
Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

523

IMPROVING SOFTWARE ARTIFACTS REUSABILITY
BASED ON CONTEXT-AWARE REUSE TECHNIQUE

1DOOHWAN KIM, 2JANG-EUI HONG

1,2Department of Computer Sciences, Chungbuk National University, Cheongju, 28644, Rep. of Korea

E-mail: 1dhkim@selab.cbnu.ac.kr, 2jehong@chungbuk.ac.kr

ABSTRACT

Reusing software artifacts is not limited to only source codes, but also various artifacts which are created in
software projects. However, traditional artifacts reuse approach has some problems of difficulties to find an
appropriate artifact and to choose suitable terms as search keywords. To reduce the difficulties and enhance
reusability of software artifacts, this paper presents some novel techniques based on context-aware reuse;
which are context-based automatic keyword generation, ontology-based keyword extension, context-aware
retrieval and learning-based result visualization. To realize the techniques, we firstly defined
microComponent with the smaller unit (section) of a document as the reusable unit. And then we focus on
to how can we retrieve and reuse the microComponents with the concept of context-aware. Our technique
can precisely control the reusable unit, and enhance reusability of software artifacts based on the
microComponents.

Keywords: Software Artifact, Reusability, Context-aware Reuse, microComponent, Reuse Framework.

1. INTRODUCTION

 Software artifacts have been recognized as one of
the most important factors in successful software
development due to provide the visibility of
software development [1]. Therefore, the artifacts
must be developed systematically to provide high
qualities such like consistency, completeness, and
traceability. Artifact reuse, especially the reuse of
technical document has been known as a strategy to
improve the qualities of the document to be created
because it allows you to create documents quickly
and reliably using already proven artifacts [2].

However, the conventional component-based
reuse approach has some problems such that it is
difficult to find components that we want to reuse,
and also it is not easy to accept without
modification to the found components [3,4]. To
finding the reusable components based on
keywords simply is difficult to find the desired
suitable components to reuse in the development of
software artifacts. Especially in the conventional
reuse of technical document, it is more difficult to
find out and to reach the specific contents or figure
objects due to file-based reuse approach [5].
Additionally, there are some inconveniences when
we refer back and forth several documents to find
out the contents to be reused. Therefore, a novel
approach for managing reusable documents is

required, just as the need to address the existing
problems of component-based reuse.

 Various techniques for finding reusable
artifacts have been proposed; representatively, the
search techniques based on keywords, the
navigating techniques based on domain facets [6],
and the context-based search techniques based on
subject word and thesaurus [7,8,9]. The
representative studies of the context-based retrieval
techniques have been proposed by E. Cruz [7] and
S. Nesic [8]. Cruz made to enrich their studies by
defining specific contextual information with
respect to reusing artifacts, so that the reuse as
possible to find more suitable components. Also
Nesic [8] had studied on the context-based retrieval
technique with intension to reuse technical
documents. He assigned tags to every contents of a
document and the document was retrieved based on
the tags. If a user defines a keyword and the related
ontology to retrieve a document, then his search
technique allows retrieving the partial content of
the document defined by the tag. However, these
methods also did not solve the existing problems in
the reuse of the documents using file as the search
and result unit.

 In order to resolve such problems, we propose a
retrieval technique based on the content (we called
this content as a section) of a document rather than
a document in file unit. This paper defines

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

524

microComponent (mC) which is a retrieval unit for
reusable technical documents, and a separated
section of the document. Also this paper proposes
the component repository architecture to support
context-based retrieval based on the mC. Our
proposing technique can easily find the content of
the document the user wants, directly reach to a
specific part of the document, and can support fast
and correct understanding for the content due to the
small retrieval unit (i.e., section).

 This paper is organized as follows. Section 2
surveys the related work for artifact reuse, and
Section 3 explains about the microComponent-
based reuse framework presented in this paper.
Section 4 proposes the techniques of context-based
retrieval in our reuse framework. Section 5 verifies
the usefulness of our technique by case study. The
last section describes the conclusions and future
research work.

2. RELATED WORK

Context-aware reuse has been studied by many
of researchers steadily in various aspects and
subjects [7-18]. The main purpose of these studies
is to achieve more efficient, useful and convenient
search for artifacts reuse. Among those a lot of
studies, we will introduce certain representative
studies in this section.

