
Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6751

A SCALABLE SERVICE ALLOCATION NEGOTIATION FOR
CLOUD COMPUTING

1LESZEK SLIWKO
1Faculty of Science and Technology, University of Westminster

E-mail: lsliwko@gmail.com

ABSTRACT

This paper presents a detailed design of a decentralised agent-based scheduler, which can be used to manage
workloads within the computing cells of a Cloud system. This scheme in based on the concept of service
allocation negotiation, whereby all system nodes communicate between themselves and scheduling logic is
decentralised. The architecture presented has been implemented, with multiple simulations run using real-
word workload traces from the Google Cluster Data project. The results were then compared to the scheduling
patterns of Google’s Borg system.

Keywords: Distributed Scheduling; Agents; Load Balancing; MASB

1. INTRODUCTION

Cloud computing has become a very widespread
phenomenon in daily lives, especially if we consider
how accepted smart phones are. A typical phone
application is heavily depended on infrastructure and
remote processing capabilities Clouds deliver. Also,
in desktop computer’s programs area, a significant
number of applications have been moved into
Software-as-a-Service model, where desktop serves
only as a client, but actual processing in done on a
remote Cloud, e.g.: business subscriptions for
Microsoft Office 365 offer access to cloud-hosted
versions of Office programs. Therefore, the current
world is more and more reliant on Cloud computing.

A variety of vendors, services and business
models have created an extremely complex
environment. The latest developments in Cloud
technologies gravitate towards federated, inter-
Cloud cooperative models and, therefore, already
very complex solutions are destined to become even
more complex. It’s is also a very competitive market.
A recent rise in Big Data systems fuelled a growth in
demand of cheap computing power; however, a
number of vendors joined and market offering
computing services has greatly expanded Prices have
also been driven down and, as of 24 July 2018, the
cost of renting a general-use instance of 16-core
machine with 64GB memory was 80 cents per hour
(data from aws.amazon.com/ec2/pricing website).

The main difference between a Cluster and a
Cloud is business model and access. Clusters were
traditionally available only to a very limited number
of institutions and corporations, who pooled their

resources in order to get advantage of scale of
computing. Public generally did not have access to
computing capabilities of Clusters.

Because access to Clusters was very restricted
and incoming workload was planned well in
advance, it was practical to centralise task scheduling
and system management functions. Therefore, a
centralised architecture was generally used a base for
Cluster management software, such as SLURM [61],
Univa Grid Engine [16], Google’s Borg [44], etc.

Cluster schedulers evolved from a sequential
processing of allocation decisions in a loop (e.g.
SLURM) towards more parallel solutions [44]:

 (i) Statically partitioned scheduling in which the
exclusive sets of machines in a Cluster are dedicated
to certain types of workload and the resulting
specialised partitions are managed separately. The
example of such design is Microsoft’s Quincy [39].
The main criticism of the static partitioning is
inflexibility – a homologous workload might result
in a part of scheduler being relatively idle, while
other nodes are very active.

(ii) Two-level architecture in which a Cluster is
partitioned dynamically by a central coordinator.
The actual task allocations take place at the second
level of architecture in one of the specialised
schedulers. The first two-level scheduler was Mesos
[20] in which resources are distributed to the
frameworks in the form of ‘offers’ made by Mesos
Master. Scheduling frameworks have autonomy in
deciding which resources to accept and which tasks
to run on them. The mechanism used causes

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6752

resources to remain locked while the resources offer
is being examined by a specialised scheduler. This
means the benefits from parallelisation are limited
due to pessimistic locking. In addition, the
schedulers do not coordinate between each other and
must rely on a centralised coordinator to make them
offers, which further restricts their visibility of the
available resources in the Cluster.

(iii) Shared state is the most recent design, used
in Google’s Borg [44] and Microsoft’s Apollo [7].
The concept behind this architecture is to deploy
several schedulers working in parallel. The scheduler
instances are using a shared object with a state of
available resources; however, the resource offers are
not locked during scheduling decisions (optimistic
concurrency control). In the case of a conflict, when
two or more schedulers allocated jobs to the same
resources, all involved jobs are returned to the jobs
queue and scheduling is re-tried.

This research focuses on the next type of
scheduler architecture, which expands on the shared
state scheduler concept where the scheduling logic is
processed in parallel but still within a specific entity.
The key novelty of the presented design is the
distribution of the scheduling logic’s processing to
Cluster nodes themselves – this approach eliminates
the requirement that all allocation decisions have to
be synchronised and aggregated into a single state.
Such a solution should scale beyond the limits of the
currently deployed Clusters orchestration software
while preserving or bettering the workload
throughput and quality of centralised scheduler’s
allocations. The key objective of this research was to
experimentally evaluate performance advances
emerging out of the designed solution.

One of the most developed and published Cluster
managers is Google’s Borg system which represents
the shared state scheduler architecture. When
allocating a task, Borg’s scheduler is scoring a set of
available nodes (best-fit algorithm) and selects the
most feasible machine for this task. The central
module of Borg architecture is BorgMaster, which
maintains an in-memory copy of most of the state of
the cell. Each machine in a cell is running BorgLet,
an agent process responsible for starting and
stopping tasks and also restarting them if they fail. A
single BorgMaster controller is able to manage a cell
of more than 12k machines (highest value is not
specified). Google’s engineers achieved this
impressive result by a number of optimisations and,
so far, they’ve managed to eliminate or work around
virtually every limitation they have approached [51].
Nevertheless, a centralised architecture is a
limitation within a current design of a Cloud.

One might also ask a fundamental question - do
Cloud systems really require more inter-connected
nodes in one cell? Computing power of 12k
machines working together is already a very
considerable force and, barring few exceptions, it’s
highly unlikely that an application would require
such a processing power. However, in recent years,
software development is trending towards Big Data
systems. Big Data systems are characterised by a
high degree of parallelism. A typical Big Data
system design is based on a distributed file system,
where nodes have dual function of storing data as
well as processing it. One process of such system
might need to crunch thousands of TBs of data split
across thousands of nodes. Even with ideal allocation
of Big Data tasks, where every task is processing
data only available locally (i.e. locality
optimisation), a single node would still need to
process GBs of data locally. Therefore, the answer to
the above question is yes – it’s highly likely that we
will require larger computing cells in the near future.

Therefore, if centralised architecture has its
ultimate scalability limits, we shall consider
alternative approaches. In this paper we present a
working prototype of decentralised Cloud manager –
Multi-Agent System Balancer (MASB), which relies
on a network of software agents to organically
distribute and manage good system load. MASB
prototype has been built on top of Accurate Google
Cloud Simulator (AGOCS) framework [48] and such
all research and development has been continuously
tested on a real-world workload traces from the
Google Cluster Data (GCD) project [19].

The main novel aspects of this approach were to
co-operatively schedule the incoming tasks by a
network of software agents, which allows running
programs to be offloaded to alternative system nodes
on the fly, in addition to designing algorithms
capable of proactively managing a workload in such
a dynamic environment. Thus, this research breaks
with the concept that the execution of a task in a
cluster is immovable or unstoppable, and instead
examines the available technology to implement
such a strategy.

Furthermore, moving away from the concept of
the centralised load balancing and offloading the
actual scheduling logic to the nodes themselves
resulted in more time available for the execution of
allocation routines. As such, more sophisticated
algorithms could be deployed, such as metaheuristic
methods. Since none of the commercially available
cluster schedulers realise such features, the objective
of this research was to implement a working
prototype for the Cloud load balancer, and to

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6753

evaluate their performance advances emerging out of
the designed solution.

The remaining of this paper is organised as
follows. Section 2 provides introduction to agent
systems and a brief of research history how they have
been used to schedule tasks. Section 3 describes
MASB’s design principles, defines scope of project
and lists all main used technologies. Section 4 has
details about MASB architecture and its objects.
Section 5 describes in detail the allocation
negotiation protocol that is used between system
components to allocate new task or re-allocate
existing task on a node. Section 6 present allocation
score functions, which are modelling distribution of
tasks and their allocations across nodes through
tasks’ lifecycles. Section 7 specifies experiments,
which were performed as a part of his research and
provides a discussion on achieved results. Section 8
describes competitive solutions. In section 9,
important optimisations and lessons learnt are
presented.

2. LOAD BALANCING WITH AGENTS
Agent technologies can be dated back to 1992

[42], at which point it was predicted that intelligent
agent would become the next mainstream computing
paradigm. Agents were described as the most
important step in software engineering, representing
a revolution in software [18]. Since its inception, the
field of multi-agent systems has experienced an
impressive evolution, and today it is an established
and vibrant field in computer studies. The software
agents research field spans many disciplines,
including mathematics, logic, game theory,
cognitive psychology, sociology, organisational
science, economics, philosophy, and so on [54].
Agents are considered to be a viable solution for
large-scale systems, for example through spam-
filtering and traffic light control [9], or by managing
an electricity gird [8].

It is difficult to argue for any precise definition
of an agent, with the research literature seeming to
suggest that there are four key properties of an Agent
[13][15][56], namely:

 Autonomy when allowing agents to operate
without direct human intervention;

 Social ability when agents communicate and
interact with other agents;

 Reactivity when agents actively perceive their
environment (physical or digital) and act on its
changes;

 Proactiveness when agents not only dynamically
respond to changes in environments but are also

able to take initiative and exhibit goal-oriented
behaviour as well as real-time communications.

A software agent it is generally defined as being of
acting independently of its user in order to
accomplish tasks on behalf of its user [36]. An agent
can be described as a being which is supposed to act
intelligently according to environmental changes
and the user’s input [17].

Software agents are found across many computer
science disciplines, including AI, decentralised
systems, self-organising systems, load balancing and
expert systems [18][30]. Previous research has also
shown that by deploying agents it is possible to
achieve good global system performance [34] and
attain dynamic adaptation capability [23].

Agents were also found to be useful for the
performance monitoring of distributed systems [10].
Several additional benefits may also be achieved,
including more cost-effective resource planning
[11], a reduction of network traffic [32], the
autonomous activities of the agents [17], and
decentralised network management [59]. Multi-
agent systems were also successfully used for
forecasting demand and then adapting the charging
schedule for electric cars [58], and also to effectively
coordinate emergency services during crisis [37].
[40] presents an agent-based framework to model
procurement operations in India. The most state-of-
art research generally focuses on negotiation
protocols and communications [28][31][53][57].

Agent-based systems generally rely on
decentralised architecture [22][31][46][53],
considering it to be more reliable. However, those
schemas require complex communication
algorithms, with negotiation protocols often being
required for distributed architecture to attain a good
level of performance [6][57][59].

The idea of job scheduling with agents is not
new; a single-machine multi-agent scheduling
problem was introduced in 2003 [3][4]. Since this
time, the problem has been extended and exists in
several variations, such as deteriorating jobs [26],
the introduction of weighted importance [35],
scheduling with partial information [27], global
objective functions [50], and adding jobs' release
times and deadlines [60]. A suitable taxonomy of
multi-agent scheduling problems in presented in
[38].

The research on workload sharing via agents has
a long history, with the papers below in particular
having influenced the design of the MASB:

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6754

(i) [43] presents a study concerning a multi-agent
system in which all decision making is performed by
a learning AI. The likeness of selection of a
particular node for the processing of a given task
depends on the past capacity of this node. The
Agent’s AI uses only locally-accessible knowledge,
meaning that it does not rely on information shared
by other agents.

(ii) [14] introduces Challenger, a multi-agent
system, in which agents communicate with each
other to share their available resources in an attempt
to utilise them more fully. In Challenger, agents act
as buyers and sellers in a resources marketplace,
always trying to maximise their own utility. MASB
follows a similar pattern, where nodes try to
maximise their utilisation (via score system).

(iii) [6] shows that cooperative negotiation
between agents representing base stations in a
mobile cellular network can lead to a near global
optimal coverage agreement within the context of
the whole cellular network. Instead of using a
negotiation model of alternating offers, several
possible local hypotheses are created, based on
which parallel negotiations are initiated. The system
commits to the best agreement found within a
defined timeline. The cooperative model in which
agents negotiate between themselves is the base of
the distributed scheduling presented in this research.

(iv) [23] proposes a load-balancing scheme in
which a mobile agent pre-reserves resources on a
target machine prior to the occurrence of the actual
migration. The system also prevents excessive
centralisation through the implementation of a
mechanism whereby when the workload processed
on a particular machine exceeds a certain threshold,
this machine will attempt to offload its agents to
neighbouring machines.

(v) [12] describes a solution in which agents
representing a local grid resource uses past
application performance data and iterative heuristic
algorithms to predict the application’s resource
usage. In order to achieve a globally-balanced
workload, agents cooperate with each other using a
Point-to-Point (P2P) service advertisement and
discovery mechanism. Agents are organised into a
hierarchy consisting of agents, coordinators and
brokers, who are at the top of the entire agent
hierarchy. The authors conclude that for local grid
load balancing, the iterative metaheuristic algorithm
is more efficient than simple algorithms such as
FCFS.

(vi) [21] details a solution built on top of the ant
colony algorithm, a solution which takes its

inspiration from the metaphor of real ants searching
for food. ‘Ants’ are software objects that can move
between nodes managed by agents. A move between
nodes which is managed by the same agent is less
costly. Ants explore paths between nodes, marking
them with different pheromone strength. Whenever
an Ant visits a node, the agent managing it saves the
recorded tour and updates its own database. Ants
who subsequently visit this node read its current
knowledge, meaning they have the potential to
exchange information in this environment, which
adds to the predictability of the whole solution.

3. MASB DESIGN PRINCIPLES
The MASB project has been developed over

several years, during which time it has undergone
many changes in terms of both the technology used
and the design of the architecture. This has included,
for example, migration from Java to Scala, the
change from thread pools to an Akka Actors/Streams
framework, and the introduction and use of
concurrency packages and non-locking object
structures. However, the main design principles have
not been altered and are presented below:

 To provide a stable and robust (i.e. no single
point of failure) load balancer and scheduler for
a Cloud-class system;

 To efficiently reduce the cost of scaling a Cloud-
class system so that it can perform in an
acceptable manner on smaller clusters (where
there are tens of nodes) as well on huge
installations (where there are thousands of
nodes);

 To provide an easy way of tuning the behaviours
of a load balancer where the distribution of tasks
across system nodes can be controlled.

Many other Cluster managing systems, such as
Google’s Borg [51], Microsoft’s Apollo [7] and
Alibaba’s Fuxi [63], were built around the concept
of the immovability and unstoppability of a task’s
execution. This means that once a task is started it
cannot be re-allocated: it can only be stopped/killed
and restarted on an alternative node.

 This design is particularly well suited when
there is a high task churn, as observed in Apollo or
Fuxi where tasks are generally short-lived, meaning
that the system’s scheduling decisions do not have a
lasting impact. However, in order to support a mixed
workload which features both short-lived batch jobs
and long-running services, alternative solutions
needed to be developed. One such solution is the
resource recycling routines present in Borg wherein
resources allocated to production tasks but not

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6755

currently employed are used to run non-production
applications [51].

