
Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6677

 NEURAL NETWORK BASED APPROACH FOR IMPROVING
COMBINATORIAL COVERAGE IN COMBINATORIAL

TESTING APPROACH

1RAMGOUDA PATIL, 2V CHANDRA PRAKASH
1Research Scholar, 2Professor,

Koneru Lakshmaiah Education Foundation, Deemed to be University,

Department of Computer Science and Engineering, Andhra Pradesh, India

E-mail: 1ramgoudap@gmail.com, 2 vchandrap@kluniversity.in

ABSTRACT

Recent advancements in technology has shown significant impact on social life, where computers have
attracted huge attention due to its importance in socio-economic progress. Due to the growth in various
computer technologies, software-based application has played pivotal role in the social and economic
development. However, poor quality of software module may cause industrial loss; hence software quality
improvement remains an attractive research field. Several techniques have been presented for improving the
software quality by developing software testing methods. In this field of software testing, combinatorial
testing is considered as the most promising scheme for improving software testing and quality improvement
by reducing the number of test cases. This combinatorial testing strategy can help to provide a better
solution for given software product. In this work, we have focused on software testing using combinatorial
testing with the help of IPOG approach which is used for test case generation of the 2-way test scenario.
Later, neural network scheme is incorporated for test case generation which provides most suitable test
scenario for combinatorial coverage. For given software product, if random testing is performed and its test
cases are available, then for this software we can easily identify how much combinatorial coverage is
already performed, and how many new test cases are to be added to those available test cases of random
testing so that appropriate testing coverage is achieved. A comparative scheme is presented which shows
that proposed approach gives the best solution for test case generation for software testing.

Keywords: Combinatorial Testing, Neural Network, IPOG, Software Testing, Test Case Generation,
combinatorial coverage.

1. INTRODUCTION

Demand for computers and the computer-
based applications have gained enormous attraction
for various applications in the real-world scenario
to enhance the economic prudent and social
growth. In addition to this, it is widely exploited in
research field and applications [1]. As a result of
this growth, software development is also
considered as a key component which can affect
the social and economic development. Hence, a
huge number of software applications are
developed every year. However, maintaining the
software quality remains an unnoticed aspect in
this field. Software testing methods have been
adopted widely to cope up with this issue of
software quality maintenance. Several types of
software defects are present in software products,
to handle such defects numerous testing methods

are also available such as, mutation testing [2],
metamorphic testing [3], and structural testing [4]
etc. According to the mutation testing, a tester is
allowed to revise the available source code with
limited constraints. This can help the tester to apply
other effective tests, software weakness/bug
identification and location identification of a buggy
section of the code. Metamorphic testing can solve
the oracle problem in testing based on the property
of Software under Test (SUT); structural testing
aims to find faults related to the internal structure
of SUT. Recently, pair-wise testing is also
discussed for monitoring the significance of
software application. This process helps to find the
bug or software failure conditions by performing
testing where all possible tests can be carried out
with the help of one test [5]. Generally, any
unusual combinatorial interaction causes an issue
of software failure or bug. The need of software

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6678

reliability and quality are becoming more essential
as the dependency of human being on software is
increasing. To ensure quality and reliability the
software is needed to be tested on specific
requirement. Combinatorial testing is one of the
methods used to perform t-way testing. The need of
combinatorial has increased because most failures
are caused by one parameter (single-mode fault) or
by the interaction of two parameters (double-mode
fault). Sometimes failures may be caused because
of interaction between more than two parameters
(t-way). Kuhn et al. [6] presented an empirical
study which shows that software failure occurs due
to incorrect combinations of conditions. Software
failure conditions are triggered due to single
interaction but later it was found that this issue can
be provoked by 3, 4, 5, and 6-way interactions. The
process of generating these interactions is also
known as coverage testing which is considered a
complex task for manual processing, hence, to deal
with this issue, Combinatorial Testing (CT), also
called Combinatorial Interaction Testing (CIT) is
presented for quality assurance. According to
combinatorial testing, a covering array is
considered as test suite which performs testing for
all possible combination to obtain the desired
combination which can improve the coverage
performance. This approach helps us to find the
interactions among the test suite which are
responsible for the software failure.