E. Cruz [7] proposed a context based software
asset retrieval system. The system has two
repositories working together for assets retrieval:
The one manages software assets, while another
one manages the contextual elements. The authors
also classified user’s roles to manage and provide
contextual information by the role. For example, a
keyword can be understood with different context
or different meaning for software tester and
configuration manager. Even though this system
can provide more useful assets for each role of
users, their proposing system manages not the
contents, but the files as the unit of reusable assets.
This make hard to utilize the context information of
smaller units which are the components of a file or
document (for example sections of a documents or
methods from a classes).

S. Nesic [8] focused on the lack of semantical
information and interoperability in document
management from traditional desktop system. As a
solution and alternation, the author built the
semantic document management system having the

concept of semantic web. The contextual
information of documents is managed by
annotating semantical information to the documents.
The author also used three distinguished
ontologies; document ontology for managing the
smaller units of documents by classification,
annotation ontology for managing annotation in
contextual aspect and change ontology for tracking
the change of documents. By using these ontologies,
the author makes enable to semantical and
contextual retrieval and reuse of documents
efficiently. The strength of this study is annotating
the semantical information without any
modification of original copy. However, the system
did not consider the structural information (i.e.,
contents structure) of documents for contextual
information even though the proposed system
manages smaller units of the documents for just
only classification by semantical information.

A. M. Khattak and colleagues perceived
retrieving digital documents to be difficult problem
because of their huge size and amount [10]. Also,
the authors claimed the inefficiency of keyword-
based search in the situation because user often
fails to search by keywords when the words are
inappropriate, even though they have exactly same
meaning. Therefore, the authors provided a solution
which is supporting semantic-based search based
on ontology. The authors used not only the
ontology, but also knowledge base and inference
engine to enhance the efficiency and reasonability
of search result. The proposed engine showed up
the improved precision of search results compared
with other previous works. However, they did not
concern the structural context of the documents.
Moreover, their main target of the retrieval is
general documents which are written in only letters.
As the result, their system cannot fully support
software development activity because there are so
many types of artifacts like drawings, diagrams,
figures and expression.

There are numerous studies supporting context-
based reuse or recommendation like [11, 12].
However, almost existing studies have a little bit
difference focus or purpose with our research
interests. Our study focus on managing and
utilizing a variety of information such as the
structural information of documents and the
ontology related with keywords, to support context-
aware reuse in all aspects of reuse activities.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

525

Fig. 1. The conceptual structure of microComponent reuse framework

3. microComponent REUSE FRAMEWORK

3.1 Structure of mCRF

We define the mCRF (microComponent Reuse
Framework) to managing, retrieving, and reusing
the microComponents. The overall structure of the
mCRF is shown in Figure 1.

The mCRF, as shown in Figure 1 represents the
overall structure for supporting the reuse of
technical documents which are created during
software development process. The brief
explanations for the functions of mCRF are as
follows:

 Assets Builder (AB) has those functions of
extracting mCs from reusable document,
defining basic information of the extracted
mC, and transfers the mCs and their
information to Contextual Facilitator.

 Contextual Facilitator (CF) registers the
basic information to the context topology
catalog, and stores the mCs to reusable asset
storage.

 Reuse Imparter (RI) listen to user’s request
to reuse mC, and automatically generate a
query to retrieve the adequate mCs.

 Search Engine (SE) retrieves the context
catalog, and selects the candidate mCs
according to the requested query.

 Assets Presenter (AP) visualizes the search
results in a form of pre-defined styles.

3.2 Meta Information for Reuse

One of the contextual information managed by
CF is the catalog of reference models. The
reference models include standard document

templates which were represented with XML [9].
We extend XML elements to explicitly define the
boundary of sections of a document, and also
define the document template with the extended
XML. The standard documents were based on the
specification of the ISO/IEC 12207 [19] and MIL-
STD-498: DID (Data Item Description) [20]. An
example of the document template, “Software
Requirement Description” is shown in Figure 2.