MASB takes advantage of virtualisation
technology features, namely Virtual Machine Live
Migration (VM-LM), to dynamically re-allocate
overloading tasks. VM-LM allows programs which
are running to be moved to an alternative machine
without stopping their execution. As a result, a new
type of scheduling strategy can be created which
allows for the continuous re-balancing of the
cluster’s load. This feature is especially useful for
long-term services which initially might not be fitted
to the most suitable node, or where their required
resources or constraints change. Nevertheless, this
design creates a very dynamic environment in which
it is insufficient to schedule a task only once. Instead,
a running task has to be continuously monitored and
re-allocated if the task’s current node cannot support
its execution any longer.

The design of MASB relies on a number of
existing tools and frameworks. The main
technologies used are listed below:

(i) Decentralised software agents – a network of
independent AI entities that can negotiate between
each other and allocate Cloud workload between
them. In MASB, specialised agents control nodes
and manage the system workload. Due to the
decentralised nature of MASB, there is no complete
up-to-date system state. Instead, yet another type of
agent is responsible for caching the nodes’ statistics
and providing an interface whereby a set of
candidate nodes which a particular task can be
migrated to can be requested.

(ii) Metaheuristic selection algorithms – while
the majority of the processing of load balancing
logic is done via negotiation between agents, a few
system processes are handled locally. One such
example is that when an agent discovers its node is
overloaded, it will select a subset of its tasks which
it will attempt to migrate out. This selection is
performed by Tabu Search (TS) algorithm.

(iii) VM-LM which allows the transfer of a
running application within the Virtual Machine
(VM) instance to an alternative node without
stopping its execution. The vendors’ strategy is to
implement mixed production and low-priority jobs
on a single machine. While production jobs are idler,
low-priority jobs consume the nodes’ resources.
However, when production job resources need to be
increased, the low-priority jobs are killed. The non-
production jobs in Google Cluster [51] and the spot-
instances in Amazon EC2 [52] use such an approach.
MASB takes advantage of VM-LM to offload tasks

without stopping their execution, collecting
information about tasks in order to estimate the VM-
LM cost of such a task.

(iv) Functional programming language Scala and
accompanying libraries – due to the decentralised
design and loose coupling between the system’s
components, the implementation language is of
secondary importance. However, load balancing
algorithms require a significant amount of tuning,
especially if the Cloud is designed to have a high
utilisation of available resources. This would mean
that resource waste is low, and therefore the cost-
per-job execution is also low. Due to the complexity
of inner-system relations and dependencies, a high-
fidelity simulation environment is necessary to
evaluate the expected performance of a given
configuration and implemented changes before is
deployed to a production system, e.g. the
FauxMaster simulator used by Google Engineers
[51]. In this implementation, Akka Actors
framework was selected as the core parallelisation
technology.

4. MASB ARCHITECTURE
The experiments in [49] that used a centralised

load balancer based on metaheuristic algorithms
demonstrated that, due to the high overheads of these
algorithms, a scheduling strategy implemented on a
single machine is highly unlikely to efficiently
manage a large number of tasks. Therefore, MASB
has been built around the concept of a decentralised
load balancing architecture, an architecture which
could scale well beyond the limits of a centralised
scheduler.

Figure 1 visualises the communications’ flow
within MASB system:

Figure 1. MASB communications’ flow

MASB relies on a network of software agents to
organically distribute and manage the sizeable
system load. All communication between the agents
is performed via a specialised stateless P2P protocol

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6756

which promotes loose coupling. Two types of agents
are deployed: Node Agent (NA) and Broker Agent
(BA). NAs are supervising system nodes, are
responsible for keeping those nodes stable. NAs
actively monitor the used resources on their nodes
(1) and periodically forward this information to the
subnetwork of BAs (2). BAs continuously exchange
nodes’ load information between themselves (3) and,
therefore, effectively cache the state of the
computing cell.

NA contains an AI module which is based on a
metaheuristic algorithm TS. It manages a workload
on a node. When an NA detects that its node is
overloaded, it will attempt to find an alternative node
for overloading tasks with the help of Service
Allocation Negotiation (SAN) protocol (the details
can be found in section 5). The first step of SAN
communication is to retrieve alternative nodes from
BA (4). BAs provide a query-mechanism for NAs,
which returns a set of candidate nodes for the
migrations of tasks. However, because the
information found in BAs is assumed to be outdated,
once the NA completes this step, it communicates
directly with their NAs so as to re-allocate this task
(5).

The following two subsections describe the types
of agents noted and detail their responsibilities. The
annotated arrows 2 to 5 in Figure 1 correspond to
inter-agent communications – messages that are
exchanged within the system are detailed in
subsection 4.3.

4.1 Node Agent
Every node in the system has a dedicated

instance of NA. NA continuously monitors the levels
of defined resources and periodically reports the
state of its node and levels of utilised resources to
BAs. Should any of the monitored resources be over-
allocated, NA will initialise SAN process. In
addition, NA performs the following functions:

(i) Accept/deny task migration requests – NA
listens to task migration requests, and accepts or
denies them. This routine is simple, with NA
projecting its resource availability with that task as
follows: projected allocation of resources = current
allocation of resources (existing tasks which also
includes tasks being migrated out from this node) +
all tasks being migrated to this node + requested task
(from request). If the projected resources do not
overflow the node, the task is accepted and the
migration process is initiated. The source node does
not relinquish ownership of the task while it is being
re-allocated, meaning that source node is regarded as
a primary supplier of the service until the migration

process successfully completes. It should be noted
that during task migration, its required resources are
allocated twice, to both the source node and the
target node.

(ii) Task migration – after accepting the task
migration request, NA immediately starts listening
for incoming VM-LM. In order to perform task
migration, NA must have access to the
administrative functions of VM and be able to
initiate VM-LM to another node. This functionality
can be either implemented by the calls of the VM
manager API or by executing the command line
command. This process may vary considerably per
VM vendor.

4.2 Broker Agent
BA is responsible for storing and maintaining

information about nodes’ online status and their
available resources. BA is a separate process which
can coexist with NA on the same node since its
operations are not computing-intensive. BA has two
main purposes in the system. These are outlined
below:

(i) Nodes resources utilisation database – NA
periodically reports to its BA about the state of its
node and available resources. BA stores all this data
and can query them on demand. Every node entry is
additionally stored with its timestamp, showing how
long ago the data were updated. It has additional
protection against the node silently going offline, for
example through hardware malfunction or the
network becoming unreachable, in that if this entry
is not updated for five minutes, the node is assumed
to be offline and entry is removed. This means that
it will not be returned as the candidate node.

(ii) Evaluating candidate nodes for a task
migration – BA listens for requests and computes a
list of candidate nodes for a task migration. In order
to create a list of candidate nodes, BA retrieves nodal
data from the local cache and then scores them using
Allocation Scoring Function. BA scores the future
state of the system as if task migration were being
carried out. After scoring all the cached nodes, BA
selects a configured number of candidate nodes with
the highest score and sends them back to the asking
node. In this research this number was set to fifteen
candidate nodes, wherein higher numbers failed to
yield superior results.

4.3 Message Types
In order to avoid costly broadcasts, since

broadcast packages need to be rerouted through a
whole network infrastructure consuming the
available bandwidth, both NA and BA always
communicate P2P. Agent-to-agent interactions

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6757

follow the ‘request-response’ pattern, in which each
request object has one or more matching response
objects. The message objects carry additional
metadata such as fitness value (see formula
subsection 5.1), forced migration flag, and detailed
node and task information. Section 5 explains the

process in which messages are exchanged, while the
subsections 5.1 to 5.4 show detailed samples of such
objects. In the system there are several types of
requests and responses between agents outlined in
Table 1 below:

Request Type Description

GetCandidateNodesRequest
Requests a number of candidate nodes for the migration of a specified tasks set. Send from NA to
BA.

GetCandidateNodesResponse Reply with a set of candidate nodes for task migration, together with their resource statistics.

TaskMigrationRequest Request from source NA to candidate NA as to whether task migration is accepted.

TaskMigrationAcceptanceResponse
Replay from target candidate NA that task migration will be accepted.
Note: No resource allocation takes place after this request.

TaskMigrationRejectionResponse Replay from target node’s NA that task migration will not be accepted.

TaskMigrationProcessRequest

Request to selected target node’s NA to start task migration.
Note: this request has an optional forced flag, requesting the target NA to skip the currently
available resources check. The total node’s resources check and constraints check will be still
performed.

TaskMigrationProcessConfirmationResponse
Confirmation from the target node’s NA that the task migration process can start.
Note: Resources are allocated for the migrated task and the live migration process starts.

TaskMigrationProcessErrorResponse
Denial of task migration process. This reply is generated if the NA can no longer accommodate the
migrated task.

Table 1. Message types

5. SERVICE ALLOCATION NEGOTIATION
PROTOCOL

When NA detects its node is overloaded, it will
select a task (or a set of tasks) and attempt to migrate
them to an alternative node or nodes. Since SAN is
asynchronous, this means a single NA can run
several SAN processes in parallel. In the current
implementation, NA selects a number of tasks in the
first step – Select Candidate Services (SCS) – and
processes their allocation in parallel.

Figure 2 visualises this process – for simplicity,
the chart presents the allocation negotiation of one
task only.

SAN is a five-stage process, involving a single
source node (Node Agent S), one of the system BAs
and several of other nodes in the system (Node
Agent A, Node Agent B and Node Agent C). When
migrating-out a given task, NA at first sends a
GetCandidateNodesRequest to BA to get with a set
of candidate nodes where the task can potentially be
migrated to. BA scores all its cached nodes and sends
back the top fifteen to NA. Additionally, in order to
help to avoid collisions, BA does not directly select
only top candidate nodes, but instead selects them
randomly from a node pool, where candidate node
score is a weight, wherein higher scored nodes are
selected more frequently. This design helps to avoid
a situation where an identical subset of candidate
nodes is repeatedly selected for a number of tasks
with the same resource requirements.

Upon receiving this list, NA sends task migration
requests to all of those candidate nodes (Step 3), and
waits for a given time (in this case for thirty seconds)
for all replies. After this time, NA evaluates all
accepted task migration responses (Step 4) and
orders them in relevance order (nodes with the
highest score first) and then attempts to migrate a
task to a target node with top score (Step 5). If target
node returns an error, the source NA will pick the
next target node and attempt to migrate a task there.

At each of these stages, the target node’s NA
might reject task migration or return an error, for
example when task migration is no longer possible
because the current node’s resource utilisation levels
have increased or because the node attributes no
longer match the task’s constraints. Depending on a
system utilisation level, such collisions might be
more or less frequent. However, they are resolved at
node-to-node communication level and do not
impact the system performance as a whole.

In a situation where there are insufficient
candidate nodes available due to the lack of free
resource levels, the BA will return candidate nodes
with the ‘forced migration’ flag set to true.

The algorithm’s five steps are explained in the
following subsections, while the forced migrations
feature is detailed in supplementary subsection 5.6
below.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6758

Figure 2. Service Allocation Negotiation

5.1 Step 1: Select Candidate Services
SCS routine is executed when the NA detects that

the currently existing tasks are overloading its node.
This step is processed on the node wholly locally.
The purpose of this routine is to select the task (or
set of tasks) that NA will attempt to migrate out and
become stable (i.e. non-overloaded) during that
process. All tasks currently running on this node are
evaluated, taking into consideration various aspects,
namely:

(i) The cost of running a task on this particular
node. NA will aim to have the highest node score for
its own node. If removing this particular task will
cause its Allocation Score (AS) to be higher, then
this task is more likely to be selected. AS is
calculated by Service Allocation Score (SAS)
functions – see section 6 for details.

(ii) The cost of migration of a task – VM
migrations cause disruptions on the Cloud system. In
this research, cost is estimated by Live Migration
Data Transfer formula [47] as the additional network

traffic required to migrate the running VM instance
to an alternative node.

(iii) The likeness to find an alternative node – the
majority of tasks do not have major constraints and
can be executed on a wide range of nodes. However,
there are a small number of tasks with very
restrictive constraints that significantly limit the
number of nodes that the task can be executed on. If
such a task can only be executed locally, i.e. the node
has enough total resources capacity and task
constraints are matched, then NA is unlikely to
migrate out those tasks.

(iv) Any task which cannot be executed on a
local node is compulsory selected as a candidate
task. This scenario could occur if the task constraints
or node attributes were updated.

NA first computes a list of compulsory candidate
tasks, i.e. tasks that can no longer be executed on this
node. Following this, if the remaining tasks are still
overloading the node, it will select a subset of tasks
to be migrated out.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6759

The candidate tasks selection algorithm tries to
minimise the total migration cost of selected tasks,
and also to achieve the highest AS for a node, under
the assumption that the selected subset of candidate
tasks is successfully migrated to the alternative node.
In order to achieve this, the algorithm defines the
Fitness Function as coded inside SCS:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ൌ
𝑁𝑜𝑑𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒
𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

For the above in a NP-Hard problem with a
substantial search space, e.g. twenty tasks on a node,
the search space size is over one million
combinations. Given this, the Full Scan approach
[47] will be substantially computation-intensive.
Therefore, the use of metaheuristic algorithms is
justified. In previously researched scheduling
concept, a variant of TS has been successfully
applied to solve a similar class of problems. The TS
algorithm has the following properties:

 It has a small memory imprint since only the list
of visited solutions is maintained thorough
execution;

 It can be easily parallelised as a variant which is
restarted multiple times;

 It is very controllable through setting up a limited
number of steps and number of runs;

 It is stoppable, and the best-found result can be
retrieved immediately.

 It generally returns good results.

It was found that multiple restarts (herein a twenty-
five re-run limit) with a shallow limit of steps (herein
five) yield very good results, with only about 2-7%
of solutions in the whole search space (i.e. selecting
a subset of tasks being run on a node) being
examined in each invocation. Additionally, instead
of restarting the algorithm an arbitrary number of
times, a stop condition for this algorithm has been
implemented when the best-found solution has not
been improved in a certain number of the last steps
(herein six).