Nowadays, software functionality has become
very complex, varied execution environments such
as distributed and networked etc. also causes
complexity and design issues such as high re-
configurability are also demanded which can be
utilized for various software platforms by
executing software in optimized mode. However,
adoption of the growing software development
technology may lead to the more complicated
software or product development, where multiple
numbers of interactions are present which may
cause software failure. Due to these issues,
software testing models suffer from performance
issues. In contrast to this, combinatorial testing
offers various advantages to overcome the
coverage issues. Combinatorial testing follows
various aspects such as combinatorial testing
creates multiple test cases to form the covering
array. This array contains various test sets where
each row/ set of the parameter can be utilized for a
specific test. In this, the collection of tests covers
all t-way combination where,‘t’ denotes a total
number of parameters available in the combination.
An explanatory example of 2-way testing for 4

parameters is depicted in table 1, according to this
table, column 1 and 2 can generate 9 possible
combinations, and the number of test cases can be
reduced to 9 from 81.

Table 1: 2-way Coverage Example

OS

Browser

 Access
Type

Audio

Mac Firefox Modem Creative

Linux Netscape Modem Digital

Mac IE ISDL Digital

Mac Netscape VPN Maya

Windows Firefox VPN Digital

Windows Netscape ISDL Creative

Windows IE Modem Maya

Linux Firefox ISDL Maya

Linux IE VPN Creative

 Based on recent studies, it has been proved that
combinatorial testing can provide effective
performance for certain applications by reducing
the number of test cases for testing purpose. This
process is known as the specification-based
technique, where no knowledge of the
implementation of SUT (Software-Under-Test) is
required. Moreover, test case generation process
can be automated for fast processing.

Selection of optimal interaction of combination
is a challenging task in this field. Conventional
testing models uses manual selection model which
requires more time and cost. These issues can be
addressed by using any machine learning or
artificial intelligence scheme by taking the
advantage of the training process and due to their
significant nature of prediction model. Hence in
this work, we focus on development of
combinatorial testing scheme and further we
incorporate artificial intelligence based neural
network model, to predict the most suitable
interaction which can lead to improved coverage to
assure the quality.

In some software development environments,
once the software is implemented some set of
testing is performed. Our intention in this paper is
to study about how much combinatorial coverage is
achieved by current test cases. Further we want to
know, how many new test cases are needed to
added to the current test cases to achieve complete
combinatorial testing. The aim of the research is to

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6679

perform coverage analysis and suggest additional
test case to perform higher order coverage.

Main contributions of this work are as follows:

(a) Implementation of combinatorial testing
model by considering synthetic database.

(b) Incorporation of a neural network model for
suitable interaction prediction for improving
the coverage.

In order to understand the concepts of
Combinatorial Testing (CT) and Combinatorial
Coverage, following definitions are important to
understand.

Some Basic Definitions

Covering array(CA) : A covering array
CA(N;t,k,v) is an N×k array with entries in
{1,2,…,v}, for which every N×t sub-array contains
each t-tuple of {1,2,…,v}t among its rows.

Example 1: Table 2 represents a covering array
with N=4, k=5, v=2 and t=2.

Combinatorial Coverage: Assuming P test cases
for t-wise in covering array and Q be the number of
test sets. The combinatorial coverage (CC) can be
defined as

In other words, we can define Combinatorial
Coverage as the percentage of test cases covered
from covering array by the test set.

Generally, combinatorial coverage can be
computed based on any one or both of the two
methods viz., Variable-value configuration and
Simple t-way combination coverage

 Variable-value configuration (VVC): When a set
of t-Variables is given, VVC is defined as the set of
t valid values, one for each of the variable. Given
by

Where Np is the number of t wise test cases
generated and Tp is the Total number of test cases
in t-wise coverage.

Example 2: Table 2 shows test sets for four binary
variables P, Q, R and S

Table: 2 Combinatorial Test Case, initial fuzz
testing Parameters

P Q R S
0 1 0 0
0 0 1 1
1 0 0 1
0 1 1 1
1 1 0 1

For PQ all pair wise combinations tested hence
VVC is 100%. For QR also 4 out of 4
combinations are generated, hence VVC is 100%

Similarly VVC for PR=75%, PS=75%, QS=75%
and RS=75%,

If we consider 3-wise coverage for the same
matrix then, combinations generated are PQR,
PQS, PRS, QRS, If we compute their Variable-
value configuration (VVC): PQR=62.5%,
PQS=62.5%, PRS=50%, QRS=62.5%.