<TD title=“Software Requirement Description”
version =“ ” id=“ ” xmlns:xsi=“http://..”..>
<mC title=“1. Scope”>

<mCsub title=“1.1 Document Overview”>
</mCsub>

<mCsub title=“1.2 System Ovrview”>
</mCsub >
<mCsub title=“1.3 Terms and Abbreviation”>
</mCsub >

</mC>
:

<mC title=“2. Requirements”>
<mCsub title=“2.1 Functional Requirements”>
</mCsub>
<mCsub title=“2.2 Non-Functional Requirements”>
</mCsub>
<mCsub title=“2.3 Interface Requirements”>
</mCsub>

:
<mC title=“5. Other Considering Issues”>
</mC>
<mC title=“6. Appendix”>
</mC>
</TD>

Fig 2. An example of standard document template which
is represented with extended XML.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

526

Fig. 3. Imparter-Collector-Fetcher-Presenter Pattern which proposed to support our reuse framework

The XML element <TD> represents a
document which contains all contents and the
elements <mC> and <mCsub> denotes the section
and subsection of a document, respectively. Users
can create a technical document using an instance
of the standard document template. The completed
document is separated into a set of mCs, and then
registered to the reusable assets storage by the
separated mC. The management information for the
mC is given in Table 1.

Table 1. Meta information for mC specification

Class Attributes

Identification Identifier, mC name, Type of mC

Project
Project_ID, Developer,
Date of creation, Brief description

IntraConnection Previous_mC, next_mC

InterConnection Previous_doc, Next_doc

History
Num_Used, Reuse_date,
 User_review

Quality

[Text mC] Number of pages,
Structure type, Template
compliance.

[Source Code] Halstead
Complexity,

Cyclomatic complexity,
Power consume

Constraints
Where to reuse, Customization,
 Criteria

Thesaurus Thesaurus, Ontological link

CPR
Characteristics / Pattern /
Recommendation information of
mC

The class "IntraConnection" as listed in Table 1

is a pointer that indicates the connection relation
between mCs constituting a document; the class

"InterConnection" is a pointer to provide the
traceability between documents. Also the class
"Quality" is the measured quality values for an mC;
the "Constraint" class defines the instructions or
guidance for mC reuse. The "Thesaurus" is
ontology information class to support the context-
based retrieval; the "CPR" is a class that defines the
parameters of the algorithm used for the mC
retrieval. All of the information except “History” as
listed in Table 1 is defined or identified at the time
point of registering the mCs into asset storage.

4. CONTEXT-AWARE REUSE

4.1 Process View of mCRF Repository

Our mC repository system is configured with the
features of mC management, query processing,
search engine, and result display in overall user’s
perspective. In order to support these features, we
consider the process view of assets reuse within
mCRF, and develop an architecture pattern, ICFP
(Imparter-Collector-Fetcher-Presenter), as shown in
Figure 3.

As shown in Figure 3, when the user clicks the
reuse request button during the writing of a
document using a word processor, the RI
recognizes the tag data from the location of the
cursor. The tag data is made up with the
combination of TD title, mC title and mCsub title.

The RI sends the tag data to the Collector (①). The

Collector selects the related thesaurus from

ontology using the tag data (② and ③) to generate

the final query. The Fetcher uses the query (④) to

retrieve the appropriate mCs (⑤) form the reusable

assets, and creates the list of candidate mCs (⑥).

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

527

The Fetcher pushes the query results to the
Presenter depending on the model data that
describes how to represent the mC (⑦), that is to
say, the meta-information specified in Table 1. The
presenter visualizes the query results to provide the
information (model data) to user (⑧). After that, the
user can import the mC into the current creating
document by clicking the desired mC (⑨).

4.2 Context-Aware Reuse Approach

When trying to reuse of the reusable assets based
on the ICFP pattern, this paper utilizes the
following three context information in the reuse
process.

4.2.1 Context-aware query generation

The user does not enter any keyword when
he/she requests a reuse. The RI recognizes the
structural information of the current document
being created, and automatically generates keyword
for a user query. There are two major phases to
generate the keywords: The first phase is for
generating the keywords within a document, and
the second phase is for collecting the information
of the project characteristics and adding the
collected information to the keyword list.

