
Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6853

ANDROID MALWARE CLASSIFICATION BASE ON
APPLICATION CATEGORY USING STATIC CODE

ANALYSIS

AZMI AMINORDIN1, FAIZAL M. A. 2, ROBIAH YUSOF2

1FSKM Universiti Teknologi Mara Melaka, Jalan Lendu, 78000 Alor Gajah, Melaka, Malaysia.

2Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.

ABSTRACT

The great shipment of Android mobile devices throughout the world has surged the application develop-
ment. Indirectly, this scenario had invited the malware creator to be in-line with the technology evolution.
One of the threats is the leakage of privacy data and it is a serious subject. To overcome this, the Android
application usually being examine through static or dynamic analysis. In static analysis approach, research-
er commonly considered combination static features to identify the benign and malicious application. This
paper presents a proof of concept on classifying Android benign and malicious apps by its application cate-
gory. At the same time, this paper proposes a new framework for malicious detection focusing on the leak-
age of user privacy using minimum number of the request permissions and API calls features. Several ma-
chine learning classifiers with several training and testing percentage applied in this study to compare the
accuracy. The result show that, applications in same category reported more accurate performance in iden-
tify malicious apps compared to non-category based. By applying features ranking and information gain
features selection, Random forest classifier with 10 folds cross validation for both “Book and Reference”
and “Personalization” category achieved higher true positive rate also lower false positive rate.

Keywords: Android, Category-Based, Static, Machine Learning

1. INTRODUCTION

The fast growth of mobile devices have been
surpassing personal desktop version computer in
multiple elements such as hardware shipment,
network traffic, number of users and usage time
since 2014. Android and iOS by Apple are two
biggest mobile platform monopolies the mobile
phone marketplace. Among these two platforms,
Android is the most demanding due to its capa-
bilities to serves better combination of features
and price than others. The varieties of phone
specification from several manufacturers also
push upwards the popularity of Android operat-
ing system (OS). This favorite operating system
in conquered more 80% from the global
smartphone starting from 2015 until now [1].
Android is an open source development envi-
ronment that enables the developers to upload
and deploy their apps through apps center. The
Android users can enjoy millions of the latest
apps, games, music, TV, books and many more
by downloading it from Android apps center
called Google Play Store. In the same time,
malware targeting Android OS has increased

dramatically. Malware authors grabbed the op-
portunity due to that open environment to devel-
op malicious app that can abuse the platform fea-
tures [2]. There are more sophisticated malware
families appeared since the discovery of the first
Android malware in August 2008. According to
[3], more than 2.5 million new malware samples
at third quarter of 2017.

To overcome the above issues, three de-
tection approaches in order detect malware have
been introduced namely static, dynamic and hy-
brid technique by previous researchers. Static
analysis is a technique based on the source code
of the APK and occurs before the Android appli-
cation is installed. Hence, the malwares cannot
modify its behavior during the static analysis. In
contrast, dynamic analysis is the testing and
evaluation of the Android program during the re-
al time of execution. Finally, the last approach
will use the combination of static and dynamic
features to seek for all possible code and run-
time flaws. To identify the presence of malware,
the process feature selection is vital because the
raw features may lead to a wrong result [4]. Con-

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6854

sidering too many features can causes the com-
putational overhead and consume a lot of time
during the classification of applications [5]–[8].
Thus, this research only focuses on two static
features: permissions, API calls and one metada-
ta feature which is app category.

The main objective of this paper is to
proof that classifying malicious apps using their
metadata such as app category defined by
Google Play Store is more accurate compared to
non-category based. We test our dataset with In-
formation Gain (IG) in feature selection phase.
The study shows that our framework capable to
classify Android benign and malware apps with
lesser features use. We then run the classification
using Naïve Bayes, Support Vector Machine
(SVM), Decision Tree-J48 and Random Forest
algorithm via Weka program. In overall, we
found that 10 fold cross validation with Random
Forest classifier presented the best accuracy for
malware detection based on app category. Thus,
this paper also present a propose framework for
identifying malicious app based on the app cate-
gory.

The rest of the paper is organized as fol-
lows: We discuss the related works in Section 2.
Section 3 describes the proposed method. Sec-
tion 4 contains experimental result and discus-
sion before end-up with conclusion and future
works in Section 5.