A sample log entry is presented below, wherein
the subset of candidate tasks is being computed:

12:44:22.016 NodeAgentActor (node=2274790707) INFO
SAMPLE:
 Selected overloading tasks for node [2274790707]
 Node total resources = [0.5,0.2493]
 Node used resources (all tasks) = [0.5598619,0.206038]
 Node used prod resources (all tasks) = [0.481296,0.219028]
 All tasks (* Selected):
 Task [2902878580-1081] (PROD) Priority=11 Required resources=[0.006248,0.001457]
 Used resources=[0.01498,0.02692] Migration cost = 6876.02 [MB]
 Task [2902878580-3147] (PROD) Priority=11 Required resources=[0.006248,0.001457]
 Used resources=[0.01053,0.02509] Migration cost = 3820.05 [MB]
 Task [3998352223-38] (PROD) Priority=9 Required resources=[0.3125,0.1592]
 Used resources=[0.168,0.07617] Migration cost = 69139054863.11 [MB]
 Task [5726057648-7] (PROD) Priority=9 Required resources=[0.0625,0.007767]
 Used resources=[0.01682,0.005814] Migration cost = 106.72 [MB]
* Task [6218406404-243] (PROD) Priority=0 Required resources=[0.04065,0.02069]
 Used resources=[0.005684,0.005798] Migration cost = 106.69 [MB]
 Task [6218406404-959] (PROD) Priority=0 Required resources=[0.04065,0.02069]
 Used resources=[0.008255,0.005791] Migration cost = 106.67 [MB]
* Task [6251414911-1447] Priority=1 Required resources=[0.0625,0.0318]
 Used resources=[0.0007629,0.007675] Migration cost = 112.37 [MB]
 Task [6251664479-137] (PROD) Priority=2 Required resources=[0.0125,0.007767]
 Used resources=[0.04224,0.005592] Migration cost = 106.25 [MB]
 Task [6251784940-1615] Priority=2 Required resources=[0.02499,0.02545]
 Used resources=[0.02917,0.0135] Migration cost = 183.40 [MB]
 Task [6251787910-686] Priority=2 Required resources=[0.02499,0.03339]
 Used resources=[0.0321,0.01501] Migration cost = 236.79 [MB]
* Task [6251803864-88] Priority=2 Required resources=[0.02499,0.02545]
 Used resources=[0.1665,0.01027] Migration cost = 128.94 [MB]
* Task [6251812952-159] Priority=2 Required resources=[0.02499,0.07959]
 Used resources=[0.06482,0.008408] Migration cost = 115.72 [MB]
 Task [6251812952-2072] Priority=2 Required resources=[0.02499,0.07959]
 Used resources=[0,0] Migration cost = 101.00 [MB]
 Node used resources (remaining tasks) = [0.322095,0.173887]
 Node used prod resources (remaining tasks) = [0.440646,0.198338]
 Total migration cost (selected tasks) = 463.71561966381125 [MB]

Here, the thirteen tasks are being executed on node
‘2274790707’. However, the used resources exceed
the node’s total resources, i.e. all tasks are utilising
0.5598619 CPU, while the node can provide only 0.5
CPU (values are normalised). The node’s NA detects
the node is overloaded and triggers the SCS routine.
The SCS routine selects four tasks (here: the
production task ‘6218406404-243’ and non-
production tasks: ‘6251414911-1447’,
‘6251803864-88’ and ‘6251812952-159’; marked
with *) which are then added to candidate tasks, and
NA will attempt to migrate out this set in the next
step.

The potential reduction of used resources is an
effect of removing a subset of tasks from this node:
(i) CPU reserved for production tasks is potentially
reduced from 0.481296 to 0.440646 which is ca.
88% utilisation of total 0.5 CPU available on this
node, and (ii) memory reserved for production tasks
is potentially reduced from 0.219028 to 0.198338
which is ca. 80% utilisation of the total 0.2493
memory available on this node. The total migration
cost for this set of migrations is ca. 463.72MB.

5.2 Step 2: Select Candidate Nodes
After selecting candidate nodes, NA sends a

GetCandidateNodes request to BA. A part of this
request, task information data, such as currently used
resources and constraints, are sent. BA also itself
caches a list of all nodes in system with their
available resources and attributes. Based on this
information, BA prepares a list of alternative
candidate nodes for a task in request. The main
objective of this process is to find alternative nodes
which have the potentially highest node AS, under
the assumption that the task will be migrated to a
scored node. The size of this list is limited to an
arbitrary value to avoid network congestion when
NA will send actual migration requests query in the

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6760

next step. In this implementation, it is set to fifteen
candidate nodes returned in each response.

This step is the most computing intensive of all,
and represents a potential bottleneck for negotiating
logic processing. BA needs to examine all system
nodes, check their availability for a given task and
score them accordingly. The request processing is
self-contained and highly concurrent, meaning that
the node scoring can be run in parallel and the final
selection of top candidate nodes is run in sequence.
Originally, this code was extensively profiled and
improved, and designed BA to be able to run in a
multi-instance mode if needed and to handle heavy
usage. However, in experiments, the quoting
mechanism proved to be very lightweight and the
demand not that high, meaning that a single BA was
sufficient to handle 12.5k nodes in the system.

Below, a sample log entry is presented when
such a list is computed and returned to a NA:

17:53:28.516 NodeAgentActor (node=97967489) INFO
SAMPLE:
 Candidate nodes recommendations for migration-out of task:
 Task [6251414911-740] Priority=1 Required resources=[0.0625,0.0318]
 Used resources=[0.04761,0.009735] Migration cost = 124.29 [MB]
 Source node: Node [97967489] [0.5,0.4995]:
 CandidateNodeRecommendation[nodeId=2110696959,nodeAvailableResources=[0.11670008,
 0.057892],fitnessValue=5.02779735207,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2274669582,nodeAvailableResources=[0.0846342,
 0.131113],fitnessValue=4.351440488446,forceMigration=false]
 CandidateNodeRecommendation[nodeId=294847211,nodeAvailableResources=[0.20732303,
 0.023297],fitnessValue=3.990484728735,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1302354,nodeAvailableResources=[0.21478553,
 0.071508],fitnessValue=3.36826714248,forceMigration=false]
 CandidateNodeRecommendation[nodeId=7246234,nodeAvailableResources=[0.3283863,
 0.020561],fitnessValue=2.444197290198,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2887932822,nodeAvailableResources=[0.30516457,
 0.109883],fitnessValue=2.147161970183,forceMigration=false]
 CandidateNodeRecommendation[nodeId=38743543,nodeAvailableResources=[0.3583948,
 0.101834],fitnessValue=1.769829840087,forceMigration=false]
 CandidateNodeRecommendation[nodeId=656811,nodeAvailableResources=[0.23940511,
 0.26298],fitnessValue=1.711800790297,forceMigration=false]
 CandidateNodeRecommendation[nodeId=38709566,nodeAvailableResources=[0.3584505,
 0.118908],fitnessValue=1.697701710745,forceMigration=false]
 CandidateNodeRecommendation[nodeId=3739348304,nodeAvailableResources=[0.23673398,
 0.268172],fitnessValue=1.696017579836,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1093461,nodeAvailableResources=[0.380115,
 0.08412],fitnessValue=1.681960083254,forceMigration=false]
 CandidateNodeRecommendation[nodeId=4217347623,nodeAvailableResources=[0.36352026,
 0.146784],fitnessValue=1.553194840995,forceMigration=false]
 CandidateNodeRecommendation[nodeId=16918689,nodeAvailableResources=[0.3916948,
 0.125088],fitnessValue=1.456396783346,forceMigration=false]
 CandidateNodeRecommendation[nodeId=25749509,nodeAvailableResources=[0.0367722,
 0.073692],fitnessValue=0.000000000001,forceMigration=true]
 CandidateNodeRecommendation[nodeId=38679534,nodeAvailableResources=[0.38115265,
 0.006653],fitnessValue=0.000000000001,forceMigration=true]

Here, NA on node ‘97967489’ requested candidate
nodes for the migration of the task ‘6251414911-
740’. BA returned top candidate nodes for a given
task ordered by their suitability score, i.e. fitness
value. Here values returned are: 5.02779735207 for
node ‘2110696959’, 4.351440488446 for node
‘2274669582’, 3.990484728735 for node
‘294847211’, 3.36826714248 for node ‘1302354’,
and so on. Additionally, the last recommendations
for nodes ‘257495090’ and ‘38679534’ are forced-
migrations (forceMigration is set to true).

Within the node recommendation there is
additional information, such as node available
resources and other metadata (not shown in listing).
It is not necessary to return this extra information,
but it was found to be very useful for logging and
sampling purposes, and then efficient tuning of the
system (for details see subsection 7.4).

5.3 Step 3: Send Migration Requests
Forced migration candidates will be always

added to the list of accepted candidate nodes in the
next step but with minimal scores. Each NA analyses
its own node availability for a given task, i.e. both
the available resources and the node’s attributes, and
responds with TaskMigrationAcceptanceResponse
or TaskMigrationRejectionResponse.

Acceptance response only implies the readiness
to accept a task with NA not yet allocating any
resources (the resources allocation is part of task
migration request process as detailed in Step 5).
Additionally, TaskMigrationAcceptanceResponse
message contains this node’s current resources usage
levels, which are used in the next step to rescore this
node, since the data from BA are less recent.

5.4 Step 4: Select Target Node
NA waits for a defined time, or until all candidate

nodes have responded by either the acceptance or
rejection of a migrated task, and computes a list of
nodes that accepted this task. NA evaluates each of
the accepting nodes using the Service Re-allocation
Score (SRAS) function, with the assumption that the
task will be re-allocated to a scored node. From this
pool, a target node is then selected. The selection is
weighted with node scores but still randomised,
which helps to avoid conflicts when many task
migrations compete for the same node.

As noted above, all forced migration candidate
nodes will be added to this list but will be selected
only in last place, once all other alternative
migrations attempts fail. This strategy ensures that
NA always has an alternative node to offload the
task. A scenario in which only one node is capable
of running a given task is considered to be an error,
and is reported to the system administrator. For fault-
tolerance reasons, the system should always have
multiple nodes able to run any given task.

A sample log entry is presented below:

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6761

17:48:51.541 NodeAgentActor (node=30790115) INFO
SAMPLE:
 Accepted recommendations for migration-out of task:
 Task [4844000327-3] (PROD) Priority=10 Required resources=[0.0625,0.003109]
 Used resources=[0.003742,0.001886] Migration cost = 101.86 [MB]
 Source node: Node [30790115] [0.5,0.2493]
 All non-expired recommendations (* selected):
 CandidateNodeRecommendation[nodeId=72,nodeAvailableResources=[0.24092502,0.080235],
 fitnessValue=2.737788312063,forceMigration=false]
 CandidateNodeRecommendation[nodeId=499530475,nodeAvailableResources=[0.2017312,
 0.133636],fitnessValue=2.704122369764,forceMigration=false]
 CandidateNodeRecommendation[nodeId=6608641,nodeAvailableResources=[0.15529385,
 0.18712],fitnessValue=2.657728011619,forceMigration=false]
 CandidateNodeRecommendation[nodeId=336053478,nodeAvailableResources=[0.2798536,
 0.047955],fitnessValue=2.558664832112,forceMigration=false]
 CandidateNodeRecommendation[nodeId=351638129,nodeAvailableResources=[0.212140724,
 0.146822],fitnessValue=2.505822852307,forceMigration=false]
 CandidateNodeRecommendation[nodeId=431038304,nodeAvailableResources=[0.3267638,
 0.039748],fitnessValue=2.142784872639,forceMigration=false]
* CandidateNodeRecommendation[nodeId=3650320528,nodeAvailableResources=[0.31184762,
 0.073969],fitnessValue=2.101080438228,forceMigration=false]
 CandidateNodeRecommendation[nodeId=351664198,nodeAvailableResources=[0.3099791,
 0.111418],fitnessValue=1.926755718413,forceMigration=false]
 CandidateNodeRecommendation[nodeId=656551,nodeAvailableResources=[0.3613202,
 0.1106346],fitnessValue=1.564594925411,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1273895,nodeAvailableResources=[0.3402396,
 0.148566],fitnessValue=1.556209187067,forceMigration=false]
 CandidateNodeRecommendation[nodeId=662212,nodeAvailableResources=[0.40326971,
 0.065803],fitnessValue=1.431851646113,forceMigration=false]
 CandidateNodeRecommendation[nodeId=1272936,nodeAvailableResources=[0.34438919,
 0.267601],fitnessValue=1.119583713082,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2594787,nodeAvailableResources=[0.3313337,
 0.363716],fitnessValue=0.874210901828,forceMigration=false]
 CandidateNodeRecommendation[nodeId=2098371268,nodeAvailableResources=[0.33264115,
 0.052842],fitnessValue=0.000000000001,forceMigration=true]
 CandidateNodeRecommendation[nodeId=1332336,nodeAvailableResources=[0.25883595,
 0.325499],fitnessValue=0.000000000001,forceMigration=true]

Here, NA on a node ‘30790115’ is selecting a target
node for the migration of task ‘4844000327-3’ (with
the migration cost of 101.86MB). All accepted
recommendations from previous step (within thirty
seconds) or forced recommendations
(forceMigration is set to true) are re-scored and a
single node is selected (here: node ‘3650320528’;
marked with *). Then, NA sends
TaskMigrationProcessRequest to initiate a task
migration process itself. NA stores received
candidate node recommendations in its memory in
case the task migration fails, and the next target node
has to be selected.

Once the task is removed from a node, meaning
it is re-allocated, and has finished its execution, is
killed or crashes, all its candidate node
recommendations are automatically invalidated and
deleted. Additionally, candidate node
recommendations expire after an arbitrary defined
time, in this case three minutes. This mechanism
exists in order to remove recommendations with out-
dated node data. If no candidate node
recommendations are left (or expire), and the node is
still overloaded, the SAN process restarts from Step
1.

5.5 Step 5: Migration Process
Every NA is actively listening for coming

migration requests. When NA receives
TaskMigrationProcessRequest, it performs a final
suitability check, wherein both node’s available
resources and task constraints are validated. If the
forced-migration flag is set, NA ignores the existing
tasks and validates the required resources against
total node resources. Occasionally, the target NA can
reject task migration process or migration fails. In
such a scenario the algorithm returns to Step 4 and
selects the next candidate node (via weighted
randomised selection).

In practice, this happens only for 6-8% of all task
migration attempts (in simulated GCD workload),
the majority being the result of task migration
collisions where two or more tasks are being
migrated to the same node. The first-to-arrive
TaskMigrationProcessRequest is generally
successful, meaning that Steps 4 and 5 are repeated
only for the rejected migrations. There have been no
observations of an increase in collisions when the
larger Cloud system is simulated (up to 100k nodes,
as detailed in section 7.10). This is because a single
NA communicates with only a limited set of other
agents, and the P2P communication model is used
exclusively. This means that the communication
overhead does not go up when the system size is
increased.

5.6 Forced Migration
In rare circumstances, approximately 10-15 out

of 10k tasks present constraints which restrict the
execution of a task to a very limited number of
nodes. Considering this, there is a scenario in which
NA wants to migrate out a given task but is unable
to find an alternative node because all suitable nodes
have already been allocated to other tasks, and the
majority of their resources have been utilised. In
such a scenario, BA returns candidate node
recommendations with a forced-migration flag set.
In response, the BA can also mix non-forced
migrations and forced migrations. In a worst-case
scenario, all returned recommendations would be
forced, but this approach ensures there is always an
acceptable node to run a given task on. This prevents
a starvation of the task resources, where the task is
never executed.

A forced migration flag signals that a node is
capable of executing a task but that its current
resources utilisation levels do not allow it to allocate
additional tasks, since this will cause the node to be
overloaded. Forced migration forces the node to
accept the task migration request while skipping the
available resources check. However, task constraints
are still validated, including the check if the node’s
total resources are sufficient to run the task. This
design helps to avoid a situation where a task has
very limiting constraints and only a few nodes in the
system can execute it. If those nodes have no
available resources then it will not be possible to
allocate a task to them, and therefore tasks will not
run. As such, the nodes are forced to accept this task,
which then many trigger the target node’s NA to
migrate out some of its existing tasks to alternative
nodes.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6762

6. SERVICE ALLOCATION SCORE
SAS functions are a crucial part of the system,

which greatly impacts global resource usage level.
That is, they determine how well nodes' resources
are utilised. They are used when a new task is
allocated or when a system needs to re-allocate an
existing task to an alternative node.

