
Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6738

GRAPH MANAGEMENT SYSTEMS: A SURVEY
(REVIEW PAPER)

1MAURIZIO NOLÉ, 2CARLO SARTIANI

DIMIE, University of Basilicata, Italy

E-mail: 2carlo.sartiani@unibas.it

ABSTRACT

In the recent years many real-world applications have been modeled by graph structures (e.g., social
networks, mobile phone networks, web graphs, etc.), and many systems have been developed to manage,
query, and analyze these datasets; to cope with the ever-increasing size of graph datasets, most of them
adopted a distributed approach. These systems could be divided into specialized graph database systems
and large-scale graph analytics systems. The first ones consider end-to-end data management issues
including storage representations, transactions, and query languages, whereas the second ones focus on
processing specific tasks over large data graphs. In this paper we provide an overview of several graph
database systems and graph processing systems, with the aim of assisting the reader in identifying the best-
suited solution for her application scenario.

Keywords: Big Data, Graph Data Management, Graph Processing Systems, Semistructured Data, Data
Analytics

1. INTRODUCTION

In the last few years graphs received a lot of
attention from the database community. Indeed,
while graphs have been traditionally used in
multiple fields of computer science as a medium for
studying very different problems, ranging from
decidability problems to software engineering [1],
in the recent years many real-world applications
have been modeled by graph structures (e.g., social
networks, mobile phone networks, web graphs,
etc.), and many systems have been developed to
manage, query, and analyze these datasets; to cope
with the ever-increasing size of graph datasets, most
of them adopted a distributed approach, which may
further imply the need for specific data partitioning
strategies [2] [3] [4] [5] [6].

These systems could be divided into specialized
graph database systems and large-scale graph
analytics systems. The first ones consider end-to-
end data management issues including storage
representations, transactions, and query languages,
whereas the second ones focus on processing
specific tasks over large data graphs.

Graph database systems aim at modeling and
querying data graphs by overcoming some of the
limitations that may arise when using an RDBMS.
Indeed, it is possible to store data graphs into a

relational system and query them by using SQL and
user-defined functions and aggregations. In
particular, there are some tools that provide a
specific query interface to simplify the written
graph query, and take care of running it on the
underlying relational engine [7]. However, as
shown in [8], relational join engines have been
proved to be suboptimal on many graph queries,
which may represent a significant issue when
dealing with very large graphs.

Graph database systems are specifically designed
to store graph data, to support flexible schemas, and
to provide specialized query graph traversal
languages; moreover, similarly to a traditional
DBMS, they provide services such as persistence,
transactions, query optimization, etc. Most of these
systems, such as Neo4j [9], DEX [10], and
HyperGraphDB [11], are efficient single-node
systems with limited scalability; furthermore, to
deal with massive graphs several distributed
systems, such as Horton+ [12], and ThingSpan [13],
have been designed. Unfortunately, as no standard
query language has been defined for graph
databases, each graph database system is optimized
for a specific set of tasks or queries, and each one
implements its own API for querying and
manipulating data.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6739

Systems for processing and analyzing massive
graphs generally use a distributed environment with
more computing and memory resources, and most
of them are built on top of shared-nothing
architectures. The majority of these systems, e.g.,
Pregel [14], Giraph [15], GraphLab [16], GPS [17],
and Pregel+ [18], adopt a vertex-centric computing
approach inspired by the BSP model [19], but there
are also other solutions, such as Trinity [20],
SociaLite [21], CombBlas [22], and Pegasus [23],
that adopt different approaches. All these systems,
with the notable exception of SociaLite, have been
designed for batch processing of specific
algorithms, and do not support high-level query
languages.

In this paper we provide an overview of a large
collection of graph database systems and graph
processing systems, with the aim of assisting the
reader in identifying the best-suited solution for her
application scenario. To the best of our knowledge,
this is the first paper surveying both graph database
systems and graph processing systems; in Table 1
we provide a quick summary of the systems being
analyzed.

Table 1: Graph Database Systems and Graph Processing
Systems.

Graph Database
Systems

Graph Processing
Systems

Neo4J Pregel

Horton+ Giraph

Sparksee GPS

ThingSpan Pregel+

 GraphLab

 MapGraph

 SociaLite

 Trinity

Our survey is based on a qualitative evaluation of
these systems, where we take into account their
features rather than their performance: indeed, a
few papers already studied the performance of
graph processing systems, but their results are
conflicting and seem to be very dependent from the
specific experimental setup.

The rest of the paper is organized as follows. In
Section 2 we focus our attention on graph database
systems, with particular emphasis on Neo4J and its
query language. In Section 3, then, we move to

graph processing systems, and review the most
important Pregel-inspired systems as well as a few
high-level systems like SociaLite and Trinity. In
Section 4, finally, we draw our conclusions.

2. GRAPH DATABASE MANAGEMENT
SYSTEMS

Graph Database Management Systems
(GDBMSs) are mainly designed to support online
transaction processing (OLTP) workloads for quick
low-latency access to relatively small portions of
graph data. GDBMs provide the major services of a
traditional DBMS: persistence, transactions, query
optimization, etc. These systems, such as Neo4j [9],
DEX [24], and HyperGraphDB [25], are mainly
centralized systems. Some of them can provide a
distributed architecture for high availability and
fault tolerance, but their horizontal scalability is
limited by data locality issues and the lack of
sharding strategies. Indeed, if one wants process
large graphs that cannot be stored in main memory,
the above systems begin to underperform. Random
disk access, the lack of efficient data partitioning
methods, the inability to distribute the computation
on a cluster become a significant performance and
scalability bottleneck. To overcome these problems
distributed graph databases have been carefully
designed, e.g., Horton+ [12], and ThingSpan [13].

