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ABSTRACT 

Recent advancements in technology has shown significant impact on social life, where computers have 
attracted huge attention due to its importance in socio-economic progress. Due to the growth in various 
computer technologies, software-based application has played pivotal role in the social and economic 
development. However, poor quality of software module may cause industrial loss; hence software quality 
improvement remains an attractive research field. Several techniques have been presented for improving the 
software quality by developing software testing methods. In this field of software testing, combinatorial 
testing is considered as the most promising scheme for improving software testing and quality improvement 
by reducing the number of test cases. This combinatorial testing strategy can help to provide a better 
solution for given software product. In this work, we have focused on software testing using combinatorial 
testing with the help of IPOG approach which is used for test case generation of the 2-way test scenario. 
Later, neural network scheme is incorporated for test case generation which provides most suitable test 
scenario for combinatorial coverage. For given software product, if random testing is performed and its test 
cases are available, then for this software we can easily identify how much combinatorial coverage is 
already performed, and how many new test cases are to be added to those available test cases of random 
testing so that appropriate testing coverage is achieved. A comparative scheme is presented which shows 
that proposed approach gives the best solution for test case generation for software testing. 

Keywords: Combinatorial Testing, Neural Network, IPOG, Software Testing, Test Case Generation, 
combinatorial coverage.  

1. INTRODUCTION  

Demand for computers and the computer-
based applications have gained enormous attraction 
for various applications in the real-world scenario 
to enhance the economic prudent and social 
growth. In addition to this, it is widely exploited in 
research field and applications [1]. As a result of 
this growth, software development is also 
considered as a key component which can affect 
the social and economic development. Hence, a 
huge number of software applications are 
developed every year. However, maintaining the 
software quality remains an unnoticed aspect in 
this field. Software testing methods have been 
adopted widely to cope up with this issue of 
software quality maintenance. Several types of 
software defects are present in software products, 
to handle such defects numerous testing methods 

are also available such as, mutation testing [2], 
metamorphic testing [3], and structural testing [4] 
etc. According to the mutation testing, a tester is 
allowed to revise the available source code with 
limited constraints. This can help the tester to apply 
other effective tests, software weakness/bug 
identification and location identification of a buggy 
section of the code. Metamorphic testing can solve 
the oracle problem in testing based on the property 
of Software under Test (SUT); structural testing 
aims to find faults related to the internal structure 
of SUT. Recently, pair-wise testing is also 
discussed for monitoring the significance of 
software application. This process helps to find the 
bug or software failure conditions by performing 
testing where all possible tests can be carried out 
with the help of one test [5]. Generally, any 
unusual combinatorial interaction causes an issue 
of software failure or bug. The need of software 
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reliability and quality are becoming more essential 
as the dependency of human being on software is 
increasing. To ensure quality and reliability the 
software is needed to be tested on specific 
requirement. Combinatorial testing is one of the 
methods used to perform t-way testing. The need of 
combinatorial has increased because most failures 
are caused by one parameter (single-mode fault) or 
by the interaction of two parameters (double-mode 
fault). Sometimes failures may be caused because 
of interaction between more than two parameters 
(t-way). Kuhn et al. [6] presented an empirical 
study which shows that software failure occurs due 
to incorrect combinations of conditions. Software 
failure conditions are triggered due to single 
interaction but later it was found that this issue can 
be provoked by 3, 4, 5, and 6-way interactions. The 
process of generating these interactions is also 
known as coverage testing which is considered a 
complex task for manual processing, hence, to deal 
with this issue, Combinatorial Testing (CT), also 
called Combinatorial Interaction Testing (CIT) is 
presented for quality assurance. According to 
combinatorial testing, a covering array is 
considered as test suite which performs testing for 
all possible combination to obtain the desired 
combination which can improve the coverage 
performance. This approach helps us to find the 
interactions among the test suite which are 
responsible for the software failure. 