SAS functions evaluate how well a given task
will fit a scored node system-wise by returning AS
value. In this implementation, SAS input is
constructed from the total node resources, the
currently available node resources and the currently
required resources for a given task. SAS function
returns a value when a task fits the available
resources on a node, and also when a node is
overloaded by a task. If a node cannot fulfil a task's
constraints, the node is deemed non-suitable and the
scoring function is undefined. This research
concludes that node AS are failing in six separate
areas:

(i) Idle Node – a completely idle node is a special
case of allocation, in which no task has been
allocated to this node. Such a node could be
completely shut down, resulting in lower power
usage for a cluster. In this research, idle nodes are
scored most highly when determining a suitable
node for initial task allocation.

(ii) Super Tight Allocation (STA) – where some
of the node's resources are utilised in the 90%-100%
range. STA is regarded as stable allocation;
however, due to the dynamic resource usage, this is
actually not a desirable scenario. Complete, or
almost complete, resource usage can frequently lead
to resource over-allocation, whereby one or more
tasks increase their resource utilisation. This
experimentation has determined that leaving 10% of
any given resource unutilised gives the best results
since it reduces task migration but still ensures the
efficient use of the system resources (see discussion
in subsection 6.4).

(iii) Tight Allocation (TA) – where all node
resources are utilised in the 70-90% range. This is
the most desirable outcome as it promotes the best
fitting allocation of tasks and, therefore, low
resource wastage.

(iv) Proportional Allocation (PA) – while tight-
fit is the most desirable outcome, the majority of
tasks in this research consumed a small amount of
each resource. Most scheduled tasks are short batch
jobs which have a very short execution time. In such
a scenario, it is desirable to keep proportional
resources' usage ratios on all nodes which would,

therefore, generally enable nodes to fit more tasks
with ease.

(v) Disproportional Allocation (DA) – where the
node's resources are not proportionally utilised,
thereby making it difficult to allocate additional
tasks if required. For example, a setup where tasks
on a node allocate 75% of CPU but only 20% of
memory is not desirable.

(vi) Overloaded Node – when allocated resources
overload the total available resources on the node.
Naturally, this is an unwanted situation, and such a
node is given a score of zero.

Several types of resources exist which can be
utilised by the task, such as memory, CPU cycles and
disk I/O operations, and so on. The model also
supports artificial resources, called ‘virtual
resources’ and the number of defined resources is
potentially unlimited. Figure 3 visualises AS types
for the two resources (CPU and memory):

Figure 3. Allocation Score types
SAS function should never allow overloading
allocations to take place in order to prevent a scored
node to become overloaded and unstable.
Additionally, during the research it was determined
that STAs are very prone to over-allocate nodes and
are damaging to overall system stability. Therefore,
they are also accorded a score of zero. DAs increase
global resource wastage and should be avoided;
nevertheless, they are acceptable if none of the more
desired types of AS are possible. The desirability
order varies and depends on the task’s state, as
discussed in subsections 6.2 and 6.3 below, while the
following subsection introduces the concept of
Service Allocation Lifecycle (SAL).

6.1 Service Allocation Lifecycle
Tightly fitting tasks on as few nodes as possible

are beneficial for global system throughput.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6763

However, during this research the following facts
were observed:

(i) Initially, a Cloud user specifies the task’s
required resources. Users tend to overestimate the
amount of resources required, wasting in some cases
close to 98% of the requested resource [33].
Therefore, only after the task is executed could
realistic resource utilisation values be expected.
Allocating new tasks in a tight-fit way (i.e. TA and
STA areas in Figure 3) does result in turmoil when
the task is actually executed and the exact resource
usages levels are logged. Therefore, the initial
allocation should rather aim to distribute tasks across
nodes and keep the resource utilisation levels on
individual nodes low (i.e. PA area in Figure 3), than
pile them on the lowest possible number of nodes.

(ii) In GCD, only about 20-40% of tasks qualify
as long-running tasks, meaning that they run for
longer than twenty minutes [44]. The remaining
scheduled tasks consisted of short-term jobs which
generally have much lower resource requirements
than long-running tasks. The majority of tasks are
short and will not exist for long at all in the system.
Therefore, it is important for an initial allocation not
to spend too much time in trying to tightly fit them
into available nodes.

(iii) While the majority of tasks are short-lived
(up to twenty minutes), there exists a number of
long-running tasks that have more demanding
resource requirements, meaning that the majority of
resources (55–80%) are allocated to long-lived
services (ibid.). Therefore, it is more difficult to fit
them into nodes, and these allocations should be
much tighter to minimise global system resource
waste.

Given the above reasons, the ideal scenario for a
task is to be initially allocated on a lowly-utilised
node, before it is gradually migrated towards more
tightly-fitted allocations with other tasks.

Originally, the MASB framework did not have
distinct scoring functions for Service Initial

Allocation Score (SIAS) and SRAS; a single SAS
function, with the same scoring model as SRAS, was
used for all allocations which resulted in lowered
performance. The design was ultimately altered, and
SAS function was split:

(i) During Initial Allocation, a randomly selected
BA is responsible for allocating a newly arrived task
to a worker node. BA uses SIAS function (detailed
in subsection 6.2) to score nodes. Only a limited
number of candidate node recommendations are
calculated (here: 200) before selecting the top
recommendations. This is to prevent scoring routine
calculations from processing for too long. The limit
of 200 applies only to non-forced recommendations
for matching nodes.

(ii) A once allocated (and running) task can be
re-allocated to an alternative node if necessary. In
such a scenario NA of a node which the task is being
executed is responsible for finding a candidate node.
Both NA and BA use SRAS function (detailed in
subsection 6.3) to score candidate nodes. Similar to
calculating recommendations for new tasks, as an
additional optimisation, only a limited number of
candidate node recommendations are calculated
before selecting the top recommendations. However,
because this routine is invoked much less frequently,
two thousand nodes are analysed. The two thousand
limit applies only to non-forced recommendations
for matching nodes.

MASB uses a network of BAs to provide a set of
the best candidate nodes (nodes with the highest AS)
to allocate the task. However, some applications
such as Big Data frameworks often send multiples of
an identical task in a batch. Those tasks execute the
same program and have the same (or very similar)
resource requirements. As such, a limited set of
nodes will be highly scored and may result in a
multiple repeated allocations requests to the same
node over a very short period of time. To prevent this
phenomenon, the pool of candidate nodes is
randomly shuffled each time BA receives a request.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6764

Figure 4. Service Allocation Lifecycle

6.2 Service Initial Allocation Score
As explained in the subsection above, in order to

minimise the impact of Cluster user’s overestimating
resource requirements, the initial allocation should
attempt to spread tasks widely across all system
nodes. Therefore, when initially allocating existing
tasks, candidate nodes should be scored in the
following order: PA, TA and finally DA.

In this implementation, the SIAS function for
two resource types (CPU and memory) was used.
Figure 5 is a graphical representation of SIAS
function:

Figure 5. Service Initial Allocation Score

Three separate areas can be noticed:

(i) Lower-left (the highest score) – this promotes
PA, which will leave resource utilisation at a low
level or proportionately used.

(ii) Upper-right corner (the medium score) – this
promotes TA, where tasks on this node will closely
utilise all its resources.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6765

(iii) The upper-left and lower-right corners (the
lowest score) – these DAs will leave one resource
utilised almost fully and the other resource wasted.

It should be noted that the maximum resource
usage is 90%, and that values above this level are in
an undesired STA’s area (and have zero AS). The
following SIAS function was used:

𝑆𝐶𝑂𝑅𝐸 ൌ 𝐹_𝑆𝑇𝐸𝐸𝑃൫௥಴ುೆିி_஻ூ஺ௌ∙௥಴ುೆ_ಾಲ೉൯∙൫௥ಾಶಾିி_஻ூ஺ௌ∙௥ಾಶಾ_ಾಲ೉൯ െ 𝐹_𝐹𝐿𝑂𝑂𝑅

 𝑟஼௉௎, 𝑟ொெ – current resources utilisation levels
on a node (values are normalised to between 0
and 1);

 𝑟஼௉௎_ெ஺௑, 𝑟ொெ_ெ஺௑ – total resources available
on a node (values are normalised to between 0
and 1);

 𝐹_𝐵𝐼𝐴𝑆 – score factor which sets the bias
towards low (i.e. SIAS function) or high (i.e.
SRAS function) utilisation of resources on a
node. Here, a value of 0.3 was used;

 𝐹_𝑆𝑇𝐸𝐸𝑃 – parameter describing how
aggressively the system should increase scores of
the more desired AS-es (which impacts the
probability of a node selection). Here, a value of
350 was used;

 𝐹_𝐹𝐿𝑂𝑂𝑅 –parameter describing how
aggressively the system should reduce scores of
less desired AS-es (which impacts the probability
of skipping a node). Here, a value of 0.8 was
used;

Additionally, negative score values are adjusted to
zero (to prevent the selection of a node). It should be
noted that the SIAS is calculated exclusively from
user-defined resource requirements since the
actually-used resource requirements are unknown
before the task execution actually starts.

6.3 Service Re-allocation Score
This research has found that the best throughput

results are achieved when tasks are packed tightly
into available nodes, i.e. where global resource
utilisation is the highest. The best fit scenario, where
the task fully utilises 90% of all available resources
on a node, is scored the highest. Therefore, when
migrating existing tasks, candidate nodes should be
scored in the following order: TA, PA, then DA.

Like the SIAS function presented in 6.2, the
SRAS function for two resource types (CPU and
memory) was used. Figure 6 is a graphical
representation of SRAS function:

Figure 6. Service Re-allocation Score

Three separate areas can be noticed:

(i) Upper-right corner (the highest score) – this
promotes TA, where tasks on this node will closely
utilise all its resources.

(ii) Lower-left (the medium score) – this
promotes PA that will leave resource utilisation at a
low level or proportionately used.

(iii) The upper-left and lower-right corners (the
lowest score) – these DAs will leave one resource
utilised almost fully and the other resource wasted.

In this implementation, the following SRAS was
used:

𝑆𝐶𝑂𝑅𝐸 ൌ 𝐹_𝑆𝑇𝐸𝐸𝑃൫௥಴ುೆିி_஻ூ஺ௌ∙௥಴ುೆ_ಾಲ೉൯∙൫௥ಾಶಾିி_஻ூ஺ௌ∙௥ಾಶಾ_ಾಲ೉൯ െ 𝐹_𝐹𝐿𝑂𝑂𝑅

with the exceptions of 𝐹_𝑆𝑇𝐸𝐸𝑃 where a value of
500 was used and 𝐹_𝐵𝐼𝐴𝑆 where a value of 0.6 was
used; the parameter definitions are the same as in
SIAS function in subsection 6.2)

As can be observed visually, SRAS is a mirror
image to the SIAS function (presented in Figure 5).
The main difference is changing the score bias (i.e.
𝐹_𝐵𝐼𝐴𝑆 parameter) which shifts the peak score point
from (0,0) to (90,90) (percentage of utilised
resources), and which relates to the change in the
most desirable AS from PA to TA.

It should be noted that the SRAS is calculated
exclusively from actually-allocated resource
requirements. User-defined resource requirements
are evaluated as part of the Resource Usage Spikes
(RUS) routine, explained in detail below.

6.4 Resource Usage Spikes
Occasionally, a task might instantly increase its

resource usage as the result of sudden increase of a
demand for a task; at such times, a node should have
the capacity to immediately accommodate this
request, without needing to migrate the task to an

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6766

alternative node (since this takes time). In such a
situation, other VMs running on this machine can be
paused or killed to let the VM instance executing this
task instantly allocate more resources.

Figure 7. Production vs. non-production allocated resources

As such, an additional feature was implemented
in MASB to handle RUS. Aside from checking the
actually-used resources for tasks and ensuring that
the node has the capacity to support it, the system
also calculates the maximum possible resource
usage of all production tasks based on user-defined
resource requirements, as well as making sure that
the node has the capacity to support all production
tasks at their full resource utilisation. This constraint
is limited only to production jobs since VMs running
non-production jobs can be suspended without
disturbing business operations.

The introduction of RUS constraint adds another
dimension to the tasks allocations’ logic. Figure 7
visualises how user-defined resource requirements
for production tasks and actually-used resources for
all tasks are integrated. In this 60-node sample (a
single bar represents one node), approximately half
the nodes have a very high CPU user-defined
allocation for production tasks, while the real usage
is much lower. It should be noted that while memory
usage stays proportionally high thorough the GCD
workload, the gaps between the requested and the
actually-used memory are much smaller. This is a
relatively common pattern for GCD workload.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6767

Whilst RUS do not occur frequently, they do
have the significant potential to destabilise an
affected node. Table 2 represents the average
frequency of RUS in examined GCD workload
traces with ca. 12.5k nodes and ca. 140k tasks being
continuously executed by them (with different RUS
thresholds examined):

RUS threshold
Average RUS

(count per minute)
Peak RUS

(count per minute)

5% 659 7538

10% 212 4362

15% 66 2390

20% 47 1925

25% 26 1135

Table 2. Resource Usage Spike frequencies

Here, while running a simulation based on replaying
the original Borg’s allocation decisions (as detailed
in subsection 7.7), the RUS threshold of 10%, i.e.
whenever there was a greater than 10% increase in
the overall node resource utilisations levels in any of
the monitored resources, was breached 212 times per
minute on average, with a peak of 4362 breaches.

In this research, a threshold of 10% was selected
for the experimental simulations as an overall good
balance between efficiently allocating nodes’
resources and, at the same time, leaving the running
tasks enough headroom for occasional activity
spikes. Generally, lower thresholds resulted in many
task migrations (and thus incurred additional task
migration costs), and the thresholds above 10% were
not utilising resources effectively (the system
throughput was lowered). Consequently, the SAS
functions were tuned to allocate up to 90% of all
available resources on the node (as seen in Figure 3)
which seem to give the best overall results.

RUS are a significant design consideration, and
a misconfiguration might lead to multiple premature
terminations of the tasks and suboptimal
performance of the system. Google’s engineers
implemented a custom resource reservation strategy
using a variant of step moving average, as detailed
by John Wilkes in a presentation during the GOTO
2016 conference in Berlin [55].

7. EXPERIMENTAL RESULTS
The previously developed AGOCS framework

was used as the base of the experimental simulation.
AGOCS is a very detailed simulator which provides
a multiple of parameters and logical constraints for
simulated jobs. The scope of the available variables
is very broad, including memory page cache hit and
instructions per CPU cycle; however, in this project

simulations were based on the following
assumptions:

 Requested (by user) and realistic (monitored)
resources’ utilisation levels for memory and
CPU;

 Detailed timing of incoming tasks and any
changes in available nodes (within one-minute
cycles);

 Nodes attributes and attributes’ constraints
defined for tasks (as specified in GCD workload
traces).

