
Journal of Theoretical and Applied Information Technology 
31st October 2018. Vol.96. No 20 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                                                         www.jatit.org                                                        E-ISSN: 1817-3195  

 
6738 

 

GRAPH MANAGEMENT SYSTEMS: A SURVEY 
(REVIEW PAPER) 

1MAURIZIO NOLÉ, 2CARLO SARTIANI 

DIMIE,  University of Basilicata, Italy  

E-mail:  2carlo.sartiani@unibas.it  

 
 

ABSTRACT 
 

In the recent years many real-world applications have been modeled by graph structures (e.g., social 
networks, mobile phone networks, web graphs, etc.), and many systems have been developed to manage, 
query, and analyze these datasets; to cope with the ever-increasing size of graph datasets, most of them 
adopted a distributed approach. These systems could be divided into specialized graph database systems 
and large-scale graph analytics systems. The first ones consider end-to-end data management issues 
including storage representations, transactions, and query languages, whereas the second ones focus on 
processing specific tasks over large data graphs. In this paper we provide an overview of several graph 
database systems and graph processing systems, with the aim of assisting the reader in identifying the best-
suited solution for her application scenario. 
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1. INTRODUCTION  
 

In the last few years graphs received a lot of 
attention from the database community. Indeed, 
while graphs have been traditionally used in 
multiple fields of computer science as a medium for 
studying very different problems, ranging from 
decidability problems to software engineering [1], 
in the recent years many real-world applications 
have been modeled by graph structures (e.g., social 
networks, mobile phone networks, web graphs, 
etc.), and many systems have been developed to 
manage, query, and analyze these datasets; to cope 
with the ever-increasing size of graph datasets, most 
of them adopted a distributed approach, which may 
further imply the need for specific data partitioning 
strategies [2] [3] [4] [5] [6]. 

These systems could be divided into specialized 
graph database systems and large-scale graph 
analytics systems. The first ones consider end-to-
end data management issues including storage 
representations, transactions, and query languages, 
whereas the second ones focus on processing 
specific tasks over large data graphs. 

Graph database systems aim at modeling and 
querying data graphs by overcoming some of the 
limitations that may arise when using an RDBMS. 
Indeed, it is possible to store data graphs into a 

relational system and query them by using SQL and 
user-defined functions and aggregations. In 
particular, there are some tools that provide a 
specific query interface to simplify the written 
graph query, and take care of running it on the 
underlying relational engine [7]. However, as 
shown in [8], relational join engines have been 
proved to be suboptimal on many graph queries, 
which may represent a significant issue when 
dealing with very large graphs. 

Graph database systems are specifically designed 
to store graph data, to support flexible schemas, and 
to provide specialized query graph traversal 
languages; moreover, similarly to a traditional 
DBMS, they provide services such as persistence, 
transactions, query optimization, etc. Most of these 
systems, such as Neo4j [9], DEX [10], and 
HyperGraphDB [11], are efficient single-node 
systems with limited scalability; furthermore, to 
deal with  massive graphs several distributed 
systems, such as Horton+ [12], and ThingSpan [13], 
have been designed. Unfortunately, as no standard 
query language has been defined for graph 
databases, each graph database system is optimized 
for a specific set of tasks or queries, and each one 
implements its own API for querying and 
manipulating data. 
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Systems for processing and analyzing massive 
graphs generally use a distributed environment with 
more computing and memory resources, and most 
of them are built on top of shared-nothing 
architectures. The majority of these systems, e.g., 
Pregel [14], Giraph [15], GraphLab [16], GPS [17], 
and Pregel+ [18], adopt a vertex-centric computing 
approach inspired by the BSP model [19], but there 
are also other solutions, such as Trinity [20], 
SociaLite [21], CombBlas [22], and Pegasus [23], 
that adopt different approaches. All these systems, 
with the notable exception of SociaLite, have been 
designed for batch processing of specific 
algorithms, and do not support high-level query 
languages. 

In this paper we provide an overview of a large 
collection of   graph database systems and graph 
processing systems, with the aim of assisting the 
reader in identifying the best-suited solution for her 
application scenario. To the best of our knowledge, 
this is the first paper surveying both graph database 
systems and graph processing systems; in Table 1 
we provide a quick summary of the systems being 
analyzed. 

Table 1: Graph Database Systems and Graph Processing 
Systems. 

Graph Database 
Systems 

Graph Processing 
Systems 

Neo4J Pregel 

Horton+ Giraph 

Sparksee GPS 

ThingSpan Pregel+ 

 GraphLab 

 MapGraph 

 SociaLite 

 Trinity 

 
 

Our survey is based on a qualitative evaluation of 
these systems, where we take into account their 
features rather than their performance: indeed, a 
few papers already studied the performance of 
graph processing systems, but their results are 
conflicting and seem to be very dependent from the 
specific experimental setup. 