Nowadays, software functionality has become 
very complex, varied execution environments such 
as distributed and networked etc. also causes 
complexity and design issues such as high re-
configurability are also demanded which can be 
utilized for various software platforms by 
executing software in optimized mode. However, 
adoption of the growing software development 
technology may lead to the more complicated 
software or product development, where multiple 
numbers of interactions are present which may 
cause software failure. Due to these issues, 
software testing models suffer from performance 
issues. In contrast to this, combinatorial testing 
offers various advantages to overcome the 
coverage issues. Combinatorial testing follows 
various aspects such as combinatorial testing 
creates multiple test cases to form the covering 
array. This array contains various test sets where 
each row/ set of the parameter can be utilized for a 
specific test. In this, the collection of tests covers 
all t-way combination where,‘t’ denotes a total 
number of parameters available in the combination. 
An explanatory example of 2-way testing for 4 

parameters is depicted in table 1, according to this 
table, column 1 and 2 can generate 9 possible 
combinations, and the number of test cases can be 
reduced to 9 from 81. 

Table 1: 2-way Coverage Example 

  
OS 

 
Browser 

 Access 
Type 

 
Audio 

Mac Firefox Modem Creative 

Linux Netscape Modem Digital 

Mac IE ISDL Digital 

Mac Netscape VPN Maya 

Windows Firefox VPN Digital 

Windows Netscape ISDL Creative 

Windows IE Modem Maya 

Linux Firefox ISDL Maya 

Linux IE VPN Creative 

 
 Based on recent studies, it has been proved that 
combinatorial testing can provide effective 
performance for certain applications by reducing 
the number of test cases for testing purpose. This 
process is known as the specification-based 
technique, where no knowledge of the 
implementation of SUT (Software-Under-Test) is 
required. Moreover, test case generation process 
can be automated for fast processing.  

Selection of optimal interaction of combination 
is a challenging task in this field. Conventional 
testing models uses manual selection model which 
requires more time and cost. These issues can be 
addressed by using any machine learning or 
artificial intelligence scheme by taking the 
advantage of the training process and due to their 
significant nature of prediction model. Hence in 
this work, we focus on development of 
combinatorial testing scheme and further we 
incorporate artificial intelligence based neural 
network model, to predict the most suitable 
interaction which can lead to improved coverage to 
assure the quality.  

In some software development environments, 
once the software is implemented some set of 
testing is performed. Our intention in this paper is 
to study about how much combinatorial coverage is 
achieved by current test cases. Further we want to 
know, how many new test cases are needed to 
added to the current test cases to achieve complete 
combinatorial testing.  The aim of the research is to 
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perform coverage analysis and suggest additional 
test case to perform higher order coverage.  

Main contributions of this work are as follows: 

(a) Implementation of combinatorial testing 
model by considering synthetic database. 

(b) Incorporation of a neural network model for 
suitable interaction prediction for improving 
the coverage.  
 

In order to understand the concepts of 
Combinatorial Testing (CT) and Combinatorial 
Coverage, following definitions are important to 
understand.  

Some Basic Definitions 

Covering array(CA) : A covering array 
CA(N;t,k,v) is an N×k array with entries in 
{1,2,…,v}, for which every N×t sub-array contains 
each t-tuple of {1,2,…,v}t among its rows. 

Example 1: Table 2 represents a covering array 
with N=4, k=5, v=2 and t=2.  

Combinatorial Coverage:  Assuming P test cases 
for t-wise in covering array and Q be the number of 
test sets. The combinatorial coverage (CC) can be 
defined as  

  

In other words, we can define Combinatorial 
Coverage as the percentage of test cases covered 
from covering array by the test set.  

Generally, combinatorial coverage can be 
computed based on any one or both of the two 
methods viz., Variable-value configuration and 
Simple t-way combination coverage 

 Variable-value configuration (VVC): When a set 
of t-Variables is given, VVC is defined as the set of 
t valid values, one for each of the variable. Given 
by 

 

Where Np is the number of t wise test cases 
generated and Tp is the Total number of test cases 
in t-wise coverage. 

