google’s Borg 
allocation events). In comparison to the 
experimental data presented in Figure 9, MASB 
behaves more organically during periods of low and 
elevated workload. This is especially visible during 
the period of elevated workload (B) where MASB 
managed to preserve a better ratio of PA to DA 
Nodes than Google’s Borg. This behaviour is the 
result of allowing a given task to be re-allocated 
during its execution, meaning that MASB can 
dynamically shape its workload and improve the 
health of its allocations. This feature also allows 
greater flexibility in altering the requirements of 
running tasks, in which the load balancer attempts to 
offload an alternative node. 
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Figure 10. Borg – Allocation Scores distribution (12.5k nodes) 

Table 4 directly compares ASR parameters of both 
pre-recorded Google’s Borg and MASB simulations: 
 

Parameter 
(average, one-minute 

interval) 

Framework 

Borg 
(Figure 10) 

MASB 
(Figure 9) 

Idle Nodes 
1.01 

(0.01%) 
78.10 

(0.63%) 

STA1 Nodes 
820.49 
(6.58%) 

487.01 
(3.91%) 

TA1 Nodes 
459.57 
(3.69%) 

564.18 
(4.53%) 

PA1 Nodes 
6597.14 
(52.94%) 

8508.08 
(68.28%) 

DA1 Nodes 
4578.49 
(36.74%) 

2810.69 
(22.56%) 

Overloaded Nodes 
4.04 

(0.03%) 
12.62 

(0.10%) 

Table 4. Benchmark results – Borg and MASB 

The listed ASR values highlight the differences 
in Borg and MASB workings: 

(i) Idle Nodes – Borg’s design has a definite 
advantage over MASB because Borg’s schedulers 
can access the shared cluster’s state and iterate over 
the complete set of system nodes. MASB relies on a 
network of BAs, each of which has only partial 

information about the cluster’s state. Therefore, a 
subset of idle nodes might never be scored, even if 
they represent the best allocation for a given task. 

(ii) STA and TA Nodes – in both systems, under 
normal workload conditions, incoming tasks are 
reasonably well distributed between the nodes. Only 
ca. 10% of all system nodes register higher resource 
usage scores, when at least one of resource 
utilisation levels crosses 90%. The exact scoring 
algorithm of Google’s Borg has not been disclosed, 
but the results suggest a degree of similarity to the 
SIAS function. 

(iii) PA and DA Nodes – the ratio of PAs to DAs 
is visibly different in Borg and MASB. Borg’s 
original scheduling decisions had a ratio of roughly 
3:2, meaning that for every three proportionally 
allocated nodes in the system, there were two nodes 
that were disproportionately allocated. MASB 
managed to achieve a better ratio of 3:1, suggesting 
that the use of SIAS and SRAS scoring functions 
together with VM-LM feature can potentially create 
a more balanced scheduling system. 

Given the superior ratio of PA to DA nodes as 
measured, and the possibility of increased 
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throughput, the next experiment focused on 
processing increased workload.  

7.8 Throughput Tests 
The MASB framework has been designed as a 

general solution for balancing workload in a 
decentralised computing system. After numerous 
iterations, MASB was eventually able to schedule 
the entire GCD workload, with additional tasks also 
added. 

Table 5 presents a comparison of the results with 
different workload sizes: 

 
Parameter 

(average per 
minute) 

Workload Size (tasks) 

100% 
(original) 

102% 104% 106% 

Nodes Count 12460.39 12460.36 12460.68 12460.35 

Tasks Count 132061.15 134738.92 137399.93 142936.05 

Global CPU 
Usage Ratio 

43.64% 44.54% 45.42% 46.89% 

Global 
Memory 

Usage Ratio 
62.05% 63.33% 64.58% 66.57% 

Idle Nodes 
76.41 

(0.61%) 

73.08 

(0.59%) 

72.75 

(0.58%) 

52.18 

(0.42%) 

STA Nodes 
479.91 

(3.85%) 

480.22 

(3.85%) 

423.51 

(3.40%) 

447.73 

(3.59%) 

TA Nodes 
566.20 

(4.54%) 

545.74 

(4.38%) 

447.75 

(3.59%) 

355.88 

(2.86%) 

PA Nodes 
8507.49 

(68.28%) 

8718.76 

(69.97%) 

9316.35 

(74.77%) 

9576.67 

(76.86%) 