Simple t-way combination coverage: When a test
set of n variable is given, simple t-way
combinatorial coverage(S) is defined as the
proportion of t-way combinations of n variables for
which all variable-values Configurations are fully
covered

Where, T is the number of t-ways parameters
covered completely by test set and Tc is total
numbers of t-way test parameters.

Example 3: Table 2 above shows an example of
four binary variables, P, Q, R and S where each
row represents a test. Of the six possible 2-way
variable combinations, PQ, PR, PS, QR, QS, and
RS only PQ and QR have all four binary values
covered, so simple t-way coverage (t=2) for the
four tests in Figure 1 is 2/6 = 33.3%. There are six
t-way (t=3) variable combinations, PQR, PQS,
PRS, and QRS each with eight possible

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6680

configurations: 000, 001, 010, 011, 100, 101, 110,
and 111. Out of the four combinations, none has all
8 configurations covered, so simple t-way (t=3)
coverage for this test set is 0%.

 (t + k)-way combination coverage (Ctk): For a
given test set that provides 100% t-way coverage
for n variables, (t+k)-way combination coverage is
the proportion of (t+k)-way combinations of n
variables for which all variable-values
configurations are fully covered.

Let P number of configurations where VVC are
fully covered and Q be Total number of
configurations in (t+k)-way combinations then

Ctk =

Table:3 Extended Combinatorial Test Cases
extended from Table 2

P Q R S
0 1 0 0
0 0 1 1
1 0 0 1
0 1 1 1
1 1 0 1
1 0 0 0
0 0 1 0
0 1 1 0

Example 4: Suppose the test sets in Table 2 are
extended as shown in Table 3 then all four
combinations of pairs of variables are covered, so
2-way coverage is 100%. Out of the four 3-way
combinations PQR, PQS, PRS, QRS only the
combination QRS has all 8 variable value
combinations so (2+1)-way = 3-way coverage is
25%.

Tuple Density: Sum of t and the fraction of the
covered (t+1)-tuples out of all possible (t+1)-
tuples

Example5: As shown in the previous example, the
test set in Table 3 provides 100% coverage of 2-
way combinations and 25% coverage of 3-way
combinations, so the tuple density of this test set is
2.25.

 (p, t)-completeness: For a given set of n
variables, (p, t)-completeness is the proportion of

the C(n, t) combinations that have configuration
coverage of at least p.

Example 6: For Table 2 above, there are C(4, 2) =

6 possible variable combinations and C(4, 2) × 2
2

=
24 possible variable-value configurations. From
these, 19 variable-value configurations are covered
and the only ones which are missing are PQ=11,
PR=11, PS=10, QR=01, QR=10. But only two, QS
and RS, are covered with all 4 value pairs. As per
the basic definition of simple t-way (t=2) coverage,
we have only 33% (2/6) coverage, but 83.33%
(20/24) for the variable-value configuration
coverage metric. All 2-way combinations have at
least 75% configuration coverage, so (.75,2)-
completeness for this set of tests is 100%.
Although the example in table 1 uses variables
with the same number of values, this is not
essential for the measurement, and the same
approach can be used to compute coverage for test
sets in which parameters have differing numbers of
values.

 Rest of the manuscript is organized as
follows: the section II deals with recent studies in
the field of the combinatorial testing scheme,
section III describes proposed combined model for
combinatorial testing, an experimental analysis is
presented in section IV and finally concluding
remarks are presented in section V.

2. MOTIVATION AND RELATED WORKS

In this section, we present a brief discussion
about some recent studies in the field of
combinatorial testing. Various recent studies show
that the combinatorial testing is widely adopted in
various fields such as material designing,
agriculture, biological applications and software
testing. Zhang et al. [7] presented a combinatorial
approach for test generation approach using
pseudo-Boolean optimization process. For any
given testing model, implementation and testing for
each case become uneconomic hence an optimal
approach is required to stop the automatic test
cases and retains the maximum coverage for each
case. This approach of test-case generation aims at
covering array generation which can cover all t-
way parameter combinations. This article focuses
on the one-test-at-a-time algorithm for
combinatorial test case generation. Further,
uneconomic nature of test case generation is also
discussed, and approximation ratio is considered as
0.8 and 0.9. Moreover, a self-adaptive technique is
also introduced which helps to stop optimal process

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6681

automatically and generates the optimal number of
test cases.