The rest of the paper is organized as follows. In 
Section 2 we focus our attention on graph database 
systems, with particular emphasis on Neo4J and its 
query language. In Section 3, then, we move to 

graph processing systems, and review the most 
important Pregel-inspired systems as well as a few 
high-level systems like SociaLite and Trinity. In 
Section 4, finally, we draw our conclusions. 

2. GRAPH DATABASE MANAGEMENT 
SYSTEMS 

Graph Database Management Systems 
(GDBMSs) are mainly designed to support online 
transaction processing (OLTP) workloads for quick 
low-latency access to relatively small portions of 
graph data. GDBMs provide the major services of a 
traditional DBMS: persistence, transactions, query 
optimization, etc. These systems, such as Neo4j [9], 
DEX [24], and HyperGraphDB [25], are mainly 
centralized systems. Some of them can provide a 
distributed architecture for high availability and 
fault tolerance, but their horizontal scalability  is 
limited by data locality issues and the lack of 
sharding strategies. Indeed, if one wants process 
large graphs that cannot be stored in main memory, 
the above systems begin to underperform. Random 
disk access, the lack of efficient data partitioning 
methods, the inability to distribute the computation 
on a cluster become a significant performance and 
scalability bottleneck. To overcome these problems 
distributed graph databases have been carefully 
designed, e.g., Horton+ [12], and ThingSpan [13]. 

Each of these graph database systems 
implements methods for querying the graph dataset. 
Indeed, some systems, such as Dex, implement 
APIs with special functions for querying graph 
properties. Neo4j provides Cypher, a graph-
oriented query language based on expressions of 
the form Start-Match-Where-Return. ThingSpan 
allows one to traverse the graph through the 
implementation of Java classes, but also supports a 
declarative query language. Finally, RDF stores 
like AllegroGraph [26] support SPARQL [27], the 
standard query language for RDF data. None of the 
above languages provides a formal syntax and 
semantics, except for SPARQL (Cypher semantics 
has been formalized only very recently [28]). 
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Figure 1 Social network data graph. 
 
2.1 Neo4J 

Neo4j is an open-source project, written in Java. 
It works on a network-oriented model with relations 
as first class objects. Neo4j represents Nodes and 
Relationships as Java objects, and materializes 
these objects once at insertion time. Data are stored 
on disk through an optimized data structure for 
graph networks, using an index-free adjacency lists 
architecture, where each node has explicit 
references to its adjacent nodes, and the check for 
the existence of an edge between two linked nodes 
does not require the access to an external, global 
index.  

Neo4j uses the Property Graph Model, where the 
graph is directed and is modeled using nodes, 
relationships, and properties on nodes and 
relationships. These components are stored in three 
separate store files. In order to reduce latency, 
Neo4j provides two levels of caching: Filesystem 
Cache, and Object Cache. The first one divides the 
store files into pages which are held in main 
memory (RAM), while the second one maintains 
nodes and relationships as Java objects in the Heap. 
Neo4j supports also ACID transactions by 
implementing a write-ahead log (WAL). 

In Neo4j there are several methods for managing 
and querying graphs: Core Java API, Traversal 
API, and the query language Cypher. The Core 
Java API allows one to use low-level data 
structures to manage and query a graph; this 
solution is powerful and flexible for traversing a 

graph, but for a complex traversal case the 
implementation could become quite cumbersome. 
The Traversal API is a framework that allows one 
to build traversal rules without sacrificing any of 
the power of graph traversal, in a simple and 
declarative manner and with minimal performance 
impact. As the Core API and Traversal API are 
difficult to use in complex cases, Neo4j also 
provides the query language Cypher to query and 
manipulate an input graph. Moreover, Neo4j is 
accessible from all popular programming languages 
(e.g. Java, Python, Ruby, PHP, .NET, etc.), via an 
HTTP/S REST interface, and via the Blueprint 
interface part of the TinkerPop software stack. This 
last interface allows one to use different graph 
query languages such as Gremlin [29], an 
imperative language compatible with several graph 
databases. 

Cypher is a pattern-matching query language, 
and uses a declarative grammar with clauses, 
similar to SQL. The syntax consists of four 
different clauses: Start, Match, Where, and Return. 
Start is an optional clause that allows the user to 
choose the starting nodes of the graph being 
analyzed by specifying their IDs. Match matches 
graph patterns, allowing one to locate the subgraphs 
of interest. Where filters out data based on some 
criteria. Return, finally, returns the results the user 
is interested in.  