2. LITERATURE REVIEW

Android is open source software stack
architecture and created for wide multitude de-
vices [9]. Android applications are predominant-
ly written in Java and run within respective in-
stances of the Dalvik virtual machine. The
complete and tested application were stored in
official pre-installed distribution channel to be
serve to the user either free of charge or at a cer-
tain cost [10]. There are numbers of alternative
stores that can direct user for installation such as
GetJar1, SlideMe2 and Amazon Appstore3 for
Android. The existence of third party medium
gives an opportunity to the malware creators to
be aligned in the market also poses more security
challenges [11].

1 https://www.getjar.com/
2 http://slideme.org/
3 https://www.amazon.com/mobile-apps/b

In order to cleanse malware form the of-
ficial apps store, Google built in-house anti-virus
called Google Bouncer in 2012. This mechanism
able to remove 40% of anomalies that may po-
tential malware before the apps can be stored in
the repository[12]. Despite the apps guard pro-
vided by Google, Bouncer can be evaded by
malware author by delaying the attack, where
malicious payload is injected in the benign ap-
pearing app at the next updates patch [13].

2.1 Android Apps Analysis Techniques

Malware detection and response system
is to distinguish the vicinity of versatile malware
in application which, if found could be cleaned,
quarantined or deleted. Common techniques used
for mobile malware detection can be roughly
categorized into two approaches, whether using
static or dynamic analysis. Android malware can
also be analyzed using the combination of static
and dynamic analysis called hybrid analysis
[14]–[17].

The basic static analysis examines mal-
ware by viewing the actual code or instructions.
This approach also called static code analy-
sis/white box testing/source code review, use for
detecting Android Malware was inspired from
static program analysis and done by examining
the code without executing the programs. Several
methods have been propose that statically inspect
application and dissemble their code [18]. This
technique can easily automate, flexible, proactive
and fast [19]. A significant threat pose to the se-
curity of Android applications is by malicious
leaks of sensitive information [20]. Modified
smartphone applications can steal users’ private
information and send it out without the user noti-
fication [21].

Androguard [14], is completely open
source and the system decompiles the applica-
tions with applied signature-based malware de-
tection. Stowaway [22] used static analysis on
system APIs and their relation towards permis-
sion to look into privilege leakage. [20] applied
static information flow analysis based on APIs
for possible source and sink of private data. Au-
tomatic analyzer for detecting privacy leaks in
Android applications presented by [23]. The au-
thors call the framework as Scandal that took
Dalvik VM byte code as and input to detect pri-
vacy leaks from source to sink. They used three
types of private information from source (API
calls that return private information):- location

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6855

information, Phone identifier (phone number,
IMEI, IMSI and ICC-ID) and Eavesdropping
(audio and video). For the sink (API calls that
can transfer to the network, file or SMS), the au-
thors considered: Network/File and SMS. In
2013, [9] done an experiments for detecting An-
droid malware based on sensitive APIs. The au-
thors collect 20 Android apps, but use only one
app in their experiment. About 58 sensitive APIs
defined by the authors focused on data leakage.

In contrast, dynamic analysis (also
known as behavioral-based analysis) executes
within a sandbox [24] and does not inspect the
source code. TaintDroid by [25] was one of the
earlier system using dynamic analysis system.
Further, Droidbox (an open source project utiliz-
ing Google’s Android Virtual Device to log An-
droid application behavior) is a complemented
from TaintDroid where it is an effective tool to
analyze Android applications, however, its lack
of support to track native API calls. AppsPlay-
ground[26], is a framework for automated secu-
rity analysis dynamically. It used multiple taint-
tracking and system call at kernel level in multi-
ple detections. Another framework called An-
dromaly[27], perform a host-based malware de-
tection. Several machine learning classifiers
applied on selected features for two apps catego-
ries. Different best accuracy achieved by the
classifiers.