Ziegel et al. [8] discussed the advancements in
the pharmaceutical industrial field and discussed
the increasing significant production with the help
of more experimental study. This work mainly
focused on increasing the industrial development.
According to this, combinatorial and higher
throughput methods are considered as standard
methods for industrial applications, whereas
conventional methods are not capable to improve
the quality of product manufacturing. Kampel et al.
[9] discussed t-way covering for improving the
quality of the software. Authors discussed that the
combination of covering array can be used to
formulated larger arrays. According to this model,
input space model is formulated using software
under test unit and t-way test suits and its
component.

Petke et al. [10] studied combinatorial
interaction testing technique for software testing
purpose by considering various feature parameters
of the system. According to some researchers, it
was concluded that optimization techniques could
enhance the performance of software testing
modules. Based on this assumption, simulated
annealing and greedy approaches have been
presented for combinatorial testing. However,
simulated annealing faces computation delay issues
but provides better and effective solution for
considered interaction. Recently, use of mobiles
and applications are growing rapidly where
software testing plays the role. Conventional
testing approaches require more time for
computation, and computation complexity issues
fail to provide desired performance for testing. To
deal with these issues, Vilkomir et al. [11]
developed a combinatorial testing scheme for
mobile application testing. It includes mobile
device selection using combinatorial methods.
Younis et al. [12] also utilized the combinatorial
testing model which is currently growing in various
industrial applications due to demand of
application of product quality testing. In this field
of combinatorial testing, combinatorial instance
mismatching or explosion degrades product
coverage and design testing accuracy. Authors
have suggested that parallelization can improve the
testing process by optimizing implementation cost
using multi-core system architecture. In this field,
the IPOG algorithm is considered as a promising
technique for improving the system performance.

This approach is further improved using multi-core
computation strategy.

In product testing model, test case generation is
considered as an important aspect. In this approach,
random testing is considered as a promising
technique and adopted widely in various industrial
applications. However, the number of test case
generation causes computation complexity in the
system and leads to an application coverage. To
overcome this issue, adaptive random testing is
proposed as an improvement in the conventional
random testing which includes fixed-size-
candidate-set adaptive random testing and
restricted random testing to improve the coverage
of testing [13].

Borazjany et al. [14] introduced a new approach
for improving the system performance with the
help of a testing model. This process mainly
focuses on the input space modeling for
combinatorial testing improvement. This model is
carried out based on the assumption as follows:
input structure modeling and input parameter
modeling. According to this approach, input
structure modeling helps to identify the
relationship among various components and
parameter identification is performed in that stage.
Furthermore, unit integration testing is also
implemented to improve the testing performance
by increasing the coverage.

The studies discussed above shows that various
techniques of combinatorial testing have been
presented by researchers in this field of testing.
These testing models are widely adopted in
industrial and software applications. Increasing
demand for quality products and software urges for
better quality software, hence combinatorial testing
is used to improve the software testing
performance by increasing the coverage of
software system. However, computational
complexity and computation time are the
challenging parameters for combinatorial testing.
Moreover, proper test case generation and selection
is one of the crucial tasks for researchers.
Therefore, there is a need to cover these issues by
developing enhanced or artificial intelligence-
based scheme for testing.

In some software development companies and
environments, once the software is implemented
some set of Fuzz testing is performed. Fuzz testing
uses random values, but if we run 100,000 fuzz
tests, how much of an improvement is that

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6682

compared with 50,000 tests? If we are running tests
on binary executables and don’t have the source
code, we cannot measure path coverage in the
code. Using combinatorial coverage, we can
provide a quantitatively defensible answer to the
question of how two test suites compare. For
example, we might find that the 50,000 fuzz tests
achieve 80% of 3-way coverage and other
proportions of 4-way etc., but the 100,000 fuzz tests
have 85% 3-way coverage, so it may not be cost
effective to do the larger test set. In [17] similar
work is implemented for practical recommendation
for using combinatorial coverage in specifying
requirements of combinatorial coverage analysis.