Cypher supports aggregation functions (e.g., 
COUNT, SUM, AVG), and several functions that 
can be used to evaluate expressions in a query (e.g., 
FOREACH, WITH, TYPE, HAS, NODES). Finally, 
Cypher allows one also to create, update, and delete 
nodes, relationships, and their properties (e.g., 
CREATE, DELETE, SET). 
Example 1. 

Consider the graph in Figure 1, sketching a social 
network,  and the following Cypher query. 

START user = node(name='Maria') 

MATCH (user) - [:TAG]  - >  photo 

RETURN photo;      

The START clause on the first row specifies one 
or more starting points (nodes or relationships) in 
the graph: here, it looks up for a node whose name 
is Maria. The MATCH clause specifies a pattern 
that is a description of the subgraphs of interest 
and, here, consists of two nodes connected with 
relationships, represented in the format ()-[]->(): 
nodes are specified using parenthesis, while 
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relationships are specified using square brackets; 
nodes and relationships are linked using hyphens. 
In this query, the MATCH clause looks for photo 
nodes that can be reached from Maria  node by 
traversing a single edge labeled with TAG. 

Cypher supports quite complex pattern matching 
expressions, such as the concatenation of relations, 
as shown in the following query: 

START user =node(name='Maria') 

MATCH (user) - [:FRIEND]−> ()  

                          − [:TAG]− > photo  

RETURN photo;  

This query, starting from a known node user with 
name Maria, searches for all photo nodes that are 
reachable through the path FRIEND.TAG, i.e., all 
nodes that represent photos tagged by Maria’s 
friends. 

In Cypher one can match multiple patterns in the 
same query, as shown below: 

START user = node(name=’Maria’)  

MATCH (user) - [:FRIEND]−> ()  

                          − [:TAG]− > photo,  

                (user) - [: TAG ] - > (photo)   

RETURN photo;  

This query searches for photos that have been 
tagged by Maria and by her friends. The resulting 
nodes will have to match all comma-separated 
patterns, acting as an AND clause. 

Just as in SQL, a WHERE clause filters the 
result on the basis of some property of nodes or 
relationships: in particular, for string properties, in 
addition to the standard equality (=) comparison, 
one can use regular expressions to filter out specific 
values, placed between two forward slashes (/), as 
illustrated in the following query. 

START user = node(name=’Maria’) 

MATCH (user) - [: FRIEND] − > friend  

WHERE friend.email = /.*@gmail.com/  

RETURN friend;  

This query looks for all Maria’s friends who 
have an email address containing "gmail.com". 
While quite powerful, Cypher matching features are 
far beyond those of regular path query languages 
like GXPath [30][31][32]. 

Neo4j is designed as a single-machine database  
system and limited by the resources of a single 
machine; hence, the performance of Neo4j becomes 
significantly worse when the graph exceeds the 
memory capacity. 

Neo4j databases can be distributed across 
multiple machines. Neo4j makes use of a master-
slave replication architecture, using a Paxos-like 
protocol, and provides support for resilience and 
fault tolerance in the event of hardware failures, 
and the ability to scale Neo4j for read-intensive 
scenarios. A first consequence of the distribution 
model is that the database consistency property is 
loosen to eventual consistency, while the rest of 
ACID characteristics stays the same. Finally, 
Neo4j, uses a technique known as cache sharding, 
that is not the same as traditional sharding. In 
traditional sharding different parts of the data are 
stored on different instances, often on different 
physical servers, in order to scale large databases 
while at the same time maintaining a predictable 
level of performance as the data grows. The cache 
sharding of Neo4j, instead, is essentially a routing-
based pattern. Indeed, each server always holds the 
full dataset, but caches a separate part of the graph, 
simply due to the way requests are routed. The 
strategy is highly effective for managing a large 
graph that does not fit in main memory, but do not 
allow one to scale large databases by dividing them 
across multiple machines, as in traditional sharding, 
and the size of database stays limited by the 
memory of a single machine. 

 
To overcome some of these limitations, very 

recent versions of Neo4J provide support for the 
evaluation of Cypher queries on top of Apache 
Spark. 

 
2.2 Horton+ 

Horton+ is a distributed system for processing 
declarative reachability queries over a partitioned 
graph, hosted in the main memory of a cluster of 
servers. The system is implemented in C# and 
consists of a client interface, a query language 
(parser and compiler), a query optimizer, and a 
distributed query processor. Horton+ arises from 
Horton [33], an early version of the system, to 
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whom several features have been added. Horton+ 
employs a declarative query language that uses 
regular path queries to express reachability queries 
over the attributes labeling the graph. 