The keyword generated in the first phase is a
combination of subsection title, section title, and
document title which are tagged. The detail steps
to generate a context-aware query for user’s reuse
request are follows;

1) The RI recognizes the current position of

cursor within creating document.
2) The RI finds the XML tag of the element

<mCsub>.
3) Adds the title of the element <mCsub> to

keyword list.
4) The RI traverse backwardly (i.e., upward)

XML tags of current document until it
encounters the element <mC> .

5) Adds the title of the element <mC> to keyword
list.

6) And the RI continuous the traversal of XML
tags of current document until it encounters
the element <TD> .

7) Finally adds the title of the element <TD> to
keyword list.

8) The RI generates the initial keyword list for the
user’s query when the encountered tag is
<TD>.

Based on the above steps, we can obtain the

initial keyword list (i.e., this is a set of tag data

collected from document template) like below
when this process was applied to the document
represented in Figure 2, and the cursor was
positioned at section 2.2.

The initial keyword =

{Non-Functional Requirements,
Requirements, Software Requirements
Description}

By the second phase, the initial keyword list will

be extended with the project information. This
project information comes from the project
definition portfolio. In general, the project portfolio
is made with project information when a project is
created. The detail information of project portfolio
is listed in Table 2.

Table 2. The detail information that is defined to create

the project portfolio
Information Description

Project type

It represents the type of a
project, which is one of {new
development, maintenance
(simple modification), upgrades
(add new functionality) }

Project Name

It describes the name of a
project in short phrase form.
Almost project name contains
main terms to reflect the
functionality of target
application.

Project Domain

Domain is a name of category
which represents the application
areas. For example, intelligence
system, embedded system,
transaction system, etc.

Project Manager
The name of a person who is
responsible for a project.

Project Period
The start and end date of a
project

The RI gets the project information form the

portfolio. The required information to retrieve
appropriate components is project name and project
domain. After the second phase, the base keyword
list will be formed with several terms, as like below.
The below keyword list is an example from
generated from our current project entitled to
“Context-aware artifacts retrieval system” as one of
intelligence systems.

The base keyword = {Non-Functional

Requirements, Requirements,
Software Requirements Description,
Context-aware artifacts retrieval system,

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

528

Intelligence systems}

4.2.2 Ontology-based query extension
Using the base keyword list generated by the

user request, the Collector automatically generates
the final keyword list using the relatum of the
elements of the base keyword list. The Collector
gathers the thesaurus from the repository, and
extends the keyword list to make search query. This
extension is intended to increase the precision of
the context-based retrieval with zooming in the
search scope.

The purpose of using ontology for the keyword
extension is making a query with similar or related
keywords. Certain keywords can be omitted or
unobserved depending on the knowledge or
vocabulary of the software engineer (i.e., user).
This omission can sometimes fail to obtain the
proper search results. Therefore, software engineer
who wants to reuse mCs can easily catch other
keywords which are having similar or same concept
with their own selected keywords. Figure 4 shows
the procedure of this keyword extension based on
ontology.

Fig. 4. The procedure to generate the final keyword list

using ontology

As shown in Figure 4, the Collector selects a
word from the base keyword list at the first step.
The Collector finds and lists the relatum from the
thesaurus using the selected word. After listing the
relatum, software engineer can interfere in
generating process of the extended keyword. The

engineer can choose the relatum with marking at
each term if he/she wants to restrict the extension
of the keyword. The concept of this intervention is
showed in Figure 5.

Fig. 5. The sample screen to restrict the relatum scope by

user’s intervention

Keyword extension is started from a base

keyword which is given from the Section 4.2.1.
This keyword is key or clue for extension because
user wants to retrieve mCs which include one of the
base keywords or some other keywords having
same or similar concept. The Collector will receive
the keyword and send it to ontology for extension.
After that, ontology will recommend certain
relatum (i.e., other keywords having same
concepts). The ontology is built in mC repository
from Figure 2. The terms came from the base
keyword list can be removed from the extended list
when software engineer did not mark to all the
relatum. From the above example, the final
extended keyword list is as below;

The extended keyword = {Non-Functional

Requirements, Quality requirements,
Software Requirements Description,
Context-aware artifacts retrieval system,
Contents-aware retrieval system}

Therefore, the search query will be generated to

find the mCs like that “Search mCs from repository
with the terms, non-functional or quality
requirements in the software requirements
description for context-aware artifacts retrieval
system or contents-aware retrieval system.”