Example 2: Table 2 shows test sets for four binary 
variables P, Q, R and S  

Table: 2 Combinatorial Test Case, initial fuzz 
testing Parameters 

P Q R S 
0 1 0 0 
0 0 1 1 
1 0 0 1 
0 1 1 1 
1 1 0 1 

 
For PQ all pair wise combinations tested hence 
VVC is 100%. For QR  also 4 out of 4 
combinations are generated, hence VVC is 100% 

Similarly VVC for PR=75%, PS=75%, QS=75% 
and RS=75%,  

If we consider 3-wise coverage for the same 
matrix then, combinations generated are PQR, 
PQS,  PRS,  QRS, If we compute their Variable-
value configuration (VVC): PQR=62.5%, 
PQS=62.5%, PRS=50%, QRS=62.5%.  

Simple t-way combination coverage: When a test 
set of n variable is given, simple t-way 
combinatorial coverage(S) is defined as the 
proportion of t-way combinations of n variables for 
which all variable-values Configurations are fully 
covered 

 

Where, T is the number of t-ways parameters 
covered completely by test set and Tc is total 
numbers of t-way test parameters. 

Example 3: Table 2 above shows an example of 
four binary variables, P, Q, R and S where each 
row represents a test. Of the six possible 2-way 
variable combinations, PQ, PR, PS, QR, QS, and 
RS only  PQ and QR have all four binary values 
covered, so simple t-way coverage (t=2) for the 
four tests in Figure 1 is 2/6 = 33.3%. There are six 
t-way (t=3) variable combinations, PQR, PQS, 
PRS, and QRS each with eight possible 
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configurations: 000, 001, 010, 011, 100, 101, 110, 
and 111. Out of the four combinations, none has all 
8 configurations covered, so simple t-way (t=3) 
coverage for this test set is 0%. 

 (t + k)-way combination coverage (Ctk): For a 
given test set that provides 100% t-way coverage 
for n variables, (t+k)-way combination coverage is 
the proportion of (t+k)-way combinations of n 
variables for which all variable-values 
configurations are fully covered.  

Let P number of configurations where VVC are 
fully covered and Q be Total number of 
configurations in (t+k)-way combinations then  

Ctk =  

Table:3 Extended Combinatorial Test Cases 
extended from Table 2 

P Q R S 
0 1 0 0 
0 0 1 1 
1 0 0 1 
0 1 1 1 
1 1 0 1 
1 0 0 0 
0 0 1 0 
0 1 1 0 

 
Example 4: Suppose the test sets in Table 2 are 
extended as shown in Table 3 then all four 
combinations of pairs of variables are covered, so 
2-way coverage is 100%. Out of the four 3-way 
combinations PQR, PQS, PRS, QRS only the 
combination QRS has all 8 variable value 
combinations so (2+1)-way = 3-way coverage is 
25%. 

Tuple Density: Sum of t and the fraction of the 
covered (t+1)-tuples out of all possible (t+1)-
tuples  

Example5: As shown in the previous example, the 
test set in Table 3 provides 100% coverage of 2-
way combinations and 25% coverage of 3-way 
combinations, so the tuple density of this test set is 
2.25.  

 (p, t)-completeness: For a given set of n 
variables, (p, t)-completeness is the proportion of 

the C(n, t) combinations that have configuration 
coverage of at least p.  