Horton+ uses an attributed multi-graph G = (V, 
E), that consists of a set of nodes V, and a set of 
edges E. A node represents an entity with a primary 
key, a categorical type (e.g., person, photo, or 
event), and a set of attributes (e.g., year, age). An 
edge represents the relationship between two nodes, 
with a categorical type (e.g., friend, tag, brother), 
and a set of attributes (e.g., edge direction and edge 
weight). The graph can be both directed and 
undirected. One can use multiple edges to link two 
nodes, each one representing a different 
relationship. Moreover, in case of directed graph, 
each node stores both inbound and outbound edges. 

Example 2. 

Consider again the graph of Figure 1. In this 
graph the node types are Person (Anna, Giulia, 
Rocco, Lucia, Maria), and Photo (Photo1), while 
the edge types are Friend, Married, Brother, and 
Tag. The figure shows that Giulia is friend of Anna, 
and Maria is married with Rocco, and Photo1 node 
is tagged by Lucia, Maria, and Rocco. The node 
Rocco has an attribute Age, while the node Photo1 
has an attribute Year. The graph is partitioned 
across two partitions. 

Horton+ query language allows the user to 
express regular path queries extended with 
powerful node and edge predicates. The grammar 
of this language is reported below: 

 

 
 

In this grammar Query is a start symbol, and a 
query starts with a node predicate, possibly 
followed by a sequence of edge and node predicate 
pairs. Closures are supported by using the Kleene 
star *  and +. A node predicate can specify a node 
id, a node type (e.g., Photo), but it can also match 
any node (i.e., Node). Moreover, a node predicate 
may contain predicates on node attributes (e.g.,  
Photo{year = 2015}), and can be composed (e.g., 
Photo OR Video). Similarly, an edge predicate 
specifies an edge type (e.g., Tag, Friend, Edge) and 
can also specify multiple predicates on edge 
attributes. Finally, one can use < and > symbols to 
represent edge directions. 

 

Example 3. 

Consider again the graph of Figure 1. If we want 
to find all photos where  Lucia and Maria are 
tagged, we can use the following query: 

Q1 =′ Lucia′ −tag > Photo−tag < −′Maria′  

The first node predicate specifies a node id 
('Lucia'), the second node predicate provides the 
node type (Photo), and the third node predicate 
specifies another node id ('Maria'). The two edge 
predicates specify edge type (Tag). 

Now, if we want to find all photos in which a 
friend of Lucia is tagged, we can run the follow 
query: 

Q2 = Photo − Tag < −Person − Friend −′ Lucia′  

Since the query language is declarative, the 
system is equipped with a query optimizer. The 
query optimizer can choose to run a plan among 
many execution plans. It uses graph statistics and 
enumeration algorithms to find the lowest-cost 
solution in a short amount of time, so as to reduce 
the query execution latency. The query processor 
receives an input query and returns the matched 
results. The input query is compiled into a query 
plan containing one or more deterministic finite 
automata (DFA) and algebraic graph operators like  
select, traverse, and join. Each operator has a 
clearly defined functionality and an efficient 
implementation, and they are the basic blocks used 
by the query processor. The select operator 
determines the set of starting nodes; the traverse 
operator receives a set of partial paths and the set of 
starting nodes, then traverses iteratively the graph 
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to construct a path; the join operator receives two 
sets of matching paths from two query plans, and 
constructs longer paths by joining paths from these 
two sets. The query plan can be executed directly, 
or first optimized and then executed. The query 
optimizer builds a cost model for each operator and 
looks for cost-efficient ways to combine them. The 
graph is partitioned, through an effective graph 
partitioning algorithm, into disjoint partitions. Each 
partition is managed by a partition server that is 
responsible for managing its own subset of graph 
data. A server is designed as the coordinator, and 
responsible for query parsing, compilation, and 
optimization. 

 

2.3.  Sparksee 

Sparksee (formerly known as DEX) is a 
commercial graph database system written in C++. 
Sparksee represents graphs as labeled and attributed 
multigraphs (Property graphs), and it stores graphs 
using a compressed bitmap-based data structure. 
Sparksee offers a partial support for ACID 
transactions, where the isolation and atomicity 
cannot be always guaranteed. There is also a high 
availability extension enabling horizontal scaling 
for large workloads, that uses the Master/Slave 
model with coordination through Apache 
Zookeeper. Sparksee provides a native API for 
Java, C++, .NET, and Python. There is no 
integrated query language, and the only way to 
manage and query a graph is through a native API. 
However, the database server can be remotely 
accessed via REST methods and it is compliant 
with the Blueprints interface, allowing one to use 
the Gremlin query language. 

2.4.  ThingSpan 

ThingSpan is a federated database system able to 
analyze large-scale graphs. ThingSpan has been 
developed as a layer on top of Objectivity/DB [34], 
a distributed object-oriented database server, and 
extends Objectivity/DB with the ability to exploit 
Apache Spark and Apache Yarn to distribute and 
balance the computing load.  