Each of these graph database systems
implements methods for querying the graph dataset.
Indeed, some systems, such as Dex, implement
APIs with special functions for querying graph
properties. Neo4j provides Cypher, a graph-
oriented query language based on expressions of
the form Start-Match-Where-Return. ThingSpan
allows one to traverse the graph through the
implementation of Java classes, but also supports a
declarative query language. Finally, RDF stores
like AllegroGraph [26] support SPARQL [27], the
standard query language for RDF data. None of the
above languages provides a formal syntax and
semantics, except for SPARQL (Cypher semantics
has been formalized only very recently [28]).

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6740

Figure 1 Social network data graph.

2.1 Neo4J

Neo4j is an open-source project, written in Java.
It works on a network-oriented model with relations
as first class objects. Neo4j represents Nodes and
Relationships as Java objects, and materializes
these objects once at insertion time. Data are stored
on disk through an optimized data structure for
graph networks, using an index-free adjacency lists
architecture, where each node has explicit
references to its adjacent nodes, and the check for
the existence of an edge between two linked nodes
does not require the access to an external, global
index.

Neo4j uses the Property Graph Model, where the
graph is directed and is modeled using nodes,
relationships, and properties on nodes and
relationships. These components are stored in three
separate store files. In order to reduce latency,
Neo4j provides two levels of caching: Filesystem
Cache, and Object Cache. The first one divides the
store files into pages which are held in main
memory (RAM), while the second one maintains
nodes and relationships as Java objects in the Heap.
Neo4j supports also ACID transactions by
implementing a write-ahead log (WAL).

In Neo4j there are several methods for managing
and querying graphs: Core Java API, Traversal
API, and the query language Cypher. The Core
Java API allows one to use low-level data
structures to manage and query a graph; this
solution is powerful and flexible for traversing a

graph, but for a complex traversal case the
implementation could become quite cumbersome.
The Traversal API is a framework that allows one
to build traversal rules without sacrificing any of
the power of graph traversal, in a simple and
declarative manner and with minimal performance
impact. As the Core API and Traversal API are
difficult to use in complex cases, Neo4j also
provides the query language Cypher to query and
manipulate an input graph. Moreover, Neo4j is
accessible from all popular programming languages
(e.g. Java, Python, Ruby, PHP, .NET, etc.), via an
HTTP/S REST interface, and via the Blueprint
interface part of the TinkerPop software stack. This
last interface allows one to use different graph
query languages such as Gremlin [29], an
imperative language compatible with several graph
databases.

Cypher is a pattern-matching query language,
and uses a declarative grammar with clauses,
similar to SQL. The syntax consists of four
different clauses: Start, Match, Where, and Return.
Start is an optional clause that allows the user to
choose the starting nodes of the graph being
analyzed by specifying their IDs. Match matches
graph patterns, allowing one to locate the subgraphs
of interest. Where filters out data based on some
criteria. Return, finally, returns the results the user
is interested in.

Cypher supports aggregation functions (e.g.,
COUNT, SUM, AVG), and several functions that
can be used to evaluate expressions in a query (e.g.,
FOREACH, WITH, TYPE, HAS, NODES). Finally,
Cypher allows one also to create, update, and delete
nodes, relationships, and their properties (e.g.,
CREATE, DELETE, SET).
Example 1.

Consider the graph in Figure 1, sketching a social
network, and the following Cypher query.

START user = node(name='Maria')

MATCH (user) - [:TAG] - > photo

RETURN photo;

The START clause on the first row specifies one
or more starting points (nodes or relationships) in
the graph: here, it looks up for a node whose name
is Maria. The MATCH clause specifies a pattern
that is a description of the subgraphs of interest
and, here, consists of two nodes connected with
relationships, represented in the format ()-[]->():
nodes are specified using parenthesis, while

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6741

relationships are specified using square brackets;
nodes and relationships are linked using hyphens.
In this query, the MATCH clause looks for photo
nodes that can be reached from Maria node by
traversing a single edge labeled with TAG.

Cypher supports quite complex pattern matching
expressions, such as the concatenation of relations,
as shown in the following query:

START user =node(name='Maria')

MATCH (user) - [:FRIEND]−> ()

 − [:TAG]− > photo

RETURN photo;

This query, starting from a known node user with
name Maria, searches for all photo nodes that are
reachable through the path FRIEND.TAG, i.e., all
nodes that represent photos tagged by Maria’s
friends.

In Cypher one can match multiple patterns in the
same query, as shown below:

START user = node(name=’Maria’)

MATCH (user) - [:FRIEND]−> ()

 − [:TAG]− > photo,

 (user) - [: TAG] - > (photo)  

RETURN photo;

This query searches for photos that have been
tagged by Maria and by her friends. The resulting
nodes will have to match all comma-separated
patterns, acting as an AND clause.

Just as in SQL, a WHERE clause filters the
result on the basis of some property of nodes or
relationships: in particular, for string properties, in
addition to the standard equality (=) comparison,
one can use regular expressions to filter out specific
values, placed between two forward slashes (/), as
illustrated in the following query.

START user = node(name=’Maria’)

MATCH (user) - [: FRIEND] − > friend

WHERE friend.email = /.*@gmail.com/

RETURN friend;

This query looks for all Maria’s friends who
have an email address containing "gmail.com".
While quite powerful, Cypher matching features are
far beyond those of regular path query languages
like GXPath [30][31][32].

Neo4j is designed as a single-machine database
system and limited by the resources of a single
machine; hence, the performance of Neo4j becomes
significantly worse when the graph exceeds the
memory capacity.

Neo4j databases can be distributed across
multiple machines. Neo4j makes use of a master-
slave replication architecture, using a Paxos-like
protocol, and provides support for resilience and
fault tolerance in the event of hardware failures,
and the ability to scale Neo4j for read-intensive
scenarios. A first consequence of the distribution
model is that the database consistency property is
loosen to eventual consistency, while the rest of
ACID characteristics stays the same. Finally,
Neo4j, uses a technique known as cache sharding,
that is not the same as traditional sharding. In
traditional sharding different parts of the data are
stored on different instances, often on different
physical servers, in order to scale large databases
while at the same time maintaining a predictable
level of performance as the data grows. The cache
sharding of Neo4j, instead, is essentially a routing-
based pattern. Indeed, each server always holds the
full dataset, but caches a separate part of the graph,
simply due to the way requests are routed. The
strategy is highly effective for managing a large
graph that does not fit in main memory, but do not
allow one to scale large databases by dividing them
across multiple machines, as in traditional sharding,
and the size of database stays limited by the
memory of a single machine.