Example 6: For Table 2 above, there are C(4, 2) = 

6 possible variable combinations and C(4, 2) × 2
2 

= 
24 possible variable-value configurations. From 
these, 19 variable-value configurations are covered 
and the only ones which are missing are PQ=11, 
PR=11, PS=10, QR=01, QR=10. But only two, QS 
and RS, are covered with all 4 value pairs. As per 
the basic definition of simple t-way (t=2) coverage, 
we have only 33% (2/6) coverage, but 83.33% 
(20/24) for the variable-value configuration 
coverage metric. All 2-way combinations have at 
least 75% configuration coverage, so (.75,2)-
completeness for this set of tests is 100%. 
Although the example in table 1 uses variables 
with the same number of values, this is not 
essential for the measurement, and the same 
approach can be used to compute coverage for test 
sets in which parameters have differing numbers of 
values. 

 Rest of the manuscript is organized as 
follows: the section II deals with recent studies in 
the field of the combinatorial testing scheme, 
section III describes proposed combined model for 
combinatorial testing, an experimental analysis is 
presented in section IV and finally concluding 
remarks are presented in section V. 

2. MOTIVATION AND RELATED WORKS  

In this section, we present a brief discussion 
about some recent studies in the field of 
combinatorial testing. Various recent studies show 
that the combinatorial testing is widely adopted in 
various fields such as material designing, 
agriculture, biological applications and software 
testing. Zhang et al. [7] presented a combinatorial 
approach for test generation approach using 
pseudo-Boolean optimization process. For any 
given testing model, implementation and testing for 
each case become uneconomic hence an optimal 
approach is required to stop the automatic test 
cases and retains the maximum coverage for each 
case. This approach of test-case generation aims at 
covering array generation which can cover all t-
way parameter combinations. This article focuses 
on the one-test-at-a-time algorithm for 
combinatorial test case generation. Further, 
uneconomic nature of test case generation is also 
discussed, and approximation ratio is considered as 
0.8 and 0.9. Moreover, a self-adaptive technique is 
also introduced which helps to stop optimal process 
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automatically and generates the optimal number of 
test cases.  

Ziegel et al. [8] discussed the advancements in 
the pharmaceutical industrial field and discussed 
the increasing significant production with the help 
of more experimental study. This work mainly 
focused on increasing the industrial development. 
According to this, combinatorial and higher 
throughput methods are considered as standard 
methods for industrial applications, whereas 
conventional methods are not capable to improve 
the quality of product manufacturing. Kampel et al. 
[9] discussed t-way covering for improving the 
quality of the software. Authors discussed that the 
combination of covering array can be used to 
formulated larger arrays. According to this model, 
input space model is formulated using software 
under test unit and t-way test suits and its 
component.  

Petke et al. [10] studied combinatorial 
interaction testing technique for software testing 
purpose by considering various feature parameters 
of the system. According to some researchers, it 
was concluded that optimization techniques could 
enhance the performance of software testing 
modules. Based on this assumption, simulated 
annealing and greedy approaches have been 
presented for combinatorial testing. However, 
simulated annealing faces computation delay issues 
but provides better and effective solution for 
considered interaction. Recently, use of mobiles 
and applications are growing rapidly where 
software testing plays the role. Conventional 
testing approaches require more time for 
computation, and computation complexity issues 
fail to provide desired performance for testing. To 
deal with these issues, Vilkomir et al. [11] 
developed a combinatorial testing scheme for 
mobile application testing. It includes mobile 
device selection using combinatorial methods. 
Younis et al. [12] also utilized the combinatorial 
testing model which is currently growing in various 
industrial applications due to demand of 
application of product quality testing. In this field 
of combinatorial testing, combinatorial instance 
mismatching or explosion degrades product 
coverage and design testing accuracy. Authors 
have suggested that parallelization can improve the 
testing process by optimizing implementation cost 
using multi-core system architecture. In this field, 
the IPOG algorithm is considered as a promising 
technique for improving the system performance. 

This approach is further improved using multi-core 
computation strategy.  

In product testing model, test case generation is 
considered as an important aspect. In this approach, 
random testing is considered as a promising 
technique and adopted widely in various industrial 
applications. However, the number of test case 
generation causes computation complexity in the 
system and leads to an application coverage. To 
overcome this issue, adaptive random testing is 
proposed as an improvement in the conventional 
random testing which includes fixed-size-
candidate-set adaptive random testing and 
restricted random testing to improve the coverage 
of testing [13]. 