This level of detail comes at the price of extensive
computing power requirements. While dry
simulation itself can run on a typical desktop
machine, adding layers of scheduling logic, agents’
states and inter-system communication requires a
significant increase in processing time. In order to
realistically and correctly simulate scheduling
processes on a Cloud system, the Westminster
University HPC Cluster was used.

7.1 Test Environment and Code Profiling
The MASB prototype was initially developed

on a personal desktop, but as the size and level of
detail of the simulations grew, it was necessary to
move to a Cluster environment where more
computing power was available. All the experiments
were executed on the Westminster University HPC
Cluster, regarding which more details concerning the
software and hardware specifications can be found
in Table 3 below:

Model Dell R630

Operating System CentOS Linux release 7.2.1511 (Core)

CPU 20x 2.3GHz Intel E5-2650 v3

Memory 96GB memory

Storage 1TB

Networking 10Gb Ethernet

Java Virtual Machine
OpenJDK 64-Bit Server VM
(build 25.91-b14, mixed mode)

Table 3. Westminster University HPC Cluster node
(March 2016)

While this cluster offered a sizable array of GPUs,
the simulations did not take advantage of that
computing power, and instead all processing took
place on CPUs. Although it would have been
possible to achieve higher throughput when using
GPU with frameworks such as ScalaCL or Rootbeer,
JVM does not natively support GPU processing.
Having as few external dependencies as possible was
therefore preferred, since they make maintaining the
project more time-consuming. Interestingly,
Google’s BorgMaster process, which manages a
single cell in the production environment for one
computing cell, uses 10–14 CPU cores and up to

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6768

50GB of memory. The statistics presented are valid
for an intensely utilised computing cell, for example
one which completes more than 10k tasks per minute
on average [51].

In experiments, MASB allocated all available
forty CPU cores on HPC machine and used them
continuously at 60% to 80%. The MASB process
allocated ca. 7GB of memory. It is difficult to
measure exactly how much computing power was
spent on supporting activities such as simulating
messaging interactions between agents, i.e.
enqueuing and dequeuing messages to and from
Akka actors. However, after tuning exercises of the
default configuration, the Akka Actors framework
proved to be quite resilient. It is estimated that the
framework’s processing did not take up more than
10-15% of the total CPU time, with the relatively
lightweight AGOCS simulator framework
consuming about 15-25% of all CPU time. As an
interesting note, Akka’s optional Thread-pool
executor performed noticeably better on the test
HPC machines than on the default Fork-join-pool
executor, which is based on a work-stealing pattern.

However, in a truly multi-core environment, a
different approach was required – one which focused
on minimising context switches frequency and
average CPU idle time across all available cores.
Once the MASB framework was moved into the
Cluster environment, the ‘pidstat’ command tool
was used to gather statistics, before the refactor and
fine-tune framework so as to achieve better
parallelism. During MASB simulations, the typical
observed context switches frequency was ca. 500-
700 per second per thread, which is comparable with
a fully loaded webserver [29].

7.2 Testable Design

Building a framework which fully simulates the
Google computing cell from GCD traces has been
previously recognised as a challenging task, where
there are many aspects to consider [2][45][64]. GCD
traces contain details of nodes, including their
resources, attributes and historical changes in their
values. Traces also contain corresponding
parameters for tasks, such as user-defined and
actually-used resources, as well as attributes’
constraints. This has created a multi-dimensional
domain with a range of relations which has resulted
in complex error-prone implementation. In order to
mitigate the risk of coding errors, especially during
rapid iterations, a number of programming practices
were used:

(i) A comprehensive test units suite was
developed, along with prototype code. Test units

were executed upon every build to catch errors
before being deployed to production. This software
engineering pattern allowed for a rapid development
of prototype and helped to maintain the high code
quality;

(ii) A number of sanity checks were built into the
runtime logic, such as checking whether the task’s
constraints could be matched to any node’s attributes
within the system and checking whether the total of
all scheduled tasks’ resources exceeded the
computing cell compatibilities;

(iii) Recoverable logic flow was implemented for
both NA and BA. In the case of various errors such
as division by zero or null pointer exceptions, the
error is logged but the agent continues to run;

(iv) Keeping a separate error log file with the
output of all warnings and errors was a considerable
help in terms of resolving bugs.

The implementation of the above features gave
high confidence in terms of realising a good quality
and reasonably bug-free code.

7.3 Platform Outputs
Adding detailed logging features to MASB has

proved surprisingly difficult. Due to the highly
parallel nature of the simulated Cloud environment,
an enormous number of log messages were
generated upon each simulation, making it difficult
to analyse the behaviour of tested algorithms. In
addition, writing and flushing log streams caused
pauses in simulation. Switching to a Logback
framework designed with a focus on concurrent
writes provided a solution to this problem, although
it was necessary to split the data into distinct log files
in order to improve readability, e.g. separate errors
from algorithms’ output data. The following outputs
were used:

(i) Logging – in order to fine-tune MASB,
excessive logging routines were implemented. All
messages, counters and errors are logged to four
types of log-files: /logs/*.log files – standard log
outputs containing all logs messages and also
samples; /logs/*-error.log – errors and corrupted
data exceptions are written to separate files to help
with debugging and troubleshooting; /logs/*-
ticks.csv – CSV files with periodically generated
overall system stats, such as the number of idle and
overloaded nodes, number of migration attempts,
global resources-allocation ratio, and so on;
/usage/*.csv – detailed node usage stats and task
allocations are written periodically to a file, that is,
every hundred minutes of simulation time.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6769

(ii) Sampling – while examining every decision
process in MASB simulation is virtually impossible,
frequent and recurrent analysis of the details and
values was useful for fine-tuning the system and the
scoring functions. Not all the details of every single
decision process were logged, rather just a small
percentage of all invocations. In the current
implementation, the following items are sampled:

 The selection of overloading tasks by the NA, ca.
1 sample per 50 invocations (a sample is
presented in 5.1);

 The scoring and selection of candidate nodes by
the BA, ca. 1 sample per 5k invocations (see log
entry in 5.2);

 The selection of the target node from the
candidate node list, ca. 1 sample per 5k
invocations (as listed in subsection 5.4).

Sampling proved to be one of the most important
logging features implemented.

7.4 System Evolutions and Optimisations
In order to achieve high resources utilisation and

low resources waste, several enhancements were
implemented and then fine-tuned, including:

(i) Limiting the number of candidate nodes
returned from BA to fifteen, and introducing the
forced migrations feature (subsection 5.6);

(ii) Fine-tuning SCS routine to maintain the
balance between migration cost and the node
allocation score, which refers to finding the right
combination of steps of the TS algorithm, as well as
its termination depth;

(iii) Splitting the SAS function into SIAS and
SRAS and then limiting the number of candidate
nodes examined in those functions (200 and 2k
respectively);

(iv) Adjusting input parameters for SIAS and
SRAS functions, namely values for 𝐹_𝐵𝐼𝐴𝑆,
𝐹_𝑆𝑇𝐸𝐸𝑃 and 𝐹_𝐹𝐿𝑂𝑂𝑅 for the best results based
on samples logged (subsections 6.2 and 6.3);

(v) Adding the timestamp parameter to the
candidate node recommendations, and regularly
removing those which have expired. In scenarios
where the task migration request is repeatedly
refused, this mechanism forces NA to disregard the
results of old calculations and request newly scored
recommendations from BAs. In this implementation,
the recommendation’s age threshold was set to three
minutes (simulation time) with lower values not
yielding better results (see subsection 5.4).

7.5 Test Simulations Setup

During the later stages of the development of the
MASB prototype, several simulations were
continuously run. They were frequently paused,
tuned and then resumed to see whether a given tweak
would improves the results. This methodology
allowed the research to progress at a good speed
while simultaneously iterating a number of ideas and
tweaks. Therefore, the testing process did not have
noticeable stages, but instead the stages blended into
each other. This said, it is possible to logically split
the testing into four main areas:

(i) Benchmarking – GCD workload traces also
contain actual Google’s Borg scheduler task
allocations. In the Borg’s simulation, MASB will
replay all recorded events, mirroring tasks
allocations as per the Google scheduler, i.e. not using
its own scheduling logic. This simulation was used
as a controlling run in order to test the system, and
also as a benchmark to compare results with the
original allocations.

(ii) Throughput – secondly, MASB was tested to
identify whether it was capable of allocating the
same workload as Borg system. The size of the
workload was then increased gradually in 2% steps
while preserving the configuration of the system
nodes. To ensure the correctness of results, another
technique, called ‘cell compaction’ [51] was used in
which, instead of adding additional tasks, the system
nodes were removed. The results were then
compared to the original GCD workload.

(iii) Migration Cost – thirdly, this batch of
experiments focused on migration costs incurred via
use of VM-LM. A collection of different SAS
functions and their variants were tried in order to
research their impact on total migration cost while
allocating the given workload.

(iv) Scalability – finally, the MASB simulation
was run with multiplies of GCD workload in order
to test the scalability limits of the designed solution.
Although this step was the least work-intensive, it
took the longest time to perform.

As noted in [64], simulating GCD workload is
not a trivial task. The main challenge when running
such large and complex simulations is the demand
for computation power and the continuous
processing. During this experiment, the AGOCS
framework was modified to also allow the testing of
computing cells larger than 12.5k. This was achieved
by duplicating randomly selected existing tasks and
their events, for example ‘Create Task A event from
GCD workload trace files’ will create events
AddTaskWorkloadEvent events for task A and A’.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6770

This feature is based on the hashcode of object’s ID,
which is a constant value.

The largest experiments simulated a single Cloud
computing cell with 100k nodes and required nine
months of uninterrupted processing on one of the
University of Westminster HPC cluster’s nodes. At
this juncture, it should be noted that early
simulations often fail due to unforeseen
circumstances, such as NAS detachment or network
failure. One solution to this was to frequently save
snapshots of the state of the simulation and to keep a
number of previous snapshots in case of write file
failure.

Figure 8. University of Westminster HPC Cluster
utilisation

At the peak of the experiment, eighteen out of twenty
computing nodes were committed to running MASB
simulations, as can be seen in Figure 8.

7.6 Allocation Score Ratios
Clearly, when examining the suitability of load

balancing, the key parameter is the number of
overloaded nodes, which should be kept to
minimum. It was found that replaying GCD traces
using Google’s original Borg’s allocation decisions
results in up to 0.5% of nodes being overloaded in a
simulated one-minute period. It was assumed that
this phenomenon was the result of delayed and
compacted resource usage statistics, which were
recorded and averaged over ten-minute periods. As
such, in further experiments this ratio was used as an
acceptable error margin.

The second researched property was how nodes
were distributed amongst allocation score types
during simulations. Therefore, each experiment
recorded a number of nodes with each allocation
score type, and averaged them out over the
simulation period. The set of normalised values for
STA, TA, PA and DA are referred to as Allocation
Score Ratios (ASR). Idle Nodes and Overloaded
Nodes are discussed separately, and they are

excluded from the ASR. The ASR values describe
how well the Cluster is balanced, that is, how well
nodes are balanced as a whole group.

The ASR values are used to describe the
experimental results presented in the subsections
below to highlight the differences in how various
load balancing strategies perform under a GCD
workload.

The most dominant AS was PA, meaning that
each of the node’s resources is utilised between 0%
and 70%. Ca. 68% of all the cluster’s nodes are
found within these parameters, which is the direct
result of their initial allocation using SIAS function.
The second biggest group, ca. 22% of all servers, are
nodes allocated disproportionally in which one or
more resources are highly used but the other
resources are relatively idle. The remainder of the
nodes have either an STA or TA allocation score
type. The PA to DA ratio of roughly 3:1 is
characteristic for a typical workload as recorded in
GCD traces and processed by MASB.

Figure 9 chart visualises the AS distribution
during a month-long simulation. The horizontal axis
is the measure of time and the vertical axis represents
the number of nodes having a particular allocation
type (as per coloured legend). The chart also
highlights two periods of low and elevated
workload, marked A and B respectively:

(i) During the low workload period (A), SIAS
function can schedule most newly-arriving tasks to
relatively unused nodes, thereby successfully
preserving their resource usage proportions. As
such, the number of PAs increases while the number
of DAs decreases. Existing long-running services
continue to run uninterrupted on their nodes, and so
the ratio of STA to TA remains flat.

(ii) During an elevated workload period (B),
SIAS function is unable to find relatively unused
nodes anymore. It thus selects lower quality
allocations, resulting in a decrease in PAs. Due to the
scarcity of resources, tasks are also re-allocated
more frequently by SRAS function. This results in
tighter fit allocations, which is seen as an increase in
STAs and TAs counts.

This cycle is repeated thorough cluster activity,
wherein MASB balances the workload. The
subsections which follow describe several
implemented optimisations and their rationales, as
well as the experimental results and a commentary
on them.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6771

Figure 9. MASB – Allocation Scores distribution (12.5k nodes)

7.7 Benchmark
Given that GCD traces have a complicated

structure and contain a vast amount of data, only
rarely are they analysed to the full extent of their
complexity. MASB design shares similarities with
BorgMaster in areas such as constraining tasks,
defining memory and CPU cores as resources, using
scoring functions for candidate node selection, and
handling RUS. It also closely follows the lifecycle of
tasks as presented in [19]. As things stand, there is
no publicly available literature which contains
descriptions of similar experiments which could be
compared with the simulation results of MASB.
Therefore, the closest comparable results are the
original Borg’s allocation decisions that were
recorded in GCD traces. For the purposes of this
research, it was decided that they be used as a
benchmark for the results from MASB’s
experiments.

Both simulations processed full month-long
GCD traces. The average values were used because
MASB simulation works in one-minute intervals

whilst GCD traces provide usage statistics in ten-
minute windows that occasionally overlap. Given
this, peak or median values were not accurate.

To highlight differences in workings between the
MASB and Google Borg algorithms, Figure 10
presents the AS distribution during the period
recorded in GCD (replayed Google’s Borg
allocation events). In comparison to the
experimental data presented in Figure 9, MASB
behaves more organically during periods of low and
elevated workload. This is especially visible during
the period of elevated workload (B) where MASB
managed to preserve a better ratio of PA to DA
Nodes than Google’s Borg. This behaviour is the
result of allowing a given task to be re-allocated
during its execution, meaning that MASB can
dynamically shape its workload and improve the
health of its allocations. This feature also allows
greater flexibility in altering the requirements of
running tasks, in which the load balancer attempts to
offload an alternative node.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6772

Figure 10. Borg – Allocation Scores distribution (12.5k nodes)

Table 4 directly compares ASR parameters of both
pre-recorded Google’s Borg and MASB simulations:

Parameter
(average, one-minute

interval)

Framework

Borg
(Figure 10)

MASB
(Figure 9)

Idle Nodes
1.01

(0.01%)
78.10

(0.63%)

STA1 Nodes
820.49
(6.58%)

487.01
(3.91%)

TA1 Nodes
459.57
(3.69%)

564.18
(4.53%)

PA1 Nodes
6597.14
(52.94%)

8508.08
(68.28%)

DA1 Nodes
4578.49
(36.74%)

2810.69
(22.56%)

Overloaded Nodes
4.04

(0.03%)
12.62

(0.10%)

Table 4. Benchmark results – Borg and MASB

The listed ASR values highlight the differences
in Borg and MASB workings:

(i) Idle Nodes – Borg’s design has a definite
advantage over MASB because Borg’s schedulers
can access the shared cluster’s state and iterate over
the complete set of system nodes. MASB relies on a
network of BAs, each of which has only partial

information about the cluster’s state. Therefore, a
subset of idle nodes might never be scored, even if
they represent the best allocation for a given task.