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

529

 <a> <c>

Fig. 6. The process to extract contextual information (i.e., important keywords) from original reusable text; <a> is
original text, is Co-occurrence matrix, and <c> is Keyword extract with rank

4.2.3 Context-aware retrieval
Using the created search query, the Fetcher

recommends the candidate mCs from reusable
assets repository. This recommendation process is
composed of two phases; the first phase is a process
that extracts the contextual information from stored
mCs, and then compares it with the final extended
keywords. The second phase is to recommend the
candidate mCs to the user by using the comparison
result.

At first phase, the Fetcher extracts the keywords
from the original text, and then measures the
number of times that each keyword has appeared in
conjunction with other keywords. Based on the
number, it calculates the probability that two
keywords emerged together within the text. This
probability is used for determining the important
keywords compared to the probability of the
emergence of the keyword alone.

This keyword extraction process can propose the
important keywords with high probability for
representing main context of an mC. This method
had been suggested in the study of Matsuo et. al.
[21], and is used as an approach to discover
important keywords from a document, as shown in
Figure 6.

The Fetcher recommends a list of candidate mCs

as the result of the search query if the important
keywords were selected for a single document (i.e.,
an mC). For this recommendation, the contextual
information for an mC and the relationship
information among mCs must be controlled in the
repository. The recommendation is made through
the main two processes. The first one is to
recommend the mCs that have exact matching with
the context information or high degree of similarity.
The second is to determine the rankings of the
recommended mCs using the relationship attributes
between them. The relationship attribute means the
property of an mC that may be used in combination
when a particular mC is reused.

The similarity between mCs is determined as the
frequency of keyword appearance within mCs both,
by comparing the important keywords of the stored
mC and the extended keywords used for the query
request. The relationship attributes between mCs
are achieved by considering the types of
relationships, as below:

 Dependency Relationship: It refers to the
dependency between mCs. The dependency
occurs in cases of that an mC directly uses the
other mC, or an mC is included in the other
mC in the hierarchy structure of a document.

 Familiar Relationship: Although the
dependency between mCs does not exist, they
can be used in combination with a lot.

 Intersection (similarity) Relationship: It is a
relationship that represents the similarity
(intersection) of the mCs. This is defined
based on the detailed properties of the type
rather than just type of mC. If the similarity of
two mCs is matched completely, they can be
interchangeable.

 Inclusion Relationship: This is an attribute
indicating how much an mC includes the
contents of the other mC. For example, the
mC “A” includes the mC “B” in case of that
the “A” has 100% similarity to the “B,” while
the “B” has 50% similarity to the “A.”

 Interchangeable Relationship: If two mCs has
high contextual similarity, but it does not
appear to be reused in both, then the two mCs
are interchangeable. This is for the case of
having the same meaning expressed in
different terms, or for the case of representing
with different models for the same content.

 Complementary Relationship: The two mCs
are complementary to each other if they are
often tending to be more used together than a
pre-defined threshold when the two mC have
similar context.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

530

To recommend reusable candidates to user, some
of mCs are firstly selected by the similarity
analysis. The final candidates of mCs will be listed
with filtering out the selected mCs under the
consideration of the relationship attributes among
them.

4.2.4 Learning-based result visualization

 When search results obtained by the Fetcher, the
Presenter can visualize the result in a variety of
formats. The visualization can be different
depending on the type of mC. Also the Presenter
learns the user’s behaviors for changing the
visualization format by the type of mC, to utilize
them in the selection of visualization format. For
the different types of mC, we defined four kinds of
visualization format as shown in Figure 7.

(a) Text-based visualization format (b) Object-based visualization format

(c) Template-based visualization format (d) Code-based visualization format
Fig. 7. Examples of four kinds of visualization formats by
mC type

The visualization will be provided one from four

formats in Figure 6. Of course, the user can change
the visualization format if he/she wants. However,
the format will be automatically decided and
provided based on two criteria; the type of mC and
user preference. In aspect of the type of mC, the
mC can be classified into four categories; (a) text,
(b) object, (c) reference templates and (d) source
codes. The text category means text based contents
including minutes, technical reports and documents
which are created during software project process.
The object category represents figures included
within the contents. The figures include JPG/GIF-
typed pictures, UML diagrams and vector drawings
which are managed in repository. The templates
category means reusable assets or reference models
which were registered into repository for setting up
a project. The examples of the template are
waterfall model for software process, WBS (Work
Breakdown Structure) for prototyping approach
and standard document templates. These templates

were defined using mark-up language like XML.
The code category means the source codes that are
managed in the repository. As shown in Figure 7,
each of visualization formats is responsible to each
type of mCs. Therefore, the Presenter will provide
a specific visualization format based on the type of
mC.