Borazjany et al. [14] introduced a new approach 
for improving the system performance with the 
help of a testing model. This process mainly 
focuses on the input space modeling for 
combinatorial testing improvement. This model is 
carried out based on the assumption as follows: 
input structure modeling and input parameter 
modeling. According to this approach, input 
structure modeling helps to identify the 
relationship among various components and 
parameter identification is performed in that stage. 
Furthermore, unit integration testing is also 
implemented to improve the testing performance 
by increasing the coverage.  

The studies discussed above shows that various 
techniques of combinatorial testing have been 
presented by researchers in this field of testing. 
These testing models are widely adopted in 
industrial and software applications. Increasing 
demand for quality products and software urges for 
better quality software, hence combinatorial testing 
is used to improve the software testing 
performance by increasing the coverage of 
software system. However, computational 
complexity and computation time are the 
challenging parameters for combinatorial testing. 
Moreover, proper test case generation and selection 
is one of the crucial tasks for researchers. 
Therefore, there is a need to cover these issues by 
developing enhanced or artificial intelligence-
based scheme for testing. 

In some software development companies and 
environments, once the software is implemented 
some set of Fuzz testing is performed. Fuzz testing 
uses random values, but if we run 100,000 fuzz 
tests, how much of an improvement is that 
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compared with 50,000 tests?  If we are running tests 
on binary executables and don’t have the source 
code, we cannot measure path coverage in the 
code.  Using combinatorial coverage, we can 
provide a quantitatively defensible answer to the 
question of how two test suites compare.  For 
example, we might find that the 50,000 fuzz tests 
achieve 80% of 3-way coverage and other 
proportions of 4-way etc., but the 100,000 fuzz tests 
have 85% 3-way coverage, so it may not be cost 
effective to do the larger test set.  In [17] similar 
work is implemented for practical recommendation 
for using combinatorial coverage in specifying 
requirements of combinatorial coverage analysis. 

3. PROPOSED MODEL  

Based on literature review study, it can be 
understood that, there is a need to improve the 
combinatorial testing performance which can be 
obtained developing an enhanced artificial 
intelligence technique. In this section, we present a 
new approach to combinatorial testing with the 
help of artificial intelligence scheme. In this field 
of combinatorial testing, a conventional IPOG 
scheme is implemented which can perform multi-
way testing [15]. The IPOG scheme is used 
because of following two-fold design objectives: 
first, IPOG scheme helps to generate random 
strategy generation which can be implemented for 
any software configuration i.e. there should be no 
restriction on the system configuration parameters 
raised by generated strategy. Moreover, this 
assumption improves the performance of 
computational approaches over algebraic 
approaches. In next objective, t-way testing 
demand for more time and space requirements 
when compared with pairwise testing because time 
increasing number of combination leads to 
increased coverage. The general framework of 
IPOG testing approach is formulated using two 
main steps as follows: Let us consider that, a 
system is provided with t or more parameters 
where IPOG technique is implemented resulting in 
the formulation of t-way test for the initial t 
parameters. Later it can be extended up to t way 
test set for t+1- parameters and then it can be 
extended further until t-way test set is built for all 
parameters. This extension of t-way testing 
coverage can be applied by following two steps as 
horizontal growth and vertical growth. According 
to horizontal growth, existing test can be extended 
by adding one value to the existing test set whereas 
vertical growth is introduced by adding and 
producing a new test. Algorithm 1 shows the 

complete procedure of IPOG test generation model. 
This approach considers two main arguments 
which are the strength of coverage and parameter 
set. The number of parameter set is assumed to be 
equal or greater than t.  