DA Nodes 
2818.11 

(22.62%) 

2610.04 

(20.95%) 

2084.06 

(16.73%) 

1718.08 

(13.79%) 

Overloaded 
Nodes 

12.28 

(0.10%) 

32.53 

(0.26%) 

116.25 

(0.93%) 

309.79 

(2.49%) 

Table 5. Throughput results (100%-106% workload) 

As demonstrated above, MASB was able to 
schedule, on average, an additional ca. 2.6k tasks per 
minute (ca. 2% more tasks). Further tuning was 
unable to improve those results, with workload sizes 
greater than 102% increasing the number of 
overloaded nodes above the defined threshold of 
0.5%. 

To further ensure the correctness of the attained 
results, another set of experiments was run in 
parallel. Here, instead of multiplying the original 
GCD workload, the random machines were removed 
from the cluster until the workload could no longer 
be fitted. This method, known as ‘cell compaction’, 
is suggested in [51] for simulations with GCD traces. 

Similar to the previously detailed experiments 
which had augmented workload, even when the 
cluster size was reduced to ca. 98% of its original 
size (242 nodes being removed), the original GCD 
workload could still be fitted without breaching the 
0.5% limit of overloaded nodes. 

On average, GCD traces utilise ca. 40-50% of the 
globally available CPUs and ca. 60-70% of globally 
available memory while continuously guaranteeing 
ca. 85% of CPUs and ca. 70% of memory to 
production tasks to handle RUS. It should be noted 
that Borg’s scheduling routines have been perfected 
following decades of work by a team of brilliant 
Google engineers. The conclusion of this research is 
that, it is hard to substantially improve this 
impressive result given those constraints. Although 
the throughput of the original Google Scheduler 
could not be significantly improved, the results from 
both methods of evaluation show the benefits of 
using VM-LM to fit additional tasks in an already 
very tightly-fitted cluster. 

Table 6 details those experimental results: 
 

Parameter 
(average per 

minute) 

Cluster Size (nodes) 

100% 
(original) 

99% 98% 97% 

Nodes Count 12460.39 12332.92 12218.61 12081.30 

Tasks Count 132061.15 132057.96 132057.54 132055.86 

Global CPU 
Usage Ratio 

43.64% 44.09% 44.52% 45.05% 

Global 
Memory 

Usage Ratio 
62.05% 62.72% 63.39% 64.08% 

Idle Nodes 
76.41 
(0.61%) 

53.29 
(0.43%) 

58.96 
(0.48%) 

75.87 
(0.63%) 

STA Nodes 
479.91 
(3.85%) 

480.28 
(3.89%) 

404.13 
(3.31%) 

448.67 
(3.71%) 

TA Nodes 
566.20 
(4.54%) 

572.24 
(4.64%) 

485.55 
(3.97%) 

500.75 
(4.14%) 

PA Nodes 
8507.49 
(68.28%) 

8412.71 
(68.21%) 

8866.13 
(72.56%) 

8663.88 
(71.66%) 

DA Nodes 
2818.11 
(22.62%) 

2800.30 
(22.71%) 

2361.64 
(19.33%) 

2339.31 
(19.35%) 

Overloaded 
Nodes 

12.28 
(0.10%) 

14.11 
(0.11%) 

42.20 
(0.35%) 

62.07 
(0.51%) 

Table 6. Throughput results (97%-100% cluster) 

7.9 Migration Cost 
The MASB framework relies on a VM-LM 

feature to balance workload by moving running tasks 
across Cloud nodes. While the VM-LM process is 
reasonably cheap in terms of the computing power, 
it does incur a non-trivial cost on the Cloud’s 
infrastructure. In order to avoid excessive networks 
transfers, NAs carefully decide which tasks will be 
migrated out from a given node. To score candidate 
tasks, the SCS function is used which takes the task’s 
estimated migration cost into consideration as well 
as released resources (see 5.1 for more details).  

Unexpectedly, when searching for ways to lower 
the total migration cost, although modifications of 
SCS function seemed to be the most palpable place 
to start, significantly better results were not obtained. 
Based on experience from previous experiments, it 
was discovered that the biggest reduction in task 
migrations was achieved by improving the quality of 
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the initial task allocation. Therefore, further 
experimentation focused on testing variants and 
combinations of the score functions. 