ThingSpan inherits from Objectivity/DB many of 
its features (i.e., scalability, distributed approach, 
parallel processing, graph partitioning, and full 
ACID support) and adds APIs designed for graph 
analytics. The APIs are provided in various 
languages (Java, C++, C#, Python); moreover, 

ThingSpan provides a REST interface and 
Blueprints support, that allows one to use Gremlin. 
ThingSpan uses a labeled directed multigraph data 
model, and its library provides two base classes, 
BaseVertex and BaseEdge, from which all the 
instances of vertices and edges should inherit or 
subclass. Furthermore, it uses a set of specific 
navigation classes, in order to query the graph, that 
can use the predicate query language (PQL) to 
specify regular path queries. PQL allows one to 
look up the vertices and the edges, in the graph, 
according to the values of one or more of their 
attributes, or specify paths based on a pattern or 
sequence of hops. PQL provides a set of built-in 
operators that accept zero or more operands and 
perform arithmetic, relational, logical, path, and 
other comparison operations. 

 

3.  GRAPH PROCESSING SYSTEMS 

Graph processing systems are intended to 
perform off-line computations on very large graphs, 
and they generally use a distributed environment 
built on top of a shared-nothing architecture. Such 
systems focus on graph computations rather than 
graph querying. All these systems provide APIs in 
different languages (e.g., Java, C++, .NET), to 
implement specific graph algorithms, such 
PageRank, Single-source shortest path (SSSP), etc. 
Most of the systems in this class, such as Pregel 
[14], Giraph [15], GPS [17], and Pregel+ [18], are 
based on a vertex-centric approach introduced by 
Google in Pregel and inspired by Leslie Valiant's 
Bulk Synchronous Parallel model (BSP) [19]. Other 
systems, such as GraphLab [16], and MapGraph 
[35], are based on the Gather-Apply-Scatter (GAS) 
model, a variant of the BSP model supporting an 
asynchronous execution. A rather different 
approach is used by distributed SociaLite [36], that 
defines a high-level graph query language based on 
Datalog, and allows one to describe graph 
algorithms with a few Datalog rules that a compiler 
can translate into a distributed computation. Trinity 
[20], finally, is a storage infrastructure and 
computation framework built on top of a cluster of 
interconnected machines, and can implement any 
computational paradigm for online queries or 
vertex centric offline analytics. 

3.1.  Pregel 

Pregel is a distributed programming framework 
for processing large graphs. It is similar in concept 
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to MapReduce, but Pregel computational model is 
more suitable for computations working on graphs 
with scale, in some case, of billions of vertices and 
trillions of edges. Pregel is implemented in C/C++ 
and the high-level organization of Pregel programs 
is inspired by Leslie Valiant's Bulk Synchronous 
Parallel model (BSP). 

In Pregel programs are evaluated through a 
sequence of iterations, called supersteps. During a 
superstep the framework invokes a user defined 
function for each vertex, conceptually in parallel, 
that expresses the logic of a given algorithm. This 
function specifies the behavior at a single vertex v 
and a single superstep i: it can read messages sent 
to v in superstep i, send messages to other vertices 
that will be received at superstep i+1, and modify 
the state of v and its outgoing edges. Messages are 
typically sent along outgoing edges, but a message 
may be sent to any vertex whose identifiers are 
known. In this model, edges have no associated 
computation. 

 

 

Figure 2: Pregel example. 
 

We illustrate in Figure 2 an example where we 
use Pregel to compute the maximum value among 
the vertices. The graph consists of four vertices, 
each vertex containing a value. The algorithm 
propagates the largest value to every vertex, and, in 
each superstep, any vertex that has learned a larger 
value from its messages sends it to all its neighbors. 
When no further vertices change in a superstep, the 
algorithm terminates. 

Indeed, in superstep 0, each vertex sends a 
message with its own value to each connected 
vertex. In superstep 1, vertices compare their own 
value with the values contained in incoming 
messages: if their own value is larger than each 
received value, they vote to halt (red vertices); 
otherwise, the vertices change their own value with 
the highest received value. In superstep 2, active 
vertices send a message with their value as in 
superstep 1, and execute the comparison. In 

superstep 3, all vertices vote to halt, and vertex 
value is the maximum value. 

The input to a Pregel computation is a direct 
graph in which each vertex is uniquely identified by 
a string vertex identifier. Each vertex is associated 
with a modifiable, user defined value. Directed 
edges are associated with their source vertices, and 
each edge consists of a modifiable, user defined 
value and a target vertex identifier. A typical Pregel 
computation consists of an input phase, when the 
graph is initialized, followed by a sequence of 
supersteps separated by a global synchronization 
point until the algorithm terminates, and finishes 
with an output phase. 