Algorithm 1: IPOG-Test  

IPOG-Test (ini, , Parameter set ) 
{ 

1. Initialize test set  to be an empty set. 

2. Sort the parameter in set   in a non-increasing 

order of their domain sizes, and denote them as , 

 and . 

3. Add into the test-set  a test for each 

combination of values of the first  parameters 

4. For (int )  
{ 

5. Let  be the set of all way combinations of 

values involving parameter  and any group of 

 parameters among the first  parameters 

6. // horizontal extension of parameter  Column 
extension 

7. For (each test  in test set ) 
{ 

8.. Choose a value  of  and replace 

 so that  cover the most 

number of combinations of values in   

9. Remove from  the combinations of values 

covered by // 
10. // Vertical extension process, New row will be  
created(Row extension) 

11. for (each combination  in set ) 
{ 

12. if (there exists a test that already covers )  
{ 

13. Remove  from   
}  
14.else  
{ 
15. change an existing test, if possible, or otherwise 
add a new test to cover σ and remove it from π} 
} 
} 

16. Return test set  

The combinations in set π are covered in the 
following two steps: first step is known as 
horizontal growth. As per the algorithm, a value is 
added for the parameter pi (lines 7 - 9) is an 
extension. Added values are selected in a stingy 
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way so that the added value can cover maximum 
number of combinations in set π (line 8). Each time 
a value is added, the set of combinations covered 
due to this addition are removed from set π (line 9). 
Another step is known as vertical growth: This step 
covers the remaining uncovered combinations, one 
at a time, either by changing an existing test or by 
adding a new test. When we change a test to cover 
a combination, only don’t care values can be 
changed. A don’t care value is a value that can be 
replaced by any value without affecting the 
coverage of a test set. If no existing test can be 
changed to cover σ, a new test needs to be added in 
which the parameters involved in σ are assigned 
the same value in σ and the other parameters are 
assigned that don’t care about values. 

After achieving this solution, we discuss about 
the complexity issues of IPOG algorithm. The 

complexity of this depends on the storage of  
which helps to cover each new parameter. Let us 
consider that total number of parameters are 

denoted by  and domain size is denoted by , 

hence the required space to store  can be denoted 

as . The time complexity is 
dominated by horizontal extension. 

Above discussion presents a brief explanation 
about test case generation for testing purpose. Here 
our main aim is to improve the product testing 
coverage with the help of test suits. Generally, 
conventional techniques use manual inspection of 
product testing which requires more time and 
manual effort which makes it cost inefficient for 
real-time implementations. In this approach, 
prediction of test suit is a crucial task for 
researchers. However, machine learning techniques 
have been used widely in various researches. 
Corma et al. [16] used neural network scheme for 
combinatorial testing using prediction method. 
Similarly, in this work, we use neural network-
based approach to select the best suitable test case 
which can improve the overall coverage of the 
testing application. A brief discussion about neural 
network and its use in combinatorial testing is 
presented in next subsection. 

3.1 Neural Network Approach for 
Combinatorial Testing 

Artificial neural network is one of the machine-
learning approaches and it is adopted in various 
real-time applications. In this work, we aim on the 
prediction of best test suit which can improve the 

coverage of the system. Artificial neural network 
contains various components such as 
interconnected processing unit which is also known 
as neuron. In other words, neural network is 
formulated with the help of several neurons which 
can be organized in different topology or neural 
architecture. A basic unit of neural network 
composition is as follows: 

 This network model contains various connection 
in the form of set which are also known as inputs 

i.e. . 

 Each input data is further characterized and 

represented with the help of weight  which 
shows relation between current layer and 
previous layer 

 A propagation rule is also defined i.e. back 
propagation of forward-propagation for 
computation purpose.  