As previously mentioned, initially MASB 
implemented a single SAS function which 
prioritised the scattering of tasks amongst nodes. 
With introduction of SAL (detailed in subsection 
6.1), the SAS function was split into SIAS and SRAS 
functions biased towards opposite allocation types, 
namely PA and TA. However, during the study of 
the impact of frequent re-allocations on the total 
migration cost, it was found that those scoring 
functions can be further improved by introducing 
GAIN variants. Figure 11 presents the evolutions of 
scoring functions: 

Figure 11. Scoring functions evolution 

The GAIN variants of SIAS and SRAS functions are 
defined here as SIAS_GAIN and SRAS_GAIN 
respectively: 

𝑆𝐼𝐴𝑆_𝐺𝐴𝐼𝑁 ൌ 𝑆𝐼𝐴𝑆ሺ𝑇′ሻ െ 𝑆𝐼𝐴𝑆ሺ𝑇ሻ 
𝑆𝑅𝐴𝑆_𝐺𝐴𝐼𝑁 ൌ 𝑆𝑅𝐴𝑆ሺ𝑇′ሻ െ 𝑆𝑅𝐴𝑆ሺ𝑇ሻ 

where 𝑇 is the current set of allocated tasks, and 𝑇′ 
is the candidate set of allocated tasks on a given 
node. Additionally, cases when a node would lower 
its AS as a result of migrations have a zero score. 

In the GAIN variants of scoring functions, the 
relative AS gains are prioritised over the absolute AS 
values for an individual node. For example, given 
the scenario in which the task migration to node A 
would change its AS from 0.1 to 0.4 (a 300% gain), 
while the same task could also be migrated to node 
B, changing its AS from 0.4 to 0.6 (a 50% gain), the 
former option will be selected as yielding a higher 
gain (since 300% is greater than 50%) regardless of 
the potentially higher absolute score value of node 
B. 

The combination of SIAS_GAIN and SRAS 
functions was most efficient, i.e. the total average 
migration cost as well as the average cost per task 
migration were lowest, while ASR remained 
virtually unchanged. Nonetheless, the good results 
were also yielded with the combination of SIAS and 
SRAS. Table 7 presents the results under the variants 
of the scoring functions: 

 

Scoring Functions 

Parameter 
(average per 

minute) 

SIAS 

SRAS 

SIAS 

SRAS_GAIN 

SIAS_GAIN 

SRAS 

SIAS_GAIN 

SRAS_GAIN 

Total 
Migration 
Cost [GB] 

1490.65 7008.30 1252.50 5925.41 

Cost per Task 
Migration 
[MB] 

338.09 795.90 339.02 954.21 

Idle Nodes 
83.54 

(0.67%) 

105.80 

(0.85%) 

76.14 

(0.61%) 

79.33 

(0.64%) 

STA Nodes 
495.09 

(3.97%) 

687.77 

(5.52%) 

490.42 

(3.94%) 

654.18 

(5.25%) 

TA Nodes 
656.67 

(4.54%) 

560.65 

(4.50%) 

558.57 

(4.48%) 

547.38 

(4.39%) 

PA Nodes 
8515.95 

(68.34%) 

8492.21 

(68.15%) 

8511.61 

(68.31%) 

8451.12 

(67.82%) 

DA Nodes 
2785.23 

(22.35%) 

2586.43 

(20.76%) 

2810.95 

(22.56%) 

2707.73 

(21.73%) 

Overloaded 
Nodes 

14.88 

(0.12%) 

27.54 

(0.22%) 

12.67 

(0.10%) 

20.61 

(0.17%) 

Table 7. Results comparison of SAS, SIAS and 
SRAS (migration cost) 

The experiment showed that focusing on the 
node AS’s absolute value as well as value gain are 
both viable strategies during the initial task 
allocation (with the former being relatively better). 
However, it is the selection of the task re-allocation 
strategy that is crucial and should be dedicated to 
maximising the absolute value of the node’s 
allocation score. As mentioned previously, the 
majority of tasks scheduled on the GCD cluster are 
short-lived batch jobs which tend not to have high 
resource requirements [44]. As such, there is no need 
to carefully fit them to a node. As a result of their 
limited time on the cluster, the chance of re-
allocation is low. Long-running services, however, 
should be fitted tightly onto available nodes and 
continue to run there due to the additional cost of 
further re-allocations because of the typically large 
amounts of used memory. 