However, the type of mCs is not only one
criterion to decide the visualization format because
certain users prefer to see and check search results
with other specific format of visualization. To
apply this preference, the Presenter will manage the
history about which kind of visualization format
should be selected by user, with considering the
mC type in search result. Actually that history
information will be managed indirectly by giving to
the Fetcher. Therefore, the Presenter can learn the
information about preference for each user.

5. CASE STUDY

In order to verify the performance of our
context-aware reuse technique, we performed the
experiment with the goal of checking the usefulness
of search results.

5.1 Experimental Design

Experiments were carried out on an ongoing
reuse system development project. In this project,
we tried to apply our reuse technique proposed in
this paper to create RDD (requirements definition
description) and SDD (software design description)
documents. Table 3 summarizes the time points of
reuse trials attempted in the document creation
process.

Table 3. Application of context-aware reuse technique
Exp.ID Doc. Name Contents for Reuse

E1

RDD

System Overview
E2 Non-Functional Requirements
E3 Interface Requirements
E4 Required Computer Resources
E5

SDD

System overview
E6 Overall Architecture design
E7 Interface Design
E8 Database Design
D9 Traceability Matrix
To check the usefulness of our context-aware

reuse technique, the number of mCs managed in the
assets repository totally covers 4360 mCs extracted
from a total of 450 documents.

5.2 Experimental Scenario

The scenarios for checking the usefulness of our
technique are as follows.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

531

(1) The user first starts to create the document by

using the template of the document to create
the RDD document.

(2) Simply click the “Reuse” button at a certain
position – i.e., a specific subsection - of the
document.

(3) A list of candidate components for reuse is
presented from the system. The proposed list
shows only the candidate components that
have match results of at least 70% in the query
condition for the search.

(4) The user clicks the link of a candidate
component to take its details, which is ranked
in the top of the search result, and then
decides whether or not to reuse it.

(5) Import the reusable component at the position
of the current creating document.

5.3 Experiment Results

We examined the experimental results from two
points; Accuracy of search results and superiority
of search results.

Accuracy of search results: The context-aware
reuse technique presented in this paper provides
automatic query generations, contextual
information - based retrieval that considers
components features and appearance patterns.
Using this technique, we examined the ranking of
the reused component by user from the search
results. The results are summarized in Table 4. For
each experiment identifier (E_ID), RFR (Reuse in
the First Retrieval Result), ROR (Ranking of
Reused Component within the result), and RSR
(Reuse in the Second Retrieval Result) are
summarized.

In case of the identifier E7 in Table 4, the search
result shows 30 or more reuse candidates as the
initial result, but the user tries re-search with
changed query condition after confirming about the
details of ten candidates only. This is because the
user cannot find appropriate design content that
matches the interface requirements defined in the
target project from the first search result as well as
because the user hastily decides that the search
result is not appropriate.

Table 4. Ranking of reused components within search

results
E_ID RFR ROR RSR ROR

E1 Y 2 - -
E2 Y 1 - -
E3 Y 3 - -
E4 Y 1 - -

E5 Y 3 - -
E6 Y 4 - -
E7 N - Y 15
E8 Y 2 - -
E9 Y 1 - -

Superiority of search results: In order to verify
the superiority of the search results, we performed a
comparison between the existing user-selected
keyword-based search technique and our context-
aware retrieval technique. At this time, the keyword
selected by the user is a combination of the title of
the subsection in which the cursor is located and
the name of the target system. And the result is
provided in unit of files. Figure 8 shows the
comparison result for the ranking of the
components reused by users within the search
results provided by the two techniques.

