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ABSTRACT 

The great shipment of Android mobile devices throughout the world has surged the application develop-
ment.  Indirectly, this scenario had invited the malware creator to be in-line with the technology evolution. 
One of the threats is the leakage of privacy data and it is a serious subject. To overcome this, the Android 
application usually being examine through static or dynamic analysis. In static analysis approach, research-
er commonly considered combination static features to identify the benign and malicious application. This 
paper presents a proof of concept on classifying Android benign and malicious apps by its application cate-
gory. At the same time, this paper proposes a new framework for malicious detection focusing on the leak-
age of user privacy using minimum number of the request permissions and API calls features. Several ma-
chine learning classifiers with several training and testing percentage applied in this study to compare the 
accuracy. The result show that, applications in same category reported more accurate performance in iden-
tify malicious apps compared to non-category based. By applying features ranking and information gain 
features selection, Random forest classifier with 10 folds cross validation for both “Book and Reference” 
and “Personalization” category achieved higher true positive rate also lower false positive rate. 
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1. INTRODUCTION 

The fast growth of mobile devices have been 
surpassing personal desktop version computer in 
multiple elements such as  hardware shipment, 
network traffic, number of users and usage time 
since 2014. Android and iOS by Apple are two 
biggest mobile platform monopolies the mobile 
phone marketplace. Among these two platforms, 
Android is the most demanding due to its capa-
bilities to serves better combination of features 
and price than others. The varieties of phone 
specification from several manufacturers also 
push upwards the popularity of Android operat-
ing system (OS). This favorite operating system 
in conquered more 80% from the global 
smartphone starting from 2015 until now [1]. 
Android is an open source development envi-
ronment that enables the developers to upload 
and deploy their apps through apps center. The 
Android users can enjoy millions of the latest 
apps, games, music, TV, books and many more 
by downloading it from Android apps center 
called Google Play Store. In the same time, 
malware targeting Android OS has increased 

dramatically. Malware authors grabbed the op-
portunity due to that open environment to devel-
op malicious app that can abuse the platform fea-
tures [2]. There are more sophisticated malware 
families appeared since the discovery of the first 
Android malware in August 2008. According to 
[3], more than 2.5 million new malware samples 
at third quarter of 2017.  

To overcome the above issues, three de-
tection approaches in order detect malware have 
been introduced namely static, dynamic and hy-
brid technique by previous researchers. Static 
analysis is a technique based on the source code 
of the APK and occurs before the Android appli-
cation is installed. Hence, the malwares cannot 
modify its behavior during the static analysis. In 
contrast, dynamic analysis is the testing and 
evaluation of the Android program during the re-
al time of execution. Finally, the last approach 
will use the combination of static and dynamic 
features to seek for all possible code and run-
time flaws. To identify the presence of malware, 
the process feature selection is vital because the 
raw features may lead to a wrong result [4]. Con-
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sidering too many features can causes the com-
putational overhead and consume a lot of time 
during the classification of applications [5]–[8]. 
Thus, this research only focuses on two static 
features: permissions, API calls and one metada-
ta feature which is app category. 

The main objective of this paper is to 
proof that classifying malicious apps using their 
metadata such as app category defined by 
Google Play Store is more accurate compared to 
non-category based. We test our dataset with In-
formation Gain (IG) in feature selection phase. 
The study shows that our framework capable to 
classify Android benign and malware apps with 
lesser features use. We then run the classification 
using Naïve Bayes, Support Vector Machine 
(SVM), Decision Tree-J48 and Random Forest 
algorithm via Weka program. In overall, we 
found that 10 fold cross validation with Random 
Forest classifier presented the best accuracy for 
malware detection based on app category. Thus, 
this paper also present a propose framework for 
identifying malicious app based on the app cate-
gory.  

The rest of the paper is organized as fol-
lows: We discuss the related works in Section 2. 
Section 3 describes the proposed method. Sec-
tion 4 contains experimental result and discus-
sion before end-up with conclusion and future 
works in Section 5. 

2. LITERATURE REVIEW 

Android is open source software stack 
architecture and created for wide multitude de-
vices [9]. Android applications are predominant-
ly written in Java and run within respective in-
stances of the Dalvik virtual machine. The 
complete and tested application were stored in 
official pre-installed distribution channel to be 
serve to the user either free of charge or at a cer-
tain cost [10]. There are numbers of alternative 
stores that can direct user for installation such as 
GetJar1, SlideMe2 and Amazon Appstore3 for 
Android. The existence of third party medium 
gives an opportunity to the malware creators to 
be aligned in the market also poses more security 
challenges [11]. 