To overcome some of these limitations, very

recent versions of Neo4J provide support for the
evaluation of Cypher queries on top of Apache
Spark.

2.2 Horton+

Horton+ is a distributed system for processing
declarative reachability queries over a partitioned
graph, hosted in the main memory of a cluster of
servers. The system is implemented in C# and
consists of a client interface, a query language
(parser and compiler), a query optimizer, and a
distributed query processor. Horton+ arises from
Horton [33], an early version of the system, to

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6742

whom several features have been added. Horton+
employs a declarative query language that uses
regular path queries to express reachability queries
over the attributes labeling the graph.

Horton+ uses an attributed multi-graph G = (V,
E), that consists of a set of nodes V, and a set of
edges E. A node represents an entity with a primary
key, a categorical type (e.g., person, photo, or
event), and a set of attributes (e.g., year, age). An
edge represents the relationship between two nodes,
with a categorical type (e.g., friend, tag, brother),
and a set of attributes (e.g., edge direction and edge
weight). The graph can be both directed and
undirected. One can use multiple edges to link two
nodes, each one representing a different
relationship. Moreover, in case of directed graph,
each node stores both inbound and outbound edges.

Example 2.

Consider again the graph of Figure 1. In this
graph the node types are Person (Anna, Giulia,
Rocco, Lucia, Maria), and Photo (Photo1), while
the edge types are Friend, Married, Brother, and
Tag. The figure shows that Giulia is friend of Anna,
and Maria is married with Rocco, and Photo1 node
is tagged by Lucia, Maria, and Rocco. The node
Rocco has an attribute Age, while the node Photo1
has an attribute Year. The graph is partitioned
across two partitions.

Horton+ query language allows the user to
express regular path queries extended with
powerful node and edge predicates. The grammar
of this language is reported below:

In this grammar Query is a start symbol, and a
query starts with a node predicate, possibly
followed by a sequence of edge and node predicate
pairs. Closures are supported by using the Kleene
star * and +. A node predicate can specify a node
id, a node type (e.g., Photo), but it can also match
any node (i.e., Node). Moreover, a node predicate
may contain predicates on node attributes (e.g.,
Photo{year = 2015}), and can be composed (e.g.,
Photo OR Video). Similarly, an edge predicate
specifies an edge type (e.g., Tag, Friend, Edge) and
can also specify multiple predicates on edge
attributes. Finally, one can use < and > symbols to
represent edge directions.

Example 3.

Consider again the graph of Figure 1. If we want
to find all photos where Lucia and Maria are
tagged, we can use the following query:

Q1 =′ Lucia′ −tag > Photo−tag < −′Maria′

The first node predicate specifies a node id
('Lucia'), the second node predicate provides the
node type (Photo), and the third node predicate
specifies another node id ('Maria'). The two edge
predicates specify edge type (Tag).

Now, if we want to find all photos in which a
friend of Lucia is tagged, we can run the follow
query:

Q2 = Photo − Tag < −Person − Friend −′ Lucia′

Since the query language is declarative, the
system is equipped with a query optimizer. The
query optimizer can choose to run a plan among
many execution plans. It uses graph statistics and
enumeration algorithms to find the lowest-cost
solution in a short amount of time, so as to reduce
the query execution latency. The query processor
receives an input query and returns the matched
results. The input query is compiled into a query
plan containing one or more deterministic finite
automata (DFA) and algebraic graph operators like
select, traverse, and join. Each operator has a
clearly defined functionality and an efficient
implementation, and they are the basic blocks used
by the query processor. The select operator
determines the set of starting nodes; the traverse
operator receives a set of partial paths and the set of
starting nodes, then traverses iteratively the graph

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6743

to construct a path; the join operator receives two
sets of matching paths from two query plans, and
constructs longer paths by joining paths from these
two sets. The query plan can be executed directly,
or first optimized and then executed. The query
optimizer builds a cost model for each operator and
looks for cost-efficient ways to combine them. The
graph is partitioned, through an effective graph
partitioning algorithm, into disjoint partitions. Each
partition is managed by a partition server that is
responsible for managing its own subset of graph
data. A server is designed as the coordinator, and
responsible for query parsing, compilation, and
optimization.

2.3. Sparksee

Sparksee (formerly known as DEX) is a
commercial graph database system written in C++.
Sparksee represents graphs as labeled and attributed
multigraphs (Property graphs), and it stores graphs
using a compressed bitmap-based data structure.
Sparksee offers a partial support for ACID
transactions, where the isolation and atomicity
cannot be always guaranteed. There is also a high
availability extension enabling horizontal scaling
for large workloads, that uses the Master/Slave
model with coordination through Apache
Zookeeper. Sparksee provides a native API for
Java, C++, .NET, and Python. There is no
integrated query language, and the only way to
manage and query a graph is through a native API.
However, the database server can be remotely
accessed via REST methods and it is compliant
with the Blueprints interface, allowing one to use
the Gremlin query language.

2.4. ThingSpan

ThingSpan is a federated database system able to
analyze large-scale graphs. ThingSpan has been
developed as a layer on top of Objectivity/DB [34],
a distributed object-oriented database server, and
extends Objectivity/DB with the ability to exploit
Apache Spark and Apache Yarn to distribute and
balance the computing load.