2.2 Classification using Machine Learning

Machine learning was used since past
decade to capable to generalizing the unknown
data [28]-[29]. It is promising approach for de-
tecting malware [30][31]. Researchers such as
[32]–[38] make Random Forest in their research
in order to detect Android malware. Further-
more, Naïve Bayes algorithm also been used in
several malware detection and feature selection
research. Naïve Bayes also return a good result
on several study by [32], [39]–[41]. Commonly,
researchers will use 3-5 different machine learn-
ing in their study to look at the best accuracy and
lowest false alarm or false negative rate. The
common machine learning uses are decision tree
J48, k-nearest neighbor and logistic regression.

Machine learning Software behavior
based malware detection using SVM algorithm
has been done by [42]. The authors proposed a
framework (AntiMalDroid) that dynamically en-
hance malware characteristic into the database.

Lastly, study on dangerous permissions level as
static feature and function call as dynamic fea-
ture done by [43]. His work focused on the leak-
age of user’s sensitive data.

2.3 Malware Detection Based on Application
Category

Work by [44] was the first work to classify An-
droid applications using application type. They
applied the several classifiers on machine learn-
ing techniques to differentiate between Tools and
Games application type. The authors stressed out
that, the successful differentiation between cate-
gories can provide positive indication about the
ability to learn and model Android benign appli-
cations files and potentially detect malware files.
The study used 2850 apk files form both APPS
and GAMES Apps. The authors listed out top 20
ranking of importance features for classification
that most likely used by GAMES apps. In [45],
authors used Naïve Bayes algorithm to differen-
tiate being and malicious apps. The authors use
sensitive API calls gathered by [14] and permis-
sions listed in AndroidManifest.xml files. A part
of the collected API calls was not standard as
listed by Android developer page. Broadcast re-
ceiver added by [46] as feature to analyze mal-
ware statically. The authors compared two
groups of categories apps with non-categories
apps. Number of selected features determined for
each categories are different for each categories.
Up to 2500 selected features used in their exper-
iments and this scenario give impact on the di-
mensional of variable space in datasets.

2.4 Implications

In this research, we will use app category as one
of the static feature in order to differentiate the
good and malicious apps. We will run the exper-
iment with more than one machine learning to
get the highest accuracy. We will also explore
several groups of training and testing set with the
identified machine algorithm.

3 METHODOLOGY

Figure 2 below shows the diagram of the pro-
posed framework. It begin with the collection of
benign and malware apps. All the benign apps
collected from Google play store and have been
checked using VirusTotal to ensure that they are
probably malware free.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6856

Figure 2: Proposed Framework

All apps are parsed using reverse engi-
neering process where several tools are used. For
this study, we only chose extract prominent static
features (permissions and API calls) and one
metadata feature (app category) to be evaluates.

We apply Information Gain feature se-
lection approaches to reduce computational cost
after generating the binary vectors. We use mul-
tiple machine learning algorithms, including Na-
ïve Bayes, Support Vector Machine (SVM) with
Sequential Minimal Optimization (SMO), Deci-
sion Tree (J48) and Random Forest for classifi-
cation.

3.1 Data Collection

Total of 8177 Android apps from Google Play
Store (benign) and AndroZoo [47] (malware)
with 10 different apps categories are collected.
Book and Reference (“B&R”) and Personaliza-
tion (“Pers”) dataset are subsets from the total
dataset (“NoCate”). The number of apps used for
this study is as shown in Table 1.

Table 1: Number of Apps in Each Dataset

Category Benign Malware Total
Without category 4764 3413 8177
Book and Reference 528 455 983
Personalization 531 566 1097

 All benign apps are scanned using VirusTo-
tal to verify that the collected samples did not
contain malicious code. The analysis by Vi-

rusTotal returns the total number of engines pre-
viously detected as malicious and malware. In
this paper, we did not consider as benign sample
even if only one antivirus engine detect the sam-
ple as malware or adware.

3.2 Reverse Engineering

In order to reach to the Android APK source
codes, one need to reverse engineering the “.apk”
file. Firstly, ApkTool4 is used to analyze close
Android application binaries. AndroidMan-
ifest.xml and classes.dex are two important files
produces by this tool. Instead of using the batch
script to retrieve permissions in AndriodMan-
ifest.xml, we mine the requested permission us-
ing Asset Packing Tools (aapt). To parse the .dex
file, we use dex2jar5 to convert APK files into jar
files, and then JD-GUI6 Java de-compiler used to
obtain the Java source codes.