7.10  Scalability Study 
The final step in the experiments was to examine 

the scalability of the MASB framework. Due to the 
simulation’s high computational requirements, its 
one-minute time slices were split into ‘rounds’, in 
which every NA could both respond to migration 
requests as well as send its own requests, although 
sent requests would be unanswered until the next 
‘round’. This meant that the simulated scenarios 
were as realistic as possible whilst also emulating 
massive Cloud installations. 

Such a long simulation was necessary in order to 
achieve reliable and quality results. The month-long 
GCD workload traces were produced by an actual 
Cluster system and contain many real-world 
scenarios which would not be possible to synthesise 
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in any other way. Special thanks are due to 
University of Westminster IT staff which provided a 
massive help and support during those experiments. 

Table 8 demonstrates the results achieved 
through the multiplication (here: two, four and eight 
times) of the original GCD workload; it also 
highlights the lack of changes in ASR values: 

 
Parameter 
(average 

per minute) 

Cluster Size (nodes) 

12.5k 

(original) 

25k 

(2x) 

50k 

(4x) 

100k 

(8x) 

Nodes 
Count 

12460.70 24921.49 49842.99 99685.97 

Tasks Count 132061.35 264155.80 528336.38 1056645.92 

Idle Nodes 
71.61 

(0.57%) 

95.82 

(0.38%) 

226.42 

(0.45%) 

413.03 

(0.41%) 

STA Nodes 
492.67 

(3.95%) 

805.60 

(3.23%) 

1920.99 

(3.85%) 

3868.22 

(3.88%) 

TA Nodes 
570.37 

(4.58%) 

962.14 

(3.86%) 

2232.10 

(4.48%) 

4300.70 

(4.31%) 

PA Nodes 
8502.06 

(68.24%) 

18118.11 

(72.71%) 

34102.21 

(68.42%) 

68999.49 

(69.22%) 

DA Nodes 
2812.74 

(22.57%) 

4914.55 

(19.72%) 

11324.77 

(22.72%) 

22031.79 

(22.10%) 

Overloaded 
Nodes 

11.26 

(0.09%) 

25.25 

(0.10%) 

36.49 

(0.07%) 

71.83 

(0.07%) 

Table 8. Scalability tests – 12.5k, 25k, 50k and 100k 
nodes 

MASB was able to orchestrate a cell size of 100k 
without a noticeable scalability cost and without 
crossing the limit of 0.5% overloaded nodes. With 
the current MASB framework implementation, the 
simulation of this size took around nine months on a 
single node of the University of Westminster. 

Google has never disclosed the size of their 
largest cluster, but it has been noted in [51] that Borg 
computing cells are similarly sized to the clusters 
managed by Microsoft’s Apollo system, which have 
in excess of 20k nodes [7]. A 12.5k node cells in 
GCD traces have been described as ‘average’ or 
‘median’, cells with fewer than 5k nodes have been 
called ‘small’ or ‘test’ [51]. Additionally, [51] gives 
an example of a larger cell C, which is 150% the size 
of cell A and therefore also approximately 20k 
nodes. As such, in this research it is assumed that the 
computing cell of the large Borg is around 20-25k 
nodes. 

Therefore, as demonstrated, the designed multi-
agent load balancing strategy scaled beyond the 
original GCD workload without incurring noticeable 
scalability costs. The paradigm of offloading the 
scheduling logic onto nodes themselves has the 
following benefits: (i) it enables the implementation 
of more complex scheduling schemas as the nodes 
resources can be used for that purpose; (ii) the 

computing power dedicated to cluster orchestration 
increases together with the Cluster size (so allowing 
for greater scalability); and, (iii) limits the amount of 
communications required to maintain up-to-date 
Cluster state information. The result of such a 
schema is the ability to enlarge the computing cells 
to the sizes of 100k nodes while preserving a good 
throughput and performance. 

8. EXPERIMENTAL RESULTS 
During work on the Cloud load balancer 

prototype, a number of publications were examined 
and later compared with the proposed MASB design. 
Aside from the solutions presented in section 2, the 
following three systems listed in the subsections 
below have been found to share a degree of 
similarity with MASB. 