Fig. 8. Reusability Comparison between simple keyword

search and context-aware search results

As shown in Figure 8, it can be seen that the
context-based retrieval technique is very good for
presenting the reusable components desired by the
user as search results. In the cases of E1 and E4,
there is no significant difference between the search
keywords selected by user and the automatically
generated search condition. The value of user’s
keyword search in E7 is 0 means that any
component was not reused from the search result.
5.4 Threats to Validity

In contrast to conventional search, our technique
is more applicable for system development project
through R&D (Research and Development)
approach. For R&D-based system development,
reusable components should be able to provide
specific information that users want, and should
have more content and/or technical similarity than
conceptual similarity.

From this point of view, there is a need for
precise provisioning of the granularity of reusable

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

532

components. Our research result is sufficient to
support this demand. Nonetheless, we investigate
the following issues that could be considered in the
experimental process.

The one issue is on the response time to present
search results. The user-selected keyword-based
search technique may be superior to the context-
aware retrieval in terms of response time to present
search results. However, the rate of response time
to the search results depends on the size of search
space. Therefore, our context-aware retrieval is
surely superior when considering the time until the
final decision to reuse a component.

The other issue is to the ranking of the candidate
components listed in the search results. Is the rank
on search results meaningful? The user may not
click on the first component listed in the search
result. Sometimes users look through the search
results as a whole, and click on any component
they think about, regardless of the listed order of
candidate components. Nevertheless, it is important
to arrange the candidate component that best
matches the search criteria at the top of the search
results because the user looks through the list from
top to bottom.

Additionally, we can also consider language-
dependency as one of reuse barriers. In general
search engines, the language of retrieval results
may depend upon the language of input keywords.
If the keywords were written in English, the results
will be represented with English. If it is Korean, the
results will be Korean. However, one of the ways
to solve the linguistic barrier can be somewhat
complicated, but it can be solved by connecting the
lexicons between different languages with a set of
ontologies, or by using an automatic translation
system.

6. CONCLUSION

In this paper, we propose a novel technique for

context-aware reuse approach. In order to develop
the technique, we define a reusable unit as mC
(microComponent) which is defined with a section
of a document, and also propose a framework to
support the context-based retrieval for the mCs.
Our proposed technique can improve the usefulness
for the retrieval by suggesting the pattern, ICFP for
the mC repository in our reuse framework,
especially in the perspective of the users.

Now, we finished the comparative analysis of
our techniques with performing some case studies.
And we have confidence to the superiority of our
proposed technique when comparing ours with

conventional keywords-based retrieval techniques.

7. FUTURE RESEARCH DIRECTIONS

Even though our proposed technique can give

better retrieval results than conventional techniques
for reusable components, our mCRF may have
some improving issues to support more efficient
context-aware reuse.

The first further work is to enhance the context-
aware retrievals with developing new technique at
different aspects like dynamic recommendation and
learning-based retrieval. This is to reflect the users’
behaviors for looking through the retrieval result. If
a user clicks a reusable candidate from the result,
and the candidate was unused or ignored, then the
list of the final extended keywords can be modified
dynamically with deleting the corresponding
relatum from the list. This is possible to provide
more suitable results to users concurrently by
performing background retrieval (i.e., hidden to the
user) of reusable candidates.

Other research direction is on the application of
visualization technique toward big data analytics.
Lots of data scientists would like to gain useful
information from big data. However, sometimes the
information gaining from big data is often not used
by them even though the data used for the analysis
was appropriate and valuable population. Therefore,
it is important to provide informatively
visualization format to data scientist for the
retrieval results from big data.

ACKNOWLEDGEMENT

This article is a revised and expanded version of a

paper entitled “A microComponent-based Reuse
technique for Reusing Software Artifacts”
presented at The 11th Asia Pacific International
Conference on Information Science and
Technology (APIC-IST 2016) held on June 26 –
29, 2016 at Hokkaido, Japan. This research was
supported by a research grant from National
Research Foundation, funded by the Ministry of
Science, ICT and Future Planning, Korea (NRF-
2014M3C4A7030505). Corresponding author:
Jang-Eui Hong

REFERENCES:

[1] B.W. Weide, W.F. Ogden, S.H. Zweben,

“Advance in Computers: Reusable Software
Components,” Academic Press, 1991, pp. 1-65.