3.3 Feature Extractions and Refinements

Category considered as one of the metadata fea-
tures in malware analysis. In this paper, we de-
pending on the category provided by Google
play store. This study only focuses on two cate-
gories namely “Book and Reference” (B&R) and
“Personalization” (Pers).

4 http://ibotpeaches.github.io/Apktool/
5 https://github.com/pxb1988/dex2jar
6 http://java.decompiler.free.fr/?q=jdgui

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6857

Figure 3: Example of Category in Google Play Store.

Figure 3 above is the example of category pro-
vided by Android app center. The other two stat-
ic features involved in this study explained in the
next section.

3.3.2 Permissions

One of the securities to protect users and system
provided by Android is permission. Android re-
quires apps to declare the permissions they need
before they can use certain features and data. A
common set of permissions is used for a specific
category. For this study, the specific permissions
requested by an app in a category are compared.
App that request over-privileged or uncommon
permission compared to the common set of per-
mission on that same category will indicates as
malicious intention.

There are four kinds of protection level
in Android namely: normal, dangerous, signature
and signatureOrSystem. We only extract all per-
missions under the “Normal” and “Dangerous”
protection level. Normal level is lower-risk per-
missions that give requesting app access with
minimal risk to other app. The system will auto-
matically grant this type of permission without
asking for the user’s explicit approval. Danger-
ous level is the high-risk permission that able to
access user private data or control over the de-
vice. This indirectly can negatively impact the
user. Finally, we only focusing on the privacy
leakage related requested permissions for this
study.

3.3.3 API Calls

An Android API (Application Program Interface)
provides an application with a library which is
includes public, private and hidden classes and
method. It documented in Android SDK and is a
set of functions provided to control main action
of Android OS. There are thousands of APIs in
Android system. Malicious app usually makes
use of sensitive API to enable lunch malicious
activities. Same as permission, this study will

compare the common set of benign APIs with
the requested APIs by the apps. We extract only
the sensitive API calls that related to user priva-
cy leakage. For example, getCellLocation meth-
od is used to get the location of the device. This
API requires ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION permission to
proceed.

3.4 Binary Feature Vector

Binary feature vector is needed whenever the bid
size of dataset was developed. Each app in the
sample was represented as a single instance with
a binary vector of features and a class label indi-
cates whether the app is benign or malicious. If
the feature is present in the app it is represented
by 1, if it is not present in the app, it is represent-
ed by 0.

3.5 Features Selection and Features Ranking

Information gain feature selection technique is
employed to select the most relevant features and
to train the different classifiers. This method is
also known as mutual information method. Not
all features are equally important in differentiat-
ing the benign and malicious apps. Features are
then selected based on rank to reduce the cost of
running the classification algorithm on large
scale dataset. Only 62 permissions and 20 APIs
related to privacy leakage were selected to be run
on the several machine learning classifiers.

3.6 Classifier

We evaluate the feature selection procedure us-
ing different classification models. For this pur-
pose, we use four classifiers: Naive Bayes, SVM
with SMO, J48 Decision Tree and Random For-
est. In our experiments, we use several training
and testing dataset: 70-30, 80-20, 90-10 and 10
fold cross validation. Thus, the most accurate
training and testing dataset distribution also the
best classifier can be found.

3.7 Performance Evaluation

Relevant confusion matrices were created from
the response of classifiers.
True Positive (TP) – number of correctly identi-
fied as malicious applications.

False Positive (FP) – number of incorrectly
identified as malicious applications.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6858

True Negative (TN) – number of correctly iden-
tified as benign applications.

False Negative (FN) – number of incorrectly
identified as benign applications.

The calculation of True Positive Rate (TPR),
False Positive Rate (FPR) and Accuracy are as
follows:

𝑇𝑃𝑅 ൌ

ା
 (1)

𝐹𝑃𝑅 ൌ

ା
 (2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
 ା

 ା ା ା
 (3)

The performances of machine learning tech-
niques were evaluated using the TPR, FTR and
the accuracy which are defined above.