                                                           

1 https://www.getjar.com/ 
2 http://slideme.org/ 
3 https://www.amazon.com/mobile-apps/b 

In order to cleanse malware form the of-
ficial apps store, Google built in-house anti-virus 
called Google Bouncer in 2012. This mechanism 
able to remove 40% of anomalies that may po-
tential malware before the apps can be stored in 
the repository[12]. Despite the apps guard pro-
vided by Google, Bouncer can be evaded by 
malware author by delaying the attack, where 
malicious payload is injected in the benign ap-
pearing app at the next updates patch [13].  

2.1 Android Apps Analysis Techniques 

Malware detection and response system 
is to distinguish the vicinity of versatile malware 
in application which, if found could be cleaned, 
quarantined or deleted. Common techniques used 
for mobile malware detection can be roughly 
categorized into two approaches, whether using 
static or dynamic analysis. Android malware can 
also be analyzed using the combination of static 
and dynamic analysis called hybrid analysis 
[14]–[17]. 

The basic static analysis examines mal-
ware by viewing the actual code or instructions. 
This approach also called static code analy-
sis/white box testing/source code review, use for 
detecting Android Malware was inspired from 
static program analysis and done by examining 
the code without executing the programs. Several 
methods have been propose that statically inspect 
application and dissemble their code  [18]. This 
technique can easily automate, flexible, proactive 
and fast [19]. A significant threat pose to the se-
curity of Android applications is by malicious 
leaks of sensitive information [20]. Modified 
smartphone applications can steal users’ private 
information and send it out without the user noti-
fication [21].  

Androguard [14], is completely open 
source and the system decompiles the applica-
tions with applied signature-based malware de-
tection. Stowaway [22] used static analysis on 
system APIs and their relation towards permis-
sion to look into privilege leakage. [20] applied 
static information flow analysis based on APIs 
for possible source and sink of private data. Au-
tomatic analyzer for detecting privacy leaks in 
Android applications presented by [23]. The au-
thors call the framework as Scandal that took 
Dalvik VM byte code as and input to detect pri-
vacy leaks from source to sink. They used three 
types of private information from source (API 
calls that return private information):- location 
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information, Phone identifier (phone number, 
IMEI, IMSI and ICC-ID) and Eavesdropping 
(audio and video). For the sink (API calls that 
can transfer to the network, file or SMS), the au-
thors considered: Network/File and SMS. In 
2013, [9] done an experiments for detecting An-
droid malware based on sensitive APIs. The au-
thors collect 20 Android apps, but use only one 
app in their experiment. About 58 sensitive APIs 
defined by the authors focused on data leakage.  

In contrast, dynamic analysis (also 
known as behavioral-based analysis) executes 
within a sandbox [24] and does not inspect the 
source code. TaintDroid  by [25] was one of the 
earlier system using dynamic analysis system. 
Further, Droidbox (an open source project utiliz-
ing Google’s Android Virtual Device to log An-
droid application behavior) is a complemented 
from TaintDroid where it is an effective tool to 
analyze Android applications, however, its lack 
of support to track native API calls. AppsPlay-
ground[26], is a framework for automated secu-
rity analysis dynamically. It used multiple taint-
tracking and system call at kernel level in multi-
ple detections. Another framework called An-
dromaly[27], perform a host-based malware de-
tection. Several machine learning classifiers 
applied on selected features for two apps catego-
ries. Different best accuracy achieved by the 
classifiers. 

2.2 Classification using Machine Learning  

Machine learning was used since past 
decade to capable to generalizing the unknown 
data [28]-[29]. It is promising approach for de-
tecting malware [30][31]. Researchers such as 
[32]–[38] make Random Forest in their research 
in order to detect Android malware. Further-
more, Naïve Bayes algorithm also been used in 
several malware detection and feature selection 
research. Naïve Bayes also return a good result 
on several study by [32], [39]–[41]. Commonly, 
researchers will use 3-5 different machine learn-
ing in their study to look at the best accuracy and 
lowest false alarm or false negative rate. The 
common machine learning uses are decision tree 
J48, k-nearest neighbor and logistic regression. 