 Finally, an activation function is also defined 

which helps to determine the output term as   

 

Figure 1: Neural Network  

Neural network technique provides faster 
computation and achieves the answer for any given 
problem with the reduced delay. According to 
neural network process, any problem can be 
resolved by following two main steps which are: 
training/learning and testing. During training 
process, neural network is provided some samples 
of the data which belongs to the input of the 
problem. Further, mathematical correlation is 
applied between samples for further analysis. In 
neural network applications, multilayer perceptron 
is considered as most promising technique which is 
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generally implemented for prediction purpose as 
depicted in figure 1. According to multilayer 
perceptron, all neurons are grouped in the form of 
layers. Here, previous layer neuron is considered to 
input two the next layer. In this process, neurons of 
input layer contain all the features of input problem 
hence based on these parameters input and output 
layers of the network are determined which also 
known as single class classifier and multi-class 
classifier.  

The proposed approach comprises of two 
approaches, test set generation and neural network 
prediction. In order to present the complete 
scenario, let us consider different variables and 
their values as presented in Table 4.  

Table 4: Variables & Notations, Case study of 
Configuration testing 

S. 
No. 

Considered 
Variable 

Variable Parameters 

1 Database , ,  

2 Processor ,  

3 Operating 
system 

 

4 Browser  

Based on the variables, total combinations are 

46 which are as follows: { },{ }, 

{ }, { }, { }, { }, 

{ }, { }, { }, { }, 

{ }, { } etc.  In the next phase, 
neural network model is constructed which contains 
input, hidden and output layers. Input layers take 
variables as input values, hidden layers are equal to 
the number of attributes and finally, predicted 
output is obtained from output layer.  Hidden layers 
are connected through computing nodes. Every 
computing node in the hidden layer and succeeding 
hidden layer connection can provide the 
connectivity between the processing nodes. This 
process is repeated until the output layer is 
obtained. A pictorial representation is given in 
figure 2.  

In order to obtain the desired performance, 
proposed approach is followed as mentioned in 
algorithm 2.  

 

 

Figure 2: Proposed Neural Network Modeling 

 

 
Algorithm 2: Test Case Generation and Neural
Network Prediction  
init(TestGen(),NNP()) 
{ 
1. Initialize the test case parameters as given in

table 4 
2. Formulate a vector of similar size as given test

case parameters 
3. Number of hidden layer selection  
4. Check whether hidden layer is also the first

layer of the network 
5. Pair generation using IPOG, considering that all

elements are present in the hidden layer (for
training database) 

6. Test case vector formulation for further process 
7. If hidden layer is not the first layer of the

network 
{ 
8. Find current layer number  
9. Select last element of the row as stored in the

vector matrix 
10. Data value selection from hidden layers; at each

layer 
{  
11. Pair formulation using hidden layer value

obtained from the matrix 
12. Perform filtering the data by comparing with the

previous hidden layer. 
13.  Update vector in the matrix  
14. Predicted vector with the help of hidden layers 
15. Add the additional predicted output  
16. Coverage analysis 
 }    
}  
} 
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With the help of this complete process, 
following test cases will be generated which can be 
used for neural network learning. These test 
vectors are presented Table 5.  

Table 5: Test Vectors for Case study of Configuration 
testing 

 
Test 

vector 

Vector elements 

Vector 1 Vector 2 Vector 3 Vector 4

TV1   
TV2   
TV3   
TV4     
TV5   
TV6   
TV7   
TV8     
TV9   

TV10   
TV11   
TV12   

 
Initially, we have implemented t-way coverage 

testing on the considered vector where total 3 
possible combinations are found missing which are 
as follows: (a) 3,1,1,1 (b) 2,1,4,1 and (c) 3,1,4,1. 
Since our experiment is carried out for two way 
testing hence total missing combinations are given 
in table 6.  

Table 6: Missing Combinations 

Combination ID Combination Variable 

1 A, B 

2 A, C 

3 A, C 

4 A, C 

5 A, D 

6 B, C 

7 C, D 

According to the analysis missing combination 
3,1,4,1 has maximum two-way missing 
combinations which are as given in table 7 where 
with all three missing combinations; total two-way 
coverage is obtained as 0.84091.  