4. RESULT

To ensure selection of the most relevant applica-
tion features for the classification stage, we only
considered all features that have score value in
feature ranking. Only 62 permissions and 20 sen-
sitive APIs are selected through the IG feature
selection. To this experiment, we have used
Waikato Environment for Knowledge Analysis
(WEKA).

WEKA is a machine learning workbench
that contains numbers of algorithms. This tool
has several features such as classification, clus-
tering and attribute selection. The WEKA system
able to work with a variety data set over the past
year [48]. Result for TPR and FPR using four
differences machine learning algorithms is
shown in Table 2 below.

Table 2: Result for TPR and FTR

Random forest classifier with 10 folds
cross validation show the highest TPR and the
lowest FPR for NoCate and Pers. The category-
based shows better TPRs and FPRs compared to
NoCate except for B&R at 80% training and
20% testing set using decision tree J48 algo-

rithm. Indirectly, this situation gives reflects on
accuracy rate.

Figure 3 to 6 shows the accuracy of the
algorithm by these three classes with different
type of machine learning also different training
and testing set.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6859

Figure 4: Accuracy Using Naïve Bayes Classifier

Figure 4 above shows that apps from Pers cate-
gory achieved highest accuracy using all kind of
training and testing dataset. The lowest accuracy

when applying Naïve Bayes algorithm was
achieved by NoCate apps.

Figure 5: Accuracy Using SVM Classifier

Pers category also reported the highest accuracy
when support vector machine classifier was ap-
plied at three differences split training and test-
ing dataset. On the hand, B&R scored highest

accuracy when 90-10 split dataset applied. The
pattern can be seen in Figure 5. The lowest accu-
racy recorded at all split training and testing da-
taset for Nocate.

Figure 6: Accuracy Using J48 DT Classifier

Slightly different result shows when the dataset
run on J48 decision tree algorithm where NoCate
took a second highest of accuracy at the 80%-
20% split dataset. The rest accuracy result at the
other split training and testing dataset are same
as the previous two results.

Lastly, Figure 7 below report mixed
achievement by Pers and B&R category. Split-
ting dataset at 70-30 and 90-10 shows B&R per-
formed the best accuracy while Pers category
outperformed at 80-20 and 10 folds cross valida-
tion splitting dataset.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6860

Figure 7: Accuracy Using Random Forest Classifier

Books and Reference achieved highest accuracy
compared to Personalization category. The result
shows otherwise at 80-20 and 10 folds but re-
main same for non-category.

All classifier reported higher accuracy for cate-
gory-based compared to non-category based ex-
cept for J48 decision tree on 80% training and
20% testing dataset. The result shows that the
detection of malicious apps is more effective
when the apps are grouped into their class.

Table 3: Result comparison
Researchers ML # fea-

tures
Accuracy

[44] Boosted
Bayesian
Network

800 0.922

[45] Naïve
Bayes

NA 0.977

[46] SVM 2775 0.982

This study Random
Forest

82 0.951

Table 3 show the comparison of result with pre-
vious researchers. This study only uses smallest
features variable numbers compared to the other
researchers. Even though our framework did not
achieve the best accuracy, but we will add a few
more feature variables to get better result.

5. CONCLUSION

In this paper, we have proved and proposed a
framework for category-based malware detection
on Android applications focusing on the leakage
of privacy information. The study shows that,

apps in their category achieved higher accuracy
compared to non-category. Random forest classi-
fier with 10 fold cross validation reported the
highest accuracy compared to the three other
classifiers. Compared to previous research relat-
ed to category-based, our framework able to
achieved high accuracy with only small number
of features.

This study only focuses and limits to An-
droid apps from API level 16 to 24 due to the da-
taset provided by AndroZoo. We will further the
study into more category and perhaps will look
into different main category such as games. Fur-
thermore, this study can be enhancing by includ-
ing more threat pattern by the malware.

For future works, we will consider three as-
pects. First, we will consider adding other static
feature such as intent, broadcast receiver or
strings in training the classifier and perhaps may
increase the detection accuracy and reduce the
FPR. Second, we will consider to integrating
with dynamic detection technique by profiling
features for each category. Lastly, miscategoriza-
tion by android in their play store has as reported
by [49], [50]. Thus, we plan to re-categories the
apps first before precede with the malware detec-
tion for better accuracy.