Machine learning Software behavior 
based malware detection using SVM algorithm 
has been done by [42]. The authors proposed a 
framework (AntiMalDroid) that dynamically en-
hance malware characteristic into the database. 

Lastly, study on dangerous permissions level as 
static feature and function call as dynamic fea-
ture done by [43]. His work focused on the leak-
age of user’s sensitive data. 

2.3 Malware Detection Based on Application 
Category  

Work by [44] was the first work to classify An-
droid applications using application type. They 
applied the several classifiers on machine learn-
ing techniques to differentiate between Tools and 
Games application type. The authors stressed out 
that, the successful differentiation between cate-
gories can provide positive indication about the 
ability to learn and model Android benign appli-
cations files and potentially detect malware files.  
The study used 2850 apk files form both APPS 
and GAMES Apps. The authors listed out top 20 
ranking of importance features for classification 
that most likely used by GAMES apps. In [45], 
authors used Naïve Bayes algorithm to differen-
tiate being and malicious apps. The authors use 
sensitive API calls gathered by [14] and permis-
sions listed in AndroidManifest.xml files. A part 
of the collected API calls was not standard as 
listed by Android developer page. Broadcast re-
ceiver added by [46] as feature to analyze mal-
ware statically. The authors compared two 
groups of categories apps with non-categories 
apps. Number of selected features determined for 
each categories are different for each categories. 
Up to 2500 selected features used in their exper-
iments and this scenario give impact on the di-
mensional of variable space in datasets. 

2.4 Implications 

In this research, we will use app category as one 
of the static feature in order to differentiate the 
good and malicious apps. We will run the exper-
iment with more than one machine learning to 
get the highest accuracy. We will also explore 
several groups of training and testing set with the 
identified machine algorithm. 

3 METHODOLOGY 

Figure 2 below shows the diagram of the pro-
posed framework. It begin with the collection of 
benign and malware apps. All the benign apps 
collected from Google play store and have been 
checked using VirusTotal to ensure that they are 
probably malware free. 
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Figure 2: Proposed Framework

All apps are parsed using reverse engi-
neering process where several tools are used. For 
this study, we only chose extract prominent static 
features (permissions and API calls) and one 
metadata feature (app category) to be evaluates.  

We apply Information Gain feature se-
lection approaches to reduce computational cost 
after generating the binary vectors. We use mul-
tiple machine learning algorithms, including Na-
ïve Bayes, Support Vector Machine (SVM) with 
Sequential Minimal Optimization (SMO), Deci-
sion Tree (J48) and Random Forest for classifi-
cation. 

3.1 Data Collection 

Total of 8177 Android apps from Google Play 
Store (benign) and AndroZoo [47] (malware) 
with 10 different apps categories are collected. 
Book and Reference (“B&R”) and Personaliza-
tion (“Pers”) dataset are subsets from the total 
dataset (“NoCate”). The number of apps used for 
this study is as shown in Table 1. 

Table 1: Number of Apps in Each Dataset 

Category Benign Malware Total
Without category 4764 3413 8177
Book and Reference 528 455 983
Personalization 531 566 1097

  

 All benign apps are scanned using VirusTo-
tal to verify that the collected samples did not 
contain malicious code. The analysis by Vi-

rusTotal returns the total number of engines pre-
viously detected as malicious and malware. In 
this paper, we did not consider as benign sample 
even if only one antivirus engine detect the sam-
ple as malware or adware. 

3.2 Reverse Engineering 

In order to reach to the Android APK source 
codes, one need to reverse engineering the “.apk” 
file. Firstly, ApkTool4 is used to analyze close 
Android application binaries. AndroidMan-
ifest.xml and classes.dex are two important files 
produces by this tool. Instead of using the batch 
script to retrieve permissions in AndriodMan-
ifest.xml, we mine the requested permission us-
ing Asset Packing Tools (aapt). To parse the .dex 
file, we use dex2jar5 to convert APK files into jar 
files, and then JD-GUI6 Java de-compiler used to 
obtain the Java source codes.  

3.3 Feature Extractions and Refinements 

Category considered as one of the metadata fea-
tures in malware analysis. In this paper, we de-
pending on the category provided by Google 
play store. This study only focuses on two cate-
gories namely “Book and Reference” (B&R) and 
“Personalization” (Pers).  