8.1 ANGEL System 
The ANGEL system [64] is based on a concept 

wherein a multi-agent system manages its workload 
in a virtualised Cloud environment. This solution 
also takes advantage of the VM-LM feature to re-
allocate running tasks to an alternative node if 
necessary. While the basic concept of ANGEL and 
the MASB system is similar, the design of the 
architecture and features differ substantially: 

(i) Within ANGEL each task is represented by 
Task Agent created upon task arrival and destroyed 
when the task is complete. VM Agent represents a 
VM hypervisor running on a physical node and 
accepting/rejecting tasks. In comparison, during the 
development of MASB, it was found that the sheer 
number of tasks made it impractical to create an 
entity for each task responsible for its allocation; 
given this, the responsibility was assigned to NAs. 
In MASB, NAs themselves are responsible for 
keeping their node stable and offloading overloading 
tasks to alternative nodes. Therefore, MASB can 
potentially support very larger number of tasks. 
Indeed, during simulations one million tasks were 
continuously managed. 

(ii) In ANGEL, Manager Agent acts as a leader 
for this computing cell and stores the complete 
system state in a ‘VM Information Board’. VM 
Agents are constantly updating Manager Agent as to 
changes in their state, such as available resource 
(CPU and memory) changes, VM creations and 
cancellations. The ANGEL system assumes that the 
stored system state is always current, and Manager 
Agent this information to match Task Agents with 
VM Agents. In MASB a subnetwork of BAs has 
responsibility of caching the global system; 
however, this information is accepted as outdated by 
design, and so system uses it only for building initial 
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candidate nodes list which is then sent to NAs. 
Therefore, MASB doesn’t rely on accurate and 
timed updates from system nodes and the actual task 
allocation is resolved later between NAs themselves. 

(iii) MASB is focused on a Cluster throughput 
and scalability whereby resource usages gaps are 
reduced, and tasks are fitted into available nodes. 
The focus of the project was to achieve tightness of 
task allocations no worse than in the GCD traces 
while improving scalability. The aim of ANGEL is 
to guarantee the ratio of tasks guaranteed to meet 
their deadlines which are also priority-adjusted. 
Therefore, ANGEL seems to be more aimed at high 
churn of short-term tasks, while MASB is designed 
to support mixed-workload consisting of batch jobs 
as well as long-lived services. 

The authors of ANGEL also tested their solution 
on GCD traces. In so doing, they acknowledged the 
difficulty of conducting experiments on the whole 
month-long traces because of the enormous count of 
tasks in the trace logs. As such, they performed their 
experiments exclusively on the 18th day of traces, 
which has been recognised as being the most 
representative time period in GCD traces [33]. 
However, the results presented use different metrics 
and do not specify further details of the experiments, 
such as whether authors also matched task 
constraints and whether tasks were allocated with 
regards to handing RUS. 

8.2 US Patent 5,031,089 
[25] filed a patent which described a set of 

routines that could be deployed on nodes in order to 
balance system-wide workload. The first routine 
periodically examines a number of jobs on the node's 
queue and computes the 'workload value', which is 
then provided on request to other nodes by the 
second routine. The third routine, meanwhile, is 
triggered periodically when the node is idle, and at 
the end of each job completion. This routine contains 
the main bulk of load balancing logic and evaluates 
whether the node's 'workload value' is below a pre-
established value that would indicate that the node is 
relatively idle. If the node is recognised as being 
under-utilised and available for more jobs, then the 
routine will poll all the other nodes for their 
'workload value', and transfer jobs from the node 
with the highest 'workload value' to its own queue. 

The feasibility of this invention was validated via 
several simulations, although those results are not 
shared in the cited patent. The authors list several 
assumptions made during the performance testing of 
this study, such as the homogeneity of all the tasks 
and their resource requirements, as well as the 

assumption that the job's transfer cost is negligible. 
The main criticism of this solution is that it 
oversimplifies the Cluster workload's model, and it 
omits the continuous changes of resources used by 
jobs. Only the job’s queue length was used as 
'workload value'. Furthermore, only non-started jobs 
can be transferred to alternative nodes. The solution 
relies on polling all nodes in the cluster for their 
utilisation levels, which in a large cluster might be 
not feasible and may create a bottleneck. 

8.3 US Patent 8,645,745 
[5] notes that there is a problem when a 

centralised job scheduler needs to pass through a 
large number of nodes in order to find one which can 
be used to run the task, and proposed a solution 
whereby each node is continuously scanning a 
shared-file to determine which job could be executed 
on this node. When a job requires multiple nodes, the 
one on the nodes becomes a primary node, which 
then assigns and monitors the job execution on the 
multiple nodes. 