ACKNOWLEDGEMENTS

This research paper and work was supported un-
der Universiti Teknikal Malaysia Melaka
(UTeM) research grant GLUAR/CSM/2016/
FTMK-CACT/I0001 3. The authors would like
to thank you to Universiti Teknikal Malaysia
Melaka, Cybersecurity Malaysia, Universiti
Teknologi Mara (UiTM), and Kementerian Pela-
jaran Malaysia (Higher Education Department)
for the scholarship and facilities in supporting
this research.

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6861

REFERENCES

[1] Statista, “Share of Android OS of global

smartphone shipments from 1st quarter 2011
to 1st quarter 2018*,” 2018. [Online].
Available:
https://www.statista.com/statistics/236027/gl
obal-smartphone-os-market-share-of-
android/. [Accessed: 05-May-2018].

[2] X. Wei, L. Gomez, I. Neamtiu, and M.
Faloutsos, “Permission Evolution in the
Android Ecosystem,” in ACSAC ’12
Proceedings of the 28th Annual Computer
Security Applications Conference, 2012, no.
April 2009, pp. 31–40.

[3] McAfee, “McAfee Mobile Threat Report Q1
2018,” 2018.

[4] L. Wen and H. Yu, “An Android malware
detection system based on machine learning,”
vol. 020136, 2017.

[5] S. Y. Yerima, S. Sezer, and G. McWilliams,
“Analysis of Bayesian classification-based
approaches for Android malware detection,”
in IET Information Security, 2014, vol. 8, no.
1, pp. 25–36.

[6] S. Ranveer and S. Hiray, “Comparative
Analysis of Feature Extraction Methods of
Malware Detection,” Int. J. Comput. Appl.,
vol. 120, no. 5, pp. 1–7, 2015.

[7] F. Tchakounte, “Permission-based malware
detection mechanisms on Android: analysis
and perspectives,” J. Comput. Sci. Softw.
Appl., vol. 1, no. 2, pp. 63–77, 2014.

[8] C.-T. Lin, “Feature Selection and Extraction
for Malware Classification,” J. Inf. Sci. Eng.,
vol. 31, pp. 965–992, 2015.

[9] M. Spreitzenbarth, T. Schreck, F. Echtler, D.
Arp, and J. Hoffmann, “Mobile-Sandbox:
combining static and dynamic analysis with
machine-learning techniques,” Int. J. Inf.
Secur., vol. 14, no. 2, pp. 141–153, 2015.

[10] Google, “Play Console Help - Set up prices &
app distribution.” [Online]. Available:
https://support.google.com/googleplay/androi
d-developer/answer/6334373?hl=en#.
[Accessed: 21-Mar-2018].

[11] M. Omar and M. Dawson, “Research in
progress - Defending android smartphones
from malware attacks,” Int. Conf. Adv.
Comput. Commun. Technol. ACCT, pp. 288–
292, 2013.

[12] D. Kaplan, “Google employs Bouncer to
cleanse Android malware,”
Scmagazine.com.au, 2012. [Online].
Available:

http://www.itnews.com.au/news/google-
employs-bouncer-to-cleanse-android-
malware-289242. [Accessed: 13-Jul-2016].

[13] Oliva Hou, “Trend Mirco: A Look at Google
Bouncer,” 2012. [Online]. Available:
http://blog.trendmicro.com/trendlabs-
security-intelligence/a-look-at-google-
bouncer/. [Accessed: 09-Jan-2016].

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner, “Android permissions
demystified,” in Proceedings of the 18th
ACM conference on Computer and
communications security - CCS ’11, 2011, p.
627.

[15] W. Enck, M. Ongtang, and P. McDaniel, “On
lightweight mobile phone application
certification,” in Proceedings of the 16th
ACM conference on Computer and
communications security - CCS ’09, 2009,
pp. 235–245.

[16] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X.
Jiang, “RiskRanker : Scalable and Accurate
Zero-day Android Malware Detection
Categories and Subject Descriptors,” in
Proceedings of the 10th International
Conference on Mobile Systems, Applications,
and Services, 2011, pp. 281–293.