Algorithm termination is based on every vertex 
voting to halt. In superstep 0, every vertex is in 
active state; all active vertices participate in the 
computation of any given superstep. A vertex 
deactivates itself by voting to halt. This means that 
the vertex has no further work to do unless 
triggered externally, and the Pregel framework will 
not execute that vertex in subsequent supersteps 
unless it receives a message. If reactivated by a 
message, a vertex must explicitly deactivate itself 
again. The algorithm as a whole terminates when 
all vertices are simultaneously inactive and there is 
no message in transit. The output of a Pregel 
program is the set of values explicitly output by the 
vertices. It is often a directed graph isomorphic to 
the input, but this is not a necessary property of the 
system because vertices and edges can be added 
and removed during computation. 

Pregel uses a cluster architecture consisting of 
thousands of commodity PCs. The graph is divided 
into partitions, each one consisting of a set of 
vertices and all of those vertices's outgoing edges, 
and each partition is assigned to a worker machine. 
The assignment of a vertex to a partition is decided, 
generally, through a hash function, but custom 
assignment functions may be implemented. The 
system consists of a master and several workers, 
where the master is responsible for coordinating 
workers activity, assigns partitions and user's input 
to workers, instructs each worker to perform a 
superstep, and after the computation halts, it may 
instruct each worker to save its portion of the 
graph. Each worker is responsible for maintaining 
the state of its section of the graph, executing the 
user functions on its vertices, and managing the 
messages. 
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3.2.  Giraph 

Giraph is an Apache open source project 
originated as a counterpart to Pregel, and adds 
several features beyond the basic Pregel model, 
including master computation, sharded aggregators, 
edge-oriented input, and out-of-core computation. 
A Giraph computation runs in the Map phase of  a  
Hadoop job, hence any existing Hadoop user can 
immediately benefit from Giraph. Workers use 
ZooKeeper to select a master that will coordinate 
computation. The graph is loaded and partitioned 
across workers. The master then dictates when 
workers should start computing consecutive 
supersteps. Once the computation has halted, 
workers save the output. Checkpoints are initiated 
at user-defined intervals and are used for automatic 
application restarts when any worker fails.  

Apart from a rich library of predefined graph 
algorithms, Giraph offers several mechanisms that 
help implementing new algorithms at scale. First, it 
is possible to acquire input vertices and edges from 
any input source, ranging from text files to NoSQL 
systems. Second, aggregators allow applications to 
compute a global value from contributing values 
provided by each vertex, which may reduce the 
network traffic. Finally, it is possible to decide to 
store the values and messages on disk, for example 
on a Hadoop cluster with limited memory but 
ample disk space, so as to improve the scalability of 
the system. 

A tool for processing graph regular path queries 
on top of Giraph has been shown in [37][38]. 

3.3.  GPS 

GPS (Graph Processing System) [17] is an open-
source system developed at Stanford University. 
GPS has three new features that do not exist in 
Pregel: global computation, dynamic repartition, 
and large adjacency list partitioning (LALP). While 
Pregel can implement vertex-centric algorithms 
only, GPS has an extension that enables efficient 
implementation of algorithms composed of one or 
more vertex-centric (parallel) computations, 
combined with global (sequential) computations, 
through the special function master.compute() 
called at the beginning of each superstep. Unlike 
Pregel, GPS can repartition the graph dynamically 
across compute nodes, on the basis of their 
message-sending patterns, during the computation, 
to reduce communication: GPS, indeed, attempts to 

collocate together vertices that send each other 
message frequently. Furthermore, in many graph 
algorithms each vertex sends the same message to 
all of its neighbors; in this case GPS LALP 
optimization stores partitioned adjacency list for 
high-degree vertices across the compute nodes on 
which the neighbors reside. The input graph is 
stored in HDFS files in a simple format: each line 
start with the  id of a vertex v, followed by the  ids 
of v’s outgoing neighbors. The input file may 
optionally specify values for the vertices and edges. 
GPS assigns the vertices of G to worker using a 
simple round robin scheme, but it can use other 
sophisticated partitioning schemes. 

3.4.  Pregel+ 

Pregel+ is implemented in C/C++ and each 
worker is an MPI process. Pregel+ wrt other Pregel-
like systems introduces two technique to reduce the 
number of messages: vertex mirroring and a 
request-respond paradigm. 