In comparison to MASB, the main similarity is 
that there is no centralised manager to assign tasks to 
nodes. This means that nodes are themselves 
responsible for selecting and then running the 
accepted tasks. However, the main difference is that 
proposed patented strategy doesn’t examine all 
nodes, and the task is allocated to the first (quickest) 
scheduler that picks the task. In MASB a task 
allocation is a multi-step process in which each node 
tries to increase its AS by selecting the best-
matching tasks. Moreover, MASB dynamically 
manages workload by offloading currently running 
tasks to the best candidate nodes (with the highest 
AS score), and, by doing that, the overall system 
efficiency is increased. 

Given that the patent paper provides no results 
from experiments, it is difficult to directly compare 
systems’ performances. 

9. SUMMARY AND CONCLUSIONS 
The primary challenge when sequencing a queue 

of tasks on a cluster is to fit them tightly so as to 
reduce resource usage gaps. The scheduling 
algorithm attempts to reduce the situations where a 
resource on a given node is overly un-utilised at the 
same time that other resources on that node are 
mostly allocated. It is extremely important to shrink 
the gaps in resource utilisation and to allocate them 
proportionally, especially when initially scheduling 
new tasks which tend to have balanced resource 
requirements. 

Fitting objects of different volumes into a finite 
number of containers is known as a ‘bin-packing’ 
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problem, and belongs to class of NP-Hard problems. 
The traditional way of solving NP-Hard problems 
are metaheuristic algorithms. However, experiments 
in [49] demonstrated that although metaheuristic 
algorithms yield good solutions, they do not scale 
well to the required number of nodes in a Cloud 
system.  

Alternative solutions and a large number of 
optimisations can be devised, such as caching 
computed solutions and then retrieving them based 
on task similarity, multiple concurrent schedulers 
working on a single data store, and pre-allocating 
resources for the whole task batches [51]. However, 
these solutions and optimisations still incur 
substantial computational costs, and it is inevitable 
that any model where the head node processes all 
scheduling logic by itself will eventually work less 
effectively when the cluster size grows and the 
frequency of incoming tasks increases. 

The MASB framework offers an alternative 
approach to task allocations in that all the actual 
processing of scheduling logic is offloaded to nodes 
themselves. This framework uses loose coupling at 
every stage of its scheduling flow, meaning that 
scheduling decisions are made only on locally-
cached knowledge and all communication between 
nodes is kept to minimum. Each node tries to 
increase its AS by selecting and offloading tasks, 
with the assumption being that by bettering 
individual ASs, the global system performance will 
be improved. This design also takes advantage of the 
VM-LM feature, where a running program within a 
VM instance can be migrated on the fly to an 
alternative node without stopping a program 
execution. 

Design of this schema created a set of new 
challenges, such as selecting alternative nodes with 
limited and non-current knowledge about the state of 
other nodes, estimating the VM-LM cost of 
migrating a running program, understanding the 
classifying and scoring functions of the allocation 
type of a node, and designing the stateless node-to-
node communication protocol, to identify just a few. 

In this research, realistic (i.e. pre-recorded) 
workload traces from GCD were used and were run 
on the AGOCS framework described above as a very 
detailed simulation. The costs involved were the 
substantial computing power required to run 
experiments as well as time, in that a single 
simulation run took about a month on a forty-core 
(twenty physical cores + HT siblings) machine. In 
order to benchmark the research results, original 
scheduling decisions made by Google’s Borg 

scheduler are examined which are also part of GCD 
traces. This generated statistics such as total resource 
usage, the number of idle nodes and production-
allocated resources. 

When examining GCD traces, it is important to 
note that Google’s engineers did a phenomenal job 
in first designing and then iteratively improving the 
Borg system. Incoming tasks are packed very tightly 
and, although production jobs always have 
additional resources available to them within defined 
requirements’ limits, the spare resources are 
efficiently recycled for low priority jobs. Google 
Cluster has been built upon hardware without direct 
support for virtualisation, meaning that its 
orchestrating software design had to accommodate 
this limitation. This research should be considered 
an as-if scenario and assumes the availability of the 
VM-LM feature to shuffle running tasks within a 
Cluster. 