[17] W. Enck, D. Octeau, P. McDaniel, and S.
Chaudhuri, “A Study of Android Application
Security.,” USENIX Secur. …, vol. 39, no.
August, pp. 21–21, 2011.

[18] P. M. Kate and S. V Dhavale, “Two Phase
Static Analysis Technique for Android
Malware Detection,” in Proceedings of the
Third International Symposium on Women in
Computing and Informatics WIC ’15, 2015,
pp. 650–655.

[19] M. I. Gordon, D. Kim, J. Perkins, L. Gilham,
N. Nguyen, and M. Rinard, “Information-
Flow Analysis of Android Applications in
DroidSafe,” in 2015 Network and Distributed
System Security (NDSS) Symposium, 2015,
no. February, pp. 8–11.

[20] J. Kim, Y. Yoon, K. Yi, and J. Shin,
“Scandal: Static Analyzer for Detecting
Privacy Leaks in Android Applications,” in
IEEE Workshop on Mobile Security
Technologies (MoST), 2012.

[21] A. Desnos and G. Gueguen, “Android: From
reversing to decompilation,” in Proceeding of
Black Hat, Abu Dhabi, 2011, pp. 1–24.

[22] C. Mann and A. Starostin, “A framework for
static detection of privacy leaks in android
applications,” in Proceedings of the 27th
Annual ACM Symposium on Applied

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6862

Computing - SAC ’12, 2012, p. 1457.
[23] Y. Xiaohui, S. Yubo, and C. Fei, “Android ’

S Sensitive Data Leakage Detection Based on
Api Monitoring,” in MINES ’13 Proceedings
of the 2013 Fifth International Conference on
Multimedia Information Networking and
Security, 2013, pp. 907–910.

[24] W. Enck et al., “TaintDroid: An Information-
Flow Tracking System for Realtime Privacy
Monitoring on Smartphones,” Proc. 9th
USENIX Symp. Oper. Syst. Des. Implement.,
vol. 49, pp. 1–6, 2010.

[25] V. Rastogi, Y. Chen, and W. Enck,
“AppsPlayground : Automatic Security
Analysis of Smartphone Applications,” in
CODASPY ’13 (3rd ACM conference on Data
and Application Security and Privac), 2013,
pp. 209–220.

[26] A. Shabtai, U. Kanonov, Y. Elovici, C.
Glezer, and Y. Weiss, “‘ Andromaly ’: a
behavioral malware detection framework for
android devices,” J. Intell. Inf. Syst., vol. 38,
pp. 161–190, 2012.

[27] M. Zhao, F. Ge, T. Zhang, and Z. Yuan,
“AntiMalDroid: An Efficient SVM-Based
Malware Detection Framework for Android,”
Int. Conf. Inf. Comput. Appl. ICICA 2011.
Commun. Comput. Inf. Sci., vol. 243, pp.
158–166, 2011.

[28] B. Amos, H. Turner, and J. White, “Applying
machine learning classifiers to dynamic
android malware detection at scale,” in 2013
9th International Wireless Communications
and Mobile Computing Conference, IWCMC
2013, 2013, pp. 1666–1671.

[29] P. Domingos, “A few useful things to know
about machine learning,” Commun. ACM,
vol. 55, no. 10, pp. 78–87, 2012.

[30] P. V. Shijo and A. Salim, “Integrated Static
and Dynamic Analysis for Malware
Detection,” Procedia Comput. Sci., vol. 46,
no. Icict 2014, pp. 804–811, 2015.

[31] B. Wolfe, K. O. Elish, and D. D. Yao,
Comprehensive Behavior Profiling for
Proactive Android Malware Detection. 2014.

[32] B. Olabenjo, “Applying Naive Bayes
Classification to Google Play Apps
Categorization,” Comput. Res. Repos., vol.
abs/1608.0, 2016.

[33] J. Gaviria, D. Puerta, B. Sanz, I. S. Grueiro,
and P. G. Bringas, “The Evolution of
Permission as Feature for Android Malware
Detection,” in International Joint
Conference, Advances in Intelligent Systems
and Computing, 2015, vol. 369, pp. 389–400.