3. PROPOSED MODEL

Based on literature review study, it can be
understood that, there is a need to improve the
combinatorial testing performance which can be
obtained developing an enhanced artificial
intelligence technique. In this section, we present a
new approach to combinatorial testing with the
help of artificial intelligence scheme. In this field
of combinatorial testing, a conventional IPOG
scheme is implemented which can perform multi-
way testing [15]. The IPOG scheme is used
because of following two-fold design objectives:
first, IPOG scheme helps to generate random
strategy generation which can be implemented for
any software configuration i.e. there should be no
restriction on the system configuration parameters
raised by generated strategy. Moreover, this
assumption improves the performance of
computational approaches over algebraic
approaches. In next objective, t-way testing
demand for more time and space requirements
when compared with pairwise testing because time
increasing number of combination leads to
increased coverage. The general framework of
IPOG testing approach is formulated using two
main steps as follows: Let us consider that, a
system is provided with t or more parameters
where IPOG technique is implemented resulting in
the formulation of t-way test for the initial t
parameters. Later it can be extended up to t way
test set for t+1- parameters and then it can be
extended further until t-way test set is built for all
parameters. This extension of t-way testing
coverage can be applied by following two steps as
horizontal growth and vertical growth. According
to horizontal growth, existing test can be extended
by adding one value to the existing test set whereas
vertical growth is introduced by adding and
producing a new test. Algorithm 1 shows the

complete procedure of IPOG test generation model.
This approach considers two main arguments
which are the strength of coverage and parameter
set. The number of parameter set is assumed to be
equal or greater than t.

Algorithm 1: IPOG-Test

IPOG-Test (ini, , Parameter set)
{

1. Initialize test set to be an empty set.

2. Sort the parameter in set in a non-increasing

order of their domain sizes, and denote them as ,

 and .

3. Add into the test-set a test for each

combination of values of the first parameters

4. For (int)
{

5. Let be the set of all way combinations of

values involving parameter and any group of

 parameters among the first parameters

6. // horizontal extension of parameter Column
extension

7. For (each test in test set)
{

8.. Choose a value of and replace

 so that cover the most

number of combinations of values in

9. Remove from the combinations of values

covered by //
10. // Vertical extension process, New row will be
created(Row extension)

11. for (each combination in set)
{

12. if (there exists a test that already covers)
{

13. Remove from
}
14.else
{
15. change an existing test, if possible, or otherwise
add a new test to cover σ and remove it from π}
}
}

16. Return test set

The combinations in set π are covered in the
following two steps: first step is known as
horizontal growth. As per the algorithm, a value is
added for the parameter pi (lines 7 - 9) is an
extension. Added values are selected in a stingy

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6683

way so that the added value can cover maximum
number of combinations in set π (line 8). Each time
a value is added, the set of combinations covered
due to this addition are removed from set π (line 9).
Another step is known as vertical growth: This step
covers the remaining uncovered combinations, one
at a time, either by changing an existing test or by
adding a new test. When we change a test to cover
a combination, only don’t care values can be
changed. A don’t care value is a value that can be
replaced by any value without affecting the
coverage of a test set. If no existing test can be
changed to cover σ, a new test needs to be added in
which the parameters involved in σ are assigned
the same value in σ and the other parameters are
assigned that don’t care about values.

After achieving this solution, we discuss about
the complexity issues of IPOG algorithm. The

complexity of this depends on the storage of
which helps to cover each new parameter. Let us
consider that total number of parameters are

denoted by and domain size is denoted by ,

hence the required space to store can be denoted

as . The time complexity is
dominated by horizontal extension.

Above discussion presents a brief explanation
about test case generation for testing purpose. Here
our main aim is to improve the product testing
coverage with the help of test suits. Generally,
conventional techniques use manual inspection of
product testing which requires more time and
manual effort which makes it cost inefficient for
real-time implementations. In this approach,
prediction of test suit is a crucial task for
researchers. However, machine learning techniques
have been used widely in various researches.
Corma et al. [16] used neural network scheme for
combinatorial testing using prediction method.
Similarly, in this work, we use neural network-
based approach to select the best suitable test case
which can improve the overall coverage of the
testing application. A brief discussion about neural
network and its use in combinatorial testing is
presented in next subsection.