In this research, there was only limited success in 
terms of improving the throughput of executed tasks 
on a simulated computing cell. This was mainly due 
to the constraints arising from handling RUS. During 
throughput tests, the MASB achieved a similar level 
as Google’s Borg, understood here as the total 
number of executed tasks. During the progressively 
more intensive workload, ASR values indicated a 
degradation in the quality of allocations so that 
eventually the throughput could be improved by a 
margin of 2%. However, MASB could achieve 
higher scalability and run multiple sizes of examined 
computing cell without noticeable scalability costs. 
Simulations up to 100k nodes from GCD were 
tested, yielding relatively comparable results when 
run with smaller instances of simulations. 

 

9.1 Applications of Technology 
In late 2017, a team of marketing experts from 

IBM estimated that the world generates roughly 2.5 
million TBs of data per day, with 90% of all data 
having been created in the past few years alone [1]. 
With novel technologies emerging, new devices and 
sensors being connected, the data growth rate will 
accelerate even more. To process such vast data 
streams, new distributed computing models are 
being designed. In recent years, the trend for 
software development has been towards Big Data 
systems and Machine Learning algorithms, 
specifically: 

(i) Big Data systems are characterised by a high 
degree of parallelism. A typical Big Data system 
design is based on a distributed file system, where 
nodes have the dual function of storing data as well 
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as processing it. One program in such a system might 
need to crunch tens of TBs of data split across 
thousands of nodes. Even with the ideal allocation of 
Big Data tasks, where every node is processing data 
from local storage, a single machine would still need 
to process GBs of data. In order to speed up this 
time-consuming process, the partial datasets can be 
split even further and processed on more nodes; 

(ii) Machine Learning is yet another rapidly 
developing area where there is high demand for 
computing power. The training algorithms for deep 
neural networks require multiple iterations over 
datasets, and the recent research is shifting towards 
greater parallelism. However, important algorithms 
such as k-means clustering, alternating least squares, 
and logistic regression are already very suited to run 
in parallel. Open Source libraries such as Google’s 
TensorFlow and Spark’s MLlib, and the 
affordability of specialised clusters (e.g. Google’s 
Cloud TPU) makes it easy for businesses as well as 
researchers to utilise those technologies to enhance 
their offerings. It can certainly be argued that 
industries will be adopting Machine Learning in 
order to increase competitiveness. 

Therefore, the organisations which employ those 
modern technologies are highly likely to build 
computing cells with even more inter-connected 
nodes in the near future. To manage larger 
computing cells, more scalable workload 
orchestration technologies are required, such as the 
presented MASB prototype. Experiments have 
shown that MASB design can run a workload on a 
large Cloud system (100k nodes) with a throughput 
comparable to Google’s Borg system. It should be 
noted that larger computing cells are also more 
economical – Google’s Borg demonstrated [51] that 
running a mixed-workload consisting of short-lived 
batch jobs and long-running services as well as 
production and non-production jobs on the same 
cluster is not only possible, but allows to utilise of 
available resources more efficiently. Essentially, 
resource usage gaps are reduced. Therefore, 
industries such as financials, health or even 
government, could make monetary savings if their 
processing centres were joined and more 
heterogenous workload was introduced in those 
clusters. MASB is a good candidate for such an 
integration. 

9.2 Future Directions 
Although the experimental results prove that it is 

feasible to deploy the presented decentralised 
architecture in a live environment, there are several 
possible other improvements, as listed below: 

(i) During experimentations, several nodes 
remained idle. This effect was a result of iterating 
only a limited number of nodes while computing a 
candidate node’s set for a given task migration. A 
potential solution to this issue is a separate size-
limited list of relatively under-utilised nodes which 
would be compulsorily scored each time a BA is 
issued a GetCandidateNodesRequest request. Such a 
list could be exchanged separately between BAs; 

(ii) The SCS routine (Step 1 in the SAN protocol) 
is triggered only when the NA detects that its node 
is overloaded. However, the system could employ a 
more proactive approach in which the NA would 
periodically try to offload its tasks in order to 
improve its AS, even if the node is stable. This would 
create a secondary mechanism to distribute the load, 
which would potentially reduce resource utilisation 
gaps even further. However, this feature would also 
place additional pressure on BAs and, as such, needs 
to be carefully balanced; 

(iii) In a real-world system it is expected that a 
number of nodes will experience failure. NA’s AI 
module could maintain a set of blacklisted nodes 
which repeatedly did not respond to requests. Such a 
set could be shared with BAs, similar to the way it is 
implemented in Fuxi [63], and presented to system 
administrators. 