(ii) STA and TA Nodes – in both systems, under
normal workload conditions, incoming tasks are
reasonably well distributed between the nodes. Only
ca. 10% of all system nodes register higher resource
usage scores, when at least one of resource
utilisation levels crosses 90%. The exact scoring
algorithm of Google’s Borg has not been disclosed,
but the results suggest a degree of similarity to the
SIAS function.

(iii) PA and DA Nodes – the ratio of PAs to DAs
is visibly different in Borg and MASB. Borg’s
original scheduling decisions had a ratio of roughly
3:2, meaning that for every three proportionally
allocated nodes in the system, there were two nodes
that were disproportionately allocated. MASB
managed to achieve a better ratio of 3:1, suggesting
that the use of SIAS and SRAS scoring functions
together with VM-LM feature can potentially create
a more balanced scheduling system.

Given the superior ratio of PA to DA nodes as
measured, and the possibility of increased

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6773

throughput, the next experiment focused on
processing increased workload.

7.8 Throughput Tests
The MASB framework has been designed as a

general solution for balancing workload in a
decentralised computing system. After numerous
iterations, MASB was eventually able to schedule
the entire GCD workload, with additional tasks also
added.

Table 5 presents a comparison of the results with
different workload sizes:

Parameter

(average per
minute)

Workload Size (tasks)

100%
(original)

102% 104% 106%

Nodes Count 12460.39 12460.36 12460.68 12460.35

Tasks Count 132061.15 134738.92 137399.93 142936.05

Global CPU
Usage Ratio

43.64% 44.54% 45.42% 46.89%

Global
Memory

Usage Ratio
62.05% 63.33% 64.58% 66.57%

Idle Nodes
76.41

(0.61%)

73.08

(0.59%)

72.75

(0.58%)

52.18

(0.42%)

STA Nodes
479.91

(3.85%)

480.22

(3.85%)

423.51

(3.40%)

447.73

(3.59%)

TA Nodes
566.20

(4.54%)

545.74

(4.38%)

447.75

(3.59%)

355.88

(2.86%)

PA Nodes
8507.49

(68.28%)

8718.76

(69.97%)

9316.35

(74.77%)

9576.67

(76.86%)

DA Nodes
2818.11

(22.62%)

2610.04

(20.95%)

2084.06

(16.73%)

1718.08

(13.79%)

Overloaded
Nodes

12.28

(0.10%)

32.53

(0.26%)

116.25

(0.93%)

309.79

(2.49%)

Table 5. Throughput results (100%-106% workload)

As demonstrated above, MASB was able to
schedule, on average, an additional ca. 2.6k tasks per
minute (ca. 2% more tasks). Further tuning was
unable to improve those results, with workload sizes
greater than 102% increasing the number of
overloaded nodes above the defined threshold of
0.5%.

To further ensure the correctness of the attained
results, another set of experiments was run in
parallel. Here, instead of multiplying the original
GCD workload, the random machines were removed
from the cluster until the workload could no longer
be fitted. This method, known as ‘cell compaction’,
is suggested in [51] for simulations with GCD traces.

Similar to the previously detailed experiments
which had augmented workload, even when the
cluster size was reduced to ca. 98% of its original
size (242 nodes being removed), the original GCD
workload could still be fitted without breaching the
0.5% limit of overloaded nodes.

On average, GCD traces utilise ca. 40-50% of the
globally available CPUs and ca. 60-70% of globally
available memory while continuously guaranteeing
ca. 85% of CPUs and ca. 70% of memory to
production tasks to handle RUS. It should be noted
that Borg’s scheduling routines have been perfected
following decades of work by a team of brilliant
Google engineers. The conclusion of this research is
that, it is hard to substantially improve this
impressive result given those constraints. Although
the throughput of the original Google Scheduler
could not be significantly improved, the results from
both methods of evaluation show the benefits of
using VM-LM to fit additional tasks in an already
very tightly-fitted cluster.

Table 6 details those experimental results:

Parameter
(average per

minute)

Cluster Size (nodes)

100%
(original)

99% 98% 97%

Nodes Count 12460.39 12332.92 12218.61 12081.30

Tasks Count 132061.15 132057.96 132057.54 132055.86

Global CPU
Usage Ratio

43.64% 44.09% 44.52% 45.05%

Global
Memory

Usage Ratio
62.05% 62.72% 63.39% 64.08%

Idle Nodes
76.41
(0.61%)

53.29
(0.43%)

58.96
(0.48%)

75.87
(0.63%)

STA Nodes
479.91
(3.85%)

480.28
(3.89%)

404.13
(3.31%)

448.67
(3.71%)

TA Nodes
566.20
(4.54%)

572.24
(4.64%)

485.55
(3.97%)

500.75
(4.14%)

PA Nodes
8507.49
(68.28%)

8412.71
(68.21%)

8866.13
(72.56%)

8663.88
(71.66%)

DA Nodes
2818.11
(22.62%)

2800.30
(22.71%)

2361.64
(19.33%)

2339.31
(19.35%)

Overloaded
Nodes

12.28
(0.10%)

14.11
(0.11%)

42.20
(0.35%)

62.07
(0.51%)

Table 6. Throughput results (97%-100% cluster)

7.9 Migration Cost
The MASB framework relies on a VM-LM

feature to balance workload by moving running tasks
across Cloud nodes. While the VM-LM process is
reasonably cheap in terms of the computing power,
it does incur a non-trivial cost on the Cloud’s
infrastructure. In order to avoid excessive networks
transfers, NAs carefully decide which tasks will be
migrated out from a given node. To score candidate
tasks, the SCS function is used which takes the task’s
estimated migration cost into consideration as well
as released resources (see 5.1 for more details).

Unexpectedly, when searching for ways to lower
the total migration cost, although modifications of
SCS function seemed to be the most palpable place
to start, significantly better results were not obtained.
Based on experience from previous experiments, it
was discovered that the biggest reduction in task
migrations was achieved by improving the quality of

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6774

the initial task allocation. Therefore, further
experimentation focused on testing variants and
combinations of the score functions.

As previously mentioned, initially MASB
implemented a single SAS function which
prioritised the scattering of tasks amongst nodes.
With introduction of SAL (detailed in subsection
6.1), the SAS function was split into SIAS and SRAS
functions biased towards opposite allocation types,
namely PA and TA. However, during the study of
the impact of frequent re-allocations on the total
migration cost, it was found that those scoring
functions can be further improved by introducing
GAIN variants. Figure 11 presents the evolutions of
scoring functions:

Figure 11. Scoring functions evolution

The GAIN variants of SIAS and SRAS functions are
defined here as SIAS_GAIN and SRAS_GAIN
respectively:

𝑆𝐼𝐴𝑆_𝐺𝐴𝐼𝑁 ൌ 𝑆𝐼𝐴𝑆ሺ𝑇′ሻ െ 𝑆𝐼𝐴𝑆ሺ𝑇ሻ
𝑆𝑅𝐴𝑆_𝐺𝐴𝐼𝑁 ൌ 𝑆𝑅𝐴𝑆ሺ𝑇′ሻ െ 𝑆𝑅𝐴𝑆ሺ𝑇ሻ

where 𝑇 is the current set of allocated tasks, and 𝑇′
is the candidate set of allocated tasks on a given
node. Additionally, cases when a node would lower
its AS as a result of migrations have a zero score.

In the GAIN variants of scoring functions, the
relative AS gains are prioritised over the absolute AS
values for an individual node. For example, given
the scenario in which the task migration to node A
would change its AS from 0.1 to 0.4 (a 300% gain),
while the same task could also be migrated to node
B, changing its AS from 0.4 to 0.6 (a 50% gain), the
former option will be selected as yielding a higher
gain (since 300% is greater than 50%) regardless of
the potentially higher absolute score value of node
B.

The combination of SIAS_GAIN and SRAS
functions was most efficient, i.e. the total average
migration cost as well as the average cost per task
migration were lowest, while ASR remained
virtually unchanged. Nonetheless, the good results
were also yielded with the combination of SIAS and
SRAS. Table 7 presents the results under the variants
of the scoring functions:

Scoring Functions

Parameter
(average per

minute)

SIAS

SRAS

SIAS

SRAS_GAIN

SIAS_GAIN

SRAS

SIAS_GAIN

SRAS_GAIN

Total
Migration
Cost [GB]

1490.65 7008.30 1252.50 5925.41

Cost per Task
Migration
[MB]

338.09 795.90 339.02 954.21

Idle Nodes
83.54

(0.67%)

105.80

(0.85%)

76.14

(0.61%)

79.33

(0.64%)

STA Nodes
495.09

(3.97%)

687.77

(5.52%)

490.42

(3.94%)

654.18

(5.25%)

TA Nodes
656.67

(4.54%)

560.65

(4.50%)

558.57

(4.48%)

547.38

(4.39%)

PA Nodes
8515.95

(68.34%)

8492.21

(68.15%)

8511.61

(68.31%)

8451.12

(67.82%)

DA Nodes
2785.23

(22.35%)

2586.43

(20.76%)

2810.95

(22.56%)

2707.73

(21.73%)

Overloaded
Nodes

14.88

(0.12%)

27.54

(0.22%)

12.67

(0.10%)

20.61

(0.17%)

Table 7. Results comparison of SAS, SIAS and
SRAS (migration cost)

The experiment showed that focusing on the
node AS’s absolute value as well as value gain are
both viable strategies during the initial task
allocation (with the former being relatively better).
However, it is the selection of the task re-allocation
strategy that is crucial and should be dedicated to
maximising the absolute value of the node’s
allocation score. As mentioned previously, the
majority of tasks scheduled on the GCD cluster are
short-lived batch jobs which tend not to have high
resource requirements [44]. As such, there is no need
to carefully fit them to a node. As a result of their
limited time on the cluster, the chance of re-
allocation is low. Long-running services, however,
should be fitted tightly onto available nodes and
continue to run there due to the additional cost of
further re-allocations because of the typically large
amounts of used memory.

7.10 Scalability Study
The final step in the experiments was to examine

the scalability of the MASB framework. Due to the
simulation’s high computational requirements, its
one-minute time slices were split into ‘rounds’, in
which every NA could both respond to migration
requests as well as send its own requests, although
sent requests would be unanswered until the next
‘round’. This meant that the simulated scenarios
were as realistic as possible whilst also emulating
massive Cloud installations.

Such a long simulation was necessary in order to
achieve reliable and quality results. The month-long
GCD workload traces were produced by an actual
Cluster system and contain many real-world
scenarios which would not be possible to synthesise

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6775

in any other way. Special thanks are due to
University of Westminster IT staff which provided a
massive help and support during those experiments.

Table 8 demonstrates the results achieved
through the multiplication (here: two, four and eight
times) of the original GCD workload; it also
highlights the lack of changes in ASR values:

Parameter
(average

per minute)

Cluster Size (nodes)

12.5k

(original)

25k

(2x)

50k

(4x)

100k

(8x)

Nodes
Count

12460.70 24921.49 49842.99 99685.97

Tasks Count 132061.35 264155.80 528336.38 1056645.92

Idle Nodes
71.61

(0.57%)

95.82

(0.38%)

226.42

(0.45%)

413.03

(0.41%)

STA Nodes
492.67

(3.95%)

805.60

(3.23%)

1920.99

(3.85%)

3868.22

(3.88%)

TA Nodes
570.37

(4.58%)

962.14

(3.86%)

2232.10

(4.48%)

4300.70

(4.31%)

PA Nodes
8502.06

(68.24%)

18118.11

(72.71%)

34102.21

(68.42%)

68999.49

(69.22%)

DA Nodes
2812.74

(22.57%)

4914.55

(19.72%)

11324.77

(22.72%)

22031.79

(22.10%)

Overloaded
Nodes

11.26

(0.09%)

25.25

(0.10%)

36.49

(0.07%)

71.83

(0.07%)

Table 8. Scalability tests – 12.5k, 25k, 50k and 100k
nodes

MASB was able to orchestrate a cell size of 100k
without a noticeable scalability cost and without
crossing the limit of 0.5% overloaded nodes. With
the current MASB framework implementation, the
simulation of this size took around nine months on a
single node of the University of Westminster.

Google has never disclosed the size of their
largest cluster, but it has been noted in [51] that Borg
computing cells are similarly sized to the clusters
managed by Microsoft’s Apollo system, which have
in excess of 20k nodes [7]. A 12.5k node cells in
GCD traces have been described as ‘average’ or
‘median’, cells with fewer than 5k nodes have been
called ‘small’ or ‘test’ [51]. Additionally, [51] gives
an example of a larger cell C, which is 150% the size
of cell A and therefore also approximately 20k
nodes. As such, in this research it is assumed that the
computing cell of the large Borg is around 20-25k
nodes.

Therefore, as demonstrated, the designed multi-
agent load balancing strategy scaled beyond the
original GCD workload without incurring noticeable
scalability costs. The paradigm of offloading the
scheduling logic onto nodes themselves has the
following benefits: (i) it enables the implementation
of more complex scheduling schemas as the nodes
resources can be used for that purpose; (ii) the

computing power dedicated to cluster orchestration
increases together with the Cluster size (so allowing
for greater scalability); and, (iii) limits the amount of
communications required to maintain up-to-date
Cluster state information. The result of such a
schema is the ability to enlarge the computing cells
to the sizes of 100k nodes while preserving a good
throughput and performance.

8. EXPERIMENTAL RESULTS
During work on the Cloud load balancer

prototype, a number of publications were examined
and later compared with the proposed MASB design.
Aside from the solutions presented in section 2, the
following three systems listed in the subsections
below have been found to share a degree of
similarity with MASB.

8.1 ANGEL System
The ANGEL system [64] is based on a concept

wherein a multi-agent system manages its workload
in a virtualised Cloud environment. This solution
also takes advantage of the VM-LM feature to re-
allocate running tasks to an alternative node if
necessary. While the basic concept of ANGEL and
the MASB system is similar, the design of the
architecture and features differ substantially:

(i) Within ANGEL each task is represented by
Task Agent created upon task arrival and destroyed
when the task is complete. VM Agent represents a
VM hypervisor running on a physical node and
accepting/rejecting tasks. In comparison, during the
development of MASB, it was found that the sheer
number of tasks made it impractical to create an
entity for each task responsible for its allocation;
given this, the responsibility was assigned to NAs.
In MASB, NAs themselves are responsible for
keeping their node stable and offloading overloading
tasks to alternative nodes. Therefore, MASB can
potentially support very larger number of tasks.
Indeed, during simulations one million tasks were
continuously managed.