ThingSpan inherits from Objectivity/DB many of
its features (i.e., scalability, distributed approach,
parallel processing, graph partitioning, and full
ACID support) and adds APIs designed for graph
analytics. The APIs are provided in various
languages (Java, C++, C#, Python); moreover,

ThingSpan provides a REST interface and
Blueprints support, that allows one to use Gremlin.
ThingSpan uses a labeled directed multigraph data
model, and its library provides two base classes,
BaseVertex and BaseEdge, from which all the
instances of vertices and edges should inherit or
subclass. Furthermore, it uses a set of specific
navigation classes, in order to query the graph, that
can use the predicate query language (PQL) to
specify regular path queries. PQL allows one to
look up the vertices and the edges, in the graph,
according to the values of one or more of their
attributes, or specify paths based on a pattern or
sequence of hops. PQL provides a set of built-in
operators that accept zero or more operands and
perform arithmetic, relational, logical, path, and
other comparison operations.

3. GRAPH PROCESSING SYSTEMS

Graph processing systems are intended to
perform off-line computations on very large graphs,
and they generally use a distributed environment
built on top of a shared-nothing architecture. Such
systems focus on graph computations rather than
graph querying. All these systems provide APIs in
different languages (e.g., Java, C++, .NET), to
implement specific graph algorithms, such
PageRank, Single-source shortest path (SSSP), etc.
Most of the systems in this class, such as Pregel
[14], Giraph [15], GPS [17], and Pregel+ [18], are
based on a vertex-centric approach introduced by
Google in Pregel and inspired by Leslie Valiant's
Bulk Synchronous Parallel model (BSP) [19]. Other
systems, such as GraphLab [16], and MapGraph
[35], are based on the Gather-Apply-Scatter (GAS)
model, a variant of the BSP model supporting an
asynchronous execution. A rather different
approach is used by distributed SociaLite [36], that
defines a high-level graph query language based on
Datalog, and allows one to describe graph
algorithms with a few Datalog rules that a compiler
can translate into a distributed computation. Trinity
[20], finally, is a storage infrastructure and
computation framework built on top of a cluster of
interconnected machines, and can implement any
computational paradigm for online queries or
vertex centric offline analytics.

3.1. Pregel

Pregel is a distributed programming framework
for processing large graphs. It is similar in concept

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6744

to MapReduce, but Pregel computational model is
more suitable for computations working on graphs
with scale, in some case, of billions of vertices and
trillions of edges. Pregel is implemented in C/C++
and the high-level organization of Pregel programs
is inspired by Leslie Valiant's Bulk Synchronous
Parallel model (BSP).

In Pregel programs are evaluated through a
sequence of iterations, called supersteps. During a
superstep the framework invokes a user defined
function for each vertex, conceptually in parallel,
that expresses the logic of a given algorithm. This
function specifies the behavior at a single vertex v
and a single superstep i: it can read messages sent
to v in superstep i, send messages to other vertices
that will be received at superstep i+1, and modify
the state of v and its outgoing edges. Messages are
typically sent along outgoing edges, but a message
may be sent to any vertex whose identifiers are
known. In this model, edges have no associated
computation.

Figure 2: Pregel example.

We illustrate in Figure 2 an example where we
use Pregel to compute the maximum value among
the vertices. The graph consists of four vertices,
each vertex containing a value. The algorithm
propagates the largest value to every vertex, and, in
each superstep, any vertex that has learned a larger
value from its messages sends it to all its neighbors.
When no further vertices change in a superstep, the
algorithm terminates.

Indeed, in superstep 0, each vertex sends a
message with its own value to each connected
vertex. In superstep 1, vertices compare their own
value with the values contained in incoming
messages: if their own value is larger than each
received value, they vote to halt (red vertices);
otherwise, the vertices change their own value with
the highest received value. In superstep 2, active
vertices send a message with their value as in
superstep 1, and execute the comparison. In

superstep 3, all vertices vote to halt, and vertex
value is the maximum value.

The input to a Pregel computation is a direct
graph in which each vertex is uniquely identified by
a string vertex identifier. Each vertex is associated
with a modifiable, user defined value. Directed
edges are associated with their source vertices, and
each edge consists of a modifiable, user defined
value and a target vertex identifier. A typical Pregel
computation consists of an input phase, when the
graph is initialized, followed by a sequence of
supersteps separated by a global synchronization
point until the algorithm terminates, and finishes
with an output phase.

Algorithm termination is based on every vertex
voting to halt. In superstep 0, every vertex is in
active state; all active vertices participate in the
computation of any given superstep. A vertex
deactivates itself by voting to halt. This means that
the vertex has no further work to do unless
triggered externally, and the Pregel framework will
not execute that vertex in subsequent supersteps
unless it receives a message. If reactivated by a
message, a vertex must explicitly deactivate itself
again. The algorithm as a whole terminates when
all vertices are simultaneously inactive and there is
no message in transit. The output of a Pregel
program is the set of values explicitly output by the
vertices. It is often a directed graph isomorphic to
the input, but this is not a necessary property of the
system because vertices and edges can be added
and removed during computation.

Pregel uses a cluster architecture consisting of
thousands of commodity PCs. The graph is divided
into partitions, each one consisting of a set of
vertices and all of those vertices's outgoing edges,
and each partition is assigned to a worker machine.
The assignment of a vertex to a partition is decided,
generally, through a hash function, but custom
assignment functions may be implemented. The
system consists of a master and several workers,
where the master is responsible for coordinating
workers activity, assigns partitions and user's input
to workers, instructs each worker to perform a
superstep, and after the computation halts, it may
instruct each worker to save its portion of the
graph. Each worker is responsible for maintaining
the state of its section of the graph, executing the
user functions on its vertices, and managing the
messages.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6745

3.2. Giraph

Giraph is an Apache open source project
originated as a counterpart to Pregel, and adds
several features beyond the basic Pregel model,
including master computation, sharded aggregators,
edge-oriented input, and out-of-core computation.
A Giraph computation runs in the Map phase of a
Hadoop job, hence any existing Hadoop user can
immediately benefit from Giraph. Workers use
ZooKeeper to select a master that will coordinate
computation. The graph is loaded and partitioned
across workers. The master then dictates when
workers should start computing consecutive
supersteps. Once the computation has halted,
workers save the output. Checkpoints are initiated
at user-defined intervals and are used for automatic
application restarts when any worker fails.