3.1 Neural Network Approach for
Combinatorial Testing

Artificial neural network is one of the machine-
learning approaches and it is adopted in various
real-time applications. In this work, we aim on the
prediction of best test suit which can improve the

coverage of the system. Artificial neural network
contains various components such as
interconnected processing unit which is also known
as neuron. In other words, neural network is
formulated with the help of several neurons which
can be organized in different topology or neural
architecture. A basic unit of neural network
composition is as follows:

 This network model contains various connection
in the form of set which are also known as inputs

i.e. .

 Each input data is further characterized and

represented with the help of weight which
shows relation between current layer and
previous layer

 A propagation rule is also defined i.e. back
propagation of forward-propagation for
computation purpose.

 Finally, an activation function is also defined

which helps to determine the output term as

Figure 1: Neural Network

Neural network technique provides faster
computation and achieves the answer for any given
problem with the reduced delay. According to
neural network process, any problem can be
resolved by following two main steps which are:
training/learning and testing. During training
process, neural network is provided some samples
of the data which belongs to the input of the
problem. Further, mathematical correlation is
applied between samples for further analysis. In
neural network applications, multilayer perceptron
is considered as most promising technique which is

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6684

generally implemented for prediction purpose as
depicted in figure 1. According to multilayer
perceptron, all neurons are grouped in the form of
layers. Here, previous layer neuron is considered to
input two the next layer. In this process, neurons of
input layer contain all the features of input problem
hence based on these parameters input and output
layers of the network are determined which also
known as single class classifier and multi-class
classifier.

The proposed approach comprises of two
approaches, test set generation and neural network
prediction. In order to present the complete
scenario, let us consider different variables and
their values as presented in Table 4.

Table 4: Variables & Notations, Case study of
Configuration testing

S.
No.

Considered
Variable

Variable Parameters

1 Database , ,

2 Processor ,

3 Operating
system

4 Browser

Based on the variables, total combinations are

46 which are as follows: { },{ },

{ }, { }, { }, { },

{ }, { }, { }, { },

{ }, { } etc. In the next phase,
neural network model is constructed which contains
input, hidden and output layers. Input layers take
variables as input values, hidden layers are equal to
the number of attributes and finally, predicted
output is obtained from output layer. Hidden layers
are connected through computing nodes. Every
computing node in the hidden layer and succeeding
hidden layer connection can provide the
connectivity between the processing nodes. This
process is repeated until the output layer is
obtained. A pictorial representation is given in
figure 2.

In order to obtain the desired performance,
proposed approach is followed as mentioned in
algorithm 2.

Figure 2: Proposed Neural Network Modeling

Algorithm 2: Test Case Generation and Neural
Network Prediction
init(TestGen(),NNP())
{
1. Initialize the test case parameters as given in

table 4
2. Formulate a vector of similar size as given test

case parameters
3. Number of hidden layer selection
4. Check whether hidden layer is also the first

layer of the network
5. Pair generation using IPOG, considering that all

elements are present in the hidden layer (for
training database)

6. Test case vector formulation for further process
7. If hidden layer is not the first layer of the

network
{
8. Find current layer number
9. Select last element of the row as stored in the

vector matrix
10. Data value selection from hidden layers; at each

layer
{
11. Pair formulation using hidden layer value

obtained from the matrix
12. Perform filtering the data by comparing with the

previous hidden layer.
13. Update vector in the matrix
14. Predicted vector with the help of hidden layers
15. Add the additional predicted output
16. Coverage analysis
 }
}
}

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6685

With the help of this complete process,
following test cases will be generated which can be
used for neural network learning. These test
vectors are presented Table 5.

Table 5: Test Vectors for Case study of Configuration
testing

Test

vector

Vector elements

Vector 1 Vector 2 Vector 3 Vector 4

TV1
TV2
TV3
TV4
TV5
TV6
TV7
TV8
TV9

TV10
TV11
TV12

Initially, we have implemented t-way coverage

testing on the considered vector where total 3
possible combinations are found missing which are
as follows: (a) 3,1,1,1 (b) 2,1,4,1 and (c) 3,1,4,1.
Since our experiment is carried out for two way
testing hence total missing combinations are given
in table 6.