(ii) In ANGEL, Manager Agent acts as a leader
for this computing cell and stores the complete
system state in a ‘VM Information Board’. VM
Agents are constantly updating Manager Agent as to
changes in their state, such as available resource
(CPU and memory) changes, VM creations and
cancellations. The ANGEL system assumes that the
stored system state is always current, and Manager
Agent this information to match Task Agents with
VM Agents. In MASB a subnetwork of BAs has
responsibility of caching the global system;
however, this information is accepted as outdated by
design, and so system uses it only for building initial

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6776

candidate nodes list which is then sent to NAs.
Therefore, MASB doesn’t rely on accurate and
timed updates from system nodes and the actual task
allocation is resolved later between NAs themselves.

(iii) MASB is focused on a Cluster throughput
and scalability whereby resource usages gaps are
reduced, and tasks are fitted into available nodes.
The focus of the project was to achieve tightness of
task allocations no worse than in the GCD traces
while improving scalability. The aim of ANGEL is
to guarantee the ratio of tasks guaranteed to meet
their deadlines which are also priority-adjusted.
Therefore, ANGEL seems to be more aimed at high
churn of short-term tasks, while MASB is designed
to support mixed-workload consisting of batch jobs
as well as long-lived services.

The authors of ANGEL also tested their solution
on GCD traces. In so doing, they acknowledged the
difficulty of conducting experiments on the whole
month-long traces because of the enormous count of
tasks in the trace logs. As such, they performed their
experiments exclusively on the 18th day of traces,
which has been recognised as being the most
representative time period in GCD traces [33].
However, the results presented use different metrics
and do not specify further details of the experiments,
such as whether authors also matched task
constraints and whether tasks were allocated with
regards to handing RUS.

8.2 US Patent 5,031,089
[25] filed a patent which described a set of

routines that could be deployed on nodes in order to
balance system-wide workload. The first routine
periodically examines a number of jobs on the node's
queue and computes the 'workload value', which is
then provided on request to other nodes by the
second routine. The third routine, meanwhile, is
triggered periodically when the node is idle, and at
the end of each job completion. This routine contains
the main bulk of load balancing logic and evaluates
whether the node's 'workload value' is below a pre-
established value that would indicate that the node is
relatively idle. If the node is recognised as being
under-utilised and available for more jobs, then the
routine will poll all the other nodes for their
'workload value', and transfer jobs from the node
with the highest 'workload value' to its own queue.

The feasibility of this invention was validated via
several simulations, although those results are not
shared in the cited patent. The authors list several
assumptions made during the performance testing of
this study, such as the homogeneity of all the tasks
and their resource requirements, as well as the

assumption that the job's transfer cost is negligible.
The main criticism of this solution is that it
oversimplifies the Cluster workload's model, and it
omits the continuous changes of resources used by
jobs. Only the job’s queue length was used as
'workload value'. Furthermore, only non-started jobs
can be transferred to alternative nodes. The solution
relies on polling all nodes in the cluster for their
utilisation levels, which in a large cluster might be
not feasible and may create a bottleneck.

8.3 US Patent 8,645,745
[5] notes that there is a problem when a

centralised job scheduler needs to pass through a
large number of nodes in order to find one which can
be used to run the task, and proposed a solution
whereby each node is continuously scanning a
shared-file to determine which job could be executed
on this node. When a job requires multiple nodes, the
one on the nodes becomes a primary node, which
then assigns and monitors the job execution on the
multiple nodes.

In comparison to MASB, the main similarity is
that there is no centralised manager to assign tasks to
nodes. This means that nodes are themselves
responsible for selecting and then running the
accepted tasks. However, the main difference is that
proposed patented strategy doesn’t examine all
nodes, and the task is allocated to the first (quickest)
scheduler that picks the task. In MASB a task
allocation is a multi-step process in which each node
tries to increase its AS by selecting the best-
matching tasks. Moreover, MASB dynamically
manages workload by offloading currently running
tasks to the best candidate nodes (with the highest
AS score), and, by doing that, the overall system
efficiency is increased.

Given that the patent paper provides no results
from experiments, it is difficult to directly compare
systems’ performances.

9. SUMMARY AND CONCLUSIONS
The primary challenge when sequencing a queue

of tasks on a cluster is to fit them tightly so as to
reduce resource usage gaps. The scheduling
algorithm attempts to reduce the situations where a
resource on a given node is overly un-utilised at the
same time that other resources on that node are
mostly allocated. It is extremely important to shrink
the gaps in resource utilisation and to allocate them
proportionally, especially when initially scheduling
new tasks which tend to have balanced resource
requirements.

Fitting objects of different volumes into a finite
number of containers is known as a ‘bin-packing’

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6777

problem, and belongs to class of NP-Hard problems.
The traditional way of solving NP-Hard problems
are metaheuristic algorithms. However, experiments
in [49] demonstrated that although metaheuristic
algorithms yield good solutions, they do not scale
well to the required number of nodes in a Cloud
system.

Alternative solutions and a large number of
optimisations can be devised, such as caching
computed solutions and then retrieving them based
on task similarity, multiple concurrent schedulers
working on a single data store, and pre-allocating
resources for the whole task batches [51]. However,
these solutions and optimisations still incur
substantial computational costs, and it is inevitable
that any model where the head node processes all
scheduling logic by itself will eventually work less
effectively when the cluster size grows and the
frequency of incoming tasks increases.

The MASB framework offers an alternative
approach to task allocations in that all the actual
processing of scheduling logic is offloaded to nodes
themselves. This framework uses loose coupling at
every stage of its scheduling flow, meaning that
scheduling decisions are made only on locally-
cached knowledge and all communication between
nodes is kept to minimum. Each node tries to
increase its AS by selecting and offloading tasks,
with the assumption being that by bettering
individual ASs, the global system performance will
be improved. This design also takes advantage of the
VM-LM feature, where a running program within a
VM instance can be migrated on the fly to an
alternative node without stopping a program
execution.

Design of this schema created a set of new
challenges, such as selecting alternative nodes with
limited and non-current knowledge about the state of
other nodes, estimating the VM-LM cost of
migrating a running program, understanding the
classifying and scoring functions of the allocation
type of a node, and designing the stateless node-to-
node communication protocol, to identify just a few.

In this research, realistic (i.e. pre-recorded)
workload traces from GCD were used and were run
on the AGOCS framework described above as a very
detailed simulation. The costs involved were the
substantial computing power required to run
experiments as well as time, in that a single
simulation run took about a month on a forty-core
(twenty physical cores + HT siblings) machine. In
order to benchmark the research results, original
scheduling decisions made by Google’s Borg

scheduler are examined which are also part of GCD
traces. This generated statistics such as total resource
usage, the number of idle nodes and production-
allocated resources.

When examining GCD traces, it is important to
note that Google’s engineers did a phenomenal job
in first designing and then iteratively improving the
Borg system. Incoming tasks are packed very tightly
and, although production jobs always have
additional resources available to them within defined
requirements’ limits, the spare resources are
efficiently recycled for low priority jobs. Google
Cluster has been built upon hardware without direct
support for virtualisation, meaning that its
orchestrating software design had to accommodate
this limitation. This research should be considered
an as-if scenario and assumes the availability of the
VM-LM feature to shuffle running tasks within a
Cluster.

In this research, there was only limited success in
terms of improving the throughput of executed tasks
on a simulated computing cell. This was mainly due
to the constraints arising from handling RUS. During
throughput tests, the MASB achieved a similar level
as Google’s Borg, understood here as the total
number of executed tasks. During the progressively
more intensive workload, ASR values indicated a
degradation in the quality of allocations so that
eventually the throughput could be improved by a
margin of 2%. However, MASB could achieve
higher scalability and run multiple sizes of examined
computing cell without noticeable scalability costs.
Simulations up to 100k nodes from GCD were
tested, yielding relatively comparable results when
run with smaller instances of simulations.

9.1 Applications of Technology
In late 2017, a team of marketing experts from

IBM estimated that the world generates roughly 2.5
million TBs of data per day, with 90% of all data
having been created in the past few years alone [1].
With novel technologies emerging, new devices and
sensors being connected, the data growth rate will
accelerate even more. To process such vast data
streams, new distributed computing models are
being designed. In recent years, the trend for
software development has been towards Big Data
systems and Machine Learning algorithms,
specifically:

(i) Big Data systems are characterised by a high
degree of parallelism. A typical Big Data system
design is based on a distributed file system, where
nodes have the dual function of storing data as well

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6778

as processing it. One program in such a system might
need to crunch tens of TBs of data split across
thousands of nodes. Even with the ideal allocation of
Big Data tasks, where every node is processing data
from local storage, a single machine would still need
to process GBs of data. In order to speed up this
time-consuming process, the partial datasets can be
split even further and processed on more nodes;

(ii) Machine Learning is yet another rapidly
developing area where there is high demand for
computing power. The training algorithms for deep
neural networks require multiple iterations over
datasets, and the recent research is shifting towards
greater parallelism. However, important algorithms
such as k-means clustering, alternating least squares,
and logistic regression are already very suited to run
in parallel. Open Source libraries such as Google’s
TensorFlow and Spark’s MLlib, and the
affordability of specialised clusters (e.g. Google’s
Cloud TPU) makes it easy for businesses as well as
researchers to utilise those technologies to enhance
their offerings. It can certainly be argued that
industries will be adopting Machine Learning in
order to increase competitiveness.

Therefore, the organisations which employ those
modern technologies are highly likely to build
computing cells with even more inter-connected
nodes in the near future. To manage larger
computing cells, more scalable workload
orchestration technologies are required, such as the
presented MASB prototype. Experiments have
shown that MASB design can run a workload on a
large Cloud system (100k nodes) with a throughput
comparable to Google’s Borg system. It should be
noted that larger computing cells are also more
economical – Google’s Borg demonstrated [51] that
running a mixed-workload consisting of short-lived
batch jobs and long-running services as well as
production and non-production jobs on the same
cluster is not only possible, but allows to utilise of
available resources more efficiently. Essentially,
resource usage gaps are reduced. Therefore,
industries such as financials, health or even
government, could make monetary savings if their
processing centres were joined and more
heterogenous workload was introduced in those
clusters. MASB is a good candidate for such an
integration.

9.2 Future Directions
Although the experimental results prove that it is

feasible to deploy the presented decentralised
architecture in a live environment, there are several
possible other improvements, as listed below:

(i) During experimentations, several nodes
remained idle. This effect was a result of iterating
only a limited number of nodes while computing a
candidate node’s set for a given task migration. A
potential solution to this issue is a separate size-
limited list of relatively under-utilised nodes which
would be compulsorily scored each time a BA is
issued a GetCandidateNodesRequest request. Such a
list could be exchanged separately between BAs;

(ii) The SCS routine (Step 1 in the SAN protocol)
is triggered only when the NA detects that its node
is overloaded. However, the system could employ a
more proactive approach in which the NA would
periodically try to offload its tasks in order to
improve its AS, even if the node is stable. This would
create a secondary mechanism to distribute the load,
which would potentially reduce resource utilisation
gaps even further. However, this feature would also
place additional pressure on BAs and, as such, needs
to be carefully balanced;

(iii) In a real-world system it is expected that a
number of nodes will experience failure. NA’s AI
module could maintain a set of blacklisted nodes
which repeatedly did not respond to requests. Such a
set could be shared with BAs, similar to the way it is
implemented in Fuxi [63], and presented to system
administrators.

(iv) The MASB prototype does not address fault-
tolerance, which is an important aspect of Cloud
design. This feature could be realised in multiple
ways, such as running cloned instances of tasks,
periodically saving process checkpoints, and
ensuring the applications’ state is synchronised
across all its instances. The fault tolerance could also
be improved by implementing service/node anti-
affinity scheduling strategies where a scheduler tries
to allocate replicas of a given service to possibly
distanced nodes. In critical failure scenarios, such
programs have a greater chance to survive and
continue operations. For example, the Kubernetes
scheduler implements anti-affinity scoring
functions, which gives higher priority to nodes not
running services from the same application [24];

(v) Resource usage quotas per user, group or
other entity, would make another welcome feature.
This is something which is often present in
commercial Cluster schedulers. However, it would
also require adding an accountancy module with a
decentralised dataset in order to maintain scalability.
The same mechanism could be used to throttle the
submissions of new tasks so as to not extend the
Cluster’s capabilities;

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6779

(vi) The proposed design does not account for
task priorities, meaning that tasks are only split into
production and non-production groups. Production
tasks have committed resources which, under normal
circumstances, are guaranteed to be available.
However, during critical system-wide failures, such
as a power failure or network infrastructure collapse,
the system should degrade gracefully (as opposed to
an uncontrolled crash). In scenarios where the
current workload cannot be sustained, the system
should shut down lower priority tasks first and use
the remaining available nodes to offload high-
priority tasks;

(vii) In this project, it is assumed that NAs and
BAs agents are continuously running without
breakdowns. Nevertheless, agents are also a piece of
software, meaning that they are prone to bugs and
errors. As a possible improvement to detect and
restore hung agents, a hierarchy model could be
introduced in which an agent supervises a number of
other agents and restarts them if necessary. This
concept is similar to the Akka Actors
implementation [41] in which a parent actor
manages the failures of its children. Additionally, a
hierarchy of BAs could be used to propagate the
cluster’s state knowledge in a more efficient manner;

(viii) MASB does not attempt to implement
locality optimisation when the task’s part of a
distributed file is processed faster if accessed locally.
Currently, GCD task descriptions contain only
restrictions which disallow nodes that the task could
be executed on. However, adding optional metadata,
such as the ID of the distributed file’s part, could
prioritise a set of nodes and improve the overall
cluster performance. This functionality is featured in
some of the Big Data frameworks;

(ix) Even though the experimental results
presented are of good quality, they suggest a number
of potential improvements, especially in locating and
then scheduling tasks to idle nodes. One possible
improvement could be sharing vector idle nodes
between all BAs, and then compulsory prioritising
them over utilised nodes;

(x) The Cloud architectures’ design is moving
towards greater use of Virtual Containers (VC) such
as Docker. At the time of writing, Docker does not
fully support LM – the integration with
Checkpoint/Restore In Userspace tool does not
allow the migration of a running application to the
alternative container on the fly. Instead, the user
must copy checkpoint files and restore them on an
alternative node (cold migration). However, the
available literature describes early experiments with

LM feature [62] and the working prototype was
demonstrated in a presentation during the OpenStack
Summit 2016 conference in Barcelona (Estes and
Murakami, 2016). Once LM becomes the part of
mainstream technology, the load balancing strategy
presented in this research could be adapted to use
VCs;

(xi) MASB estimates the task migration cost, and
considers this value when selecting which tasks to
migrate out from a node. However, it does not
calculate the fact that neighbouring nodes (e.g. those
in the same server rack) might offer much faster
transfer rates than more remote nodes. Therefore,
adjusting the task migration cost by the nodes’
distances could improve the overall cluster
performance.

The suggested directions of future study and
possible expansions as listed above have the
potential to improve the results of this research.
Nevertheless, the focus of this paper was to research
and design a feasible strategy for managing and
balancing a workload within a virtualized Cloud
system, an objective which has been achieved.