                                                           

4 http://ibotpeaches.github.io/Apktool/ 
5 https://github.com/pxb1988/dex2jar 
6 http://java.decompiler.free.fr/?q=jdgui 
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Figure 3: Example of Category in Google Play Store. 

Figure 3 above is the example of category pro-
vided by Android app center. The other two stat-
ic features involved in this study explained in the 
next section. 

3.3.2  Permissions 

One of the securities to protect users and system 
provided by Android is permission. Android re-
quires apps to declare the permissions they need 
before they can use certain features and data. A 
common set of permissions is used for a specific 
category. For this study, the specific permissions 
requested by an app in a category are compared. 
App that request over-privileged or uncommon 
permission compared to the common set of per-
mission on that same category will indicates as 
malicious intention.  

There are four kinds of protection level 
in Android namely: normal, dangerous, signature 
and signatureOrSystem. We only extract all per-
missions under the “Normal” and “Dangerous” 
protection level. Normal level is lower-risk per-
missions that give requesting app access with 
minimal risk to other app. The system will auto-
matically grant this type of permission without 
asking for the user’s explicit approval. Danger-
ous level is the high-risk permission that able to 
access user private data or control over the de-
vice. This indirectly can negatively impact the 
user. Finally, we only focusing on the privacy 
leakage related requested permissions for this 
study. 

3.3.3  API Calls 

An Android API (Application Program Interface) 
provides an application with a library which is 
includes public, private and hidden classes and 
method. It documented in Android SDK and is a 
set of functions provided to control main action 
of Android OS. There are thousands of APIs in 
Android system. Malicious app usually makes 
use of sensitive API to enable lunch malicious 
activities. Same as permission, this study will 

compare the common set of benign APIs with 
the requested APIs by the apps. We extract only 
the sensitive API calls that related to user priva-
cy leakage. For example, getCellLocation meth-
od is used to get the location of the device. This 
API requires ACCESS_COARSE_LOCATION 
or ACCESS_FINE_LOCATION permission to 
proceed.  

3.4 Binary Feature Vector 

Binary feature vector is needed whenever the bid 
size of dataset was developed. Each app in the 
sample was represented as a single instance with 
a binary vector of features and a class label indi-
cates whether the app is benign or malicious. If 
the feature is present in the app it is represented 
by 1, if it is not present in the app, it is represent-
ed by 0. 

3.5 Features Selection and Features Ranking 

Information gain feature selection technique is 
employed to select the most relevant features and 
to train the different classifiers. This method is 
also known as mutual information method. Not 
all features are equally important in differentiat-
ing the benign and malicious apps. Features are 
then selected based on rank to reduce the cost of 
running the classification algorithm on large 
scale dataset. Only 62 permissions and 20 APIs 
related to privacy leakage were selected to be run 
on the several machine learning classifiers. 

3.6  Classifier 

We evaluate the feature selection procedure us-
ing different classification models. For this pur-
pose, we use four classifiers: Naive Bayes, SVM 
with SMO, J48 Decision Tree and Random For-
est. In our experiments, we use several training 
and testing dataset: 70-30, 80-20, 90-10 and 10 
fold cross validation. Thus, the most accurate 
training and testing dataset distribution also the 
best classifier can be found. 

3.7 Performance Evaluation 

Relevant confusion matrices were created from 
the response of classifiers. 
True Positive (TP) – number of correctly identi-
fied as malicious applications. 
 
False Positive (FP) – number of incorrectly 
identified as malicious applications. 
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True Negative (TN) – number of correctly iden-
tified as benign applications. 
 
False Negative (FN) – number of incorrectly 
identified as benign applications. 
 
The calculation of True Positive Rate (TPR), 
False Positive Rate (FPR) and Accuracy are as 
follows: 

𝑇𝑃𝑅 ൌ


ା
 (1) 

𝐹𝑃𝑅 ൌ


ା
 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
 ା 

 ା  ା  ା 
 (3) 

The performances of machine learning tech-
niques were evaluated using the TPR, FTR and 
the accuracy which are defined above. 

4. RESULT 

To ensure selection of the most relevant applica-
tion features for the classification stage, we only 
considered all features that have score value in 
feature ranking. Only 62 permissions and 20 sen-
sitive APIs are selected through the IG feature 
selection. To this experiment, we have used 
Waikato Environment for Knowledge Analysis 
(WEKA).   