(iv) The MASB prototype does not address fault-
tolerance, which is an important aspect of Cloud 
design. This feature could be realised in multiple 
ways, such as running cloned instances of tasks, 
periodically saving process checkpoints, and 
ensuring the applications’ state is synchronised 
across all its instances. The fault tolerance could also 
be improved by implementing service/node anti-
affinity scheduling strategies where a scheduler tries 
to allocate replicas of a given service to possibly 
distanced nodes. In critical failure scenarios, such 
programs have a greater chance to survive and 
continue operations. For example, the Kubernetes 
scheduler implements anti-affinity scoring 
functions, which gives higher priority to nodes not 
running services from the same application [24]; 

(v) Resource usage quotas per user, group or 
other entity, would make another welcome feature. 
This is something which is often present in 
commercial Cluster schedulers. However, it would 
also require adding an accountancy module with a 
decentralised dataset in order to maintain scalability. 
The same mechanism could be used to throttle the 
submissions of new tasks so as to not extend the 
Cluster’s capabilities; 



Journal of Theoretical and Applied Information Technology 
31st October 2018. Vol.96. No 20 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6779 

 

(vi) The proposed design does not account for 
task priorities, meaning that tasks are only split into 
production and non-production groups. Production 
tasks have committed resources which, under normal 
circumstances, are guaranteed to be available. 
However, during critical system-wide failures, such 
as a power failure or network infrastructure collapse, 
the system should degrade gracefully (as opposed to 
an uncontrolled crash). In scenarios where the 
current workload cannot be sustained, the system 
should shut down lower priority tasks first and use 
the remaining available nodes to offload high-
priority tasks; 

(vii) In this project, it is assumed that NAs and 
BAs agents are continuously running without 
breakdowns. Nevertheless, agents are also a piece of 
software, meaning that they are prone to bugs and 
errors. As a possible improvement to detect and 
restore hung agents, a hierarchy model could be 
introduced in which an agent supervises a number of 
other agents and restarts them if necessary. This 
concept is similar to the Akka Actors 
implementation [41] in which a parent actor 
manages the failures of its children. Additionally, a 
hierarchy of BAs could be used to propagate the 
cluster’s state knowledge in a more efficient manner; 

(viii) MASB does not attempt to implement 
locality optimisation when the task’s part of a 
distributed file is processed faster if accessed locally. 
Currently, GCD task descriptions contain only 
restrictions which disallow nodes that the task could 
be executed on. However, adding optional metadata, 
such as the ID of the distributed file’s part, could 
prioritise a set of nodes and improve the overall 
cluster performance. This functionality is featured in 
some of the Big Data frameworks; 

(ix) Even though the experimental results 
presented are of good quality, they suggest a number 
of potential improvements, especially in locating and 
then scheduling tasks to idle nodes. One possible 
improvement could be sharing vector idle nodes 
between all BAs, and then compulsory prioritising 
them over utilised nodes; 

(x) The Cloud architectures’ design is moving 
towards greater use of Virtual Containers (VC) such 
as Docker. At the time of writing, Docker does not 
fully support LM – the integration with 
Checkpoint/Restore In Userspace tool does not 
allow the migration of a running application to the 
alternative container on the fly. Instead, the user 
must copy checkpoint files and restore them on an 
alternative node (cold migration). However, the 
available literature describes early experiments with 

LM feature [62] and the working prototype was 
demonstrated in a presentation during the OpenStack 
Summit 2016 conference in Barcelona (Estes and 
Murakami, 2016). Once LM becomes the part of 
mainstream technology, the load balancing strategy 
presented in this research could be adapted to use 
VCs; 

(xi) MASB estimates the task migration cost, and 
considers this value when selecting which tasks to 
migrate out from a node. However, it does not 
calculate the fact that neighbouring nodes (e.g. those 
in the same server rack) might offer much faster 
transfer rates than more remote nodes. Therefore, 
adjusting the task migration cost by the nodes’ 
distances could improve the overall cluster 
performance. 

The suggested directions of future study and 
possible expansions as listed above have the 
potential to improve the results of this research. 
Nevertheless, the focus of this paper was to research 
and design a feasible strategy for managing and 
balancing a workload within a virtualized Cloud 
system, an objective which has been achieved. 
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