Table 6: Missing Combinations

Combination ID Combination Variable

1 A, B

2 A, C

3 A, C

4 A, C

5 A, D

6 B, C

7 C, D

According to the analysis missing combination
3,1,4,1 has maximum two-way missing
combinations which are as given in table 7 where
with all three missing combinations; total two-way
coverage is obtained as 0.84091.

Table 7: Missing Combination Values

Combination Variable Combination Value

A, B 3,1

A, C 2,4

A, C 3,1

A, C 3,4

A, D 3,1

B, C 1,4

C, D 4,1

In order to improve the coverage, we try to
predict most suitable test case for the computation.
In this process, first of all we consider 3,1,4,1 as
new test vector and coverage is obtained as 0.95455
which is later improved by adding 2,1,4,1 as new
test vector and the total coverage is obtained is
0.97727.

4. EXPERIMENTAL STUDY

This section provides a complete experimental
study of proposed neural network based
combinatorial testing model. Performance of
proposed approach is measured in terms of
coverage, domain size and total number of
parameters. Complete experimental study is carried
out using windows 7 operating system with 1.8
GHz central processing unit with 8GB RAM
memory.

According to the experimental study, the
initial parameter is fixed to 15 with domain size 4
with a varied from 3 to 6. In this process,
experimental results are presented in table 5 where
test size ratio, time ratio, size and time parameters
are considered for analysis. Proposed model is
compared with the conventional IPOG algorithm as
depicted in table.

Table 8: Comparative analysis of IPOG approach and
Neural-Network based approach

 IPOG
Approach

Neural-
Network

Based-IPOG

Time and
size ratio
analysis

t-way Time Size Time Size Time
Ratio

Size
Ratio

3 0.561 181 0.16 204 0.29 1.12

4 16.587 924 0.77 1056 0.046 1.14

5 230.22 4519 11.10 6785 0.048 1.50

6 2152.11 20384 310.26 32543 0.144 1.59

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6686

Table 8 shows comparative analysis of IPOG

and proposed Neural Network based IPOG
approach based on the time and size ratio analysis.
This analysis is carried out for 3 to 6 way testing.
Proposed Neural Network based -IPOG shows
improved performance when compared with IPOG.
As discussed in previous section, we have
considered an experiment where t-way study is
presented. Based on this analysis, total number of
combination graphical representation is given in
figure 3.

Figure 3: Combinations and Coverage

 As shown in Figure 3, combinations and
coverage are measured for varied number of
testing. This analysis shows that 50% combinations
are capable to obtain the 100% coverage using
two-way testing. Similarly, 3-way testing requires
35 combinations for 60% coverage.

Figure.4: percentage of coverage versus t-way testing up
to 6-way CT

Similarly, figure 4 presents a comparative
analysis by considering varied number of testing.
In this analysis, t-ways are varied from 2-way
testing to 6-way testing and corresponding to this
percentage coverage is computed. Study shows that
2-way testing obtains more testing coverage when
compared with other testing. Figure 5 represents
the coverage heat map.

Figure 5: Coverage Heat map

5. CONCLUSION

In this paper we have presented a novel
approach for two-way testing using neural network
model to improve the testing coverage. According
to this work, first of all IPOG test case generation
strategy is implemented for 2-way test case and
total coverage is measured. In subsequent phase,
neural network model is implemented, where
hidden layers contain input parameters and output
is obtained in terms of best missing test case which
can enhance the overall coverage of the system.
Based on this approach, an extensive experimental
study is presented for 2-way testing and further
IPOG experiments are also depicted for 6-way
testing. From this study it is concluded that
proposed approach can be used for improving the
coverage for two-way testing.

 In this research work we have assumed
that some previous fuzz testing has executed. On
the test data of fuzz testing, we are finding
combinatorial coverage for pair-wise testing. If the
fuzz testing test case is not properly selected then
this work may not provide the optimum results.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6687

REFERENCES

[1] Ahmed, J., Siyal, M.Y., Najam, S. and Najam,
Z., 2017. Challenges and Issues in Modern
Computer Architectures. In Fuzzy Logic Based
Power-Efficient Real-Time Multi-Core System
(pp. 23-29). Springer Singapore.