Apart from a rich library of predefined graph
algorithms, Giraph offers several mechanisms that
help implementing new algorithms at scale. First, it
is possible to acquire input vertices and edges from
any input source, ranging from text files to NoSQL
systems. Second, aggregators allow applications to
compute a global value from contributing values
provided by each vertex, which may reduce the
network traffic. Finally, it is possible to decide to
store the values and messages on disk, for example
on a Hadoop cluster with limited memory but
ample disk space, so as to improve the scalability of
the system.

A tool for processing graph regular path queries
on top of Giraph has been shown in [37][38].

3.3. GPS

GPS (Graph Processing System) [17] is an open-
source system developed at Stanford University.
GPS has three new features that do not exist in
Pregel: global computation, dynamic repartition,
and large adjacency list partitioning (LALP). While
Pregel can implement vertex-centric algorithms
only, GPS has an extension that enables efficient
implementation of algorithms composed of one or
more vertex-centric (parallel) computations,
combined with global (sequential) computations,
through the special function master.compute()
called at the beginning of each superstep. Unlike
Pregel, GPS can repartition the graph dynamically
across compute nodes, on the basis of their
message-sending patterns, during the computation,
to reduce communication: GPS, indeed, attempts to

collocate together vertices that send each other
message frequently. Furthermore, in many graph
algorithms each vertex sends the same message to
all of its neighbors; in this case GPS LALP
optimization stores partitioned adjacency list for
high-degree vertices across the compute nodes on
which the neighbors reside. The input graph is
stored in HDFS files in a simple format: each line
start with the id of a vertex v, followed by the ids
of v’s outgoing neighbors. The input file may
optionally specify values for the vertices and edges.
GPS assigns the vertices of G to worker using a
simple round robin scheme, but it can use other
sophisticated partitioning schemes.

3.4. Pregel+

Pregel+ is implemented in C/C++ and each
worker is an MPI process. Pregel+ wrt other Pregel-
like systems introduces two technique to reduce the
number of messages: vertex mirroring and a
request-respond paradigm.

Mirroring is designed to mitigate the problem of
imbalanced workload by eliminating bottleneck
vertices having a high degree. The main idea is to
construct mirrors of each high-degree vertex in
different machines, so that messages from a high-
degree vertex are forwarded to its neighbors by its
mirrors in local machines. The Request-Respond
API allows a vertex (source) to request another
vertex (target) for a value, and the requested value
will be available at the source vertex in the next
iteration. All requests from a machine to the same
target vertex are merged into one request, to obtain
the reduction of the number of messages passed
between two machines.

3.5. GraphLab

GraphLab is a high performance, distributed
computation framework written in C++. GraphLab
2.2 is last version of GraphLab [39], and includes
the features of PowerGraph [40]. The latest version
adopts the Gather, Apply, Scatter (GAS) model of
computation and shared memory abstraction.

A general graph-parallel abstraction consists of a
graph- and a vertex-program which is executed in
parallel on each vertex. The GAS model is a
vertex-centric graph-parallel abstraction similar to
BSP, and it represents three conceptual phases of a
vertex-program: Gather, Apply, and Scatter.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6746

Figure 3: GAS phases.

In the Gather phase (Figure 3-a) each active
vertex (red vertices in Figure 3-a) runs a vertex-
program that accumulates information from
adjacent vertices and edges, through a user-defined
operation that must be commutative and
associative, and can be a numerical sum or the
union of the data. In the Apply phase (Figure 3-b)
the resulting value of this operation is used to
update the value of the active vertex. Finally, in the
Scatter phase (Figure 3-c) the active vertex updates
the adjacent vertices and edges, and activates its
neighboring vertices.

GraphLab has several differences wrt Pregel.
Each vertex in Pregel can receive information only
through the messages sent from its neighbors,
while, in the Gather phase, the vertex can directly
pull data from its neighbors. Moreover, GraphLab
provides both synchronous and asynchronous
scheduling. In GraphLab the synchronous
scheduling, as in Pregel, uses communication
barriers, but, while in Pregel the vertices that must
send last messages must stay active, in GraphLab
these vertices do not participate to the computation
because their neighbors can pull their last value in
the Gather phase. In the asynchronous mode,
instead, there are no barriers or supersteps: during
the Apply phase the changes made to vertices or
edges are committed immediately and are usable by
any sequent computation phase. Unfortunately, the
asynchronous execution, in order to avoid conflicts,
uses distributed locking/unlocking protocols.

Finally, in Pregel partitioning does not replicate
the vertices and cut edges. In GraphLab, instead,
vertex-cut partitioning is used, where each edge is
assigned to a unique machine, while the vertices are
replicated in the caches of remote machines. In this
way, graphs with skewed degree distribution can
be partitioned across multiple machines, yielding
better balanced workloads; the drawback is extra
communication among worker to guarantee the
consistency of the vertex value on each replica.

A user must implement a user-defined GAS
function for each vertex. Furthermore, in the
initialization phase, through a MapReduce job, she
must construct, using a partitioning algorithm and
the raw graph data, the atom files representing the
data graph of each partition: in GraphLab each
partition is called atom, and an atom index file
stores the connectivity structure and the locations of
atoms, both stored on the distributed file system.

In a GraphLab cluster one instance of the
GraphLab program is executed on each machine.
GraphLab processes are symmetric and directly
communicate with each other using an
asynchronous RPC protocol over TCP/IP. The first
process is the master and has the responsibility of
assigning the atom files to individual execution
engine, reading the atom index file, and then,
monitoring the machine.

3.6. MapGraph

MapGraph is a high performance parallel graph
programming framework exploiting modern GPUs.
The framework provide the APIs, based on the
Gather-Apply-Scatter (GAS) model as used in
GraphLab, to implement a wide range of graph
algorithms, hiding the complexity of the GPU
architecture.