Journal of Theoretical and Applied Information Technology
31st January 2018. Vol.96. No 2

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

533

[2] William W. Agresti, “Software Reuse:

Developers’ Experiences and Perceptions,”
Journal of Software Engineering and
Applications, 2011, pp. 48-58.

[3] William B. Frakes and Kyo Kang, “Software
Reuse Research: Status and Future,” IEEE
Transaction on Software Engineering, Vol.31,
No.7, 2005, pp. 529-536.

[4] Douglas C. Schmidt, “Why Software Reuse has
Failed and How to Make It Work for You,”
C++ Report magazine, 1999.

[5] E. Guerrieri, “Software Document Reuse with
XML,” Proceedings of the ICSR, 1998, pp.
246-254.

[6] M. J. Henry, et. al., “MultiFacet: A Faceted
Interface for Browsing Large Multimedia
Collections,” IEEE International Symposium on
Multimedia, 2013, pp. 347-350.

[7] E. Cruz, et.al., “Modeling Context in Software
Reuse,” International Workshop on Modeling
and Reasoning in Context, Computer Science
Research Report, Vol. 112, 2007, pp. 89-102

[8] Sasa Nesic, “Semantic Document Model to
Enhance Data and Knowledge Interoperability,”
Annals of Information Systems, Vol. 6, 2009,
pp. 135-160.

[9] ISO/IEC 29500-1:2008, “Information
technology - Document description and
processing languages - Office Open XML File
Formats - Part 1: Fundamentals and Markup
Language Reference,” 2008.

[10] A. M. Khattak, N. Ahmad, J. Mustafa, et. al.,
“Context-Aware Search in Dynamic
Repositories of Digital Documents,” in
Proceedings on IEEE 16th International
Conference on Computational Science and
Engineering (CSE) 2013, 2013, pp. 338-345.

[11] Lars Heinemann, “Facilitating Reuse in
Model-Based Development with Context-
Dependent Element Recommendations,” in
Proceedings on RSSE 2012, 2012, pp. 16-20.

[12] R. Holmes and G. C. Murphy, “Using
structural context to recommend source code
examples,” in Proceedings of 27th
International Conference on Software
Engineering, 2005, pp. 117-125.

 [13] G. Aravanis, A. Bucur and M. Pechenizkiy,
“Hippocrates: A Context-aware, Collaboration
Enabling Search Tool,” in Proceedings on
IEEE 28th International Symposium on
Computer-Based Medical System (CBMS),
2015, pp. 320-325.

[14] B. Bislimovska, A. Bozzon, M. Brambilla, and

P. Fraternali, “Content-based search of model
repositories with graph matching techniques,”
in Proceedings of the 3rd International
Workshop on Search-Driven Development:
User, Infrastructure, Tools, and Evaluation,
2011, pp. 5-8.

[15] X. Zhu, X. Pan, and S. Wang, “Approaches to
Context-Based Knowledge Share and Reuse,”
in Proceedings on 4th International Conference
on Fuzzy Systems and Knowledge Discovery,
2007, pp. 741-746.

[16] K. S. Mule and A. Waghmare, “Context based
information retrieval based on ontological
concepts,” in Proceedings of International
Conference on Information Processing, 2015,
pp. 491-495.

[17] J. Cordeiro, B. Antunes and P. Gomes,
“Context-based recommendation to support
problem solving in software development,” in
Proceedings of 2012 Third International
Workshop on Recommendation Systems for
Software Engineering (RSSE), 2012, pp. 85-89.

[18] R. N. Deborah and S. Chitrakala, “A context-
aware approach based web service
recommendation,” in Proceedings of 2016 2nd
International Conference on Advances in
Electrical, Electronics, Information,
Communication and Bio-Information
(AEEICB), 2016, pp. 188-192.

[19] ISO/IEC 12207:2008, “Software Life Cycle
Processes,” 2008.

[20] MIL-STD-498, “Software Development and
Documentation,” 1994.

[21] Y. Matsuo and M. Ishizuka, “Keyword
Extraction from a Single Document Using
Word Co-Occurrence Statistical Information,”
International Journal on Artificial Intelligence
Tools, vol. 13, no. 1, 2004, pp. 157–169.