[34] W. Glodek and R. Harang, “Rapid
permissions-based detection and analysis of
mobile malware using random decision
forests,” in Proceedings - IEEE Military
Communications Conference MILCOM,
2013, pp. 980–985.

[35] M. S. Alam and S. T. Vuong, “Random forest
classification for detecting android malware,”
in Proceedings - 2013 IEEE International
Conference on Green Computing and
Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social
Computing, GreenCom-iThings-CPSCom
2013, 2013, pp. 663–669.

[36] R. Dubey, S. R. Samantaray, B. K. Panigrahi,
and V. G. Venkoparao, “Data-mining model
based adaptive protection scheme to enhance
distance relay performance during power
swing,” Int. J. Electr. Power Energy Syst.,
vol. 81, pp. 361–370, 2016.

[37] K. O. Elish, X. Shu, D. (Daphne) Yao, B. G.
Ryder, and X. Jiang, “Profiling user-trigger
dependence for Android malware detection,”
Comput. Secur., vol. 49, pp. 255–273, Mar.
2015.

[38] P. Faruki et al., “Android Security: A Survey
of Issues, Malware Penetration, and
Defenses,” IEEE Commun. Surv. Tutorials,
vol. 17, no. 2, pp. 998–1022, 2015.

[39] M. Yang, S. Wang, Z. Ling, Y. Liu, and Z.
Ni, “Detection of malicious behavior in
android apps through API calls and
permission uses analysis,” Concurr. Comput.,
vol. 29, no. 19, pp. 1–13, 2017.

[40] G. Qiang, “An effective algorithm for
improving the performance of Naive Bayes
for text classification,” in 2nd International
Conference on Computer Research and
Development, ICCRD 2010, 2010, no. 1, pp.
699–701.

[41] Y. Zhen, N. Xiangfei, X. Weiran, and G. Jun,
“An approach to spam detection by Naive
bayes ensemble based on decision induction,”
Proc. - ISDA 2006 Sixth Int. Conf. Intell.
Syst. Des. Appl., vol. 2, pp. 861–866, 2006.

[42] Q. Qian, J. Cai, and R. Zhang, “Android
Malicious Behavior Detection Based on
Sensitive API Monitoring,” in Advanced
Science and Technology Letter, 2013, vol. 35,
pp. 24–27.

[43] L. Li et al., “AndroZoo++: Collecting
Millions of Android Apps and Their
Metadata for the Research Community,” in
Proceedings of the 13th International
Conference on Mining Software Repositories,

Journal of Theoretical and Applied Information Technology
31st October 2018. Vol.96. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6863

2016, pp. 468–471.
[44] A. Shabtai, Y. Fledel, and Y. Elovici,

“Automated static code analysis for
classifying android applications using
machine learning,” in Proceedings - 2010
International Conference on Computational
Intelligence and Security, CIS 2010, 2010,
pp. 329–333.

[45] V. Grampurohit and V. Kumar, “Category
Based Malware Detection for Android,” in
Security in Computing and Communications,
2014, pp. 239–249.

[46] H. A. Alatwi, T. Oh, and E. Fokoue,
“Android Malware Detection Using
Category-Based Machine Learning
Classifiers,” in Proceedings of the 17th
Annual Conference on Information
Technology Education, 2016, pp. 54–59.

[47] A. Developer, “Platform Architecture,” 2018.
[Online]. Available:
https://developer.android.com/guide/platform
/. [Accessed: 04-Jun-2018].

[48] S. R. Garner, “WEKA: The Waikato
Environment for Knowledge Analysis,” in
Proceedings of the New Zealand computer
science, 1995, pp. 57–64.

[49] C. Yuan, S. Wei, Y. Wang, Y. You, and S.
ZiLiang, “Android Applications
Categorization Using Bayesian
Classification,” in 2016 International
Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery
(CyberC), 2016, pp. 173–176.

[50] A. Azmi, M. F. Abdollah, Y. Robiah, and A.
Rabiah, “Preliminary Findings: Revising
Developer Guideline Using Word Frequency
for Identifying Apps Miscategorization,” in
Proceedings of the Second International
Conference on the Future of ASEAN (ICoFA)
2017, 2017, pp. 123–131.