3.7. SociaLite

SociaLite is a graph processing system
supporting a high-level graph query language based
on Datalog. Datalog is a declarative logic
programming language used as a query language in
deductive databases. It can express in a concise way
many graph algorithms, because of its high-level
declarative semantics and support for recursion.
SociaLite extends Datalog with two main features:
tail-nested tables and recursive aggregate
functions. SocialLite, instead of using two
dimensional tables as in relational database
systems, use a tail-nested table which is a
generalization of the adjacency list. The last
column of the table may contain pointers to two-
dimensional tables, whose last columns can
themselves expand into other tail-nested tables.
Moreover, Sequential SociaLite supports recursive
aggregate function, where an aggregate function
can depend on itself. SociaLite has a number of
pre-defined aggregate functions such as $Sum,
$Min and $Max, and allows users to define their
aggregate functions in Java.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6747

SocialLite consists of a compiler that accept a
SocialLite program and additional Java functions.
The compiler parses the code into an abstract
syntax tree (AST), performs syntactic and semantic
analysis, optimizes the AST, and generates Java
source code. The generated code is then compiled
by a regular Java compiler into bytecode, which is
executed with the SociaLite runtime system.

Sequential Socialite is not suitable for analyzing
large scale graphs in a distributed environment. For
this reason, distributed SociaLite [36], a version
optimized for large scale graphs analysis on
distributed machines, has been implemented.

The SociaLite parallel engine consists of a
master, which interprets the Datalog rules and
instructs the slaves to work. Each slave node
repeatedly executes the rules upon the arrival of
communications from other nodes, and it updates
the internal tables or sends messages to remote
nodes. Finally, slaves can make a checkpoint of the
intermediate work on a fault-tolerant distributed file
system to restore it if needed. The parallel
SociaLite requires the user to specify how the
tables must be sharded across the machines;
SociaLite, then, automatically manages the
execution across the distributed machines,
generates the message passing code, and manages
the parallel execution.

3.8. Trinity

Trinity is a general-purpose graph engine over a
distributed memory cloud. Trinity is not a system
that comes with comprehensive built-in graph
computation modules, but it enables the
development of such modules and hence empowers
a large variety of graph applications from online
graph query processing to offline graph analytics.
Trinity implements a globally addressable
distributed memory storage in the memory of a
cluster of commodity machines, and provides a
random access abstraction for large graph
computation. The memory is essentially a
distributed key-value store and consists of a
memory storage module and a message passing
framework, that provides mechanisms for
concurrency control and fault tolerances. Trinity
system consists of three components: slaves,
proxies, and clients. The Slaves store graph data
and perform computation on the data; proxies are
optional and may serve as dispatch information
from client to slaves and inverse; finally, clients

communicate with slaves and proxies, and allow
users to interact with cluster.

The memory cloud consists of memory trunks,
and each machine hosts multiple memory trunks.
To support fault-tolerance data persistence, these
memory trunks are also stored in Trinity File
System (TFS), a shared distributed file system
similar to HDFS. A key-value store is created on
top of the memory cloud: the keys are 64-bit
globally unique identifiers, and the values are blobs
of arbitrary length. To address a key-value pair,
Trinity uses a hashing mechanism and maintains a
replica of the addressing table on each machine.
The addressing table provides a mechanism that
allows machines to dynamically join and leave the
memory cloud; this mechanism is useful when a
machine fails, as the relative trunk is reloaded from
TFS to other alive machines.

Trinity also provides a language called TSL
(Trinity specification language), that allows one to
define a graph schema, communication protocols,
and computation paradigms. Through TSL scripts
one can define the schema of the data, and
eventually integrate the data with data coming from
external sources, so that Trinity knows how to
manipulate data [41]. Moreover, TSL also allows
one to model network communications, such as
message passing protocols (e.g. synchronous,
asynchronous, etc.) that can be used in vertex based
computing and other algorithms. Other examples of
schema languages for data graphs are shown in
[42][43]. All these languages are based on regular
expression types [44] [45][46][47][48][49][50][51]
or on record types [52][53].

With the schema and communication protocols
defined in TSL, Trinity can implement any
computational paradigm for online queries or
vertex centric offline analytics, such as in [54],
where is proposed Trinity.RDF, a distributed in-
memory RDF system, based on Trinity, that is
capable of handling web scale RDF data.

3. CONCLUSIONS

In this paper we surveyed the most prominent
tools for managing and analyzing big graphs. Graph
database systems aim at extending traditional
database features, like transactions and high level
query languages, to graphs, but they usually fail in
matching the scalability of graph processing
systems; the latter systems, while very scalable,
usually require the user to write low-level code to

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6748

analyze and/or query an input graph, and do not
offer any form of declarative access to the data.

Our survey shows that, unlike what happens for
RDBMs, there is not a single class of systems that
can satisfy all the needs of a graph data analyst, as
the “one size fits all paradigm” is no longer valid in
this context. This lead to the need for systems able
to process in an efficient and scalable way very
large graphs, as well as to support the vertex-centric
paradigm and declarative high level languages. This
topic is probably the most important open issue in
the research on graph data management.

REFERENCES:
[1] S. Romano, G. Scanniello, C. Sartiani, and

M. Risi, “A graph-based approach to detect
unreachable methods in Java software,” in
Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa,
Italy, April 4-8, 2016, pp. 1538–1541.

[2] N. Bidoit, D. Colazzo, N. Malla, and C.
Sartiani, “Partitioning XML documents for
iterative queries,” in Proceedings of the
16th International Database Engineering &
Applications Symposium, IDEAS '12,
Prague, Czech Republic, August 8-10,
2012.