 

Table 7: Missing Combination Values 

Combination Variable Combination Value

A, B 3,1 

A, C 2,4 

A, C 3,1 

A, C 3,4 

A, D 3,1 

B, C 1,4 

C, D 4,1 

In order to improve the coverage, we try to 
predict most suitable test case for the computation. 
In this process, first of all we consider 3,1,4,1 as 
new test vector and coverage is obtained as 0.95455 
which is later improved by adding 2,1,4,1 as new 
test vector and the total coverage is obtained is 
0.97727. 

4. EXPERIMENTAL STUDY  

This section provides a complete experimental 
study of proposed neural network based 
combinatorial testing model. Performance of 
proposed approach is measured in terms of 
coverage, domain size and total number of 
parameters. Complete experimental study is carried 
out using windows 7 operating system with 1.8 
GHz central processing unit with 8GB RAM 
memory.  

According to the experimental study, the 
initial parameter is fixed to 15 with domain size 4 
with a varied from 3 to 6. In this process, 
experimental results are presented in table 5 where 
test size ratio, time ratio, size and time parameters 
are considered for analysis. Proposed model is 
compared with the conventional IPOG algorithm as 
depicted in table. 

Table 8: Comparative analysis of IPOG approach and 
Neural-Network based approach 

 IPOG 
Approach 

Neural-
Network 

Based-IPOG 

Time and 
size ratio 
analysis 

t-way Time Size Time Size Time 
Ratio

Size 
Ratio

3 0.561 181 0.16 204 0.29 1.12

4 16.587 924 0.77 1056 0.046 1.14

5 230.22 4519 11.10 6785 0.048 1.50

6 2152.11 20384 310.26 32543 0.144 1.59
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Table 8 shows comparative analysis of IPOG 

and proposed Neural Network based IPOG 
approach based on the time and size ratio analysis. 
This analysis is carried out for 3 to 6 way testing. 
Proposed Neural Network based -IPOG shows 
improved performance when compared with IPOG. 
As discussed in previous section, we have 
considered an experiment where t-way study is 
presented. Based on this analysis, total number of 
combination graphical representation is given in 
figure 3.  

 

Figure 3: Combinations and Coverage 

 As shown in Figure 3, combinations and 
coverage are measured for varied number of 
testing. This analysis shows that 50% combinations 
are capable to obtain the 100% coverage using 
two-way testing. Similarly, 3-way testing requires 
35 combinations for 60% coverage.  

 

Figure.4: percentage of coverage versus t-way testing up 
to 6-way CT  

Similarly, figure 4 presents a comparative 
analysis by considering varied number of testing. 
In this analysis, t-ways are varied from 2-way 
testing to 6-way testing and corresponding to this 
percentage coverage is computed. Study shows that 
2-way testing obtains more testing coverage when 
compared with other testing. Figure 5 represents 
the coverage heat map. 

 

Figure 5: Coverage Heat map 

5. CONCLUSION 

In this paper we have presented a novel 
approach for two-way testing using neural network 
model to improve the testing coverage. According 
to this work, first of all IPOG test case generation 
strategy is implemented for 2-way test case and 
total coverage is measured. In subsequent phase, 
neural network model is implemented, where 
hidden layers contain input parameters and output 
is obtained in terms of best missing test case which 
can enhance the overall coverage of the system. 
Based on this approach, an extensive experimental 
study is presented for 2-way testing and further 
IPOG experiments are also depicted for 6-way 
testing. From this study it is concluded that 
proposed approach can be used for improving the 
coverage for two-way testing.  

 In this research work we have assumed 
that some previous fuzz testing has executed. On 
the test data of fuzz testing, we are finding 
combinatorial coverage for pair-wise testing. If the 
fuzz testing test case is not properly selected then 
this work may not provide the optimum results. 
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