REFERENCES

[1] "10 Key Marketing Trends for 2017 and Ideas
for Exceeding Customer Expectations." IBM
Marketing Cloud. November 29, 2017.
Available from:

https://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?htmlfid=WRL12345USEN

[2] Abdul-Rahman, Omar Arif, and Kento Aida.
"Towards understanding the usage behavior of
Google cloud users: the mice and elephants
phenomenon." In Cloud Computing
Technology and Science (CloudCom), 2014
IEEE 6th International Conference on, pp. 272-
277. IEEE, 2014.

[3] Agnetis, Allesandro, Pitu B. Mirchandani,
Dario Pacciarelli, and Andrea Pacifici.
"Scheduling problems with two competing
agents." Operations research 52, no. 2 (2004):
229-242.

[4] Baker, Kenneth R., and J. Cole Smith. "A
multiple-criterion model for machine
scheduling." Journal of scheduling 6, no. 1
(2003): 7-16.

[5] Barsness, Eric L., David L. Darrington, Ray L.
Lucas, and John M. Santosuosso. "Distributed
job scheduling in a multi-nodal environment."
U.S. Patent 8,645,745, issued February 4,
2014.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6780

[6] Bigham, John, and Lin Du. "Cooperative
negotiation in a multi-agent system for real-
time load balancing of a mobile cellular
network." In Proceedings of the second
international joint conference on Autonomous
agents and multiagent systems, pp. 568-575.
ACM, 2003.

[7] Boutin, Eric, Jaliya Ekanayake, Wei Lin, Bing
Shi, Jingren Zhou, Zhengping Qian, Ming Wu,
and Lidong Zhou. "Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale
Computing." In OSDI, vol. 14, pp. 285-300.
2014.

[8] Brazier, Frances MT, Frank Cornelissen, Rune
Gustavsson, Catholijn M. Jonker, Olle
Lindeberg, Bianca Polak, and Jan Treur. "A
multi-agent system performing one-to-many
negotiation for load balancing of electricity
use." Electronic Commerce Research and
Applications 1, no. 2 (2002): 208-224.

[9] Brenner, Walter, Rüdiger Zarnekow, and
Hartmut Wittig. "Intelligent software agents:
foundations and applications." Springer
Science & Business Media, 2012.

[10] Brooks, Chris, Brian Tierney, and William
Johnston. "JAVA agents for distributed system
management." LBNL Report (1997).

[11] Buyya, Rajkumar. "High Performance Cluster
Computing: Architectures and Systems,
Volume I." Prentice Hall, Upper SaddleRiver,
NJ, USA 1 (1999): 999.

[12] Cao, Junwei, Daniel P. Spooner, Stephen A.
Jarvis, and Graham R. Nudd. "Grid load
balancing using intelligent agents." Future
generation computer systems 21, no. 1 (2005):
135-149.

[13] Castelfranchi, Cristiano. "Guarantees for
autonomy in cognitive agent architecture." In
International Workshop on Agent Theories,
Architectures, and Languages, pp. 56-70.
Springer, Berlin, Heidelberg, 1994.

[14] Chavez, Anthony, Alexandros Moukas, and
Pattie Maes. "Challenger: A multi-agent
system for distributed resource allocation." In
Proceedings of the first international
conference on Autonomous agents, pp. 323-
331. ACM, 1997.

[15] Gensereth, Michael R., and Steven P. Ketchpel.
"Software agents." Communications of the
ACM 37, no. 7 (1994): 48.

[16] Gentzsch, Wolfgang. "Sun grid engine:
Towards creating a compute power grid." In
Cluster Computing and the Grid, 2001.

Proceedings. First IEEE/ACM International
Symposium on, pp. 35-36. IEEE, 2001.

[17] Goodwin, Richard. "Formalizing properties of
agents." Journal of Logic and Computation 5,
no. 6 (1995): 763-781.

[18] Guilfoyle, Christine, and Ellie Warner.
"Intelligent agents: The new revolution in
software." Ovum, 1994.

[19] Hellerstein, Joseph L., W. Cirne, and J. Wilkes.
"Google Cluster Data." Google Research Blog.
January 7, 2010.

[20] Hindman, Benjamin, Andy Konwinski, Matei
Zaharia, Ali Ghodsi, Anthony D. Joseph,
Randy H. Katz, Scott Shenker, and Ion Stoica.
"Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center." In NSDI, vol. 11,
no. 2011, pp. 22-22. 2011.

[21] Ilie, Sorin, and Costin Bădică. "Multi-agent
approach to distributed ant colony
optimization." Science of Computer
Programming 78, no. 6 (2013): 762-774.

[22] Jones, James Patton, and Cristy Brickell.
"Second evaluation of job queuing/scheduling
software: Phase 1 report." Technical Report
NAS-97-013, NASA Ames Research Center,
1997.

[23] Kim, Gu Su, Kyoung-in Kim, and Young Ik
Eom. "Dynamic load balancing scheme based
on Resource reservation for migration of agent
in the pure P2P network environment." In
International Conference on AI, Simulation,
and Planning in High Autonomy Systems, pp.
538-546. Springer, Berlin, Heidelberg, 2004.

[24] Lewis, Ian, and David Oppenheimer.
"Advanced Scheduling in Kubernetes".
Kubernetes.io. Google, Inc. March 31, 2017.
Available from:
https://kubernetes.io/blog/2017/03/advanced-
scheduling-in-kubernetes

[25] Liu, Howard T., and John A. Silvester.
"Dynamic resource allocation scheme for
distributed heterogeneous computer systems."
U.S. Patent 5,031,089, issued July 9, 1991.

[26] Liu, Peng, and Lixin Tang. "Two-agent
scheduling with linear deteriorating jobs on a
single machine." In International Computing
and Combinatorics Conference, pp. 642-650.
Springer Berlin Heidelberg, 2008.

[27] Long, Qingqi, Jie Lin, and Zhixun Sun. "Agent
scheduling model for adaptive dynamic load
balancing in agent-based distributed
simulations." Simulation Modelling Practice
and Theory 19, no. 4 (2011): 1021-1034.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6781

[28] Marey, Omar, Jamal Bentahar, Ehsan
Khosrowshahi-Asl, Khalid Sultan, and Rachida
Dssouli. "Decision making under subjective
uncertainty in argumentation-based agent
negotiation." Journal of Ambient Intelligence
and Humanized Computing 6, no. 3 (2015):
307-323.

[29] Mechalas, John. "Performance Impact of
Intel® Secure Key on OpenSSL." Intel
Corporation. July 24, 2012. Available from:
https://software.intel.com/en-
us/articles/performance-impact-of-intel-
secure-key-on-openssl

[30] Milano, Michela, and Andrea Roli. "MAGMA:
a multiagent architecture for metaheuristics."
IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 34, no. 2
(2004): 925-941.

[31] Monteserin, Ariel, J. Andrés Díaz-Pace,
Ignacio Gatti, and Silvia Schiaffino. "Agent
Negotiation Techniques for Improving
Quality-Attribute Architectural Tradeoffs."
Advances in Practical Applications of Cyber-
Physical Multi-Agent Systems: The PAAMS
Collection, vol. 10349 (2017): 183-195.

[32] Montresor, Alberto, Hein Meling, and Ozalp
Babaoglu. "Messor: Load-balancing through a
swarm of autonomous agents." In AP2PC, vol.
2, pp. 125-137. 2002.

[33] Moreno, Ismael Solis, Peter Garraghan, Paul
Townend, and Jie Xu. "An approach for
characterizing workloads in google cloud to
derive realistic resource utilization models." In
Service Oriented System Engineering (SOSE),
2013 IEEE 7th International Symposium on,
pp. 49-60. IEEE, 2013.

[34] Nguyen, Ngoc Thanh, Maria Ganzha, and
Marcin Paprzycki. "A consensus-based multi-
agent approach for information retrieval in
internet." In International Conference on
Computational Science, pp. 208-215. Springer,
Berlin, Heidelberg, 2006.

[35] Nong, Q. Q., T. C. E. Cheng, and C. T. Ng.
"Two-agent scheduling to minimize the total
cost." European Journal of Operational
Research 215, no. 1 (2011): 39-44.

[36] Nwana, Hyacinth S. "Software agents: An
overview." The knowledge engineering review
11, no. 3 (1996): 205-244.

[37] Othman, Sarah Ben, Hayfa Zgaya, Mariagrazia
Dotoli, and Slim Hammadi. "An agent-based
Decision Support System for resources'

scheduling in Emergency Supply Chains."
Control Engineering Practice 59 (2017): 27-43.

[38] Perez-Gonzalez, Paz, and Jose M. Framinan.
"A common framework and taxonomy for
multicriteria scheduling problems with
interfering and competing jobs: Multi-agent
scheduling problems." European Journal of
Operational Research 235, no. 1 (2014): 1-16.

[39] Isard, Michael, Vijayan Prabhakaran, Jon
Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. "Quincy: fair scheduling for
distributed computing clusters." In Proceedings
of the ACM SIGOPS 22nd symposium on
Operating systems principles, pp. 261-276.
ACM, 2009.

[40] Reddy, Reddivari Himadeep, Sri Krishna
Kumar, Kiran Jude Fernandes, and Manoj
Kumar Tiwari. "A Multi-Agent System based
simulation approach for planning procurement
operations and scheduling with multiple cross-
docks." Computers & Industrial Engineering
107 (2017): 289-300.

[41] Roestenburg, Raymond, Rob Bakker, and Rob
Williams. "Akka in action." Manning
Publications Co., 2015.

[42] Sargent, P. "Back to school for a brand new
ABC." The Guardian (March, 12), no. 3
(1992): 12-28.

[43] Schaerf, Andrea, Yoav Shoham, and Moshe
Tennenholtz. "Adaptive load balancing: A
study in multi-agent learning." Journal of
artificial intelligence research 2 (1995): 475-
500.

[44] Schwarzkopf, Malte, Andy Konwinski,
Michael Abd-El-Malek, and John Wilkes.
"Omega: flexible, scalable schedulers for large
compute clusters." In Proceedings of the 8th
ACM European Conference on Computer
Systems, pp. 351-364. ACM, 2013.

[45] Sharma, Bikash, Victor Chudnovsky, Joseph L.
Hellerstein, Rasekh Rifaat, and Chita R. Das.
"Modeling and synthesizing task placement
constraints in Google compute clusters." In
Proceedings of the 2nd ACM Symposium on
Cloud Computing, p. 3. 2011.

[46] Shi, Dongcai, Jianwei Yin, Wenyu Zhang,
Jinxiang Dong, and Dandan Xiong. "A
distributed collaborative design framework for
multidisciplinary design optimization." In
International Conference on Computer
Supported Cooperative Work in Design, pp.
294-303. Springer, Berlin, Heidelberg, 2005.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6782

[47] Sliwko, Leszek, and Vladimir Getov. "Transfer
Cost of Virtual Machine Live Migration in
Cloud Systems." University of Westminster.
Technical Report. November, 2017: 1-21.

[48] Sliwko, Leszek, and Vladimir Getov. "AGOCS
– Accurate Google Cloud Simulator
Framework." In Scalable Computing and
Communications Congress, 2016 Intl IEEE
Conferences, pp. 550-558. IEEE, 2016.

[49] Sliwko, Leszek, and Vladimir Getov. "A Meta-
Heuristic Load Balancer for Cloud Computing
Systems." In Computer Software and
Applications Conference, 2015 IEEE 39th
Annual, vol. 3, pp. 121-126. IEEE, 2015.

[50] Tuong, N. Huynh, Ameur Soukhal, and J-C.
Billaut. "Single-machine multi-agent
scheduling problems with a global objective
function." Journal of Scheduling 15, no. 3
(2012): 311-321.

[51] Verma, Abhishek, Luis Pedrosa, Madhukar
Korupolu, David Oppenheimer, Eric Tune, and
John Wilkes. "Large-scale cluster management
at Google with Borg." In Proceedings of the
Tenth European Conference on Computer
Systems, p. 18. ACM, 2015.

[52] Wang, Cheng, Qianlin Liang, and Bhuvan
Urgaonkar. "An empirical analysis of amazon
ec2 spot instance features affecting cost-
effective resource procurement." ACM
Transactions on Modeling and Performance
Evaluation of Computing Systems
(TOMPECS) 3, no. 2 (2018): 6.

[53] Wang, Gong, T. N. Wong, and Xiaohuan
Wang. "A hybrid multi-agent negotiation
protocol supporting agent mobility in virtual
enterprises." Information Sciences 282 (2014):
1-14.

[54] Weiss, Gerhard. "Multiagent Systems. 2nd
edition." MIT Press. 2013

[55] Wilkes, John. "Cluster Management at Google
with Borg." GOTO Berlin 2016. November 15,
2016.

[56] Wooldridge, Michael, and Nicholas R.
Jennings. "Intelligent agents: Theory and
practice." The knowledge engineering review
10, no. 2 (1995): 115-152.

[57] Wyai, Loh Chee, Cheah WaiShiang, and
Marlene Valerie AiSiok Lu. "Agent
Negotiation Patterns for Multi Agent
Negotiation System." Advanced Science
Letters 24, no. 2 (2018): 1464-1469.

[58] Xydas, Erotokritos, Charalampos Marmaras,
and Liana M. Cipcigan. "A multi-agent based

scheduling algorithm for adaptive electric
vehicles charging." Applied energy 177
(2016): 354-365.

[59] Yang, Yongjian, Yajun Chen, Xiaodong Cao,
and Jiubin Ju. "Load balancing using mobile
agent and a novel algorithm for updating load
information partially." In Lecture Notes in
Computer Science 3619, pp. 1243-1252. 2005.

[60] Yin, Yunqiang, Shuenn-Ren Cheng, T. C. E.
Cheng, Wen-Hung Wu, and Chin-Chia Wu.
"Two-agent single-machine scheduling with
release times and deadlines." International
Journal of Shipping and Transport Logistics 5,
no. 1 (2013): 75-94.

[61] Yoo, Andy B., Morris A. Jette, and Mark
Grondona. "Slurm: Simple linux utility for
resource management." In Workshop on Job
Scheduling Strategies for Parallel Processing,
pp. 44-60. Springer, Berlin, Heidelberg, 2003.

[62] Yu, Chenying, and Fei Huan. "Live migration
of docker containers through logging and
replay." In Advances in Computer Science
Research, 3rd International Conference on
Mechatronics and Industrial Informatics, pp.
623-626. Atlantis Press, 2015.

[63] Zhang, Zhuo, Chao Li, Yangyu Tao, Renyu
Yang, Hong Tang, and Jie Xu. "Fuxi: a fault-
tolerant resource management and job
scheduling system at internet scale."
Proceedings of the VLDB Endowment 7, no.
13 (2014): 1393-1404.

[64] Zhu, Xiaomin, Chao Chen, Laurence T. Yang,
and Yang Xiang. "ANGEL: Agent-based
scheduling for real-time tasks in virtualized
clouds." IEEE Transactions on Computers 64,
no. 12 (2015): 3389-3403.