 [3] N. Bidoit, D. Colazzo, N. Malla, F. Ulliana,
M. Nolè, and C. Sartiani, “Processing XML
queries and updates on map/reduce
clusters,” in Joint 2013 EDBT/ICDT
Conferences, EDBT '13 Proceedings,
Genoa, Italy, March 18-22, 2013

[4] N. Bidoit, D. Colazzo, N. Malla, and C.
Sartiani, “Evaluating Queries and Updates
on Big XML Documents,” Inf. Syst. Front.,
vol. 20, no. 1, pp. 63–90, 2018.

[5] N. Bidoit, D. Colazzo, C. Sartiani, A.
Solimando, and F. Ulliana, "Andromeda: A
system for processing queries and updates
on big XML documents", in New Trends in
Databases and Information Systems -
ADBIS 2015 Short Papers and Workshops,
BigDap, DCSA, GID, MEBIS, OAIS,
SW4CH, WISARD, Poitiers, France,
September 8-11, 2015. Proceedings.

[6] N. Bidoit, D. Colazzo, C. Sartiani, A.
Solimando, and F. Ulliana, “Queries and
Updates on Big XML Documents
(Extended Abstract),” in 23rd Italian
Symposium on Advanced Database
Systems, SEBD 2015, Gaeta, Italy, June 14-
17, 2015., 2015, pp. 152–159.

[7] A. Jindal, P. Rawlani, E. Wu, S. Madden,
A. Deshpande, and M. Stonebraker,
“VERTEXICA: Your Relational Friend for
Graph Analytics!,” PVLDB, vol. 7, no. 13,
pp. 1669–1672, 2014.

[8] C. R. Aberger, S. Tu, K. Olukotun, and C.
Ré, “EmptyHeaded: A relational engine for
graph processing,” in Proceedings of the
ACM SIGMOD International Conference
on Management of Data, 2016, vol. 26-
June-20, pp. 431–446.

[9] “Neo4j” . Available: http://www.neo4j.org/.
[10] N. Martìnez-Bazan, V. Muntés-Mulero, S.

Gómez-Villamor, J. Nin, M.-A. Sánchez-
Martìnez, and J.-L. Larriba-Pey, “Dex:
high-performance exploration on large
graphs for information retrieval,” in
Proceedings of the Sixteenth ACM
Conference on Information and Knowledge
Management, CIKM 2007, Lisbon,
Portugal, November 6-10, 2007, pp. 573–
582.

[11] B. Iordanov, “HyperGraphDB: A
Generalized Graph Database,” in Web-Age
Information Management - WAIM 2010
International Workshops: IWGD 2010,
XMLDM 2010, WCMT 2010, Jiuzhaigou
Valley, China, July 15-17, 2010, Revised
Selected Papers, 2010, pp. 25–36.

[12] M. Sarwat, S. Elnikety, Y. He, and M. F.
Mokbel, “Horton+: A Distributed System
for Processing Declarative Reachability
Queries over Partitioned Graphs,” PVLDB,
vol. 6, no. 14, pp. 1918–1929, 2013.

[13] “ThingSpan” [Online]. Available:
http://www.objectivity.com/products/things
pan/.

[14] G. Malewicz et al., “Pregel: a system for
large-scale graph processing,” 2010, pp.
135–146.

[15] “Apache Giraph”. Available:
http://giraph.apache.org/.

[16] “GraphLab”. Available: http://graphlab.org.
[17] S. Salihoglu and J. Widom, “GPS: a graph

processing system,” 2013, p. 22.
[18] Y. L. W. N. D.Yan J. Cheng and Y. Bu,

“Pregel+,” 2014.
[19] L. G. Valiant, “A Bridging Model for

Parallel Computation,” Commun. ACM,
vol. 33, no. 8, pp. 103–111, 1990.

[20] B. Shao, H. Wang, and Y. Li, “Trinity: a
distributed graph engine on a memory
cloud,” 2013, pp. 505–516.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6749

[21] J. Seo, S. Guo, and M. S. Lam, “SociaLite:
Datalog extensions for efficient social
network analysis,” in 29th IEEE
International Conference on Data
Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pp. 278–289.

[22] A. Buluç and J. R. Gilbert, “The
Combinatorial BLAS: design,
implementation, and applications,”
IJHPCA, vol. 25, no. 4, pp. 496–509, 2011.

[23] U. Kang, C. E. Tsourakakis, and C.
Faloutsos, “PEGASUS: A Peta-Scale
Graph Mining System Implementation and
Observations,” in Data Mining, 2009.
ICDM ’09. Ninth IEEE International
Conference on, 2009, pp. 229–238.

[24] “Dex” . Available: http://www.sparity-
tecnologies.com/dex.

[25] “HyperGraphDB” . Available:
http://hypergraphdb.org/.

[26] “Allegrograph” . Available:
http://www.franz.com/agraph/allegrograph/

[27] “SPARQL” . Available:
http:http://www.w3.org/TR/rdf-sparql-
query/

[28] N. Francis et al., “Cypher: An evolving
query language for property graphs,” in
Proceedings of the ACM SIGMOD
International Conference on Management
of Data, 2018, pp. 1433–1445.

[29] “Gremlin Language” . Available:
https://github.com/tinkerpop/gremlin/wiki

[30] L. Libkin, W. Martens, and D. Vrgoc,
“Querying graph databases with XPath,”
2013, pp. 129–140.

[31] M. Nolé and C. Sartiani, “A Distributed
implementation of GXPath,” in
Proceedings of the Workshops of the
EDBT/ICDT 2016 Joint Conference,
EDBT/ICDT Workshops 2016, Bordeaux,
France, March 15, 2016. CEUR Workshop
Proceedings, 2016, vol. 1558.

[32] D. Colazzo, V. Mecca, M. Nolé, and C.
Sartiani, “PathGraph: querying and
exploring big data graphs. In Proceedings
of the 30th International Conference on
Scientific and Statistical Database
Management, SSDBM 2018, Bozen-
Bolzano, Italy, July 09-11, 2018.” p. 29:1-
29:4, 2018.