Mirroring is designed to mitigate the problem of 
imbalanced workload by eliminating bottleneck 
vertices having a high degree. The main idea is to 
construct mirrors of each high-degree vertex in 
different machines, so that messages from a high-
degree vertex are forwarded to its neighbors by its 
mirrors in local machines. The Request-Respond 
API allows a vertex (source) to request another 
vertex (target) for a value, and the requested value 
will be available at the source vertex in the next 
iteration. All requests from a machine to the same 
target vertex are merged into one request, to obtain 
the reduction of the number of messages passed 
between two machines. 

3.5.  GraphLab 

GraphLab is a high performance, distributed 
computation framework written in C++. GraphLab 
2.2 is last version of GraphLab [39], and includes 
the features of PowerGraph [40]. The latest version 
adopts the Gather, Apply, Scatter (GAS) model of 
computation and shared memory abstraction. 

A general graph-parallel abstraction consists of a 
graph-  and a vertex-program  which is executed in 
parallel on each vertex.  The GAS model is a 
vertex-centric graph-parallel abstraction similar to 
BSP, and it represents three conceptual phases of a 
vertex-program: Gather, Apply, and Scatter. 
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Figure 3: GAS phases. 
 

In the Gather phase (Figure 3-a) each active 
vertex (red vertices in Figure 3-a) runs a vertex-
program that accumulates information from 
adjacent vertices  and edges, through a user-defined 
operation that must be commutative and 
associative, and can be a numerical sum or the 
union of the data. In the Apply phase (Figure 3-b) 
the resulting value of this operation is used to 
update the value of the active vertex. Finally, in the 
Scatter phase (Figure 3-c) the active vertex updates 
the adjacent vertices and edges, and activates its 
neighboring vertices. 

GraphLab has several differences wrt Pregel. 
Each vertex in Pregel can receive information only 
through the messages sent from its neighbors, 
while, in the Gather phase, the vertex can directly 
pull data from its neighbors. Moreover,  GraphLab 
provides both synchronous and asynchronous 
scheduling. In GraphLab the synchronous 
scheduling, as in Pregel, uses communication 
barriers, but, while in Pregel the vertices that must 
send last messages must stay active, in GraphLab 
these vertices do not participate to the computation 
because their neighbors can pull their last value in 
the Gather phase. In the asynchronous mode, 
instead, there are no barriers or supersteps: during 
the Apply phase the changes made to vertices or 
edges are committed immediately and are usable by 
any sequent computation phase. Unfortunately, the 
asynchronous execution, in order to avoid conflicts, 
uses distributed locking/unlocking protocols. 

Finally, in Pregel partitioning does not replicate 
the vertices and cut edges. In GraphLab, instead, 
vertex-cut partitioning is used, where each edge is 
assigned to a unique machine, while the vertices are 
replicated in the caches of remote machines. In this 
way,  graphs with skewed degree distribution can 
be partitioned across multiple machines, yielding 
better balanced workloads; the drawback is extra 
communication among worker to guarantee the 
consistency of the vertex value on each replica. 

A user must implement a user-defined GAS 
function for each vertex. Furthermore, in the 
initialization phase, through a MapReduce job, she 
must construct, using a partitioning algorithm and 
the raw graph data, the atom files representing the 
data graph of each partition: in GraphLab each 
partition is called atom, and an atom index file 
stores the connectivity structure and the locations of 
atoms, both stored on the distributed file system. 

In a GraphLab cluster one instance of the 
GraphLab program is executed on each machine. 
GraphLab processes are symmetric and directly 
communicate with each other using an 
asynchronous RPC protocol over TCP/IP. The first 
process is the master and has the responsibility of 
assigning the atom files to individual execution 
engine, reading the atom index file, and then, 
monitoring the machine. 

3.6.  MapGraph 

MapGraph is a high performance parallel graph 
programming framework exploiting modern GPUs. 
The framework provide the APIs, based on the 
Gather-Apply-Scatter (GAS) model as used in 
GraphLab, to implement a wide range of graph 
algorithms, hiding the complexity of the GPU 
architecture. 

3.7.  SociaLite 

SociaLite is a graph processing system 
supporting a high-level graph query language based 
on Datalog. Datalog is a declarative logic 
programming language used as a query language in 
deductive databases. It can express in a concise way 
many graph algorithms, because of its high-level 
declarative semantics and support for recursion. 
SociaLite extends Datalog with two main features: 
tail-nested tables and recursive aggregate 
functions. SocialLite, instead of using two 
dimensional tables as in relational database 
systems, use a tail-nested table which is a 
generalization of the adjacency list. The last 
column of the table may contain pointers to two-
dimensional tables, whose last columns can 
themselves expand into other tail-nested tables. 
Moreover, Sequential SociaLite supports recursive 
aggregate function, where an aggregate function 
can depend on itself. SociaLite has a number of 
pre-defined aggregate functions such as $Sum, 
$Min and $Max, and allows users to define their 
aggregate functions in Java. 
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SocialLite consists of a compiler that accept a 
SocialLite program and additional Java functions. 
The compiler parses the code into an abstract 
syntax tree (AST), performs syntactic and semantic 
analysis, optimizes the AST, and generates Java 
source code. The generated code is then compiled 
by a regular Java compiler into bytecode, which is 
executed with the SociaLite runtime system. 