[2] Clegg, B.S., Rojas, J.M. and Fraser, G., 2017,
May. Teaching software testing concepts using
a mutation testing game. In Proceedings of the
39th International Conference on Software
Engineering: Software Engineering and
Education Track (pp. 33-36). IEEE Press.

[3] Jiang, M., Chen, T.Y., Kuo, F.C., Towey, D.
and Ding, Z., 2017. A metamorphic testing
approach for supporting program repair without
the need for a test oracle. Journal of systems
and software, 126, pp.127-140.

[4] Pandey, A. and Banerjee, S., 2017. Bio-
Inspired Computational Intelligence and Its
Application to Software Testing. In Handbook
of Research on Soft Computing and Nature-
Inspired Algorithms (pp. 429-444). IGI Global.

[5] Lopez-Herrejon, R.E., Javier Ferrer, J.,
Chicano, F., Haslinger, E.N., Egyed, A. and
Alba, E., 2014, July. A parallel evolutionary
algorithm for prioritized pairwise testing of
software product lines. In Proceedings of the
2014 Annual Conference on Genetic and
Evolutionary Computation (pp. 1255-1262).
ACM.

[6] D. R. Kuhn, D. R. Wallace and A. M. Gallo,
"Software fault interactions and implications
for software testing," in IEEE Transactions on
Software Engineering, vol. 30, no. 6, pp. 418-
421, June 2004.

[7] Zhang, Z., Yan, J., Zhao, Y. and Zhang, J.,
2014. Generating combinatorial test suite using
combinatorial optimization. Journal of Systems
and Software, 98, pp.191-207.

[8] Ziegel, E.R., 2003. Experimental design for
combinatorial and high throughput materials
development.

[9] Kampel, L., Garn, B. and Simos, D.E., 2017,
March. Combinatorial Methods for Modelling
Composed Software Systems. In Software
Testing, Verification and Validation
Workshops (ICSTW), 2017 IEEE International
Conference on (pp. 229-238). IEEE.

[10] J. Petke, M. B. Cohen, M. Harman and S. Yoo,
"Practical Combinatorial Interaction Testing:
Empirical Findings on Efficiency and Early
Fault Detection," in IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 901-
924, Sept. 1 2015.

[11] S. Vilkomir and B. Amstutz, "Using
Combinatorial Approaches for Testing Mobile
Applications," 2014 IEEE Seventh
International Conference on Software Testing,
Verification and Validation Workshops,
Cleveland, OH, 2014, pp. 78-83.

[12] Younis, M.I. and Zamli, K.Z., 2010. MC-
MIPOG: A parallel t-way test generation
strategy for multicore systems. ETRI journal,
32(1), pp.73-83.

[13] R. Huang, X. Xie, T. Y. Chen and Y. Lu,
"Adaptive Random Test Case Generation for
Combinatorial Testing," 2012 IEEE 36th
Annual Computer Software and Applications
Conference, Izmir, 2012, pp. 52-61.

[14] M. N. Borazjany, L. S. Ghandehari, Y. Lei, R.
Kacker and R. Kuhn, "An Input Space
Modeling Methodology for Combinatorial
Testing," 2013 IEEE Sixth International
Conference on Software Testing, Verification
and Validation Workshops, Luxembourg, 2013,
pp. 372-381.

[15] Lei, Y., Kacker, R., Kuhn, D.R., Okun, V. and
Lawrence, J., 2007, March. IPOG: A general
strategy for t-way software testing. In
Engineering of Computer-Based Systems,
2007. ECBS'07. 14th Annual IEEE
International Conference and Workshops on
the (pp. 549-556). IEEE.

[16] Corma, A., Serra, J.M., Argente, E., Botti, V.
and Valero, S., 2002. Application of artificial
neural networks to combinatorial catalysis:
Modeling and predicting ODHE catalysts.
ChemPhysChem, 3(11), pp.939-945.

[17] Kuhn, D. Richard, Raghu N. Kacker, and Yu
Lei. "Measuring and specifying combinatorial
coverage of test input
configurations." Innovations in systems and
software engineering 12.4 (2016): 249-261.