WEKA is a machine learning workbench 
that contains numbers of algorithms. This tool 
has several features such as classification, clus-
tering and attribute selection. The WEKA system 
able to work with a variety data set over the past 
year [48].  Result for TPR and FPR using four 
differences machine learning algorithms is 
shown in Table 2 below. 

 
Table 2: Result for TPR and FTR 

 

Random forest classifier with 10 folds 
cross validation show the highest TPR and the 
lowest FPR for NoCate and Pers. The category-
based shows better TPRs and FPRs compared to 
NoCate except for B&R at 80% training and 
20% testing set using decision tree J48 algo-

rithm. Indirectly, this situation gives reflects on 
accuracy rate. 

Figure 3 to 6 shows the accuracy of the 
algorithm by these three classes with different 
type of machine learning also different training 
and testing set.  
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Figure 4: Accuracy Using Naïve Bayes Classifier 

Figure 4 above shows that apps from Pers cate-
gory achieved highest accuracy using all kind of 
training and testing dataset. The lowest accuracy 

when applying Naïve Bayes algorithm was 
achieved by NoCate apps. 
 
 

 
Figure 5: Accuracy Using SVM Classifier 

Pers category also reported the highest accuracy 
when support vector machine classifier was ap-
plied at three differences split training and test-
ing dataset. On the hand, B&R scored highest 

accuracy when 90-10 split dataset applied. The 
pattern can be seen in Figure 5. The lowest accu-
racy recorded at all split training and testing da-
taset for Nocate.

 

 
Figure 6:  Accuracy Using J48 DT Classifier 

Slightly different result shows when the dataset 
run on J48 decision tree algorithm where NoCate 
took a second highest of accuracy at the 80%-
20% split dataset. The rest accuracy result at the 
other split training and testing dataset are same 
as the previous two results.  

Lastly, Figure 7 below report mixed 
achievement by Pers and B&R category. Split-
ting dataset at 70-30 and 90-10 shows B&R per-
formed the best accuracy while Pers category 
outperformed at 80-20 and 10 folds cross valida-
tion splitting dataset.
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Figure 7: Accuracy Using Random Forest Classifier 

Books and Reference achieved highest accuracy 
compared to Personalization category. The result 
shows otherwise at 80-20 and 10 folds but re-
main same for non-category. 

All classifier reported higher accuracy for cate-
gory-based compared to non-category based ex-
cept for J48 decision tree on 80% training and 
20% testing dataset. The result shows that the 
detection of malicious apps is more effective 
when the apps are grouped into their class. 

Table 3: Result comparison  
Researchers ML # fea-

tures 
Accuracy 

[44] Boosted 
Bayesian 
Network 

800 0.922 

[45] Naïve 
Bayes 

NA 0.977 

[46] SVM 2775 0.982 

This study Random 
Forest 

82 0.951 

 

Table 3 show the comparison of result with pre-
vious researchers. This study only uses smallest 
features variable numbers compared to the other 
researchers.  Even though our framework did not 
achieve the best accuracy, but we will add a few 
more feature variables to get better result. 

5. CONCLUSION 

In this paper, we have proved and proposed a 
framework for category-based malware detection 
on Android applications focusing on the leakage 
of privacy information. The study shows that, 

apps in their category achieved higher accuracy 
compared to non-category. Random forest classi-
fier with 10 fold cross validation reported the 
highest accuracy compared to the three other 
classifiers. Compared to previous research relat-
ed to category-based, our framework able to 
achieved high accuracy with only small number 
of features.  

This study only focuses and limits to An-
droid apps from API level 16 to 24 due to the da-
taset provided by AndroZoo. We will further the 
study into more category and perhaps will look 
into different main category such as games. Fur-
thermore, this study can be enhancing by includ-
ing more threat pattern by the malware. 

For future works, we will consider three as-
pects. First, we will consider adding other static 
feature such as intent, broadcast receiver or 
strings in training the classifier and perhaps may 
increase the detection accuracy and reduce the 
FPR. Second, we will consider to integrating 
with dynamic detection technique by profiling 
features for each category. Lastly, miscategoriza-
tion by android in their play store has as reported 
by [49], [50]. Thus, we plan to re-categories the 
apps first before precede with the malware detec-
tion for better accuracy. 
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