Sequential Socialite is not suitable for analyzing 
large scale graphs in a distributed environment. For 
this reason, distributed SociaLite [36], a version 
optimized for large scale graphs analysis on 
distributed machines, has been implemented. 

The SociaLite parallel engine consists of a 
master, which interprets the Datalog rules and 
instructs the slaves to work. Each slave node 
repeatedly executes the rules upon the arrival of 
communications from other nodes, and it updates 
the internal tables or sends messages to remote 
nodes. Finally, slaves can make a checkpoint of the 
intermediate work on a fault-tolerant distributed file 
system to restore it if needed. The parallel 
SociaLite requires the user to specify how the 
tables must be sharded across the machines; 
SociaLite, then, automatically manages the 
execution across the distributed machines, 
generates the message passing code, and manages 
the parallel execution. 

3.8.  Trinity 

Trinity is a general-purpose graph engine over a 
distributed memory cloud. Trinity is not a system 
that comes with comprehensive built-in graph 
computation modules, but it enables the 
development of such modules and hence empowers 
a large variety of graph applications from online 
graph query processing to offline graph analytics. 
Trinity implements a globally addressable 
distributed memory storage in the memory of a 
cluster of commodity machines, and provides a 
random access abstraction for large graph 
computation. The memory is essentially a 
distributed key-value store and consists of a 
memory storage module and a message passing 
framework, that provides mechanisms for 
concurrency control and fault tolerances. Trinity 
system consists of three components: slaves, 
proxies, and clients. The Slaves store graph data 
and perform computation on the data; proxies are 
optional and may serve as dispatch information 
from client to slaves and inverse; finally, clients 

communicate with slaves and proxies, and allow 
users to interact with cluster. 

The memory cloud consists of memory trunks, 
and each machine hosts multiple memory trunks. 
To support fault-tolerance data persistence, these 
memory trunks are also stored in Trinity File 
System (TFS), a shared distributed file system 
similar to HDFS. A key-value store is created on 
top of the memory cloud: the keys are 64-bit 
globally unique identifiers, and the values are blobs 
of arbitrary length. To address a key-value pair, 
Trinity uses a hashing mechanism and maintains a 
replica of the addressing table on each machine. 
The addressing table provides a mechanism that 
allows machines to dynamically join and leave the 
memory cloud; this mechanism is useful when a 
machine fails, as the relative trunk is reloaded from 
TFS to other alive machines. 

Trinity also provides a language called TSL 
(Trinity specification language), that allows one to 
define a graph schema, communication protocols, 
and computation paradigms. Through TSL scripts 
one can define the schema of the data, and 
eventually integrate the data with data coming from 
external sources, so that Trinity knows how to 
manipulate data [41]. Moreover, TSL also allows 
one to model network communications, such as 
message passing protocols (e.g. synchronous, 
asynchronous, etc.) that can be used in vertex based 
computing and other algorithms. Other examples of 
schema languages for data graphs are shown in 
[42][43]. All these languages are based on regular 
expression types [44] [45][46][47][48][49][50][51] 
or on record types [52][53]. 

With the schema and communication protocols 
defined in TSL, Trinity can implement any 
computational paradigm for online queries or 
vertex centric offline analytics, such as in [54], 
where is proposed Trinity.RDF, a distributed in-
memory RDF system, based on Trinity, that is 
capable of handling web scale RDF data.  

 
3. CONCLUSIONS 
 

In this paper we surveyed the most prominent 
tools for managing and analyzing big graphs. Graph 
database systems aim at extending traditional 
database features, like transactions and high level 
query languages, to graphs, but they usually fail in 
matching the scalability of graph processing 
systems; the latter systems, while very scalable, 
usually require the user to write low-level code to 
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analyze and/or query an input graph, and do not 
offer any form of declarative access to the data. 

Our survey shows that, unlike what happens for 
RDBMs, there is not a single class of systems that 
can satisfy all the needs of a graph data analyst, as 
the “one size fits all paradigm” is no longer valid in 
this context. This lead to the need for systems able 
to process in an efficient and scalable way very 
large graphs, as well as to support the vertex-centric 
paradigm and declarative high level languages. This 
topic is probably the most important open issue in 
the research on graph data management. 
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