[33] M. Sarwat, S. Elnikety, Y. He, and G.
Kliot, “Horton: Online Query Execution
Engine for Large Distributed Graphs,” in

IEEE 28th International Conference on
Data Engineering (ICDE 2012),
Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012, pp. 1289–1292.

[34] “Objectivity/DB” . Available:
http://www.objectivity.com/

[35] Z. Fu, B. B. Thompson, and M. Personick,
“MapGraph: A High Level API for Fast
Development of High Performance Graph
Analytics on GPUs,” in Second
International Workshop on Graph Data
Management Experiences and Systems,
GRADES 2014, co-located with
SIGMOD/PODS 2014, Snowbird, Utah,
USA, June 22, 2014, p. 2:1--2:6.

[36] J. Seo, J. Park, J. Shin, and M. S. Lam,
“Distributed SociaLite: A Datalog-Based
Language for Large-Scale Graph Analysis,”
PVLDB, vol. 6, no. 14, pp. 1906–1917,
2013.

[37] M. Nolé and C. Sartiani, “Processing
regular path queries on Giraph,” in
Proceedings of the Workshops of the
EDBT/ICDT 2014 Joint Conference
(EDBT/ICDT 2014), Athens, Greece,
March 28, 2014. CEUR Workshop
Proceedings, 2014, vol. 1133, pp. 37–40.

[38] M. Nolé and C. Sartiani, “Regular path
queries on massive graphs,” in Proceedings
of the 28th International Conference on
Scientific and Statistical Database
Management, SSDBM 2016, Budapest,
Hungary, July 18-20, 2016 ACM
International Conference Proceeding
Series, 2016, vol. 18–20–July.

[39] Y. Low, J. Gonzalez, A. Kyrola, D.
Bickson, C. Guestrin, and J. M. Hellerstein,
“Distributed GraphLab: A Framework for
Machine Learning in the Cloud,” PVLDB,
vol. 5, no. 8, pp. 716–727, 2012.

[40] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson,
and C. Guestrin, “PowerGraph: Distributed
Graph-Parallel Computation on Natural
Graphs,” in 10th USENIX Symposium on
Operating Systems Design and
Implementation, OSDI 2012, Hollywood,
CA, USA, October 8-10, 2012, pp. 17–30.

[41] D. Colazzo and C. Sartiani, “Detection of
corrupted schema mappings in XML data
integration systems,” ACM Trans. Internet
Technol., vol. 9, no. 4, 2009.

[42] D. Colazzo and C. Sartiani, “Typing query
languages for data graphs,” in Workshops
Proceedings of the 30th International

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6750

Conference on Data Engineering
Workshops, ICDE 2014, Chicago, IL, USA,
March 31 - April 4, 2014, pp. 28–31.

[43] D. Colazzo and C. Sartiani, “Typing regular
path query languages for data graphs,” in
DBPL 2015 - Proceedings of the 15th
Symposium on Database Programming
Languages, 2015, pp. 69–78.

[44] D. Colazzo, G. Ghelli, and C. Sartiani,
“Schemas for safe and efficient XML
processing,” in Proceedings of the 27th
International Conference on Data
Engineering, ICDE 2011, April 11-16,
2011, Hannover, Germany, pp. 1378–1379.

[45] G. Ghelli, D. Colazzo, and C. Sartiani,
“Linear time membership in a class of
regular expressions with interleaving and
counting,” in Proceedings of the 17th ACM
Conference on Information and Knowledge
Management, CIKM 2008, Napa Valley,
California, USA, October 26-30, 2008, pp.
389–398.

[46] D. Colazzo, G. Ghelli, and C. Sartiani,
“Efficient inclusion for a class of XML
types with interleaving and counting,” Inf.
Syst., vol. 34, no. 7, pp. 643–656, 2009.

[47] D. Colazzo, G. Ghelli, and C. Sartiani,
“Efficient asymmetric inclusion between
Regular Expression types,” in Database
Theory - ICDT 2009, 12th International
Conference, St. Petersburg, Russia, March
23-25, 2009, Proceedings - ACM
International Conference Proceeding
Series, 2009, vol. 361, pp. 174–182.

[48] D. Colazzo, G. Ghelli, L. Pardini, and C.
Sartiani, “Linear inclusion for XML regular
expression types,” in Proceedings of the
18th ACM Conference on Information and
Knowledge Management, CIKM 2009,
Hong Kong, China, November 2-6, 2009,
pp. 137–146.

[49] D. Colazzo, G. Ghelli, L. Pardini, and C.
Sartiani, “Almost-linear inclusion for XML
regular expression types,” ACM Trans.
Database Syst., vol. 38, no. 3, 2013.

[50] D. Colazzo, G. Ghelli, L. Pardini, and C.
Sartiani, “Efficient asymmetric inclusion of
regular expressions with interleaving and
counting for XML type-checking,” Theor.
Comput. Sci., vol. 492, pp. 88–116, 2013.

[51] D. Colazzo, G. Ghelli, and C. Sartiani,
“Linear time membership in a class of
regular expressions with counting,
interleaving, and unordered concatenation,”
ACM Trans. Database Syst., vol. 42, no. 4,
2017.

[52] M.-A. Baazizi, H. B. Lahmar, D. Colazzo,
G. Ghelli, and C. Sartiani, “Schema
inference for massive JSON datasets,” in
Proceedings of the 20th International
Conference on Extending Database
Technology, EDBT 2017, Venice, Italy,
March 21-24, 2017, pp. 222–233.

[53] M.-A. Baazizi, D. Colazzo, G. Ghelli, and
C. Sartiani, “Counting types for massive
JSON datasets,” in Proceedings of The 16th
International Symposium on Database
Programming Languages, DBPL 2017,
Munich, Germany, September 1, 2017 -
ACM International Conference Proceeding
Series, 2017, vol. Part F1306.

[54] K. Zeng, J. Yang, H. Wang, B. Shao, and Z.
Wang, “A Distributed Graph Engine for
Web Scale RDF Data,” PVLDB, vol. 6, no.
4, pp. 265–276, 2013.

